

5th Triennial world symposium on Transport and Land Use Research

Paper #

095

How do we move in Latin American cities today?

Modal share versus PKT as sustainable urban mobility demand indicators: a comparison of Bogotá and Lima

Hugo THOMAS, Luis Ángel GUZMAN, Florent DEMORAES

SPONSORED BY:

Introduction

Mobility demand indicators taking mode use and trip patterns into account.

Unified, comparable, replicable methods in different Latin-American cities.

Based on mobility survey individual microdata.

Open-science approach.

Different population location and density patterns

Maps by authors, census data from DANE, 2018 (Bogotá) and INEI, 2017 (Lima)

IN REPORT OF THE PARTY OF THE P

Lima and Bogotá: two segregated cities

Maps by authors, census data from DANE, 2018 (Bogotá) and INEI, 2017 (Lima)

Unbalanced job and population location

Distinct public transport supply... and policies

	Bogotá	Lima	Bogotá	Lima	Bogotá	Lima
Main mode	Mode share (% N. trips)		Million daily PKT		PKT share (% total PKT)	
BRT	13.3	2.1	30.1	5.8	27.7	4.4
Bicycle	6.0	0.4	5.3	0.1	4.9	0.1
Motorcycle	4.5	0.3	8.0	0.3	7.4	0.2
Otro	0.9	2.1	1.4	2.4	1.3	1.8
Paratransit	3.5	8.6	4.7	4.3	4.3	3.3
Private car	11.6	8.5	16.0	10.9	14.7	8.3
Rapid transit	-	0.4	-	0.8	0.0	0.6
Regular bus	16.3	58.9	27.3	98.9	25.1	75.7
School bus	2.3	_	2.5	-	2.3	0.0
Taxi	3.6	3.8	4.0	4.2	3.7	3.2
Walking	38.1	15.0	9.5	3.0	8.7	2.3
TOTAL	100	100	108.7	130.7	100	100

Table by authors based on HMS 2019 and HMS 2012

Grupo SUR

CICIN Departamento
de ingeniera Civil
yAmbiento

PKT to work according to the place of residence

100,000 - 200,000

200,000 - 500,000

> 500,000

Maps by authors based on HMS 2019 and HMS 2012. Gaussian weighting, 800-meter smoothing bandwidth. Same classes used in both cities.

Car-use intensity according to the place of residence

1.86 - 3.02

3.02 - 4.65> 4.65

Maps by authors based on HMS 2019 and HMS 2012. Gaussian weighting, 800meter smoothing bandwidth. 6 bins based on equal distribution percentiles.

Walking intensity according to the place of residence

> 1.58

0.26 - 0.42

0.42 - 0.6

> 0.6

Maps by authors based on HMS 2019 and HMS 2012. Gaussian weighting, 800meter smoothing bandwidth. 6 bins based on equal distribution percentiles.

Public transport-use intensity according to the place of residence

Maps by authors based on HMS 2019 and HMS 2012. Gaussian weighting, 800-meter smoothing bandwidth. 6 bins based on equal distribution percentiles.

Palma ratios on mode-use intensities

 $Palma\ Ratio\ (PKT\ per\ capita) = \frac{\left(\sum_{\text{wealthiest }10\%} PKT\ per\ capita\cdot Pop\right) \cdot \left(\sum_{\text{poorest }40\%} Pop\right)}{\left(\sum_{\text{wealthiest }10\%} Pop\right) \cdot \left(\sum_{\text{poorest }40\%} PKT\ per\ capita\cdot Pop\right)}$

Bogotá

Lima

	Average (PKT/capita)	Palma ratio	Average (PKT/capita)	Palma ratio
Car-use intensity	1.8	9.64	1.2	3.34
Walking intensity	1.1	0.65	0.3	0.42
Public transport-use intensity	6.3	0.37	10.1	0.44

Limitations of the study

Routing using shortest path

Main mode assignment for intermodal trips

Mobility survey availability and oldness

Conclusions

Different modes attend different people with different needs.

The private car is the most socially-selective mode.

Modal share must be used together with mode-use intensities to understand individual mobility patterns.

Th Triennial world symposium on Transport and Land Use Research

Paper #

095

Thank you for your attention

Contact info

Hugo THOMAS: h.thomas@uniandes.edu.co

SPONSORED BY:

Th Triennial world symposium on Transport and Land Use Research

Paper #

095

Annex

Social condition index

To compare the socioeconomic strata between both cities, a Social Condition Index (ICS) was calculated for each household using the census microdata and binned into 6 categories reflecting the social hierarchy.

The unique ICS formula is, therefore, the following:

 $ICS = \frac{Educational\ climate\ (average\ years\ of\ education\ of\ people\ aged\ 15\ and\ over\ in\ the\ household) \times Number\ of\ rooms\ \ in\ the\ dwelling}{Number\ of\ members\ in\ the\ household}$

Each household is assigned an ICS category based on its ICS score. The 10% households with lowest ICS were assigned ICS 1, and the following 15%, 25%, 25%, 15% and 10% respectively ICS 2 to ICS 6.

Zoning for origins and destinations

Average trip distances

Table 4 - Average network-based distance per trip per mode. Table by authors based on HMS 2019 and HMS 2012.

	Bogotá	Lima	
Main mode	Average distance per trip (km)		
BRT	13.4	17.0	
Bike	5.2	2.3	
Motorbike	10.5	6.4	
Other	9.3	6.9	
Paratransit	7.8	3.0	
Private car	8.2	7.8	
Rapid transit	-	12.9	
Regular bus	9.9	10.2	
School bus	6.6	-	
Taxi	6.5	6.6	
Walking	1.5	1.2	
AVERAGE	6.4	7.9	

IN THE STATE OF TH

Lima and Bogotá: two segregated cities

Maps by authors, census data from DANE, 2018 (Bogotá) and INEI, 2017 (Lima)

Main mode

Hierarchy: Rapid transit > Bus rapid transit > Regular bus > Taxi > Private car > Moto > Bike > Walking

Figure A5. Two ways of assigning the main mode in Lima mobility survey. Chart by authors based on HMS 2012.

