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ABSTRACT

Context. In protoplanetary discs, micron-sized dust grows to form millimetre- to centimetre-sized pebbles but encounters several bar-
riers during its evolution. Collisional fragmentation and radial drift impede further dust growth to planetesimal size. Fluffy grains have
been hypothesised to solve these problems. While porosity leads to faster grain growth, the implied porosity values obtained from
previous simulations were larger than suggested by observations.
Aims. In this paper, we study the influence of porosity on dust evolution, taking into account growth, bouncing, fragmentation, com-
paction, rotational disruption, and snow lines, in order to understand their impact on dust evolution.
Methods. We developed a module for porosity evolution for the 3D smoothed particle hydrodynamics code PHANTOM that accounts
for dust growth and fragmentation. This mono-disperse model is integrated into both a 1D code and the 3D code to capture the overall
evolution of dust and gas.
Results. We show that porosity helps dust growth and leads to the formation of larger solids than when considering compact grains,
as predicted by previous work. Our simulations taking into account compaction during fragmentation show that large millimetre grains
are still formed but are ten to 100 times more compact. Thus, millimetre sizes with typical filling factors of ∼0.1 match the values
measured on comets or via polarimetric observations of protoplanetary discs.

Key words. methods: numerical – planets and satellites: formation – protoplanetary disks

1. Introduction

The early stages of planet formation are not well understood.
Observations of protoplanetary and debris discs, along with the
discovery of numerous exoplanets, have shed light on the effi-
ciency of mechanisms that allow tiny dust particles to aggregate
into objects several thousand kilometres in size (Dominik &
Tielens 1997; Dullemond & Dominik 2005). The process of dust
particle growth involves several stages. Initially, monomers grow
thanks to Brownian motions, sticking together via Van der Waals
forces (Cuzzi et al. 1993; Stepinski & Valageas 1997). However,
after growing by just one order of magnitude, this mechanism
becomes ineffective, giving way to turbulence within the gas,
which promotes collisions between aggregates (Weidenschilling
& Cuzzi 1993). Thanks to this turbulence, grains can grow to
sizes ranging from millimetres to metres, depending on their
porosity (Okuzumi et al. 2012; Garcia & Gonzalez 2020). At
this point, they face various barriers to further growth, including
radial drift and fragmentation.

Radial drift is caused by the friction between gas and dust
(Whipple 1972; Weidenschilling 1977) resulting from the dif-
ference in orbital velocities due to gas pressure support. This
friction causes dust particles to lose angular momentum and
drift inward towards the star (Nakagawa et al. 1986). This
phenomenon is especially rapid for intermediate-sized grains,
posing a challenge to their growth (Weidenschilling 1977). In
addition to radial drift, other barriers to dust growth are asso-
ciated with the physics of grain interactions (Weidenschilling
& Cuzzi 1993; Stepinski & Valageas 1997). These interactions

depend on the relative velocities of grains during collisions,
which can lead to coagulation, bouncing (elastic or plastic defor-
mation), or fragmentation (Blum & Wurm 2000). The bouncing
or fragmentation thresholds refer to the relative velocity at which
grains begin to bounce or fragment, respectively. In any case,
these thresholds, ranging from a few metres per second to a
few tens of metres per second, are quickly reached when sizes
are on the order of millimetres to metres. These barriers are
called the bouncing barrier (Zsom et al. 2010; Windmark et al.
2012) and the fragmentation barrier (Weidenschilling & Cuzzi
1993; Dominik & Tielens 1997; Blum & Wurm 2008). Blum
& Wurm (2000, 2008) and Güttler et al. (2010) showed in their
experiments that adhesion and fragmentation are linked to the
composition of the grains and the volatile materials covering
them. Recent studies (Yamamoto et al. 2014; Kimura et al. 2020;
San Sebastián et al. 2020) have shown that silicates are more
resistant than suspected.

More recently, additional barriers to dust growth have been
identified, including collisional erosion (Schräpler & Blum 2011)
and aeolian erosion (Paraskov et al. 2006; Rozner et al. 2020;
Grishin et al. 2020; Michoulier et al. 2024). Collisional erosion
occurs when larger aggregates eject grains from their surface
through successive collisions with smaller grains. Aeolian ero-
sion is caused by gas friction, leading to the detachment of
loosely bound grains from larger aggregates in the innermost
region of the disc. Another mechanism that can destroy grains
is rotation disruption (Tatsuuma & Kataoka 2021), where the
gas flow torques the grains, causing them to rotate. When the
centrifugal force exceeds the maximum tensile strength of the
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grains, they shatter into fragments. Tatsuuma & Kataoka (2021)
and Michoulier & Gonzalez (2022a) studied this process for
porous aggregates in protoplanetary discs.

All of these barriers theoretically hinder dust growth. In
order to understand how the barriers are bypassed in nature
to form planetesimals from micron-sized grains, various solu-
tions have been proposed. Some of them involve creating dust
traps with local pressure maxima, such as vortices (Barge
& Sommeria 1995; Meheut et al. 2012); baroclinic instabil-
ity (Klahr & Bodenheimer 2003; Loren-Aguilar & Bate 2015);
planet gaps (Paardekooper & Mellema 2004; Fouchet et al. 2007,
2010; Gonzalez et al. 2012; Zhu et al. 2014); or snow lines where
different chemical species sublimate (Kretke & Lin 2007; Brauer
et al. 2008; Drążkowska et al. 2014; Drążkowska & Alibert
2017; Hyodo et al. 2019; Vericel & Gonzalez 2020). Self-induced
dust traps, driven by dust feedback, have also been proposed by
Gonzalez et al. (2017). Other mechanisms enable direct forma-
tion of planetesimals, such as the streaming instability (Youdin &
Goodman 2005; Johansen & Youdin 2007; Youdin & Johansen
2007; Jacquet et al. 2011; Carrera et al. 2015; Yang et al. 2017;
Schäfer et al. 2017; Auffinger & Laibe 2018; Li et al. 2019; Zhu
& Yang 2021; Schaffer et al. 2021). The streaming instability
arises from the weak coupling of large dust grains and gas in
dust enriched regions, and it concentrates dust in filamentary
structures, which can ultimately collapse gravitationally.

One solution that has recently gained attention is grain poros-
ity (Ormel et al. 2007; Suyama et al. 2008; Okuzumi et al. 2009,
2012; Suyama et al. 2012; Kataoka et al. 2013; Garcia 2018; Gar-
cia & Gonzalez 2020). Porosity, often overlooked for simplicity
in dust modelling (Weidenschilling 1977; Nakagawa et al. 1986;
Barrière-Fouchet et al. 2005; Laibe et al. 2008; Drążkowska et al.
2014; Gonzalez et al. 2015; Vericel et al. 2021), changes gas-dust
coupling and grain evolution. Porous grains, due to their larger
collision cross-sections for a given mass, grow faster and decou-
ple from the gas at larger sizes, enhancing their survival in the
disc. This has been observed in studies using local or 1D disc
models to track the evolution of mass and filling factor for single
grains (Ormel et al. 2007; Suyama et al. 2008, 2012; Okuzumi
et al. 2009, 2012; Kataoka et al. 2013) and more recently in a
3D disc model evolving an entire population of porous grains
(Garcia 2018; Garcia & Gonzalez 2020). They are also less
susceptible to fragmentation, which contributes to planetesi-
mal formation through coagulation (Garcia 2018). Laboratory
experiments studying the growth of highly porous aggregates
are restricted to low velocity (Blum & Schräpler 2004), thus
making numerical experiments necessary (Blum & Wurm 2000;
Dominik & Tielens 1997; Wada et al. 2007, 2009; Suyama et al.
2008, 2012; Seizinger et al. 2012).

By looking at dust in comets, Güttler et al. (2019) classified
aggregates into three classes: fractal, porous, and compact. They
also showed that porous grains are common, supporting the need
to account for porosity in models. Observations of discs have
shown that porosity must be considered in order to explain spec-
tral energy distributions (SEDs, Kataoka et al. 2016; Zhang et al.
2023), polarization (Kataoka et al. 2015, 2016, 2019; Tazaki et al.
2019), and the amount of dust settling (Pinte et al. 2019; Verrios
et al. 2022). The monomer size is key to explaining polarized
light (Tazaki & Dominik 2022), and Tazaki et al. (2023) identify
smaller grains on disc surfaces as fractal or porous aggregates.

In this paper, we focus on the impact of porosity on dust evo-
lution by modelling mechanisms impairing the growth of grains
in the frame of the mono-disperse approximation. Sections 2 and
3 present our model and numerical simulations, respectively. In
Sect. 4, we show the impact of porosity on dust evolution and

study the role of compaction during fragmentation using 1D and
3D simulations. We discuss our results and implications as well
as the limitations of our models in Sect. 5, and we conclude in
Sect. 6.

2. Dust evolution model

2.1. Grain growth

Dust coagulation results from collisions between grains with
a certain relative velocity. Different velocities or mass ratios
can result in sticking, mass transfer or penetration (Güttler
et al. 2010). To treat dust growth, Stepinski & Valageas (1997)
assumed that locally, the mass distribution of grains is peaked
around a single value, or ‘mono-disperse’, where collisions occur
between grains of identical mass. In the following, we adopted
their formalism, following the implementations by Laibe et al.
(2008) or, for the PHANTOM code, Vericel et al. (2021). The
reader is referred to these two papers for discussion of its impli-
cations. In each collision, the mass m of a dust grain of size s
doubles over a characteristic time τcoll(

dm
dt

)
grow
≈

m
τcoll

. (1)

The characteristic time can be expressed in terms of the dust
number density nd, collision cross-sectional area (σd = 4πs2),
and relative velocity vrel during collision as τcoll = (ndσvrel)−1.
The mass change rate can then be computed as(

dm
dt

)
grow
= 4πρds2vrel, (2)

where ρd is the dust volume density, while the relative velocity
vrel can be expressed as

vrel =
√

2vt

√
Sc − 1
Sc

. (3)

The turbulent velocity vt is given by

vt =
√

21/2Roα cg, (4)

where Ro is the Rossby number, which is a constant equal to 3.0
(Stepinski & Valageas 1997), α the turbulent viscosity parameter
(Shakura & Sunyaev 1973) and cg the sound speed. The Schmidt
number Sc of a dust grain measures the grain’s coupling to the
vortex

Sc = (1 + St)

√
1 +
∆v2

v2
t
, (5)

where ∆v is the difference in velocity between grains due to fric-
tion with the gas. The Stokes number St measures the coupling
between gas and dust, and it is expressed as

St = tsΩK, (6)

where ts is the stopping time, that is, the time needed for a
grain to reach the gas velocity, and ΩK the Keplerian frequency.
More details about the implementation and the growth model are
provided in Vericel et al. (2021).
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2.2. Porosity evolution during growth

In this section, we describe the modelling of porosity evolution
during the growth of an aggregate. Suyama et al. (2008, 2012),
and Okuzumi et al. (2012) have developed a porosity evolution
model. Suyama et al. (2008) and Okuzumi et al. (2012) used the
Smoluchowski equation to evolve an aggregate, which makes the
porosity model discrete – the filling factor computed at itera-
tion n directly depends on the quantities from iteration n − 1.
While this allows for a detailed modelling of porosity evolution
in an N-body simulation of grain collisions, the model cannot
be used directly in global 3D simulations involving dust growth
that rely on other methods. The continuous model developed
by Garcia (2018) enabled its implementation in the LYONSPH
code (Barrière-Fouchet et al. 2005; Laibe et al. 2008; Garcia &
Gonzalez 2020).

An aggregate is a collection of several monomers, which we
considered as compact spheres with mass m0, size a0, and intrin-
sic density ρs. Experiments (Blum & Wurm 2000; Shimaki &
Arakawa 2012a), numerical simulations (Seizinger et al. 2012;
Ringl et al. 2012; Wada et al. 2013; Planes et al. 2021), and obser-
vations (Güttler et al. 2019) show that dust grains are not perfect
spheres but rather have ovoid or irregular shapes. For simplicity,
we considered grains to be spherical aggregates with volume V .
Not considering the grains as spherical would require knowing
the collision history of the grain, which would greatly increase
the complexity of the modelling.

We defined the filling factor ϕ related to the porosity p as the
ratio between the volume occupied by the monomers Vmat and
the volume of the aggregate V:

ϕ =
Vmat

V
and p + ϕ = 1. (7)

The mass of an aggregate with mass m and size s can thus be
simply computed as

m = ρsϕ
4π
3

s3. (8)

Two energies can be associated with an aggregate. The first is
the kinetic energy upon impact when two identical grains with
mass m collide with a relative velocity vrel. In the referential of
the centre of mass, the kinetic energy is expressed as

Ekin =
m
4
v2

rel, (9)

where the factor of 1/4 arises from the reduced mass for two
grains of identical mass.

The second energy is the rolling energy Eroll, which corre-
sponds to the energy required to rotate a monomer by 90◦ around
a connection point. The ability of monomers to reorganize leads
to internal rearrangement of the aggregate (Dominik & Tielens
1997)

Eroll = 6π2γsa0ξcrit, (10)

where γs is the surface energy (energy per unit area) of a
monomer, ξcrit is the critical rolling displacement, and a0 is
the monomer size. The value of ξcrit is still poorly constrained.
According to Dominik & Tielens (1997), the critical separation
δc between two monomers before they separate,

δc =

(
27π2

2
γ2

s a0

E2

) 1
3

, (11)
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Fig. 1. Filling factor ϕ as a function of size s for different distances from
the star R0 for silicate grains composed of 0.2 µm monomers in the case
of pure growth in our standard disc model (see Sect. 3.3).

is of the same order of magnitude as ξcrit (Chokshi et al. 1993).
Thus, we can rewrite Eq. (10) as

Eroll =

2916π8 γ
5
s a4

0

E2

 1
3

≈ 302
γ5

s a4
0

E2

 1
3

, (12)

with E as Young’s modulus. Depending on the ratio between
these two energies, two different growth regimes can be distin-
guished with distinct porosity evolution depending on the grain
mass m (Suyama et al. 2012; Okuzumi et al. 2012).

– In the ‘hit & stick’ regime, the grains are small and thus cou-
pled to the gas. Collisions occur at very low relative veloc-
ities, with a condition on kinetic energy (Ekin < 3b Eroll,
Suyama et al. 2008), where b is a numerical factor equal to
0.15 (Okuzumi et al. 2012).

– As the grains grow, the kinetic energy during impacts
increases, becoming much larger than the rolling energy. As
a result, energy is dissipated by internal restructuring of the
grain structure, leading to compaction. This is referred to as
the collisional compression regime.

We recall in Appendix A the equations describing the porosity of
dust grains in the different expansion and compression regimes
presented in Garcia (2018) and Garcia & Gonzalez (2020). Fig-
ure 1 summarises the evolution of the filling factor ϕ of a grain,
starting as a compact (ϕ = 1) monomer (s = a0 = 0.2 µm) as its
size s increases, for different distances to the star.

2.3. Bouncing

In addition to growth, grains can also bounce. We have improved
upon the model initially developed by Garcia (2018). Wada et al.
(2011), Shimaki & Arakawa (2012a), and Arakawa et al. (2023)
have numerically and experimentally shown that grains are no
longer capable of bouncing when the filling factor drops below
ϕ = 0.3. This limit corresponds either to small grains com-
posed of a few monomers or to large aggregates spanning several
kilometres, when considering only growth – see Fig. 1. Once
below this filling factor, grains can only grow or fragment when
colliding.

During bounce, some of the energy is used to bind the
grains together, and another part is dissipated in a deformation
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wave (Thornton & Ning 1998). Several velocities can be distin-
guished. The first is the sticking velocity vstick, corresponding to
the velocity at which grains no longer stick together systemati-
cally. Johnson et al. (1971) and Thornton & Ning (1998) provided
the sticking velocity vstick for the collision of two identical grains

vstick = 4.23
(
γ5

s s4

m3E2

)1/6

. (13)

Dominik & Tielens (1997) provided another formula for vstick
based on the mass and size of monomers. Their formula differs
by a factor of 2. This factor arises from the medium in which the
wave propagates, which is the monomer in the case of Dominik
& Tielens (1997), and a collection of monomers for Eq. (13).
However, Shimaki & Arakawa (2012b, 2021) have shown from
experiments that the Young’s modulus E of water ice varies with
porosity by about an order of magnitude. Its value as a func-
tion of ϕ is not known for silicates. Since vstick ∝ E

−1/3, by using
the value of E for monomers and retaining the factor of two, a
reasonable compromise is achieved. Therefore, we kept

vstick = 8.46
(
γ5

s s4

m3E2

)1/6

(14)

= 2.82 mm s−1
(

ρs

1000 kg m−3

)−1/2 (
γs

0.1 J m−2

)5/6

×

(
E

10 GPa

)−1/3 ( s
1 mm

)−5/6
ϕ−1/2,

where we have used Eq. (8) to obtain a dependence on size and
filling factor. With the material properties we adopted for sil-
icate and water ice grains (see Sect. 3.3), we obtained vstick =
2.89 mm s−1 and 5.26 mm s−1, respectively, for millimeter-sized
grains with ϕ = 0.3. Weidling et al. (2012) argued that instead of
γs, one should use an effective surface energy, which accounts
for porosity and is smaller, together with a smaller value of the
Young’s modulus for porous aggregates. Both compensate in our
expression for vstick, leading to values that are within one order
of magnitude of their experimental data.

However, in their study of collisions of less massive silicate
aggregates, Kothe et al. (2013) found values of vstick of sev-
eral to tens of cm s−1. Additionally, other studies suggested that,
instead of the Young’s modulus of the monomers, the compres-
sive strength of the dust aggregates should be used, for which
Blum & Schräpler (2004), Güttler et al. (2009) and Seizinger
et al. (2012) found values of ∼103 Pa for ϕ = 0.2 and ≳ 104 Pa
for ϕ > 0.3 (see Eq. (31) in Seizinger et al. 2012), which increases
vstick by two orders of magnitude. We thus also considered values
of vstick 10 to 100 times larger than that given by Eq. (14) – see
below.

Two regimes can be distinguished: elastic collision and plas-
tic collision. The separation between the two regimes is given by
the yield velocity vyield. Thornton & Ning (1998) expressed vyield
as a function of the contact radius ayield when yield occurs or of
the limiting contact pressure pyield. However, as these material
properties are difficult to obtain, and are in particular unknown
for water ice, they suggested to turn to values from impact exper-
iments. In theirs, Weidling et al. (2012) found a value for the
yield velocity of SiO2 aggregates about 5 times larger than their
sticking velocity. According to Musiolik et al. (2016), and Yasui
et al. (2017), water ice has more favourable sticking properties,
and we adopted vyield = 10vstick. More recently, Kimura et al.
(2020) demonstrated that silicates are more prone to sticking

100 101 102 103 104 105 106 107

vrel/vyield

0.0

0.1
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0.9

1.0

e

Fig. 2. Coefficient of restitution e when vrel ≥ vyield, given by Eq. (19).

together with a higher surface energy. We thus kept a factor of
ten between the two velocities for silicates as well and took

vyield = 10vstick = 84.6
(
γ5

s s4

m3E2

)1/6

. (15)

Consequently, the coefficient of restitution e can now be defined
as follows:

e ≡
vrel,f

vrel
, (16)

where vrel,f is the relative velocity after bounce. After the col-
lision, a portion of the kinetic energy is used for plastic defor-
mation given by (1 − e2)Ekin, and the remaining part serves to
separate the grains with the remaining kinetic energy e2Ekin.
Depending on the relative velocity, the coefficient of restitution
can then be expressed (Thornton & Ning 1998; Garcia 2018) as
follows:

vrel ≤vstick e = 0 (17)
vstick < vrel ≤vyield e = 1 (18)

vrel ≥vyield e =

1.2√3

1 − 1
6

(
vyield

vrel

)2
×

1 + 2

√
1.2

(
vrel

vyield

)2

− 0.2


−1/2

−

(
vstick

vrel

)2


1/2

.

(19)

When vrel ≫ vyield, the coefficient of restitution tends towards
zero, as shown in Fig. 2. This indicates that almost all the energy
is used in plastic deformation, and the grain is strongly com-
pacted. Beyond a velocity threshold vend, the resulting velocity
from the remaining kinetic energy e2Ekin becomes so low that
after a bounce, the grain is too slow to collide with another
grain and can no longer stick. To be consistent with experiments
from Shimaki & Arakawa (2012b), we set vend = 0.03vrel. Solving
Eq. (19) for e = 0.03 with vyield = 10vstick allowed us to express
vend as a function of vstick so that

vend ≈ 2 × 107vstick ≈ 2 × 108
(
γ5

s s4

m3E2

)1/6

. (20)

Typical values of vend are on the order of 10–100 km s−1, much
larger than fragmentation thresholds.
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Fig. 3. Model comparison for compression pressure. Tatsuuma et al.
(2023) connect the regime with small ϕ given by Kataoka et al. (2013)
to the large ϕ with the model of Güttler et al. (2010) and Seizinger et al.
(2012).

Sticking probability and filling factor

Empirically, Weidling et al. (2012) determined the probability
that a grain sticks, or not. As previously mentioned, when vstick <
vrel < vend, an aggregate can bounce instead of stick. Naturally,
the closer vrel is to vstick, the higher the chances of sticking, and
conversely for vend. Thus, Garcia (2018), inspired by Weidling
et al. (2012), defined the probability P of sticking for a grain
based on its velocity according to

P =



1, vrel < vstick,

log (vrel) − log (vend)
log (vstick) − log (vend)

, vstick ≤ vrel < vend,

0. vrel ≥ vend,

(21)

Depending on the sticking probability, the value of the growth
rate will be different. When the grain does not stick, there is no
contribution to the growth rate. Thus, it can be expressed as(

dm
dt

)
bounce

= P

(
dm
dt

)
grow

. (22)

However, when considering bouncing, a problem arises. It is
impossible to write the filling factor of a grain in terms of its
mass when the deformation is plastic. Garcia (2018) provided a
formula for the final filling factor during bounce based on the
initial filling factor and an arbitrary time step t

ϕbounce ≈ ϕi

(
1 −
∆V
Vi

)−n

, (23)

where n = t/τcoll and ∆V is the volume change during compres-
sion due to plastic deformation. Shimaki & Arakawa (2012a)
provided an expression to compute ∆V , which is proportional
to the kinetic energy,

∆V =
(1 − e2)Ekin

2Υd
, (24)

where Υd = Υ0ϕ
N is the dynamic compression resistance,

and Υ0 is the reference dynamic compression resistance.

Fig. 4. Growth and bouncing of a water ice grain with a0 = 0.2 µm
in our standard disc model (see Sect. 3.3) for two different distances.
Our model (solid lines) uses Eq. (25), while the model from Garcia
(2018, dotted lines) uses the Υd given by Shimaki & Arakawa (2012a).
The dashed and dot-dashed lines show the impact of multiplying vstick
from Eq. (14) by 10 or 100. The light tan polygons trace the parameter
space probed in experiments by Weidling et al. (2012) and Kothe et al.
(2013). The grey shaded area marks the range of filling factors for which
bouncing is not effective (see text).

Mellor (1974) gave Υ0 = 9.8 MPa andN = 4 for water ice. How-
ever, Υ, which depends on porosity, is rarely studied because
it is difficult to determine, especially for highly porous materi-
als. Therefore, this formula cannot be used directly as Υ remains
unknown for most materials that one might want to simulate,
such as silicates. However, for numerous bounces, the process
can be approximated as static compression. Kataoka et al. (2013)
provided a formula for static compression pressure for highly
porous grains only, as given in Eq. (A.9), and Güttler et al.
(2009, 2010) and Seizinger et al. (2012) provided an expression
for values of ϕ > 0.2. Very recently, Tatsuuma et al. (2023) have
developed a formula for compression pressure that depends only
on Eroll and ϕ, which is valid for both small and large ϕ, shown
in Fig. 3,

Pbounce =

Eroll

a3
0

 (1
ϕ
−

1
0.74

)−3

. (25)

The value ϕ = 0.74 corresponds to the maximum possible filling
factor, which is that of either a cubic or a hexagonal close packed
arrangement of equal spheres.

In order to illustrate what the porosity evolution of a grain
experiencing only growth and bouncing would be, we consider
for the time being all values of the filling factor before restrict-
ing it again to values above ϕ = 0.3. Figure 4 allows for the
comparison of the bounce model from Garcia (2018) with the
equation involving Υ, which is valid only for water ice (or a mix-
ture of ice and silicates), and our model where Pbounce replaces
Υ in Eq. (24). The difference between both models is observed
when the grain is highly compacted, with a filling factor ϕ > 0.5.
With the model from Garcia (2018), the grains continue to be
efficiently compacted until they reach the maximum possible fill-
ing factor. In our model, as grains become highly compacted, it
becomes increasingly difficult to compress them. This is due to
the fact that as ϕ approaches 1, the value of the compression pres-
sure changes only slightly. The dashed and dot-dashed curves
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show that considering values of vstick 10 or 100 times larger only
delays the onset of bouncing but has very little influence on the
final value of the filling factor. The light tan polygons trace the
parameter space explored in the experiments from Weidling et al.
(2012) and Kothe et al. (2013), as estimated from the latter’s
Fig. 7.

We now relax our working assumption and return to the
situation where bouncing is only effective for ϕ ≥ 0.3, which
excludes the grey-shaded area in Fig. 4. Grains experiencing only
growth quickly dive below the threshold and never bounce again.
A mechanism able to compact grains, such as the one presented
in Sect. 2.5, is thus needed for bouncing to reappear. The sizes
at which such compacted grains will cross above the threshold
depend mainly on the compacting mechanism. Their subsequent
evolution depends very little on the value of vstick (see Sect. 2.5).

In conclusion, to compute the filling factor due to bouncing,
we used for values larger than 0.3 only

ϕcoll & bounce =


ϕcoll, vrel < vyield,

ϕcollP + (1 − P)ϕbounce, vyield ≤ vrel < vend,

ϕbounce, vrel ≥ vend,

(26)

where ϕcoll is the filling factor resulting from collisions in one of
the regimes described in Appendix A.2, and ϕbounce is computed
using Eq. (23). The final filling factor is the largest value between
ϕgas, ϕgrav, and ϕcoll & bounce. Our model is an improvement over
the model from Garcia (2018). It now takes into account the sat-
uration effect of compression for filling factors close to one and
can be used with different materials as long as the surface energy,
Young’s modulus, and monomer size are known.

2.4. Fragmentation

The other natural process that appears in the life of grains
is fragmentation. When the relative velocity between grains
exceeds the fragmentation threshold vfrag, then the grain frag-
ments instead of growing (Tanaka et al. 1996). The kinetic
energy upon impact is such that the grain’s structure cannot
absorb it, breaking the bonds between the monomers constituting
the aggregate.

A model developed by Kobayashi & Tanaka (2010) and
used by Vericel et al. (2021) allows for a gradual fragmentation
depending on the value of vrel with respect to vfrag(

dm
dt

)
frag
= −4π

v3
rel

v2
rel + v

2
frag

ρds2. (27)

In this model, when the relative velocity is close to the thresh-
old, the mass loss is less significant. A fragmenting grain loses
half of its mass after a collision time τcoll (vrel = vfrag) or more
(vrel > vfrag). In the case where vrel ≫ vfrag, we recover the sce-
nario described by Gonzalez et al. (2015), where the entire grain
fragments after a collision time, independently of vrel.

In reality, both experimental studies (Blum & Wurm 2000;
Shimaki & Arakawa 2012a; Weidling et al. 2012) and numer-
ical experiments (Dominik & Tielens 1997; Okuzumi et al.
2009, 2012; Kataoka et al. 2013; Krijt et al. 2015; Planes et al.
2021) showed more complex behaviours that are challenging to
model. Fragmentation involves a cascade of sizes and depends on
parameters such as composition, porosity, shape, impact parame-
ter, mass ratio, and impact velocity. The presented model follows

the one introduced by Kobayashi & Tanaka (2010) using a frag-
mentation definition that relies on several approximations to
capture the essential physics according to the relative collision
velocity. To determine vfrag, an estimate of the energy required
to break the bond between two monomers Ebreak is given by
Dominik & Tielens (1997),

Ebreak = CbreakFcδc, (28)

where Cbreak is a constant that they take equal to 1.8. The term
Fc is the critical pulling force between two monomers,

Fc = 3πγsa0. (29)

We can then derive the expression for Ebreak:

Ebreak ≃ Cbreak48
γ5

s a4
0

E2

 1
3

. (30)

To find the total energy, we just need to know the number of
monomers and the number of bonds between monomers,

Efrag = κNtotEbreak, (31)

where Ntot is the total number of monomers, and κ is a numer-
ical factor representing the number of bonds and depending on
the species and porosity. For erosion, κ = 1–2, and for fragmen-
tation, κ = 3–10 (Blum & Wurm 2000; Wada et al. 2007). We
can then define vfrag in terms of Efrag as

vfrag = 2

√
Efrag

m
= 2

√
48κNtotCbreak

m

γ5
s a4

0

E2

 1
6

. (32)

These equations depend on γs and a0. An error in estimating
these parameters can thus lead to changes in the values of Efrag
and vfrag.

Research on the value of vfrag according to different types
of materials is an active topic, and the community does not yet
agree on the values. Different studies have yielded a range of
values for different materials like silicates and water, and there
is a complex interplay of factors. For example, Blum & Wurm
(2008) and Güttler et al. (2010) deduced vfrag, Si ∼ 1 m s−1 for sili-
cates. Wada et al. (2009, 2013) found a similar value for silicates,
around vfrag, Si ∼ 5 m s−1, as well as that for water, vfrag, H2O ∼ 60–
70 m s−1. However, the method used by Yamamoto et al. (2014)
yielded a different value for water, vfrag, H2O = 56 m s−1, based
on the link between surface energy (and hence fragmentation
threshold) and material melting temperature. The values for sili-
cates differ widely: Yamamoto et al. (2014) found γs = 0.3 J m−2,
while Kimura et al. (2020) found γs = 0.15 J m−2. Silicates
are stronger than previously thought due to experimental issues
with the original estimations of γs. Silicates easily absorb water
from the air, which reduces the surface energy of the original
aggregate, thereby reducing the adhesion ability of the silicate
grains. In the case of water ice, Shimaki & Arakawa (2012a)
measured vfrag, H2O ∼ 15 m s−1, while collision simulations gave
higher values (Wada et al. 2009). The same value was computed
by Gonzalez et al. (2015) using the experimental measure-
ments of the energy required to fragment a unit mass of grains
(∼55 J kg−1). For the purpose of comparison with certain previ-
ous studies (Garcia & Gonzalez 2020; Vericel et al. 2021), we
adopted the value of vfrag, H2O ≈ 15 m s−1 for water.

However, pure water ice grains are unlikely. Most often,
grains are composed of solid materials like silicates, covered by
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Fig. 5. Filling factor ϕf/ϕi as a function of vrel. Left: experimental values for different initial filling factors ϕi. Those provided by Ringl et al. (2012)
are in orange, and those from Gunkelmann et al. (2016) are in blue, red, and green. Right: comparison between our model given by Eq. (35) and
the fits of the curves given by Ringl et al. (2012) and Gunkelmann et al. (2016) in our fragmentation module.

a layer of another more volatile element such as water or organic
matter. The fragmentation velocity is primarily determined by
the material forming the surface layer, and not the internal mate-
rial. Therefore, we chose different thresholds for the silicates, as
there are still uncertainties about their values, to mimic the effect
of a layer of volatiles: vfrag = 5, 10, or 20 m s−1 for more fragile
materials like water or CO, and vfrag = 40 m s−1 for modelling
pure silicate grains or those surrounded by organic materials.

Contrary to Shimaki & Arakawa (2012a), who demonstrated
that a mixture of silicates and water is more fragile than pure
ice, we assumed the opposite here, based on measurements con-
ducted in recent years (Kimura et al. 2020; San Sebastián et al.
2020). Pure silicate grains are now considered more resistant
than water ice grains and we suppose a combination of the two
materials is more robust than water ice but less so than silicates.
However, this remains to be confirmed experimentally. Finally,
one should note that we assumed surface energies and fragmen-
tation thresholds to be independent of monomer size for the
values we have chosen.

2.5. Compaction during fragmentation

The second improvement we made to the porosity model is
to consider grain compaction during fragmentation. The main
motivation behind this enhancement is to attempt to explain
the high filling factor values for intermediate-sized grains (10
µm-cm) found on comets (Güttler et al. 2019) and inferred
from observations through polarimetric measurements (Kataoka
et al. 2015, 2016, 2019; Tazaki et al. 2019; Tazaki & Dominik
2022). Since neither growth, static gas compaction, nor bounc-
ing can account for such high factors (ϕ > 0.1) as grains grow by
increasing their porosity, we turned to fragmentation to obtain
more compact grains. Sirono (2004) showed that the filling fac-
tor remains constant during fragmentation. For simplicity, this
assumption, which considers that the impact energy is used to
break bonds between monomers rather than for internal grain
restructuring, was adopted by Garcia (2018).

However, Ringl et al. (2012) and Gunkelmann et al. (2016)
found that the filling factor after fragmentation is approximately
1.5 to 2 times larger than the initial filling factor. The remaining
energy for a grain to undergo compaction can be computed by

subtracting the energy Efrag used to fragment the grain from the
kinetic energy Ekin released upon impact. We can rewrite Efrag
as the energy Ebreak required to break bonds between monomers,
multiplied by the number of ejected monomers:

Ecomp = Ekin − Efrag = Ekin −
(2mi − mf)

m0
κEbreak. (33)

Here, (2mi − mf)/m0 corresponds to the number of monomers
that were ejected during fragmentation. In the case of fragmen-
tation, surface monomers are the first to be ejected since they
have fewer bonds (Ringl et al. 2012; Gunkelmann et al. 2016). We
therefore considered κ = 3 defined by Eq. (31), which has a lower
value for fragmentation compared to those proposed by Blum &
Wurm (2000) and Wada et al. (2007). In this sense, we mod-
eled the fact that ejected grains are closer to the surface, and the
remaining energy is used for rearranging the internal monomers.
A value of κ = 10 means more energy is used to break bonds,
allowing aggregates to remain at larger sizes before starting to
compact at a constant fragmentation threshold. We can com-
pute, similarly to bouncing (Eq. (24)), the volume change after
fragmentation ∆V , which is given by

∆V =
Ekin − (2mi − mf)κEbreakm−1

0

2
Eroll

a3
0

 (1
ϕ
−

1
0.74

)−3 . (34)

Furthermore, we fitted the data obtained by Ringl et al.
(2012) and Gunkelmann et al. (2016), see the left panel of Fig. 5,
which shows the ratio ϕf/ϕi of the final filling factor to the ini-
tial one as a function of the relative velocity vrel for three values
of ϕi. It should be noted that Gunkelmann et al. (2016) defined
vfrag as the point when a grain starts to lose a monomer, which is
equal to 0.17 m s−1, and differs from our definition as the point
where the grain loses half of its mass. We deduced that the ratio

ϕf/ϕi varies as exp
(
1 −

(
vrel/vfrag

)2
)
. In the right panel of Fig. 5,

we present a comparison between our model and the fits to data
from Ringl et al. (2012) and Gunkelmann et al. (2016) for two
distances to the star, 10 and 100 au. Our model shows good
agreement with the fits. Divergence between the model and fits
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Fig. 6. Filling factor ϕ as a function of size s for different distances to the star r for silicate grains composed of 0.2 µm monomers in our standard
disc model with growth and fragmentation. Left: without compaction. Right: with compaction. The inset is a zoom of the light grey box showing
only tracks for R0 = 10 and 100 au. The dash-dotted lines show the impact of multiplying vstick from Eq. (14) by 100.

occurs when vrel/vfrag exceeds 1.15 to 1.2. However, grains never
reach these values as they fragment before reaching such veloc-
ities. One should note the axes are different. On the left panel,
the initial filling factors are constant for all values of vrel/vfrag.
On the contrary, on the right panel, the fit extracted from Ringl
et al. (2012) and Gunkelmann et al. (2016) has been implemented
in our growth and fragmentation model and compared to our
compaction model. In this case, the value of ϕ0 varies after each
collision. The filling factor after fragmentation is computed in
the same way as bouncing, using Eq. (23).

ϕfrag−comp ≈ ϕi

1 − exp

1 − (
vrel

vfrag

)2 ∆V
Vi

−n

, (35)

where n represents the number of collisions during a time step.
The effect of compaction can be seen in Fig. 6, produced with
PAMDEAS with growth, bouncing, fragmentation and radial drift
(see Sect. 3.1). In the left panel, where compaction is not taken
into account, grains reach a growth-fragmentation equilibrium
and stay in the same range of size and filling factor. ϕ remains
below 0.3, bouncing thus never occurs. In the right panel, with
compaction, the filling factor of fragmenting grains increases
while their size decreases. Because ϕ reaches values larger than
0.3, bouncing then appears and must be considered. It prevents
grains from growing significantly when compacted. The inset
shows that using a value of vstick 100 times larger than that given
by Eq. (14) – see Sect. 2.3 – has a very limited impact and only
slightly lowers the final filling factor.

2.6. Rotational disruption

Rotational disruption was identified as a possible growth bar-
rier in protoplanetary discs by Tatsuuma & Kataoka (2021):
highly porous grains can be disrupted by the gas-flow torque
when the tensile stress from the centrifugal force exceeds their
tensile strength. Michoulier & Gonzalez (2022a) studied the
effects of rotational disruption in 1D simulations, in this work
we implemented their equations in PHANTOM.

2.7. Summary

The algorithm to compute the final filling factor can be sum-
marised as follows:

Compute ϕcoll, ϕgas, ϕgrav
Compute ϕmin = max(ϕcoll, ϕgas, ϕgrav)
if vrel < vfrag then

Compute ϕgrow
if (Grains can bounce) then

Compute ϕcoll & bounce
Compute ϕf = max(ϕcoll & bounce, ϕmin)

else
Compute ϕf = max(ϕgrow, ϕmin)

end if
else

if (Fragmentation with compaction) then
Compute ϕfrag−comp
Compute ϕf = max(ϕfrag−comp, ϕmin)

else
Compute ϕf = max(ϕi, ϕmin)

end if
end if
ϕfinal = min(ϕf , 0.74)

3. Numerical simulations

3.1. The 1D code PAMDEAS

PAMDEAS (Porous Aggregate Model and Dust Evolution in
protoplAnetary discS) is a one-dimensional code, presented in
Michoulier & Gonzalez (2022a), to study the evolution of porous
grains within protoplanetary discs considering different phys-
ical processes, such as growth, fragmentation, radial drift or
rotational disruption. We added new physics such as aeolian
erosion (Rozner et al. 2020; Grishin et al. 2020; Michoulier
et al. 2024), bouncing and compaction during fragmentation.
This code allowed us to follow the evolution of a given number
of particles from a set of initial conditions in a static, vertically
isothermal, non self-gravitating gas disc. The gas surface den-
sity and temperature profiles are given by power laws of indices
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Fig. 7. Radial (left panel) and vertical (right panel) profiles of size s obtained with PAMDEAS using our standard disc model after 100 yr. Grains
grow from the monomer size at different initial positions. Colour indicates time t.

p and q, respectively,

Σg(r) = Σg, 0(r/R0)−p (36)

and

Tg(r) = Tg, 0(r/R0)−q, (37)

where R0 is a reference radius. The disc extends from Rin to
Rout and has a total mass Mdisc. As the gas disc structure is
held fixed, the dust-to-gas ratio ε is kept constant and the feed-
back of dust on gas is neglected. Each grain evolves separately,
starting from an initial size equal to the monomer size, and the
code tracks its full evolution. Despite its limitations, simula-
tions with PAMDEAS are useful to understand the different stages
experienced by a single grain.

3.2. The 3D smoothed particle hydrodynamics code
PHANTOM

PHANTOM (Price et al. 2018) is a 3D smoothed particle hydro-
dynamics (SPH; Lucy 1977; Gingold & Monaghan 1977) code
for hydrodynamics and magnetohydrodynamics, designed to be
efficient. It is public and widely used. In this paper, we intro-
duce a new module in which we implemented the algorithms to
treat dust porosity with all the physics presented in Sect. 2.2–
2.6, both in the ‘dust-as-mixture’ (also known as ‘one-fluid’)
and ‘dust-as-particles’ (or ‘two-fluid’) formalisms. This develop-
ment is tightly coupled to the dust growth module implemented
and described in detail by Vericel et al. (2021). PHANTOM,
which takes into account collective effects and dust vertical set-
tling, and simulates the coupled evolution of gas and dust due to
aerodynamic drag (including the back-reaction of dust on gas),
produces more realistic dust distributions that can be compared
to observations of discs.

We first setup a gas disc with an exponentially decreasing
surface density profile:

Σ(r) = Σ0

1 − √
Rin

r

 ( r
Rc

)−p

exp
[
− (r/Rc)2−p

]
, (38)

where Rc is the cut-off radius. With the exponential tapering,
the outer density profile is smooth, rather than being sharply
truncated at Rout, allowing better control over how relaxation

behaves in the outer region. Furthermore, using a pseudo-relaxed
disc as the initial state makes the computation faster as parti-
cles do not have to significantly move radially. Simulating the
innermost region with sufficient resolution is computationally
expensive because it leads to a large dynamic time ratio between
the inner and outer edges. As a result, we set the accretion radius,
which represents the radius within which a particle is considered
accreted, to Rin. We also remove any particle moving further than
1000 au away to prevent completely isolated particles. The gas is
locally isothermal, with a temperature profile set by Eq. (37), and
non self-gravitating.

Similarly to Price & Laibe (2015), and in contrast to Vericel
et al. (2021), we first performed a simulation solely with gas to
avoid any spurious behaviour of the dust grains during gas relax-
ation. We increased the number of particles and the disc mass
by about 20% with respect to the target values to compensate for
the mass loss due to particle accretion onto the star during relax-
ation. When the density profile of the outer gas region stabilizes,
typically after 7 to 8 orbits at the outer edge, the disc is fully
relaxed.

We then added the dust phase with the same spatial distri-
bution as the relaxed gas, with an initially uniform dust-to-gas
ratio ε0. Unlike in PAMDEAS, we did not take the monomer size
as the initial grain size. Indeed, if the simulation was initialised
with a single user-defined value of the initial size for all grains,
the filling factor computed from s with Eq. (C.1) and the mass
computed from Eq. (8) would result in less porous, more massive
grains in the upper disc layers. This is unphysical. Furthermore
grains in the inner region are expected to have grown during
the early stages of star formation, as shown in Bate (2022) and
Lebreuilly et al. (2023). We thus used an initial state where each
SPH particle has a size depending on its location (r, z), follow-
ing fits to a PAMDEAS simulation of the evolution of grains from
monomers for 100 yr. Figure 7 shows the resulting radial and ver-
tical size profiles. The left panel shows that the midplane radial
size distribution can be fitted by a power law

s(r) = s0(r/R0)−2, (39)

and in the right panel, the vertical dependence of the final size
is ∝ exp (−z2/H2), where H is the disc scale height, is obtained,
here at 100 au. After the initialisation, the evolution variable is
the grain mass, and the mass growth rate and filling factor are
computed using the equations in Sect. 2.
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Table 1. Simulations carried out with both PAMDEAS and PHANTOM.

Name Species Bouncing & compaction Disruption a0 (µm) vfrag (m s−1)

GF-Si-comp-Vf10 Si No No Comp 10
GF-Si-comp-Vf20 Si No No Comp 20
GF-Si-comp-Vf40 Si No No Comp 40
GF-Si-a02-Vf10 Si No No 0.2 10
GF-Si-a02-Vf20 Si No No 0.2 20
GF-Si-a02-Vf40 Si No No 0.2 40
GBFc-Si-a02-Vf10 Si Yes No 0.2 10
GBFc-Si-a02-Vf20 Si Yes No 0.2 20
GBFc-Si-a02-Vf40 Si Yes No 0.2 40
GBFcS-Si-a02-Vf205 (∗) Si Yes No 0.2 20
GF-H2O-comp-Vf15 H2O No No Comp 15
GF-H2O-a02-Vf15 H2O No No 0.2 15
GBFc-H2O-a02-Vf15 H2O Yes No 0.2 15
GBFcD-Si-a02-Vf10 Si Yes Yes 0.2 10
GBFcD-Si-a02-Vf20 Si Yes Yes 0.2 20
GBFcD-H20-a02-Vf15 H2O Yes Yes 0.2 15

Notes. The‘G’ stands for growth, ‘F’ for fragmentation, ‘B’ for bounce, ‘c’ for compaction, and ‘D’ for rotational disruption. The term ‘comp’ in
the column for the monomer size a0 denotes compact grains, with porosity evolution not taken into account. ‘D’ simulations were run only with
PHANTOM. (∗)This simulation includes a snow line, indicated by ‘S’, with an inner threshold of 20 m s−1 and an outer threshold of 5 m s−1 to model
the CO snow line (T = 20 K, approximately ∼100 au).

In this paper, the gas and dust disc is evolved as a single set of
SPH particles, using the dust-as-mixture algorithms of Price &
Laibe (2015) and Ballabio et al. (2018), based on Laibe & Price
(2014).

3.3. Setup

We chose to use a disc model that represents an ‘average disc’
(Williams & Best 2014). The mass of the star was fixed at Mstar =
1 M⊙, and the mass of the disc was Mdisc = 0.01 M⊙. The temper-
ature was set by the choice of the aspect ratio (H/R)0 = 0.0895
at R0 = 100 au, with q = 0.5.

For PAMDEAS, we used Rin = 1 au, Rout = 300 au and p = 1.
All grains evolved from an initial size equal to the monomer size.
We ran the simulations up to t = 1 Myr.

For PHANTOM, we took Rin = 10 au, Rout = 400 au and
p = 0.75. This value of p, combined with the exponential taper-
ing, led to a profile whose slope, after relaxation, is similar to that
of PAMDEAS between 10 and 300 au. We set the number of parti-
cles to 1.2 million, the turbulent viscosity parameter (Shakura &
Sunyaev 1973) to α = 5× 10−3 (by setting αAV = 0.1658) and the
initial dust-to-gas ratio ε0 to a typical value of 1%. We evolved
the simulations for 300 000 yr.

For both codes, the size of monomers was set to a0 =
0.2 µm, in agreement with recent observations. Indeed, Tazaki
& Dominik (2022) and Tazaki et al. (2023) have shown that to
accurately reproduce the polarization degree with respect to the
scattering angle and the SED, the small grains present on the
surface of the IM Lupi disc are most likely fractal aggregates
with 0.2 µm monomers. Verrios et al. (2022) reached the same
conclusion with respect to the dust settling in IM Lupi, requir-
ing porosities of ϕ ≲ 0.1 to match the observations. We chose to
use two different species commonly found in discs: water ice and
silicates.

For silicate grains, we chose an intrinsic density of ρs =
2 700 kg m−3 and a surface energy γs = 0.2 J m−2, in agreement
with Yamamoto et al. (2014), who estimate γs = 0.3 J m−2. This
value is of the same order of magnitude as γs = 0.15 J m−2, found

by Kimura et al. (2015, 2020), through experimental measure-
ments with sicastar® aggregates (micromod Partikeltechnologie
GmbH). The Young’s modulus was E = 72 GPa (Yamamoto
et al. 2014), which implies, assuming that the critical separa-
tion between two monomers δc before their separation is of the
same order of magnitude as ξcrit (Chokshi et al. 1993), a value of
ξcrit ≈ 6 Å.

For pure water ice, the intrinsic density of monomers was
ρs = 1 000 kg m−3, with a surface energy of γs = 0.1 J m−2. The
critical separation is still debated, as are many other properties
of dust in protoplanetary discs. We chose a Young’s modulus of
E = 9.4 GPa, following Yamamoto et al. (2014), which results in
a value of ξcrit ∼ 10 Å, close to ξcrit ∼ 8 Å used by Wada et al.
(2011) and Tatsuuma & Kataoka (2021).

The different values of the fragmentation thresholds for both
species are given in Sect. 2.4. In our simulations, silicates serve
as the reference material, and vfrag = 20 m s−1 is the reference
threshold. We have conducted numerous simulations with differ-
ent parameters. For easier reading, each simulation is assigned a
name, as listed in Table 1.

4. Results

4.1. Effect of porosity on grain growth

In this section, we compare the evolution of compact (i.e. ϕ = 1)
and porous dust, including only growth and fragmentation for
now.

4.1.1. 1D simulations with PAMDEAS

First, we will examine the effect of porosity using the 1D code
PAMDEAS. Here the disc is static, and only the evolution of
grains is taken into account. Figure 8 makes it easy to observe
the influence of porosity between the GF-Si-comp-Vf20 simula-
tions on the left and GF-Si-a02-Vf20 on the right. The upper
left (right) panel shows the size of compact (porous) silicate
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Fig. 8. Comparison between PAMDEAS simulations GF-Si-comp-Vf20
(left) and GF-Si-a02-Vf20 (right). The top panels show the size s as
a function of distance r, with colour indicating the Stokes number St.
The bottom panels show the size s as a function of time t, with colour
indicating the Stokes number St as well. The leftmost curve corresponds
to the grain initially at 15 au, and the rightmost curve to 300 au.

grains as a function of the distance to the star r. The colour indi-
cates the coupling with the gas through the Stokes number. Each
grain grows from the monomer size without drifting because it
is coupled to the gas (vertical lines). The grains start drifting
inwards when St ∼ 5×10−3, and they continue to grow until they
reach the fragmentation threshold (horizontal plateau), maintain-
ing an equilibrium between growth and fragmentation. While
the Stokes numbers (computed as per Eq. (5) in Vericel et al.
2021) are similar in both simulations, with St ∼ 10−1 when the
grains reach the fragmentation threshold, the sizes are drastically
different. Compact grains reach about 100 µm, whereas porous
grains reach about 3 cm. These porous grains have a filling fac-
tor ϕ ∼ 2× 10−3, making them ∼50 000 times more massive than
compact grains1. Indeed, porous grains are capable of growing
to larger sizes due to their larger cross-sectional area (Garcia &
Gonzalez 2020). Moreover, porous grains remain well coupled
to the gas even at sizes of 100 µm.

The bottom panels of Fig. 8 display the size evolution.
Porous and compact grains reach their maximum size in simi-
lar timescales. A porous grain initially at 15 au grows to 3 cm
in 1000 yr, while a compact grain starting at the same loca-
tion reaches 100 µm. Since the fragmentation threshold Stokes
numbers are similar (St ∼ 0.1), the aerodynamic evolution is the
same, and hence the grains drift at the same speed. While drift-
ing, the grains reach the inner regions where relative velocities
are higher. This explains why the size plateaus have decreased
to 8 mm for porous grains and 70 µm for compact grains at a
distance of r = 10 au, even though the grains were able to grow
to larger sizes at a larger distance.

A similar behaviour can be seen for the comparison between
the GF-H2O-comp-Vf15 and GF-H2O-a02-Vf15 simulations on
Fig. 9. Porous water ice grains grow to a size of 20 cm,
while compact grains only grow to 200 µm. These sizes are

1 To estimate the mass ratio between porous and compact grains, we
can write the mass ratio as mporous/mcompact = ϕ(sporous/scompact)3.

Fig. 9. Same as the top panels of Fig. 8 for PAMDEAS simulations GF-
H2O-comp-Vf15 (left) and GF-H2O-a02-Vf15 (right).

larger than for silicate grains because of a lower intrinsic den-
sity, which increases the growth-fragmentation equilibrium size.
At the fragmentation threshold, porous water ice grains are
5 × 105 times more massive than compact grains.

In all cases, compaction by gas or self-gravity is never
reached, as fragmentation maintains the grain sizes below a few
metres, a range where gas compaction appears. Porous grains
can therefore grow to much larger sizes (from centimetres to
decimetres) and masses compared to their compact counterparts
(a few hundred micrometres), demonstrating that porosity must
be considered in dust evolution.

4.1.2. 3D global simulations with PHANTOM

We now explore the effects of porosity with PHANTOM.
Figure 10 compares the GF-Si-comp-Vf20 simulation (left) to
GF-Si-a02-Vf20 (right). The top panels display the dust-to-gas
ratio in the meridional plane (r, z) at different simulation times.
Grey areas represent the initial dust-to-gas ratio, red regions
are dust-enriched, and blue regions are dust-depleted. It can be
noticed that in the early times, porous grains settle faster in the
midplane compared to compact grains, as they grow rapidly in
the inner regions. However, in the outer regions, porous grains,
due to their low density, remain more coupled to the gas. They
drift and settle more slowly, resulting in lower dust concentration
and a thicker dust disc. This effect is evident at times t = 50 or
100 kyr. At the end of the simulation, the compact dust disc is
less radially extended (≈100 au) and has a higher dust concen-
tration, around ε ≈ 3–4, with a thickness of ∼10 au. In contrast,
the porous dust disc extends out to 150 au with a dust-to-gas
ratio of ε ≈ 0.8–1. Porous grains thus allow the dust in the outer
regions to be retained for a longer time while achieving large
dust concentrations. Similarly to simulations with growth and
fragmentation in Garcia (2018), the disc of porous grains after
300 kyr is thinner than that of compact grains.

The bottom panels of Fig. 10 display the radial size dis-
tribution of dust grains. Colour represents the Stokes number
St, where red to green grains are strongly coupled to the gas,
blue grains are marginally coupled, and purple grains are decou-
pled. To understand what happens in dust-concentrated regions,
particles with ε < 5 × 10−3 have been deliberately excluded,
representing regions highly depleted in dust where little activ-
ity occurs. Porous grains can grow to more substantial sizes,
on the order of millimetres or centimetres, with filling factors
ϕ ∼ 5×10−3−10−2 (see Fig. 14, left panel on second row), across
a large portion of the disc, up to 200 au. In contrast, compact
grains struggle to reach millimetre sizes and the largest ones
remain in the 100–500 µm range. This is inconsistent with obser-
vations that report the presence of millimetre-sized grains in the
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Fig. 10. Comparison between PHANTOM simulations GF-Si-comp-Vf20 (left) and GF-Si-a02-Vf20 (right). The top panels show the dust-to-gas
ratio in colour in the (r, z) plane. The bottom panels show the radial grain size distribution, with colour representing the Stokes number St.

midplane. Hence, porosity helps grain growth to more significant
sizes and masses, approximately 5 to 5000 times larger, with dust
concentrations and disc thicknesses similar to compact grains,
and sizes compatible with observations. However, the resulting
filling factors (Fig. 14) are too small by a factor of ∼10–20 com-
pared to observations (see Sect. 5). In both cases, grains do not
cross St = 1 and do not decouple from the gas.

Despite special attention to avoid numerical artefacts, some
remain, inherent to the evolution model itself. For porous grains
at time t = 100 kyr, a region close to 500 au where grains have
grown slightly more than those closer in can be observed. This
can be explained rather simply. Initially, in the farthest regions
(>300 au), there are only monomers. Monomers at 600 au have
larger St values than those at 500 au. They drift and settle faster
than grains closer to the star can grow, resulting in a more dust-
enriched zone, also visible in the top right panel. All grains drift,
settle, and grow, and this artefact related to the model disappears
without consequence.

The same behaviour is seen for water ice grains, whose evo-
lution is shown in Fig. 11. Compared to silicate grains, the top
panels demonstrate that water ice dust discs are thicker (∼20 au)
and extend radially further (> 400 au). This is due to the lower
density of water ice grains, resulting in smaller Stokes numbers
for a given position and size. Water ice grains thus settle and drift
more slowly than silicate grains. However, dust-to-gas ratios of
around ε ≈ 2–3 for compact grains and ε ≈ 0.7–1 for porous
grains are still reached. Compact water ice grains struggle to

reach millimetre sizes in the midplane (lower panels), although
their growth is faster than that of compact silicate grains due
to their lower density and larger cross-sectional area for a given
mass. They remain relatively small, in the hundreds of microns
range. In contrast, porous water ice grains can easily attain cen-
timetre scale sizes. Millimetre- to centimetre-sized grains are
found out to 400–500 au. The resulting filling factors (see also
Fig. 14, bottom left), around 10−3 − 5 × 10−3, are also too small
compared to observations by a factor 20 to 100. Grains are still
maintained at St values around 0.1; none manage to decouple in
the inner regions. This is not the case for some grains that reach
St = 1 in the outer disc region, where a lower gas density and
a higher growth rate enable these St values to be reached. Thus,
porosity allows grains to grow more easily, reaching millime-
tre sizes, and forming dust discs as thin as those composed of
compact grains.

4.2. Effect of bouncing and compaction during fragmentation

In this section, we investigate the effects of compaction during
fragmentation and bouncing at different fragmentation thresh-
olds. Disc observations reveal that larger dust particles in the
midplane are not as porous as the values obtained in the absence
of compaction (Sect. 4.1). Kataoka et al. (2016), Guidi et al.
(2022), and Zhang et al. (2023) find that grains have filling fac-
tors on the order of 10% with a product sϕ larger than 100 µm,
meaning grains with s > 1 mm.
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Fig. 11. Same as Fig. 10 for PHANTOM simulations GF-H2O-comp-Vf15 (left) and GF-H2O-a02-Vf15 (right) using water ice instead of silicate
grains.

4.2.1. 1D simulations with PAMDEAS

Figure 12 compares grain sizes as a function of distance from
the star between simulations without bouncing and compaction
during fragmentation (GF) on the left, and those with (GBFc)
on the right. The top three rows correspond to simulations with
silicates for three fragmentation thresholds: vfrag, Si = 10, 20, and
40 m s−1, from top to bottom, while the bottom row shows sim-
ulations with water ice for vfrag, H2O = 15 m s−1. For all GBFc
simulations, the grains grow to the same sizes and filling fac-
tors as the GF simulations. However, when the fragmentation
threshold is reached, the grains in the left panels remain in an
equilibrium between growth and fragmentation because, dur-
ing fragmentation, the grains retain their filling factor. In the
right panels, aggregates are compacted during fragmentation, the
filling factor increases, and sizes become smaller until a new
equilibrium is reached. The value of ϕ for compacted grains is
not the maximum possible value ϕmax = 0.74. The maximum
value that is reached is instead around 0.5–0.6 as in equilibrium,
grain growth tends to decrease ϕ, while compaction by fragmen-
tation or bouncing tends to increase ϕ. According to Fig. 6 and
Eq. (A.9), the closer ϕ gets to the maximum value, the harder
it is to compact the aggregate. The slow growth of grains thus
compensates for compaction towards the maximum value.

For simulations with vfrag, Si = 10 m s−1, the grains reach
sizes of a few millimetres, with a maximum around 3 mm
between 20 and 50 au. When compacted, the aggregate sizes then
drop to about 40–80 µm at maximum compaction before being
accreted by the star. The filling factor reaches a minimum of 10−2

just before the fragmentation threshold, before being compacted
to ϕ = 0.5. The aggregates are compacted very efficiently, as a
grain initially growing at 300 au ends up fully compacted during
its drift beyond 100 au. Lastly, one can note that the compacted
grains drift as fast as those that do not undergo compaction, as
indicated by the black points and line. This is due to the fact
that the product sϕ during compaction remains roughly the same
as when there is no compaction. As St ∝ sϕ, a similar Stokes
number results in a similar drift.

With vfrag, Si = 20 m s−1, grains in the right panel reach sizes
of around 3 cm before being compacted. As the fragmentation
threshold is higher, the grains have larger Stokes numbers and
therefore drift more during compaction. The maximum com-
paction occurs between 10 and 20 au, resulting in sizes ranging
from 100 to 300 µm and filling factors between 0.3 and 0.5.

For vfrag, Si = 40 m s−1, grains are able to grow almost without
encountering the fragmentation barrier. In both cases, the grains
start to fragment when reaching sizes between 20 and 50 cm,
with filling factors smaller than 3 × 10−3. With such a high frag-
mentation threshold, grains undergo mostly pure growth in the
majority of the disc and compaction does not operate. Moreover,
due to this free growth, grains in the inner regions are accreted
more rapidly since the St values they reach are larger, around
0.5–1 between 10 and 20 au, and over 0.1 in the rest of the disc.

Finally, in the case of water ice (bottom row of Fig. 12),
the aggregates reach decimetre sizes in both cases. When com-
pacted, their size is reduced by a factor of 500. The size reached
at maximum compaction ranges from 300 to 500 µm, with a
filling factor ϕ ∼ 0.4. Thus, a behaviour similar to simulations
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Fig. 12. Comparison between PAMDEAS simulations with growth and
fragmentation (GF-*-a02-*, left) and simulations with growth, bounc-
ing, and fragmentation with compaction (GBFc-*-a02-*, right), up to
t = 1 Myr. Grain sizes are given as a function of the distance from the
star, with colour indicating the filling factor. Simulation parameters are
indicated in each row. Black dots and dashed lines mark the time t =
50 kyr, providing a ‘snapshot’ of the size distribution at that moment.

with silicates and vfrag, Si = 20 m s−1 is observed, but with larger
variations in size and filling factor.

Figure 13 shows the evolution of size and filling factor, with
colour representing the distance r. All grains start to grow in the
hit & stick regime from the size of a monomer a0 = 0.2 µm
and ϕ = 1. They then transition to a different growth regime
(ϕEp, St<1) resulting in a change in slope around the micrometre
size, depending on the species (see Fig. 6).

In left panels for simulations without compaction, once the
fragmentation threshold is reached, the grains remain confined
in the ‘tip’ at the bottom right. On the other hand, in the right
panels, grain compaction is observed, leading to a decrease
in size while the filling factor increases towards unity. With
vfrag, Si = 10 m s−1, grains are compacted up to ϕ = 0.5 and a
minimum size of 40 µm, even at larger distances r. Bouncing
doesn’t occur in this case, as fragmentation is highly effective.
For vfrag, Si = 20 m s−1, grains fragment at larger sizes and smaller
ϕ. However, once the fragmentation threshold is reached, they
are compacted up to ϕ = 0.6 and sizes of 100 µm. Bounc-
ing begins to appear but has no influence on grain evolution
and is not visible in the figure. For vfrag, Si = 40 m s−1, aggre-
gates fragment after growing to sizes of around a decimetre and
ϕ ∼ 2 × 10−3. They then fragment and are compacted to ϕ = 0.7
and sizes of 700 µm.

Fig. 13. Comparison between PAMDEAS simulations with growth and
fragmentation (GF-*-a02-*, left) and simulations with growth, bounc-
ing, and fragmentation with compaction (GBFc-*-a02-*, right) up to
t = 1 Myr. The filling factor ϕ is plotted against grain size, with colour
indicating the distance r. Simulation parameters are indicated in each
row.

Finally, in the case of water ice, the same behaviour is
observed. Aggregates are compacted until they reach ϕ = 0.4 and
s = 300 µm. As mentioned in Sect. 2.3, bouncing is accompa-
nied by growth (but hardly visible in Fig. 13). Similarly to Fig. 6,
the characteristic plateau is seen, where grains move from left
to right and bottom to top, as they are compacted by bouncing
during growth before continuing to drift and be accreted.

Thus, compaction during fragmentation has a significant
impact on grain evolution. Taking porosity into account allows
grains to overcome the bouncing barrier, which occurs at grain
sizes of a few to several tens of microns. Bouncing doesn’t inter-
fere with aggregate growth before reaching the fragmentation
threshold, as ϕ < 0.3. When ϕ becomes larger than 0.3 again,
grains grow and don’t bounce but fragment. It is necessary for
the grains to be compacted and at sufficiently small sizes for
bouncing to play a role again before fragmentation.

4.2.2. 3D global simulations with PHANTOM

Figure 14 compares PHANTOM simulations without (top) and
with (bottom) compaction during fragmentation and bouncing.
We show the radial grain size distribution, colour-coded with
the filling factor, for simulations with silicates and vfrag, Si = 10,
20 and 40 m s−1, and with water ice, from top to bottom in
each panel (in the same order as in Fig. 12). In all cases, the
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Fig. 14. Comparison of the radial grain size distribution, with colour representing the filling factor, between PHANTOM simulations with growth and
fragmentation (GF-*-a02-*, top panel) and with growth, bouncing, and fragmentation with compaction (GBFc-*-a02-*, bottom panel). Simulation
parameters are indicated in each row. We note that the colorbar range is different from that in Fig. 12.

maximum grain sizes obtained with or without compaction are
similar, unlike in the 1D simulations, despite efficient com-
paction. It should be noted that 1D and 3D simulations cannot
be directly compared as the former follow the evolution of single
grains in the disc midplane, while the latter deal with a pop-
ulation of grains at various altitudes, whose size and porosity
evolution depends on varying disc conditions as they settle and
drift. The effect of compaction (bottom panel) can best be seen
at t = 100 kyr interior to 200 au where the largest grains are
still relatively porous, with ϕ ranging from a few 10−2 to a few
10−3 depending on the simulation, and mostly at large r, while
the smallest grains have been compacted to ϕ ∼ 0.4 or larger. In
simulations without compaction (top panel), the larger grains are
also more porous than smaller ones, as expected from their evo-
lution during growth (Sect. 2), but the porosity range is much

smaller. At t = 300 Myr, the most compacted grains, in the
midplane, are substantially smaller than in simulations without
compaction.

Simulations with silicate grains and vfrag, Si = 10 and
20 m s−1 (first two rows in both panels) are similar: without
or with compaction, grains reach sizes of a few millimetres at
t = 100 kyr for vfrag = 10 m s−1, while they grow faster and
larger, up to a few centimetres, for vfrag, Si = 20 m s−1. How-
ever, after 300 kyr, compacted grains are at most 600−700 µm
in size for vfrag = 10 m s−1 and a few millimetres for vfrag, Si =

20 m s−1. The former case is difficult to reconcile with obser-
vations of grains of mm size or larger in protoplanetary discs.
When vfrag, Si = 40 m s−1 (third rows), the threshold is high
enough for grains to remain mostly in the pure growth regime,
similarly to what was seen with PAMDEAS (Sect. 4.2.1), with
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Fig. 15. Comparison between PHANTOM simulations with growth and fragmentation (GF-*-a02-*, top panel) and simulations with growth, bounc-
ing, and fragmentation with compaction (GBFc-*-a02-*, bottom panel). The grain size s is shown in the meridian plane (r, z), with the light grey
background indicating the gas disc thickness. Simulation parameters are indicated in each row.

almost no fragmentation or compaction, except in the very inner
disc. Here, grain sizes reach several tens of metres and their
Stokes number exceeds unity. This breaks the terminal velocity
approximation used in the dust-as-mixture formalism (Youdin
& Goodman 2005; Laibe & Price 2014) and those simulations
should not be considered valid. Finally, for simulations GF-H2O-
a02-Vf15 and GBFc-H2O-a02-Vf15 (bottom rows), the same
pattern as for simulations GF-Si-a02-Vf20 and GBFc-Si-a02-
Vf20 is observed, with grains reaching slightly larger sizes. The
joint evolution of grain size and filling factor is described in
Appendix D.

The thickness of the of the dust discs can be examined in
Fig. 15, showing the size in the (r, z) plane. Like in other fig-
ures, only particles with ε ≥ 5 × 10−3 are shown to eliminate
dust-depleted regions. The light grey background indicates the
gas disc’s thickness. An interesting result can be noted: whether
the grains are compacted or not, the thickness of the dust discs
is very similar between 10 and 200 au, where dust is most
abundant, and is only slightly larger for compacted dust. In all
cases, compared to the compact grain discs of simulations GF-
Si-comp-Vf20 (Fig. 10) and GF-H2O-comp-Vf15 (Fig. 11), the
porous grain discs are just as thin in the inner regions, or even
thinner in the early stages for r < 200–300 au. However, the
porous grain discs are thicker farther from the star and have
larger sizes than their compact grains counterparts.

Finally, the maximum size of compact grains is larger in
PHANTOM simulations compared with PAMDEAS by a factor
of ∼5 (comparing the left panels of Fig. 8 to the left panels
of Fig. 10) because dust settling in 3D increases dust density
in the midplane, which helps grains to grow to larger sizes. On
the other hand, the sizes, filling factors, and St values of porous
grains are similar with both codes. When grains are highly
porous, their growth is fast and the increase in growth rate due
to settling provides little assistance – the limiting factor is the
fragmentation threshold. Porous grains that undergo compaction
are in a intermediate situation.

4.3. Effects of a snow line

Here, we examine the influence of the CO ice line on the GBFc-
Si-a02-Vf20 simulation. The sublimation temperature for CO
is 20 K, which corresponds to a position of the snow line at
r ∼ 100 au in our disc model. We set the fragmentation threshold
for the outer region, where grains are assumed to be surrounded
by CO ice, to vfrag, ext = 5 m s−1. In the inner region, instead of
taking a threshold of 15 m s−1, which would correspond to grains
made entirely of water ice, we set vfrag, int = 20 m s−1 to model sil-
icate grains assumed to be surrounded by a layer of water ice.
The outer layer only affects adhesive properties, as discussed
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Fig. 16. PHANTOM GBFcS-Si-a02-Vf205 simulation. Top: aggregate
sizes in the same plane (r, z). Middle: radial grain size distribution, with
colour representing the Stokes number St. Bottom: filling factor ϕ plot-
ted against grain size s, with colour indicating the distance r.

in Vericel & Gonzalez (2020). The result from this simulation,
GBFc-Si-a02-Vf205, are shown in Fig. 16.

The top panel shows the grain size s in the (r, z) plane, with
a cut-off at ε ≥ 5 × 10−3, and the light grey gas disc in the back-
ground, while the central panel displays the radial grain size
distribution coloured by the Stokes number. Both panels show
two distinct regions. Interior to 100 au, grains have settled into a
very thin disc and formed large aggregates with sizes of several
millimetres up to a centimetre. They have St ∼ 5 × 10−2 when
they are compacted, mainly between 50 and 100 au, down to
a few millimetres. Beyond 100 au, grains have not been able
to grow to large sizes due to the lower fragmentation thresh-
old exterior to the snow line, where the balance between growth
and fragmentation keeps them at smaller sizes ranging from
∼100 µm when they are still porous, down to a few tens of µm
once compacted. Their smaller St slows down their settling and

drift. The dust disc has thus settled much less compared to sim-
ulation GBFc-Si-a02-Vf20 shown in Fig. 15, with a thicker and
more extended outer disc.

Finally, the bottom panel shows the filling factor versus the
grain size s, with colour indicating the distance r. With the snow
line, the interpretation becomes more complex, as grains can
fragment and compact in two different regions, leading to com-
paction even for small sizes in the outer regions. Grains between
100 and 150 au are compacted, and once past the snow line, they
have the opportunity to grow again before reaching the inner
fragmentation threshold of 20 m s−1. Thus, we observe not one
but two vertical columns in the plot due to compaction during
fragmentation.

Snow lines in this configuration are an effective way to form
relatively compact dust grains with ϕ ∼ 0.1 far from the star, as
long as the fragmentation threshold is not too high; otherwise,
the grains would drift inward faster and would not be compacted
efficiently.

4.4. Effects of rotational disruption

We present in Appendix E the results of 3D simulations of rota-
tional disruption, complementing the 1D PAMDEAS simulations
of Michoulier & Gonzalez (2022a) and removing some of their
limitations. They show that rotational disruption has a negligible
effect on the dust evolution in discs.

5. Discussion

We have shown that simulations with porous grains allow for
the growth of grains to larger sizes and masses regardless of
the species or fragmentation threshold. Hence, as indicated by
Garcia & Gonzalez (2020), porosity enables large dust grain
formation. Our 1D simulations using PAMDEAS and our 3D sim-
ulations with PHANTOM both result in centimetre-sized grains
for porous grains when including growth and fragmentation
only. With compact or compacted grains due to fragmentation,
PAMDEAS tends to underestimate the maximum grain size by a
factor of a few. Nevertheless, PAMDEAS efficiently models the
dust evolution, with or without considering porosity evolution.

We found that simulations involving compaction contradict
the earlier simulations without compaction, which indicated that
larger grains were more porous and located in the midplane
(Garcia 2018; Garcia & Gonzalez 2020). With compaction, we
find that large aggregates in the midplane are compact. In the
upper layers, grains are nearly as large but more porous and con-
sequently less massive, undergoing settling. Finally, small grains
are either monomers or fractal aggregates composed of a few
dozen monomers. This suggests that the size and porosity distri-
bution of dust mainly depends on grain altitude. Our simulations
with porous and compacting grains provide better explanations
for observations that report both non-porous millimetre-sized
grains in the midplane and more porous millimetre-sized grains
above and below.

Filling factors of dust grains in discs are generally between
0.1 and 1 according to observations (Guidi et al. 2022; Zhang
et al. 2023; Ohashi et al. 2023). Figure 17 summarizes the best
models able to match observations of HL Tau (Zhang et al. 2023)
and DG Tau (Ohashi et al. 2023). In both studies, the authors
assumed either compact (ϕ = 1) of porous (ϕ = 0.1 for Zhang
et al. 2023 and 0.2 for Ohashi et al. 2023) grains and fit for the
grain sizes for which SED and polarization data are best repro-
duced. In the inner disc (interior to 40 au), compact grains of
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Fig. 17. Grains sizes compatible with all the data obtained from SED
and polarization observations of HL Tau (Zhang et al. 2023) and DG
Tau (Ohashi et al. 2023) for different values of the assumed filling factor.

a few hundred µm are found to match both discs. However, for
porous grains, sizes of 1 mm or larger are preferred for HL Tau,
while values from 100 µm closer in up to 1 mm further out work
best for DG Tau. For HL Tau, Zhang et al. (2023) found that com-
pact grains of any size cannot reproduce the data between 20 and
60 au. At larger distances, the best fit is found for similar sizes
to the inner disc for HL Tau, but for compact grains of 1 cm or
porous grains larger than 3 cm for DG Tau. However, the authors
of both studies cautioned that the low signal-to-noise ratio in the
outer regions makes it difficult to distinguish between different
grain populations.

Our simulations provide an explanation for these grain dis-
tributions. Thanks to porosity, all grains are capable of rapid
growth to reach millimetre sizes that are compacted in the inner
regions with consistent filling factors (ϕ ∼ 0.1–1). In the outer
regions, smaller grains (10–100 µm) are prevalent, with varying
porosities (ϕ ∼ 0.01–0.5), which is consistent with the observa-
tions of HL Tau. The large grains (≳3 cm) seen in the DG Tau
disc, however, are challenging to reproduce in our simulations.
Grains with these sizes are present, but they are more porous
with ϕ ∼ 10−3−10−2.

Table 2 presents a summary of the classifications of
cometary dust and its morphology from the Rosetta and Star-
dust missions (Güttler et al. 2019). These observations found that
the most common grains are represented by the porous particle
group, with ϕ in the [0.05,0.9] range, similar to the compacted
grains in our simulations, although their size can be much larger.
Fractal aggregates are rarer, also in agreement with our simu-
lations. The solid particle group is similar to our monomers.
Compaction of grains during their evolution is thus necessary
to explain both disc and comet observations.

Some limitations of our work are inherent to the codes
themselves (see Sect. 2), in particular for PAMDEAS with its one-
dimensional nature assuming a static gas disc, limitations that
are overcome with PHANTOM. However, the growth and frag-
mentation model remains the mono-disperse model (Stepinski &
Valageas 1997) in both cases. In particular, it cannot account for
collisions between particules of very different sizes or masses.
High-mass-ratio collisions have been found to produce stronger
compression (Tanaka et al. 2023). Taking them into account
would help aggregates to reach their compacted state sooner.

Table 2. Summary of the classifications of cometary grains from the
Rosetta and Stardust missions, adapted from Güttler et al. (2019).

Group s ϕ Contribution

Porous 1 µm–1 m 0.05 to 0.9
Dominates the

size distribution
Fractal 1 µm–10 mm <0.05 Low fraction
Solid 0.1 µm–0.5 mm >0.9 Very common

The mono-disperse model nonetheless results in global size dis-
tributions that are similar to those obtained with polydisperse
models (Gonzalez et al. 2017; Vorobyov et al. 2018). The reader
is referred to Laibe et al. (2008); Vericel & Gonzalez (2020);
Vericel et al. (2021); Michoulier et al. (2024) for additional
discussions of this formalism.

The 3D simulations use the dust-as-mixture formalism in
the terminal velocity approximation, which is no longer valid
when dust decouples from the gas. Moreover, the dust-as-
mixture (one fluid) simulations do not depict the formation of
self-induced dust traps, whereas previous dust-as-particles simu-
lations showed this mechanism (Michoulier & Gonzalez 2022b).
Future dust-as-particles simulations, albeit significantly more
time-consuming, should verify the presence of these traps, as
well as demonstrate whether dust can effectively decouple.

The fragmentation model is not entirely consistent. We set
the fragmentation threshold to a predefined, fixed value. In prac-
tice, the fragmentation threshold should depend on the size
and porosity of grains. Garcia (2018) tested a model with a
variable threshold with limited success. However, there is no
existing model or study that establishes this relationship. A con-
sistent model is needed to better understand the fragmentation of
aggregates and the its influence on the evolution of dust grains.

In a similar vein, the difficulty to obtain material properties
for different compounds due to the complexity of experimental
studies and the large parameter space they would need to cover
makes assumptions unavoidable in order to develop a general
model. Some of them may be lifted in the future as more data
becomes available, for example measurements of the Young’s
modulus over a wide range of porosities for several species of
astrophysical interest.

6. Conclusions

A key missing piece in our understanding of the puzzle of planet
formation is how sub-micron-sized dust grains coagulate into
planetesimals while avoiding the fragmentation and radial drift
barriers. These obstacles must be overcome for dust to sur-
vive long enough to form kilometre-sized rocky bodies. While
solutions have been proposed to explain planetesimal forma-
tion, mechanisms such as the streaming instability (Youdin &
Goodman 2005) involve specific conditions, such as the presence
of large dust particles settled in the midplane. However, there is
no clear answer as to how to achieve these conditions. Growth
up to a few microns is relatively straightforward, but reaching
millimetre-sized or larger grains, as observed, is difficult because
of radial drift.

To address these issues, we explored the evolution of
porous grains, including various mechanisms that destroy them.
We developed a new physical model and code module to
account for growth and porosity evolution, as well as bouncing
and fragmentation with compaction, within the mono-disperse
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Fig. 18. Diagram summarising the different physical processes related to dust seen and studied in this paper.

approximation. We investigated the influence of porosity on dust
evolution using the 1D code PAMDEAS (Michoulier & Gonzalez
2022a) and the 3D SPH code PHANTOM (Price et al. 2018).
We performed simulations varying the porosity, compaction,
the constituent species of the grains, and the fragmentation
threshold. Our conclusions are as follows:
1. We confirm that porosity enables the formation of

millimetre- to centimetre-sized grains (Garcia 2018). The
main limiting factor is the fragmentation threshold.

2. With growth and fragmentation alone, we found large values
for the filling factor (ϕ ∼ 10−4–10−3) that are incompatible
with observations, which show compact grains in the inner
regions.

3. When including compaction during fragmentation and
bouncing, we formed grains of several hundred microme-
tres to a few millimetres, but this time with filling factors
compatible with observations (ϕ ∈ [0.1; 1]).

4. The 3D simulations with high turbulent viscosity showed
signs of rotational disruption in the intermediate layers of
the disc when aggregates are settling in the outer regions,
but we found the overall impact of rotational disruption on
dust evolution to be small.

Figure 18 summarises the key mechanisms involved in the evolu-
tion of grains. Overall, we found that considering porosity, com-
paction effects, and snow lines can reconcile observations with
theoretical models of planet formation. Future work may involve
developing a coherent model for the fragmentation threshold,
further investigating the impact of snow lines, and using sim-
ulations to generate synthetic images to refine our understanding
of observations.
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Appendix A: Equations for porosity evolution
during growth

A.1. Hit & stick regime

In the hit & stick regime, the mass of the grain doubles during
a collision, and a volume of void Vvoid is formed. According to
Okuzumi et al. (2009), this captured volume Vvoid corresponds
to 99% of the initial volume Vi, thus adding to the initial vol-
umes of the two grains before the collision. The filling factor
ϕ ∝ m/V is therefore multiplied by a factor of 2/2.99. For an
arbitrary number of collisions n, there is a geometric relation-
ship between the initial filling factor ϕ0 and the final ϕf , given
by ϕf = (2/2.99)nϕ0 (Garcia & Gonzalez 2020). Moreover, the
mass of a grain after the same number of collisions has grown
by mf = 2nm0, m0 being the monomer mass. By isolating n
and combining the two expressions, we obtained the filling fac-
tor in the hit & stick regime (assuming Ekin ≪ Eroll, Garcia &
Gonzalez 2020):

ϕh&s =

(
m
m0

)ψ
, (A.1)

with ψ = ln (2/2.99) / ln 2 ≃ −0.58, where for the monomer ϕ0 =
1.

A.2. Collisional compression regime

As both the grain mass and the relative velocity vrel increase, the
kinetic energy increases. Since vrel depends on the Stokes num-
ber (Sect. 2.1), which in turn depends on the drag regime, there is
an expression for each case (Garcia & Gonzalez 2020). Suyama
et al. (2012) provide the volume of a grain after collision Vf in
terms of the volume of a grain before collision Vi. This relation
can be transformed to incorporate filling factors using the fact
that ϕf = mf/Vfρs = 2mi/Vfρs (Garcia & Gonzalez 2020):

ϕf =
2mi

ρs

 (3/5)5 (EKin − 3b Eroll)

N5
tot b ErollV

10/3
0

+
V−10/3

i

24

3/10

. (A.2)

Here, Ntot is the total number of monomers, which is 2mi/m0,
and V0 is the volume of a monomer. This model is recursive,
meaning that the evolution of porosity is tracked after each colli-
sion. However, in the case of global simulations, the integration
time step rarely aligns with the time interval between collisions
τcoll. Therefore, Garcia & Gonzalez (2020) transformed this dis-
crete model into a continuous one to depend solely on the grain
mass and quantities related to r, enabling its implementation in
codes for global simulations. To achieve this, they assumed the
approximation Ekin ≫ Eroll.

In the Epstein and Stokes regimes for St < 1, one obtains

ϕEp,St<1 =

(
A

2
(
23/40 − 1

) )3/8 (
m
m0

)−1/8

, (A.3)

ϕSt,St<1 =

(
Acga0

9νmol
(
21/5 − 1

) )1/3

. (A.4)

νmol =
5
√
π

64
mmolcg

ρgσmol
(A.5)

is the gas molecular kinematic viscosity, where mmol and σmol
are the mass and molecular cross section of the H2 molecule,

and A is a factor used to simplify the expressions and is given by

A =
243
√

2π
15625

Roα a4
0 ρ

2
s cgΩK

ρ b Eroll
, (A.6)

where ρ = ρg + ρd is the total density. It is observed that in the
Stokes regime with St < 1, the filling factor depends only on the
local disc conditions. For regimes with St > 1, collisional com-
pression is less efficient due to the decrease in vrel. By neglecting
Ekin, it can be derived from Okuzumi et al. (2012) and Garcia &
Gonzalez (2020) that ϕf ∝ m−1/5

f for St > 1. Therefore, the filling
factors for St > 1 can be expressed as

ϕEp,St>1 = ϕEp,St<1(M4)
(

m
M4

)−1/5

, (A.7)

ϕSt,St>1 = ϕSt,St<1(M5)
(

m
M5

)−1/5

, (A.8)

where M4 and M5 are the transition masses between the Epstein
and Stokes regimes for St < 1 and St > 1. The transition masses
are given in Appendix B. The equations giving ϕ in the various
regimes can also be rewritten as a function of the size s instead of
the mass m, they are listed in Appendix C. However, the natural
variable to describe dust evolution is m.

The filling factor resulting from the hit & stick and collisional
compression regimes is noted ϕcoll.

A.3. Static compression regime

In addition to undergoing compression due to collisions, aggre-
gates can also be statically compacted either by the surround-
ing gas or by their own gravity. Kataoka et al. (2013) and
Garcia & Gonzalez (2020) provided the relationship between
static compression pressure and the filling factor:

ϕ =

a3
0Pcomp

Eroll

1/3

, (A.9)

which is only valid for small filling factors ϕ < 0.1. In the case
of compression by gas, the pressure is given by

Pcomp =
FD

πs2 =
m∆vΩK

πs2St
, (A.10)

which allows one to obtain the expression for the filling factor
ϕgas (Garcia & Gonzalez 2020):

ϕgas =

(
m0 a0

πEroll

∆vΩK

St

)3/7 (
m
m0

)1/7

. (A.11)

For self-gravity, the exerted pressure is given by

Pcomp =
Gm2

πs4 , (A.12)

and the expression for the filling factor ϕgrav is (Garcia &
Gonzalez 2020)

ϕgrav =

 Gm2
0

πa0Eroll

3/5 (
m
m0

)2/5

, (A.13)

where G is the universal gravitational constant. To obtain the
final filling factor of a grain with mass m at a distance r from the
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Fig. B.1. Transition masses for our standard disc model and for silicate
grains.

star, we take the value of ϕ given by the phenomenon that com-
pacts the grain the most, which is the largest value among static
compression by gas, static compression by gravity, and compres-
sion by collision: ϕmin = max(ϕcoll, ϕgas, ϕgrav). All these regimes
are presented in Fig. 1 in the (s,ϕ) plane for different distances
to the star.

A.4. Growth from above the compression limit

The minimum filling factor must be ϕmin. However, there are
cases where the evolution of a grain (e.g. via bouncing) can pro-
duce a filling factor larger than ϕmin, placing it in the space above
the curves showed in Fig. 1. To take into account the increase of
porosity of grains during growth above the limit, we can com-
pute the filling factor as a function of the initial filling factor
ϕi, and the final and initial masses mf and mi in the case where
vrel < vfrag.

ϕgrow = ϕi

(
mf

mi

)ψ
if Ekin < 3bEroll, (A.14)

ϕgrow = ϕi

(
mf

mi

)−1/5

otherwise. (A.15)

The resulting filling factor is then the maximum of ϕgrow and
ϕmin.

Appendix B: Transition masses

The transition masses are the masses at which the behaviour
of a grain changes. The different expressions of ϕ found for
each regime in Sect. 2.2 are independent, the transition masses
allowed us to relate them. For the transition masses M1 and M2
that connect the hit & stick regime to the Epstein and Stokes
regimes with St < 1, we find

M1

m0
=

(
A

2
(
23/40 − 1

) ) 3/8
ψ+1/8

, (B.1)

M2

m0
=

(
Acga0

9νmol
(
21/5 − 1

) )1/3ψ

. (B.2)

The transition mass M3 corresponds to the transition between the
Epstein and Stokes regimes

M3

m0
=

(
A

2
(
23/40 − 1

) )3 (
Acga0

9νmol
(
21/5 − 1

) )−8/3

, (B.3)

=

(
M1

m0

)8ψ+1 (
M2

m0

)−8ψ

(B.4)

Finally, the expressions for M4 and M5 are obtained by equating
the expression of ϕ for the Epstein or Stokes regimes with St < 1
to the expression of ϕ obtained by setting St = 1.

M4

m0
=

(
ρcg

ρsa0ΩK

)4 (
A

2
(
23/40 − 1

) )−1

, (B.5)

M5

m0
=

 9νmolρ

2ρsa2
0ΩK

3/2 (
Acga0

9νmol
(
21/5 − 1

) )−1/6

. (B.6)

Here, we have not considered the other Stokes regimes that
are reached for even larger sizes than the linear regime as
static grain compression is always dominant compared to these
regimes. The various transition masses as well as the differ-
ent expansion and compression regimes are shown in Fig. B.1,
inspired by Fig. A1 of Garcia & Gonzalez (2020). We note that
the transition mass M2 is always larger than mass M1. The Stokes
regimes are reached in the inner regions of a disc, at a distance
less than 10 au.

Appendix C: Filling factor as a function of size

The equations giving the filling factor ϕ as a function of mass m
in Appendix A can be rewritten as a function of the size s as

ϕh&s =

(
s

a0

) 3ψ
1−ψ

, (C.1)

ϕEp−St<1 =

(
A

2(23/40 − 1)

)1/3 (
s

a0

)−1/3

, (C.2)

ϕSt−St<1 =

(
A cg a0

9ν(21/5 − 1)

)1/3

, (C.3)

ϕEp−St>1 =

(
ρ cg

ρsΩK a0

A
23/40 − 1

)1/4 (
s

a0

)−1/2

, (C.4)

ϕSt−St>1 =

 ρ cg a0

2ρsΩK a2
0

A
21/5 − 1

1/4 (
s

a0

)−1/2

. (C.5)

Appendix D: Co-evolution of grain size and filling
factor in PHANTOM simulations with and without
compaction

Figure D.1 shows the joint evolution of grain size and filling
factor in PHANTOM simulations without (top) and with (bot-
tom) compaction during fragmentation and bouncing, with the
same order of simulations as in Fig. 14. Without compaction
(top panel), the trajectories for all simulations are very similar
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Fig. D.1. Same as Fig. 14 but showing the filling factor ϕ plotted against grain size, with colour indicating the distance r.

to the 1D case (Fig. 12), with a spread corresponding to the
disc’s vertical extent. When compaction is considered (bottom
panels), the compaction trajectory is more vertical compared
to that obtained with PAMDEAS, and the bouncing plateau at
ϕ ∼ 0.4, primarily populated with grains very close to the disc
inner edge, is more clearly visible. The overall evolution appears
more complex and the s − ϕ plane is more densely populated. A
large spread of filling factors can be reached for a given grain
size and at a given distance, grains of various s and ϕ can be
found, indicating the coexistence of porous and compacted dust.

Simulations with silicate grains and vfrag, Si = 10 and
20 m s−1 (first two rows) are again quite similar, with grains
reaching larger sizes and porosities before being fragmented and
compacted for the latter value. The main difference is that at
t = 300 kyr almost all grains are compacted or undergoing com-
paction for vfrag, Si = 20 m s−1, with very few left on the growth
branch, while for 10 m s−1 a large fraction of grains are still

growing, mainly in the outer disc. Despite the fact that simu-
lations GF-Si-a02-Vf40 and GBFc-Si-a02-Vf40 (third rows) are
not valid, it is still interesting to note that, due to larger sizes
being reached, the gas and self-gravity compaction regimes are
visible for solids larger than a few m (see Fig. 1). Again, the
water ice simulations (bottom rows) are similar to that with sil-
icate grains and vfrag, Si = 20 m s−1, with larger s and smaller ϕ,
except for a fraction of still growing grains at large r.

Appendix E: Influence of rotational disruption

Michoulier & Gonzalez (2022a) studied the effect of rotational
disruption on the evolution of porous grains using 1D simula-
tions with PAMDEAS. 3D disc simulations taking into account
the evolution of gas and dust are necessary to understand in more
detail when and where rotational disruption influences dust evo-
lution. To that effect, we performed simulations modelling this
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Fig. E.1. Comparison between PHANTOM simulations with growth, bouncing, fragmentation with compaction, and without (GBFc-*-a02-*, top
panel) and with (GBFcD-*-a02-*, bottom panel) rotational disruption showing the radial grain distribution, with colour representing the dust filling
factor. Simulation parameters are indicated in each row.

phenomenon for silicates with vfrag, Si = 10 and 20 m s−1, and for
water ice with vfrag, Si = 15 m s−1, listed in the last three rows of
Table 1. The grain properties were somewhat different compared
to Michoulier & Gonzalez (2022a): the monomer size was set to
0.2 instead of 0.1 µm, and γs = 0.2 J m−2 for silicates. In fact,
with these new parameters, the tensile strength S max should be
larger by a factor of two.

Simulations with PAMDEAS showed signs of rotational dis-
ruption only for very small values of the viscosity parameter
α < 5 × 10−4, lower than that used with PHANTOM. The con-
ditions necessary for its appearance in the midplane (which
PAMDEAS simulates) are therefore challenging to achieve.

Figure E.1 compares 3D simulations including growth,
bouncing and fragmentation with compaction, without (top)
and with (bottom) rotational disruption. It shows the radial
grain distribution, with colour representing the dust filling factor
ϕ. For simulations GBFc-Si-a02-Vf10 and GBFcD-Si-a02-Vf10
(top rows in both panels), very few differences are observed,
which is expected since the fragmentation threshold is low
enough for grains to fragment before they can be rotation-
ally disrupted (which only happens at higher relative velocities
and therefore larger sizes). For simulations GBFc-Si-a02-Vf20
and GBFcD-Si-a02-Vf20 (middle rows), rotational disruption is
able to destroy grains during their fall towards the midplane,

which slows down their settling and limits dust enrichment in
the midplane. Since the dust density is slightly lower, grains
do not grow as much as in the case without disruption. This
is mostly visible for grains outside of 50 au at t = 100 kyr.
After 300 kyr, the differences have been largely erased by the
subsequent dust evolution. Finally, for simulations GBFc-H2O-
a02-Vf15 and GBFcD-H2O-a02-Vf15 (bottom rows), disruption
has a minimal effect on the size and porosity of dust grains, only
visible outside of 150 au. Indeed, the growth of water ice grains
is very rapid and largely counteracts rotational disruption. It is at
t = 300 kyr that the effect becomes more visible since, unlike the
simulation without disruption, many small grains are observed
between 200 and 500 au.

In general, disruption has little effect on the size and porosity
of grains and their evolution in the disc, with fragmentation and
compaction largely dominating grain growth and destruction.
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