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Abstract

This work reports on numerical characterizations of effective mechanical properties associated with graphene-
polymer composite aerogels produced using an environmentally friendly freeze-drying process. To this purpose,
a multiscale approach was implemented, in which geometrical configurations were constructed based on the results
of experimental characterizations. A homogenization procedure based on molecular mechanics, the Milton method,
and the asymptotic homogenization method was applied. In the asymptotic homogenization method, cell prob-
lems were formulated and solved within a representative volume element using the finite element method. After
validating the numerical model through experimental results from compression tests, a parametric study on the
influence of microstructural parameters of the materials, such as dispersion state, aspect ratio, volume fraction
of nanoinclusions, and material porosity, on the macroscopic mechanical behaviour of the composite aerogels was
conducted. The simulation results provided a deeper understanding of the mechanisms that enhanced the mechan-
ical properties of such aerogels by adding various graphene derivatives, allowing for adjustments in the elaboration
process to obtain materials with improved mechanical properties.

Keywords: Asymptotic homogenization, effective mechanical properties, finite element method, composite
aerogel, graphene, biopolymer
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1. Introduction

Aerogels constitute a unique class of ultralight porous materials. Despite their name, aerogels are solid, elastic,
and dry materials that do not resemble a gel in their physical properties. The name comes from the fact that
they are made from gels. In particular, the result is a solid with extremely low density and extremely low thermal
conductivity. With their outstanding thermal insulation performance, aerogels have garnered significant attention
in the building sector in recent years as a potential replacement for traditional insulation materials [1, 2]. In 2020,
it is noteworthy that biomedical applications of these hybrid aerogels were reviewed and discussed [3]. While most
aerogels are traditionally produced from high-cost and environmentally unfriendly materials, such as silica or syn-
thetic polymers, the use of biopolymers in combination with eco-friendly freeze-drying methods offers a sustainable
alternative [4, 5, 6]. It is noteworthy that chitosan (CS), one of the most common biopolymers, is a promising
candidate due to its biocompatibility, biodegradability, and versatility [7]. The commonly used supercritical CO2

drying method requires large amounts of solvents as well as expensive CO2 extraction, leading to increased costs
and possible adverse environmental impacts in the production process [8]. In contrast, the freeze-drying method
has great advantages thanks to the direct use of water as the solvent and the simple drying process through its
sublimation [9].

To be applicable in practical applications, aerogels need to exhibit favorable mechanical properties to withstand
physical forces during usage and ensure their reusability. Graphene (G) and its derivatives, with excellent stiffness,
have recently been used to enhance the mechanical strength of biopolymer-based aerogels [10, 11]. These experi-
mental works all showed that the addition of graphene to a polymer matrix improved the mechanical properties of
the aerogel.
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However, to gain a deeper understanding of how graphene enhances the mechanical properties of aerogels,
experimental approaches face challenges due to the need for precise control over the dispersion of graphene sheets
during the aerogel elaboration. Therefore, it is necessary to use models not only to predict the effective mechanical
properties of aerogels but also to guide the material elaboration stage. In the literature, analytical methods such
as Mori-Tanaka [12, 13] and Halpin-Tsai [14, 15] are widely used to evaluate the effective properties of two-phase
materials. Although these analytical methods require a low computational cost with reasonable accuracy, they
cannot accurately account for interactions between adjacent inclusions and cannot describe local stress and strain
effects [15, 16]. Conversely, the asymptotic homogenization method combined with the finite element method (FEM)
can be a relevant choice to determine the effective properties of the aerogel due to its complex morphology. The
asymptotic homogenization method is based on the representation at the microscale of a periodic unit cell of the
material to describe its mechanical behavior at the macroscale. These methods have been successfully developed
and used to obtain the effective mechanical properties of multifunctional materials as polymer/clay nanocomposites
[17, 18].

It has been demonstrated that the arrangement and aspect ratio of the graphene sheets are important factors
affecting the mechanical properties of polymer-based composites [19, 20]. However, to the best of our knowledge,
no studies have explored the influence of these microscale factors on the mechanical properties of aerogels, in which
factors beyond pore shape and porosity may also be affected. Furthermore, graphene oxide (GO), a derivative
of graphene, is commonly used to enhance the mechanical strength of polymer-based aerogels due to its excellent
dispersibility. Nevertheless, there have been no studies specifically comparing the mechanical strengthening ability
between these two types of nanomaterials to address the question of whether the effort to oxidize graphene sheets
to form graphene oxide is reasonable.

The main objective of this study is to conduct a comprehensive characterization of the effective mechanical
properties of graphene-chitosan binary hybrid aerogels specially elaborated. To accurately estimate the effective
mechanical properties of the aerogels under investigation, we have adopted a multiscale approach in which geomet-
rical configurations are constructed based on the findings from experimental characterization. This investigation
aims to provide valuable insights into the pivotal role of graphene in augmenting the mechanical performance of
the aerogels. Additionally, it seeks to compare the mechanical reinforcement capabilities of both graphene and
graphene oxide under specific scenarios.

As a consequence, our contribution in the present paper is the following:

1. Purposefully elaborated chitosan aerogels with diverse graphene contents were systematically characterized
for their structural, morphological, and mechanical features, providing crucial inputs for developing a robust
numerical model.

2. To the best of our knowledge, it is the first attempt that a multiscale characterization of the effective me-
chanical properties of graphene/polymer-based hybrid aerogels is carried out.

3. We conducted extensive studies on the effect of the microstructural morphology, such as aggregate, intercalated
and exfoliated structures, on the effective mechanical properties of these aerogels.

To characterize the hybrid aerogels, a multiscale approach was applied in which geometrical configurations were
built at three levels based on experimental results. The nanoscale included multilayered graphene and graphene oxide
blocks; the microscale was the solid phase of the aerogels consisting of randomly arranged graphene and graphene
oxide blocks within a polymer matrix; finally, the macroscale described the porous solid framework structure of the
aerogels. The effective mechanical properties of the material were determined using analytical methods, including
molecular mechanics and the Milton method at the nanoscale, as well as the asymptotic homogenization approach
at the micro and macro scales.

The paper is organized as follows. Section 2 introduces the elaboration method and experimental characterization
of the graphene-chitosan aerogels under investigation. Subsequently, sections 3 and 4 present the construction of
geometrical configurations and homogenization methods at different scales, respectively. The numerical results and
a discussion about the mechanical properties are reported in section 5. In the latter, the obtained numerical results
are also compared with our experimental results and those of previous experimental work in the literature. Finally,
section 6 summarizes the main conclusions of this work. Kelvin notation used in this work is presented in Appendix
A.
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2. Material elaboration and characterization

2.1. Elaboration method

The aerogels made of chitosan (CS) and graphene (G) were synthesized through an environmentally friendly
freeze-drying process. The aerogels were formed by freezing the precursors mixed in an aqueous medium, and then
dried by replacing the liquid phase with a gas phase to form an aerogel, which was the basis of the aerogel synthesis
process. In order to prevent the skeleton from collapsing during the drying process, freeze-drying permitted to
convert water from the solid phase to a gas phase (sublimation) in a low pressure environment while keeping the
shape of the skeleton intact [21]. Accordingly, the wet gel was initially frozen and then subjected to low-temperature
and low-pressure conditions for sublimation. The Gx-CS hybrid aerogels synthesis, where x is the mass percent
of graphene in CS, was performed based on previously reported methods [11] as shown in Fig. 1. Typically, the
chitosan solution (24 mg/mL) was prepared by dissolving 2.4 g of chitosan powder in 100 mL of acetic acid aqueous
solution (1% v/v). Then, the homogeneous graphene suspension with different amounts of graphene nanoinclusions
(x% weight ratio with respect to the amount of chitosan) prepared through ultrasonic treatment was added to
the chitosan solution. The resulting mixture was then poured into molds and pre-frozen at −60 � for 24 h in a
temperature-controlled freezer. Finally, the sample was completely dried by freeze-drying after 48 h.

Figure 1: Schematic diagram of the graphene-chitosan hybrid aerogel fabrication using the freeze-drying method.

2.2. Experimental characterization

The multiscale structure and morphology of graphene-chitosan aerogels were studied by X-ray diffraction analysis
(XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). XRD analysis gave
insight about the distribution of graphene sheets in the chitosan matrix. According to the XRD results (see
Fig. 2(a)), the graphene sheets in the original graphene powder had a typical XRD diffraction peak at 26.6° that
corresponded to an interlayer spacing of 0.335 nm. The characteristic peaks for chitosan crystalline structure were
observed at 2θ equal to 10° and 20° in chitosan powder, respectively. In G-CS aerogel, two broad peaks at 8.9° and
19.2° were observed. Additionally, a weak peak at 26.3° was also found, indicating the presence of graphene with an
interlayer distance of 0.338 nm. The graphene layer distance was almost constant indicating that the intercalated
and exfoliated structures were not achieved.

Figure 2: (a) XRD patterns of graphene powder, G10-CS aerogel and chitosan powder, (b) low-resolution TEM image and (c) high-
resolution TEM image of G10-CS aerogel.
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To better characterize the structure of graphene in the G-CS aerogels, TEM analysis was conducted for the
G10-CS sample, as shown in Fig. 2(b)-(c). From these figures, it could be observed that graphene sheets formed
aggregates where they were arranged parallel to each other. There were 4−12 layers in each aggregate with interlayer
spacing ranging between 0.334 and 0.345 nm, which coincided with the results obtained from the XRD analysis
above. In addition, these aggregates were randomly distributed in the chitosan matrix with a length varying from
30.3− 87.6 nm.

Unlike graphene, graphene oxide (GO) was easily dispersed in the polymer matrix to form intercalated or
exfoliated structures thanks to its surface functionality [22]. The efficiency of dispersion, which was related to
the amount of intercalation based on the graphene oxide interlayer spacing (which is infinity for the exfoliated
structure), depended on the type of polymer present and the graphene oxide content relative to the polymer [23].
In the work of Blanton et al. [23], the distance between two graphene oxide sheets in composites with various
polymers and different polymer content were valid in the range of 1.5− 5.3 nm. Therefore, two types of structures
(intercalated and exfoliated) of graphene oxide were also considered to compare its ability to enhance mechanical
properties with that of graphene.

Figure 3: SEM micrograph of G(10 %)-CS aerogel.

Pore features were preliminary characterized by SEM analysis. The SEM images were processed in the ImageJ
software to determine pore sizes. The number of pores to be evaluated was 30 where evaluation was performed twice
in two perpendicular directions for each pore. According to the SEM micrographs (see Fig. 3), a three-dimensional
structure consisting of a network of thin alveolus could be found. The alveolus forms an interconnected pores
network with the average diameter of 76 µm. The interconnection of pores was characterized by a void with an
average diameter of 12 µm. This result was consistent with the aerogel structure synthesized by the freeze-drying
method in previous studies [10, 11].

3. Multiscale geometrical configuration and materials properties

Figure 4: Schematic illustration of the multiscale structure of graphene-chitosan composite aerogels including (a) macroscale depicting
solid and gas phases, (b) microscale depicting the distribution of graphene blocks in chitosan matrix and (c) nanoscale describing the
graphene sheets in graphene block.
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Based on the experimental results presented in the previous section, the multiscale structure of the graphene-
chitosan composite aerogels was divided into three separate scales. The first scale (scale qualified of nanoscale)
was the aggregation of graphene sheets (named graphene blocks) consisting of many parallel graphene sheets, the
second one was the microscale where the graphene blocks dispersed in the chitosan matrix to form the solid phase
of the aerogels, and finally, the macroscale was made of gas phase and solid phase as shown in Fig. 4. In this
section, the geometrical configurations at different scales are presented and discussed as the material properties of
the constituents.

3.1. Geometrical configuration at the nanoscale

As demonstrated by XRD and TEM analyses, the graphene block consists of graphene sheets arranged parallel
to each other with a distance between two sheets of 0.335 nm and the number of graphene layers is in the range of
4− 12 layers (see Fig. 5(a)). The aggregation of graphene sheets was caused by van der Waals interactions, so the
structure of the graphene block resembled that of crystalline graphite [24]. Therefore, the geometrical configuration
of the graphene block consisted of parallel two-dimensional graphene sheets with a distance between two sheets
of 0.335 nm which interacted with each other by van der Waals forces. Each graphene sheet was composed of a
hexagonal lattice of carbon atoms.

Figure 5: Description of three geometrical configurations at the nanoscale including (a) the aggregate structure of graphene corresponding
to graphene block and (b) the intercalated and exfoliated structure of graphene oxide corresponding to graphene oxide block and
monolayer graphene oxide, respectively.

Even if graphene oxide is known for its ability to readily disperse in polymer to form an exfoliated structure as
discussed in section 2, in practice, one obtained an intercalated structure in some cases. Therefore, the intercalated
and exfoliated structures were considered for the graphene oxide-chitosan hybrid aerogel (see Fig. 5(b)). The number
of graphene oxide layers per block, denoted by N , was greater than 1 for the intercalated structure and equal to 1
for the exfoliated structure. In the intercalated structure, since the distance between the two graphene oxide layers
was in the range of 1.5 − 5.3 nm [23] and the thickness of graphene oxide was approximately 1 nm, which was
experimentally measured in many previous reports [25, 26], the thickness of the polymer (chitosan) intercalated
between the graphene oxide layers was taken to be equal to 2 nm.

3.2. Geometrical configuration at the microscale

In previous works [27, 28], the shape of graphene and graphene oxide was considered to be that of a disc of
circular cross-section. Therefore, each graphene block and graphene oxide block was also included in the geometrical
configuration as disc-shaped.

With the results from the TEM image in section 2.2, the graphene blocks had a length of 30.3 − 87.6 nm and
a thickness of 1.36 − 4.04 nm. The aspect ratio ra of the graphene blocks, defined by the ratio between diameter
dm and thickness hm, could be estimated in the range of 8− 65. This result was consistent with the aspect ratio of
graphene aggregates measured in previous works [29, 30]. It could be noted that this aspect ratio was not too large.
The decrease in aspect ratio could be explained by the dispersion of graphene through ultrasonic treatment [30]. In
the present work, the aspect ratio was taken into account in the model to investigate the effect of this parameter
on the entire aerogel behavior. It is noteworthy that in many studies, the typical values of the aspect ratio and the
number of graphene layers of the block were taken as 40 and 5 respectively. Besides, since the graphene blocks had
a random orientation in the chitosan matrix, the inclusions which represented the graphene blocks in the chitosan
matrix, were therefore modeled by discs of arbitrary orientation and position in the chitosan matrix.

Just like graphene, the graphene oxide monolayer had an aspect ratio that varies from 10 [31] up to more than
1000 [26], depending on the graphene oxide preparation method or the graphene oxide dispersion method in the
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Figure 6: Illustration of the oxidation of graphene to graphene oxide with the lateral dimension unchanged at the nanoscale.

polymer matrix. In order to compare the influence of the graphene oxide versus graphene on the material properties
of the aerogels, we assumed that the diameter of the monolayer graphene oxide was taken to be equal to the diameter
of the graphene monolayer. For example, with a typical graphene block having an aspect ratio of 40 and 5 graphene
layers, the size of the monolayer graphene sheet in this block was evaluated to be equal to 0.335 nm and 67 nm for
thickness and diameter, respectively. Therefore, the diameter of the monolayer of graphene oxide sheet was also
taken to be equal to 67 nm. With a thickness of 1 nm, the aspect ratio of graphene oxide monolayer was equal to
67 (see Fig. 6). For the intercalated structure of graphene oxide, the number of graphene oxide layers per block was
also taken to be equal to 5, as for graphene block. In addition, the graphene oxide monolayer or graphene oxide
blocks were arranged with arbitrary orientations in the chitosan matrix as in the case of graphene.

Figure 7: Description of (a) representative volume element at the microscale for 1% concentration by volume of randomly oriented
inclusions and (b) three types of inclusions: graphene block, graphene oxide monolayer and graphene oxide block.

Collectively, the representative volume element (RVE) at the microscale consisted of disc-shaped inclusions
randomly distributed in the chitosan matrix. Inclusions could be one of three forms: graphene block, monolayer
graphene oxide and graphene oxide block (see Fig. 7).

3.3. Geometrical configuration at the macroscale

The cell periodicity feature facilitated the evaluation of average properties. It was based on the idea of a
representative volume element (RVE). The RVE was a domain representative for the material on a microscopic
scale. A RVE was typically identified as the smallest possible unit cell of a material. The RVE shape was required
to possibly fill space with a repetitive pattern of RVEs. This meant that there were a set of matching boundary
pairs, each of them having the same geometry, but offset by a given distance. To construct this unit cell, the
factors to be included were pore shape, pore size, connected hole size, and porosity. The unit cell must represent
the material properties of the entire material. In the literature, two main morphologies of aerogels were considered
leading to an anisotropic or isotropic behavior of the structure which was obtained by using different freezing
methods depending on the use of the aerogels. For the anisotropic structure, two controlled freezing methods were
used: unidirectional freezing giving rise to a structure with tubular pores parallel to the freezing direction [10] and
bidirectional freezing giving rise to a structure with parallel layer lamellars [32]. For the isotropic structure, the
aerogels were frozen by ensuring freezing and freezing rates in all directions. This freezing method used in our work
resulted in the generation of cellular structure with an interconnected pores network whose average pore diameter
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was equal to 76 µm. This result was consistent with previous works using the same freezing method, where the
pore size range varied from a few tens of micrometers to several hundreds of micrometers [11, 10]. Therefore, the
unit cell representing the macrostructure of the material was a hollow sphere with a diameter of 76 µm as shown in
Fig. 8. Six holes with a diameter of 12 µm were made on the wall of the hollow sphere to create the interconnected
pores network among the unit cells.

It is noteworthy that the RVE geometry at the macroscale was defined based on the geometry of the matrix and
pore phases, both of which were assumed to be purely elastic. The geometry of matrix phase is shown in Fig. 8(c).
The geometry of the pore phase was the cube containing the matrix phase, with the latter being subtracted.
Figure 9 shows the geometry of the representative unit cell at the macroscale with the matrix (green) and pore
(grey) phases. Moreover, since elasticity moduli of the pore phase were equal to zero, this property was used to
simplify the equation system to solve (see section 4.3.3).

Figure 8: (a) The vertical view of the geometrical configuration at the macroscale; (b) the tridimensional view of the overall geometrical
configuration as an array consisting of periodic unit cells along the e1, e2, and e3 -directions; and (c) the representative unit cell at the
macroscale.

Figure 9: Geometry of the representative unit cell at the macroscale with the matrix (green) and pore (grey) phases.

In addition to the diameters of the hollow sphere and the holes in the wall, in order to fully characterize the unit
cell, the wall thickness of the hollow sphere must be defined. This thickness was defined by introducing the porosity
of the unit cell which was the volume fraction of gas phase in the unit cell. Due to the periodicity, the porosity of
aerogel was calculated through the relationship between aerogel porosity and aerogel density. This relationship is
expressed by the following relationship:

φa = 1− ρa
ρs
, (1)

where φa and ρa are the porosity and the apparent mass density of aerogel, respectively. The quantity ρs was
the mass density of the solid phase related to the mass density of the graphene ρG and chitosan ρCS components
according to the following relationship:

ρs =
(fw + 1)ρG ρCS
fw ρCS + ρG

, (2)
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where fw is the graphene weight fraction relative to chitosan. In the model, graphene was introduced by volume
fraction fv, where fv is defined as the ratio of the volume of graphene to the volume of the RVE. In the experiment,
graphene was added to the polymer as a percentage by mass of polymer fw. Therefore, for instance, the relation
between fv and fw in aerogel is given by the relationship:

fv =
ρCSfw

ρCSfw + ρG
. (3)

Table 1: Apparent mass density and calculated porosity of aerogels.

Graphene weight Graphene volume Apparent mass density Porosity
fraction fw (%) fraction fv (%) ρa (g/cm3) φa (%)

0 0 0.0256 ± 0.0012 98.25 ± 0.08
2.5 1.59 0.0261 ± 0.0010 98.23 ± 0.07
5 3.13 0.0262 ± 0.0002 98.24 ± 0.01

7.5 4.62 0.0277 ± 0.0006 98.15 ± 0.04
10 6.06 0.0290 ± 0.0014 98.08 ± 0.09
15 8.83 0.0302 ± 0.0004 98.03 ± 0.03

For pure chitosan aerogel, the value of ρCS was taken to be equal to 1.463 g/cm3 based on literature data [33].
The mass density of graphene was taken to be equal to the mass density of crystalline graphite which was equal to
ρG = 2.267 g/cm3 [34]. Given the measured apparent mass densities of the aerogels, their overall porosity is shown
in Tab. 1. It could be seen that with the graphene weight fraction below 5% (corresponding to the graphene volume
fraction below 3.13%), the porosity of the aerogel did not change significantly (from 98.23 to 98.25%), which was
consistent with previous works [10, 35]. Therefore, in the parametric study, the values of graphene volume fraction
fv took their values in the range of 0 − 3%, and the value of aerogel porosity was taken with an average value
of 98.24%. Besides, a study on the influence of porosity on the effective material properties of chitosan aerogel
(corresponding to fv = 0) was also carried out in the porosity range 86− 99%.

3.4. Properties of the material’s constituents at the nanoscale

Graphene is a material well known for its outstanding mechanical strength. In the literature, the graphene
sheet is assumed to behave like a linear isotropic material. The Young’s modulus of graphene monolayer was
measured by various methods. The value of Young’s modulus of graphene monolayer experimentally measured was
approximately equal to 1 TPa [36]. However, when graphene sheets were very close together by a weak van der
Waals interactions forming blocks, the material properties of these multilayer blocks in the out-of-plane direction
(the direction perpendicular to the sheets) are much weaker than those in the in-plane direction. The effective
material properties of graphene blocks were calculated using molecular mechanics, which will be detailed in the
following section. The graphene oxide monolayer was considered as an isotropic elastic material with Young’s
modulus EGO = 470 GPa and a Poisson’s ratio νGO = 0.197 based on literature data [37].

Material properties of chitosan were defined from literature. The values of Young’s modulus of chitosan varied
from 0.3 to 2.7 GPa [38, 39, 40]. This value range was quite wide because many factors could affect the mechanical
strength of chitosan films, such as chitosan molecular weight, degrees of deacetylation of chitosan or acid solvent.
Therefore, two values of Young’s modulus of chitosan, ECS = 0.35 GPa and ECS = 2.5 GPa, were used in our
investigation, then the numerical results were compared with the experimental ones. The Poisson’s ratio of chitosan
νCS was taken to be equal to 0.4.

4. Homogenization method

In this section, the multiscale and homogenization methods are presented in order to determine the effective
mechanical properties at each scale. A multiscale method was carried out from the smallest scale (nanoscale) to
the largest (macroscale) one where the results obtained at the smaller scale were the input for the next scale. A
flowchart depicting the multiscale method and homogenization method used at each scale is shown in Fig. 10. In the
following section, the Cartesian reference system was used where the orthonormal basis was specified by (e1, e2, e3)
and the coordinates of a point were denoted by x = (x1, x2, x3).
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Figure 10: Flowchart of the multiscale method and homogenization method used at each scale to determine the effective mechanical
properties of aerogels.

4.1. Determination of elastic properties of graphene block at the nanoscale

In 2007, Cho et al. [13] reported in-plane and out-of-plane mechanical properties of graphite by using molecular
mechanics. Because the structure of the graphene block was similar to that of graphite, we could follow the
latter work [13] to calculate the effective material properties of the graphene block. For determining the material
properties of out-of-plane graphite, Cho et al. [13] only used the interaction between two adjacent graphene sheets.
Meanwhile, they used the model parameters issue from the work of Girifalco and Lad [41] which were deduced by
considering the interaction between two semi-infinite graphite crystals. By comparison of the approach of Girifalco
and Lad, Kelly and Duff [42] also gave parameter values by considering only the interaction between two adjacent
graphene sheets and with known layer spacing. Therefore, in this section, we gave a general introduction to the
principles of molecular mechanics and the main equations used in the work of Cho et al. [13] and simultaneously
modify the constant when calculating the out-of-plane mechanical properties of the graphene block. Besides, we
also extended to the arbitrary direction of block based on the work of Aboudi et al. [43].

4.1.1. Structure of graphene block

Like graphite, the graphene block has a layered structure consisting of many parallel layers of graphene, as
shown in Fig. 11. The single layer of graphene is a hexagonal honeycomb lattice composed of tightly bound carbon
atoms. The adjacent graphene layer, denoted as II in Fig. 11, is arranged by shifting it a length equal to d of the
layer denoted as I in Fig. 11 in the e3-direction, perpendicular to the plane, and translating it within its plane in
the e1-direction by a distance equal to the side length of the hexagon, i.e. 1.42 Å [44].

In graphene, each carbon atom is covalently bonded to three other carbon atoms forming a bond angle of 120 °.
With sp2 hybridization, this covalent bond is even stronger than the sp3 hybridized carbon-carbon bond in diamond
[45]. In addition, interactions such as van der Waals ones, can occur not only between carbon atoms on the same
sheet of graphene, but also between carbon atoms on a sheet and neighboring sheets. These interactions make the
graphene sheets stable with interlayer spacing d by the minimum energy assumption. In addition, van der Waals
interactions are very weak compared to the covalent bond, resulting in graphene sheets being able to easily slide
against each other. It can therefore be predicted that graphene block has a very high stiffness in the plane and a
weaker stiffness in the out-of-plane direction.
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Figure 11: Geometrical configuration of graphene block structure.

4.1.2. Interatomic potential functions in molecular mechanics

Molecular mechanics uses classical mechanics to model systems at the molecular scale. This approach enables
to investigate the mechanical behavior of systems at the molecular scale. It is intended to describe the change of
the energy system according to the change of the position of each atom, then to give the relationship between the
interacting forces and the position of each atom by derivation of the energy system. Finally, the mechanical behavior
of the material is calculated from the stress-strain relationships. In molecular mechanics, the total potential energy
Ut can be expressed as a sum of several individual energy terms:

Ut = Ub + Uag + Uts + Uiv + Unb, (4)

where Ub, Uag, Uts and Uiv are potential energies associated with bond stretching, angle-bending, torsion and
inversion, respectively. Potential energy Unb includes non-bonding energies typically due to the van der Waals and
electrostatic interactions. A schematic illustration of each energy term is shown in Fig. 12.

Figure 12: Bond structures and corresponding energy terms of a graphene cell (from [46]).

4.1.3. In-plane elastic constants

In-plane, the so-called engineering constants are the followings: Egb1 , Egb2 , µgb12, νgb12, νgb21, η12,1, η1,12, η12,2

and η2,12, where Egb1 and Egb2 are Young’s moduli in tension-compression in the directions of the e1 and e2 axes

respectively, µgb12 is the in-plane shear modulus, νgb12 and νgb21 are Poisson’s ratios characterizing the contraction in
the direction of one axis when tension is applied in the direction of another axis, η1,12 and η2,12 are coefficients
of mutual influence of the first kind that characterizes stretching in the e1-direction caused by shear stress in the
in-plane, η12,1 and η12,2 are coefficients of mutual influence of the second kind that characterizes in-plane stretching
caused by normal stress in the e1 and e1 -directions respectively.

In this work, the coefficients of mutual influence were supposed negligible compared to other coefficients. More-
over, in accordance with the minor and major symmetric relationships of the elasticity tensor, the following rela-
tionships must be verified:

νgb12

Egb1

=
νgb21

Egb2

. (5)

Graphene block when subjected to in-plane loading denoted as f (see Fig. 13(a)) at small strains, only bond
stretching and angle-bending energy terms were significant in the total system potential energy. By using the
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modified Morse potential function, total potential energy could be described as follows [13]:

Ut = Ub + Uag, (6)

Ub =
∑

D
[
(1− exp(−β∆r))

2 − 1
]
, (7)

Uag =
1

2

∑
kθ1(∆θ)2

[
1 + kθ2(∆θ)4

]
(8)

where D = 6.031 nNÅ, β = 2.625 Å−1, kθ1 = 14.2 nNÅ/rad2 and kθ2 = 0.754 rad−4 [13]; ∆r and ∆θ are the
elongation of bond stretch and the variation of bond angle.

By taking the derivative of Eqs. (7) and (8) with respect to bond stretch and bond angle variation, one got the
stretch force and the moment of the force about point O, respectively [13]:

F = 2βD (1− exp(−β∆r)) exp(−β∆r), (9)

M(O) = kθ1∆θ + higher order terms of ∆θ. (10)

Uniaxial tension in the e2-direction. Applying a uniform load f in the e2-direction (see Fig. 13(a)), based on the
force and moment equilibrium equation of the bold part (left half) of stick OA and the Eqs. (9)-(10), one obtained
the relationship between ∆a and ∆α1:

∆α1 =
2a

3

βD (1− exp(−β∆a)) exp(−β∆a)

kθ1
cot(

α1

2
) (11)

where a = 1.42 Å is the bond length of stick OA, ∆a is the variation of the bond length, α1 = 2π/3 is the bond
angle and ∆α1 is the angular variation of the bond.

Figure 13: Schematic illustration of the loading of an infinite graphene sheet. The loading analysis of the representative cell and the
deformation of the representative cell are decomposed (a) uniaxial tension in the e2-direction and (b) in-plane shear loading (based on
[13]).
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In-plane strains and axial stress in this case could be calculated from ∆a and ∆α1 as follows:

ε11 =
∆a cos(

α1

2
)− a

2
∆α1 sin(

α1

2
)

a
(

1 + cos(
α1

2
)
) , (12)

ε22 =
∆a sin(

α1

2
) +

a

2
∆α1 cos(

α1

2
)

a sin(
α1

2
)

, (13)

σ22 =
V

a
(

1 + cos(
α1

2
)
)
d

=
2βD (1− exp(−β∆a)) exp(−β∆a)

ad
(

1 + cos(
α1

2
)
)

sin(
α1

2
)

. (14)

The in-plane engineering constants of graphene block as defined by Egb2 = σ22/ε22 and νgb21 = −ε11/ε22 were
determined by choosing the value of ∆a such that ε22 = 0.1%.

Applying a uniform load f in the e1-direction, a development analogous to the previous one led to the expressions
of the in-plane strains and axial stress which permitted to define Egb1 = σ11/ε11 and νgb12 = −ε22/ε11.

In-plane shear loading of a graphene sheet. Similarly, when the graphene sheet was subjected to the shear
loading τ in both directions (see Fig. 13(b)), the relationship between ∆a and ∆α2 was given by:

∆α2 =
aβD (1− exp(−β∆a)) exp(−β∆a)

kθ1

sin(
α1

2
)

1 + cos(
α1

2
)
, (15)

where ∆α2 = ∆w1 + ∆w2 with −∆w1 and ∆w2 are the rotation angles of stick OA and stick OC, respectively.
The shear strain and stress were calculated from ∆a and ∆α2 as follows:

ε12 =
1

2

a∆α2 + ∆a sin(
α1

2
)

a
(

1 + cos(
α1

2
)
) +

2∆a cos(
α1

2
)

2a sin(
α1

2
)

 (16)

σ12 =
τ

d
=

2βD (1− exp(−β∆a)) exp(−β∆a)

ad
(

1 + cos(
α1

2
)
) (17)

The in-plane shear modulus of graphene block defined by µgb12 = σ12/(2ε12) was determined using ε12 = 0.1%.

In conclusion. The numerical results showed that Egb1 = Egb2 = 1.1511 TPa, µgb12 = 0.4822 TPa and as a

consequence from Eq. (5) νgb12 = νgb21 = 0.1936.

Moreover, as the following expression µgb12 =
Egb1

2(1 + νgb12)
was satisfied, it could be concluded that the graphene

block had in-plane isotropic property.

4.1.4. Out-plane engineering constants

From the conclusion of the previous section, the graphene block was isotropic in-plane. Therefore, the graphene
block could be assumed as a transversely isotropic material which was characterized by 5 engineering constants.
Out-plane engineering constants that must be calculated were Egb3 , µgb31 = µgb23, νgb13 = νgb23 and νgb31 = νgb32.

For out-of-plane deformation, non-bonding energy played a major role in the total potential energy. The van
der Waals force resulting from the interaction between a carbon atom on a sheet of graphene and all the atoms in
an adjacent graphene sheet could be expressed as follows [13]:

UvdW = 4ur6
0

[
r6
0S12 − S6

]
, (18)

where

Sm =
∑
j

r−mj =
∑
j

(d2 + l2j )
−m

2 (19)

where, d is the distance between two graphene sheets and lj =
√
x2

1,j + x2
2,j is the radial distance from the considered

atom in the graphene sheet to the perpendicular projection onto this graphene sheet of the jth atom in the adjacent
graphene sheet (x1,j and x2,j are the coordinates of the jth atom in the graphene sheet).
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In this work, the constants u = 3.825 × 10−3 nN Å and r0 = 3.432 Å were based on [42] which were different
from Cho et al..

The energy density defined as the energy per unit volume was given by Cho et al. [13] as follows (taking into
account only the interaction between two adjacent graphene layers):

Φ =
4u r6

0

dA

[
r6
0 S̄2,12 − S̄2,6

]
, (20)

where A = 2.62 Å2 is the area per atom in a graphene sheet. The quantity S̄m was the average value of the sum
r−m for the two equilibrium positions: one in which the atom was vertically over the center of a hexagon, the other
one is in which the atom was above a vertex of a hexagon (see Fig. 11).

The components Cgb3333 and Cgb3131 of the fourth-order elasticity tensor of graphene block was derived from the
energy density (see Eq. (20)) with respect to ε33 and ε13 respectively [13]:

Cgb3333 = d2
0

(
∂2Φ

∂d2

)
d=d0

, (21)

Cgb3131 = d2
0

(
∂2Φ

∂x2
1

)
x1=x0

1

, (22)

where

∂2S̄m
∂d2

= −mS̄m+2 +m(m+ 2)d2S̄m+4, (23)

∂2S̄m
∂x2

1

= −mS̄m+2 +m(m+ 2)
∑
j

x2
1,j

(d2
0 + x2

1,j + x2
2,j)

(m+4)/2
, (24)

and d0 is the layer spacing and x0
1 is the coordinate on the x1-axis of the atom in the undeformed state.

Then, Poisson’s ratio defined by νgb13 = −ε33/ε11 was determined by imposing a strain ε11 on the entire graphene

sheet. The strain ε22 was obtained from νgb12 = −ε22/ε11. The layer spacing dz after deformation at equilibrium
state was obtained through the minimum energy assumption, that is [13]:

∂Φ

∂d
=

4ur6
0

dA

[(
r6
0

∂S̄12

∂d
− ∂S̄6

∂d

)
− 1

d

(
r6
0S̄12 − S̄6

)]
= 0, at d = dz. (25)

The solution dz of Eq. (25) which is a nonlinear equation was solved by the Newton-Raphson method. The

result was then used to calculate ε33. Poisson’s ratio νgb13 was determined with the imposed strain ε11 = 0.1%.

From Cgb3333, C
gb
3131, ν

gb
13, ν

gb
12 and the known in-plane engineering constants, the quantities Egb3 and µgb31 were

calculated as follows [13]:

Egb3 =
(1− νgb12)Egb1 Cgb3333

(1− νgb12)Egb1 + 2(νgb13)3Cgb3333

, (26)

µgb31 = Cgb3131. (27)

4.1.5. Elasticity tensor of graphene block with arbitrary layer orientation

We then determined the elasticity tensor of graphene block with arbitrary layer orientation. As observed
experimentally by TEM, the graphene blocks were arranged with any orientation in the chitosan matrix, therefore
it was necessary to calculate the elasticity tensor of the graphene block with an arbitrary layer orientation to include
in the model. The layer orientation of the graphene block was defined by the unit vector n = (n1, n2, n3), which was
the vector perpendicular to the graphene sheets. First, in the case of n = (0, 0, 1), because the graphene block was
transversely isotropic, the non-zero components of the elasticity tensor of the graphene block could be expressed in
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terms of the five independent elastic constants calculated in the previous section (Egb1 , νgb12, E
gb
3 , µgb31 and νgb31) [43]:

Cgb1111 = Cgb2222 = Λ +
0.5Egb1

1 + νgb12

, (28)

Cgb1122 = Λ− 0.5Egb1

1 + νgb12

, (29)

Cgb1133 = Cgb2233 = 2Λνgb31, (30)

Cgb3333 = Egb3 + 4Λ(νgb31)2, (31)

Cgb2323 = Cgb3131 = µgb31, (32)

Cgb1212 =
1

2
(Cgb1111 − C

gb
1122). (33)

with

Λ =
0.25Egb3

0.5 (1− νgb12)

(
Egb3

Egb1

)
− (νgb31)2

. (34)

Next, the fourth-order elasticity tensor for graphene block (a transversely isotropic material) with arbitrary
layer orientation, n = (n1, n2, n3), was expressed as follows [43]:

Cgbijkl =λgbδijδkl + µgb(δikδjl + δilδjk) + ςgb(δijnknl + δklninj)

+ ϕgb(δiknjnl + δjkninl + δilnjnk + δjlnink) + ζgbninjnknl,
(35)

where δij is Kronecker’s symbol, λgb, µgb, ςgb, ϕgb and ζgb are five independent constants that characterize the
material properties of graphene block. If n = (0, 0, 1), these five engineering constants are calculated from the
components of the elasticity tensor in Eqs. (28)-(32) as follows:

λgb = Cgb1122, (36)

µgb =
1

2
(Cgb1111 − C

gb
1122), (37)

ςgb = Cgb1133 − C
gb
1122, (38)

ϕgb = Cgb2323 −
1

2
(Cgb1111 − C

gb
1122), (39)

ζgb = Cgb1111 + Cgb3333 − 2Cgb1133 − 4Cgb2323. (40)

4.2. Determination of material properties of graphene oxide block at the nanoscale

In this section, the effective material properties containing graphene oxide blocks with intercalated structure
were modeled which was further used at the microscale to describe homogeneous inclusions reinforcing a matrix.
Graphene oxide blocks had a laminate structure consisting of alternating graphene oxide and chitosan layers with
thickness of 1 nm and 2 nm, respectively. With this type of structure, Milton’s method [47] was relevant to determine
the effective material properties of a graphene oxide block which was described as a stratified material. Milton’s
method permitted to obtain the effective elasticity tensor of laminate material with arbitrary layer orientations.
This was perfectly adapted to obtain a model in which the stratified inclusions were arbitrarily oriented in a matrix.

The following introduced the method principle for calculating the effective elasticity tensor of a two-phase
laminate material. In a laminate domain Ω consisting of two phases, the linear elasticity equations (by neglecting
body forces) of each phase were given as follows:

σ = C ε,

ε =
1

2

(
grad u + (grad u)T

)
,

divσ = 0,

(41)

consisting of the constitutive relation (41)1, the infinitesimal strain second-order tensor (41)2 and the equations of
equilibrium in which the body forces have been neglected (41)3. In these equations, the Cauchy stress second-order
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tensor is denoted σ, ε is the infinitesimal strain second-order tensor, u is the displacement vector, C is the fourth-
order elasticity tensor, div is the divergence operator, grad is the gradient operator and the superscript T is the
transpose operator.

The key to determining the effective tensors of laminate materials was to seek for solutions to the partial
differential equations by assuming that specific components of the fields were constant or, equivalently, that certain
projections of the fields were uniform fields. It was assumed that σ, ε and C only varied in the direction of the
layers, characterized by the unit vector n:

σ = σ(y), C = C(y), ε = ε(y), where y = x · n. (42)

For the sake of simplicity, let us consider the case when the vector n was oriented in the e1-direction, n = (1, 0, 0),
so y = x1. Components σ11, σ12, σ31, ε22, ε33 and ε23 were constant in the whole domain and the tensors σ and ε
were rewritten as follows:

σ =

σ11 σ12 σ31

σ12 σ22(y) σ23(y)
σ31 σ23(y) σ33(y)

 , ε =

ε11(y) ε12(y) ε31(y)
ε12(y) ε22 ε23

ε31(y) ε23 ε33

 . (43)

The two fourth-order tensors
L

1(n) and
L

2(n) which were the projections out of the plane and on the plane of
normal n. When n = (1, 0, 0), we had:

L
1(n)B =

b11 b12 b13

b12 0 0
b13 0 0

 L
2(n)B =

0 0 0
0 b22 b23

0 b23 b33

 , (44)

where bij are the components of arbitrary symmetric second-order tensor B. Because
L

1(n) and
L

2(n) are projec-
tions onto mutually orthogonal subspaces, the two following properties are satisfied:

L
i(n)

L
j(n) = δij

L
i(n), for i, j = 1, 2 and

L
1(n) +

L
2(n) = I, (45)

where δij is Kronecker’s symbol and I is the fourth-order identity tensor.
From equations (43) and (44) we had:

L
1(n)σ =

L
1(n)〈σ〉Ω,

L
2(n)ε =

L
2(n)〈ε〉Ω, (46)

where the symbol 〈?〉Ω denotes the volume average of ? over domain Ω.
To find the effective elasticity tensor, the polarization field (second-order tensor) p was introduced:

p(x) = (C(x)− c0I)ε(x) = σ(x)− c0ε(x), (47)

where c0 is an arbitrary constant that can be freely chosen. From Eq. (47), the infinitesimal strain ε(x) and its
average 〈ε(x)〉Ω could be expressed in terms of the polarization field p and its average 〈p(x)〉Ω:

c0 ε(x) = −M(x) p(x), c0 〈ε(x)〉Ω = Me 〈p(x)〉Ω, (48)

where the following tensors have been introduced:

M(x) = c0 (c0 I− C(x))−1, Me = c0 (c0 I− Ce)−1, (49)

where the superscript e designates the average of the field.
By using Eq. (47), one showed that the average polarization field could be formulated as follows:

〈p(x)〉Ω = [Me −
L

1(n)]−1 v = 〈[M(x)−
L

1(n)]−1〉Ω v, (50)

for all uniform field v.
Since the relation (50) held for all fields v, this relationship implied the general formula given by:

[Me −
L

1(n)]−1 = 〈[M(x)−
L

1(n)]−1〉Ω. (51)

With these relations, the calculus of the effective elasticity tensor Ce was obtained as follows:

1. evaluation of: L = 〈[M(x)−
L

1(n)]−1〉Ω,
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2. from (51), evaluation of: Me = L−1 +
L

1(n),

3. from (49), evaluation of: Ce = c0 (I− (Me)−1).

It is noteworthy that the general form of the components of tensors
L

1(n) and
L

2(n) were given by:

[
L

1(n)]ijkl =
1

2

(
niδjknl + niδjlnk + njδiknl + njδilnk

)
− ninjnknl, (52)

[
L

2(n)]ijkl =
1

2

(
δikδjl + δilδjk

)
− [

L
1(n)]ijkl, (53)

where ni, for i = 1, 3, designates the ith component of the vector n.

4.3. Asymptotic homogenization procedure for micro- and macroscale

The asymptotic method is a powerful tool for solving periodic domain problems. The details of the homoge-
nization procedure of this method can be easily found in literature, for example in books of Auriault et al. [48] and
Mei et al. [49]. In this section, the principle and the main results of this method are presented.

We considered a two-phase periodic composite material whose the representative periodic cell was denoted by
Y included in the tridimensional space at the microscopic scale. The characteristic length of the periodicity at the
microscopic scale was denoted by `c whereas the characteristic length at the macroscopic scale was denoted by Lc.
To ensure a clear separation between the two scales, it was assumed that `c/Lc = ε� 1. Domain Y was composed
of phases a and b, occupying the domains Y a and Y b, respectively and their interface Γ:

Y = Y a ∪ Y b, Y a ∩ Y b = ∅, ∂Y a ∪ ∂Y b = Γ. (54)

4.3.1. Microscopic scale governing equations

Let us denote σα, εα and uα the second-order stress tensor, the second-order infinitesimal strain tensor and the
displacement vector, respectively. The quantity Cα was the fourth-order elasticity tensor. The upper index α = a, b
represented the phase a and phase b, respectively. Each phase was assumed to be a linear elastic material whose
constitutive relation was given by Hooke’s law:

σα = Cα εα in Y α, α = a, b (55)

which could be written in components as:

σαij = Cαijkl ε
α
kl in Y α, α = a, b (56)

where the summation convention over repeated indices was used and the infinitesimal strain tensor was defined by:

ε(u) =
1

2

(
grad u + (grad u)T

)
, (57)

and these components by:

εαkl(u
α) =

1

2

(
∂uαk
∂xl

+
∂uαl
∂xk

)
. (58)

The equilibrium equation (by neglecting body forces) and the continuity conditions at the interface Γ read:

divσα = 0, in Y α, α = a, b (59)

ua = ub on Γ (60)

σa n = σb n on Γ (61)

where n is the unit normal vector to the interface Γ.

4.3.2. Asymptotic expansions

As defined above, lc represented the unit length of the periodicity and Lc represented the length at the macroscale
such that the condition lc/Lc = ε � 1 might be satisfied. We introduced the fast and slow coordinates x =
(x1, x2, x3) and y = x/ε = (y1, y2, y3) for coordinates at the macro and microscale, respectively.

The classical two-scale asymptotic method consisted in expanding the displacement field as a power series of ε
in the following form:

uα(x) = uα(0)(x,y) + εuα(1)(x,y) + ε2 uα(2)(x,y) + ... (62)

where the fields uα(0),uα(1),uα(2), ... are Y -periodic with respect to y. Terms of the order of εn were represented
by the upper index (n), where macroscale variables were expressed in the order of ε0.
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4.3.3. Cell problem and effective properties

By substituting Eq. (62) into Eq. (59) at order ε−2, Eq. (60) at order ε0 and Eq. (61) at order ε−1, we get uα(0)

depended only on the macroscale coordinates, that is, uα(0)(x,y) = Uα(0)(x).
According this result and using the periodic conditions that uα(1) and σα(0) n must satisfy on the boundary of

Y where n denoting the unit outer normal, by linearity, one deduced that uα(1) could be written in Y as:

uα(1)(x,y) = ε
α(0)
ij (x) (χα)ij(y) + Uα(1)(x), (63)

where the term εα(0)(x) ≡ εα(0)(Uα(0)) could be interpreted as a constant eigenstrain within the cell of independent

components ε
α(0)
ij . The functions [χα]k are Y -periodic with respect to y and are defined by the components of a

third-order tensor [χα]k ≡ (χα)ijk which are the solution of the elementary cell problems given by:

∂

∂yj

[
Cαijkl

(
1

2

( (χα)mnk
∂yl

+
(χα)mnl
∂yk

)
+ δmkδnl

)]
= 0, in Y α, α = a, b (64)

(χa)mni = (χb)mni , on Γ (65)[
Caijkl

(
1

2

( (χa)mnk
∂yl

+
(χa)mnl
∂yk

)
+ δmkδnl

)]
nj

=

[
Cbijkl

(
1

2

( (χb)mnk
∂yl

+
(χb)mnl
∂yk

)
+ δmkδnl

)]
nj , on Γ (66)

[χ]k are Y -periodic with respect to y, (67)

〈(χ)mni 〉Y = 0, (68)

where δij is the Kronecker symbol and 〈?〉Y denotes the volume average of (?) over domain Y :

〈?〉Y =
1

Y

{∫
Y a

(?)dV +

∫
Y b

(?)dV

}
. (69)

At order ε0 of Eq. (59), order ε2 of Eq. (60) and order ε of Eq. (61), the macroscopic equation could be written
as:

∂

∂yj
〈σ(1)
ij 〉Y = 0, (70)

σ
α(1)
ij =

1

2
Cαijkl

(∂uα(1)
k

∂yl
+
∂u

α(1)
l

∂yk

)
+

1

2
Cαijkl

(∂uα(0)
k

∂xl
+
∂u

α(0)
l

∂xk

)
. (71)

Therefore, by combining the results of the cell problem, Eqs. (64)-(68), the effective elastic coefficients were
given by the fourth-order tensor Ce whose the components were determined as follows:

Ceijkl = 〈Cijmn
(1

2

( (χ)klm
∂yn

+
(χ)kln
∂ym

)
+ δmkδnl

)
〉Y . (72)

5. Results and discussion

5.1. Numerical implementation

In this modelling, perfect binding between the inclusions and the polymer matrix was assumed and thermal
effects were not included. For the multiscale approach, the problem was solved from small scale to larger scale. The
results of the smaller scale were introduced into the next larger scale.

At the nanoscale, the elasticity tensor of inclusions, including the graphene block, monolayer graphene oxide and
graphene oxide block, was obtained by explicit formulas (see sections 4.1 and 4.2). To calculate the component values
of effective elasticity tensor at the micro- and macroscale from Eq. (72) in the asymptotic approach, we needed
to calculate the functions [χα]k of two phases from the cell problem Eqs. (64)-(68). The Comsol Multiphysics
software based on the finite element method was used to solve this problem. The following paragraph summarizes
the problem-solving process at the micro- and macroscale using the Comsol Multiphysics software.
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At the microscale, a process consisting of two processes running concurrently in Matlab and Comsol environments
was used to construct random disc inclusions and apply different effective mechanical properties to the respective
inclusions. These two processes are described in detail below.

The geometrical construction of disc-shaped inclusions randomly placed in a given volume domain was carried
out by using a method proposed elsewhere [50]. This method, which was previously introduced for discs-shaped in
2D and spheres-shaped in 3D [51], used an algorithm based on molecular dynamics. In this algorithm, all particles
(inclusions) were randomly created with a null volume into a cube of a given side. A random velocity vector was
assigned at each particle. The particles were then set in motion and each volume gradually increased from zero.
Two types of incidents were checked at each iteration: binary collisions and collisions between particles and the cell
faces. When a binary collision occurred, with respect to the kinetic energy conservation principle, the velocities of
the two concerned particles were updated. Nevertheless, if a particle left the volume domain through a face, it must
appear from the opposite side to carry out the periodicity conditions. The simulation stopped when the imposed
volume fraction was reached. This algorithm was more efficient than the random sequential adsorption algorithm
introduced in [52, 53], in particular, since it could generate very dense packings in a short computation time.

The principal steps of the algorithm are summarized hereafter.

(i) N ellipsoids were randomly created into a cube domain of side L. The volume of each ellipsoid was initially
null. At each ellipsoid, a random velocity, an angular velocity, and a random orientation were attributed.

(ii) The growth rates of the semi-principal axes a0, b0, c0 of ellipsoid were chosen such that b0 = a0/r1 and
c0 = a0/r2, where r1 and r2 denotes respectively the two aspect ratios that are input in the algorithm.

(iii) The elliptical particles were then put in translational and rotational motion and their volumes gradually
increased. At each step, two types of collisions were checked and computed: binary collision between two
ellipsoids and collision between a particle and a cube domain face. If the first type of collision occurred, the
velocity and angular velocity of the involved particles were updated. However, if an ellipsoid intersected a
cube domain face, its periodic image was created on the opposite side.

(iv) The algorithm stopped when the volume fraction φ was reached.

(v) The ellipsoid was then completely replaced by discs by keeping their position, orientation, aspect ratio, and
volume. The model was then returned to the actual size with the reference of the thickness of the graphene
sheet.

(vi) Finally, a visual check was performed to check the presence of overlaps among the inclusions or between the
inclusions and the RVE surface.

Figure 14: Example of a meshed specimen of (a) a RVE at the microscale with 2% graphene volume fraction and 40 inclusions and (b)
a representative unit cell at macroscale with a porosity of 98.24%.

For the finite element method (FEM), an unstructured mesh of tetrahedral finite elements with quadratic
Lagrange interpolating polynomials was used. Two types of mesh sizes were specified for inclusions and matrices.
More precisely, the maximum element size of the inclusion was 5 nm, and the maximum element size of the matrix
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was L/5, of which L was the size of the RVE. The MUltifrontal Massively Parallel sparse direct Solver (MUMPS)
method with the relative tolerance of 0.001 was used to solve the final linear system. An example of a meshed
specimen of a RVE at the microscale with inclusions was the graphene blocks, as shown in Fig. 14(a).

At the macroscale, to construct the unit cell with the desired porosity, we changed the surface thickness of the
hollow sphere. Here, the effective mechanical properties obtained from the results of the microscale were introduced
like those of the solid phase. Subsequently, the procedure for solving the cell problem to calculate the functions
[χα]k for the solid phase, and then obtaining the effective elasticity tensor, was conducted using the same method
as that used at the microscale (see section 4.3). For meshing, the element maximal size of the unit cell was taken to
be 2ts where ts is the surface thickness of the hollow sphere. Figure 14b presents an example of a meshed specimen
of representative unit cell at the macroscale with a porosity of 98.24%, which corresponds to a surface thickness of
1.24 µm.

The effective elasticity tensor Ceijkl could be expressed as the elasticity matrix Ĉ
e

using Kelvin notation (see Ap-
pendix A). In the following, for the sake of brevity, the exponent �e referring to the effective properties was dropped
where � is the computational quantity. Instead, the exponents �(1), �(2) and �(3) characterize computational
quantities at the nano-, micro-, and macroscales, respectively.

5.2. Effective mechanical properties of inclusions at the nanoscale

In this section, we discuss the effective mechanical properties of inclusions including the graphene block, mono-
layer graphene oxide and graphene oxide block. Additionally, we briefly compare our findings for the mechanical
properties of graphene blocks with the results obtained by Cho et al. [13].
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Figure 15: Influence of the number of carbon atoms considered on the value of layer spacing d0.

First, to confirm the relevance of using Kelly and Duff’s constants [42] instead of Girifalco and Lad’s [41], we
recalculated the layer spacing d0 of graphene block in no load condition. In particular, d0 was determined based
on Eq. (25) under stress and strain-free conditions, and the influence of the number of carbon atoms considered
(the number of nearest carbon atoms contributing to the sum Sm) on the value of d0 was also investigated. The
results presented in Fig. 15 showed that the interlayer distance d0 reached an asymptote with 300 atoms in both
cases which showed the converged solutions with respect to the number of carbon atoms. Therefore, at least of
300 carbon atoms will be included in the graphene blocks. Using Kelly and Duff’s constant (r0 = 3.432 Å) and
Girifalco and Lad’s constant (r0 = 3.42 Å) gave convergent values of d0 of 3.35 Å and 3.33 Å, respectively. The
results coincided in the case of Kelly and Duff’s constant with the known value of d0 = 3.35 Å, showing that this
constant is more compatible with the method used to calculate the effective mechanical properties of the graphene
block. Next, we compared the results obtained for the effective mechanical properties of graphene block with those
from the work of Cho et al. [13]. Because graphene block (or graphite) had transverse isotropic properties, the

in-plane engineering constants E
(1)
1 , ν

(1)
12 , and out-of-plane engineering constants E

(1)
3 , µ

(1)
13 , ν

(1)
13 were presented (see

Tab. 2). It could be seen that the results obtained are not significantly different from those of Cho et al. [13].
However, the modification of the engineering constants reinforced the validity of the molecular-mechanical method
used to calculate the effective mechanical properties of graphene block.

In addition, the non-zero components of the effective elasticity tensor of the three inclusion types, including
graphene block, graphene oxide monolayer, and graphene oxide block, are also presented in Tab. 3 using Kelvin
notation. Here, the three types of inclusions all had the same orientation vector n = (0, 0, 1). The results confirmed
that the graphene block and graphene oxide block had transverse isotropic properties, while the graphene oxide
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Table 2: Comparison of effective engineering constants of graphene block with the results of Cho et al. [13].

Engineering constants This work Cho et al. [13]

E
(1)
1 (TPa) 1.151 1.153

ν
(1)
12 0.194 0.195

E
(1)
3 (GPa) 39.932 39.511

µ
(1)
13 (GPa) 0.268 0.268

ν
(1)
13 0.006 0.006

Table 3: Non-zero components of effective elasticity tensor of graphene block, monolayer graphene oxide and graphene oxide block using
Kelvin notation.

Components of Ĉ
(1)

Graphene block
Monolayer Graphene oxide

(GPa) graphene oxide block

Ĉ
(1)
11 1196.02 520.29 188.63

Ĉ
(1)
22 1196.02 520.29 188.63

Ĉ
(1)
33 39.93 520.29 1.22

Ĉ
(1)
44 0.54 392.65 0.41

Ĉ
(1)
55 0.54 392.65 0.41

Ĉ
(1)
66 963.99 392.65 151.17

Ĉ
(1)
12 232.03 127.64 37.46

Ĉ
(1)
13 0.30 127.64 0.61

Ĉ
(1)
23 0.30 127.64 0.61

monolayer was considered as an isotropic material. It was easy to see that graphene oxide block had the lowest
hardness of the three types, predicting the lowest ability to strengthen the hardness of aerogels. Graphene oxide
monolayer had an in-plane elasticity that was about half lower than that of graphene block, but it was many times
stronger than graphene block in the out-of-plane direction (e3-direction). The reinforcing ability of these three
inclusions for hybrid aerogel elasticity will be discussed in the following section.

5.3. Validation of the random generation of inclusions at the microscale

As discussed, the geometry at the microscale consisted of randomly arranged inclusions in the matrix. With
complex geometry, it was necessary to check the validity of the used model. To do so, we begun by looking at
the resulting variation of the non-zero components of the effective elasticity matrix at 5 independent computations
for the aggregate structure (graphene block) with different graphene volume fractions fv = 1% and fv = 2%.
Specifically, we performed the calculation 5 times separately while keeping all input parameters unchanged (for
instance, type of inclusion, volume fraction of inclusion, number of inclusions, ...). Here, the RVE size could contain
an initial selection of 20 inclusions. As shown in Fig. 16(a)-(b), the non-zero components of the effective elasticity

matrix did not change significantly for both graphene volume fractions. It could be observed that Ĉ
(2)
11 , Ĉ

(2)
22 and

Ĉ
(2)
33 had a variability larger than of the other components. Their maximum standard deviation was only 1.2%

and 2.2% for the graphene volume fractions fv = 1% and fv = 2%, respectively. This suggested that at higher
concentrations of inclusions, a larger size of RVE was required, in other words, more inclusions are required in RVE.
It could be concluded that the RVE size with the number of inclusions of 20 satisfied the convergence condition of
the results for the case of fv = 1%, which was lower than the result proposed elsewhere [54] (which is 30 inclusions).
The reason was that the aspect ratio of the inclusions also affected the sensitivity of the RVE size [55]. Accordingly,
increasing the aspect ratio of inclusions increased the dependence of the finite element result on the size of the RVE.
The aspect ratio used in this work is 40, which was lower than the aspect ratio of 100 [54], which required a smaller
RVE size.

Besides, the isotropy of the material at the microscale could be detected by checking Ĉ
(2)
11 = Ĉ

(2)
44 + Ĉ

(2)
12 .

The isotropic properties of the material were caused by the random and uniform distribution of inclusions in the
polymer matrix. This also helped to prove that the algorithm that generated random inclusions was valid. For
that reason, the effective mechanical properties of composites (microscale) could be represented by two quantities
Young’s modulus and Poisson’s ratio to serve as input parameters for the solid phase at the macroscale model.

To derive Young’s modulus and Poisson’s ratio of composites from the effective elasticity matrix Ĉ
(2)

, the simple
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Figure 16: Variation of the non-zero components of the effective elasticity matrix for different configurations of aggregate structure
(graphene block) at the microscale with (a) fv = 1% and (b) fv = 2% of graphene volume fraction. The RVE sizes were built with 20
inclusions.

method of replacing an anisotropic material with the nearest isotropic material was used [56]. Accordingly, the

equivalent Lamé constants λ(2) and µ(2) of the composite areogels were calculated from the elasticity matrix Ĉ
(2)

by the following expression:

λ(2) =
1

15

[
Ĉ

(2)
11 + Ĉ

(2)
22 + Ĉ

(2)
33 + 4(Ĉ

(2)
12 + Ĉ

(2)
13 + Ĉ

(2)
23 )− (Ĉ

(2)
44 + Ĉ

(2)
55 + Ĉ

(2)
66 )
]
, (73)

µ(2) =
1

30

[
2(Ĉ

(2)
11 + Ĉ

(2)
22 + Ĉ

(2)
33 )− 2(Ĉ

(2)
12 + Ĉ

(2)
13 + Ĉ

(2)
23 ) + 3(Ĉ

(2)
44 + Ĉ

(2)
55 + Ĉ

(2)
66 )
]
. (74)

The Young’s modulus and the Poisson’s ratio were calculated from Lamé constants λ(2) and µ(2) by the rela-
tionships:

E(2) =
µ(2)(3λ(2) + 2µ(2))

λ(2) + µ(2)
, ν(2) =

λ(2)

2(λ(2) + µ(2))
. (75)

The graphs of Young’s modulus and Poisson’s ratio are displayed in Fig. 16, showing that both of these quantities
accurately characterized the isotropy of the material at the microscale with a maximum standard deviation of 0.1%
and 0.2% for the graphene volume fractions fv = 1% and fv = 2%, respectively. In the following, the number of
inclusions in the RVE will be used from 30 to 50 corresponding to the percentage of inclusion volume from 1 to 3%.

5.4. Effective mechanical properties of aerogels at the macroscale

5.4.1. Identification of mechanical properties and experimental validation

In this section, the identification of mechanical properties and experimental validation were carried out in
two steps. In the first step, Young’s modulus of the aerogels was identified, while in the second step, the model
was validated with experimental results including the experimental data given by Takeshita et al. [57] and our
compression test results for chitosan aerogel.

Indeed, the identification of mechanical properties and model validation were performed by comparing with
experimental results in two aspects including both the relationships between porosity, on the one hand, graphene
content, and on the other hand, Young’s modulus of aerogels. Specifically in the first step, in order to minimize the
number of parameters that could affect the effective mechanical properties of the aerogels, we investigated Young’s
modulus of the pristine chitosan aerogel (fv = 0%) as a function of porosity, including different investigated values of
the modulus of chitosan ECS . In addition, Poisson’s ratio of chitosan was fixed at 0.4, i.e. νCS = 0.4. The obtained
numerical results were compared with the experimental results to identify the appropriate value of ECS in order
to be used in subsequent studies. The results of the model using two values ECS = 0.35 GPa and ECS = 2.5 GPa
with porosity range of 86 − 99% and the experimental results including the experimental data given by Takeshita
et al. [57] are shown in Fig. 17.

Based on left side of Fig. 17, one could see the non-linearity between Young’s modulus and porosity in exper-
imental results when porosity was lower than 94%. The value ECS = 2.5 GPa allowed for characterizing aerogel
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Figure 17: Numerical predictions of Young’s modulus of chitosan aerogel compared to the experimental data from Takeshita et al. [57]
and our compression test results of chitosan aerogel.

mechanical properties over a wide range of porosity (85 − 99%). However, the difference between the numerical
results and the experimental results was still quite large at some values of porosity due to the non-linearity stated
above. In fact, research in literature is often directed towards the development of ultra-high porosity aerogels with
porosity up to 99.8%. Indeed, aerogels possess unique properties arising from their super-porosity, making possible
to adapt them for a wide range of applications by adjusting varied factors. These factors include the molecular
weight, deacetylation degree as well as aerogel preparation conditions such as the type of acid solvent used in pro-
cessing, the concentration of the chitosan solution, and the incorporation of additional nanofillers or crosslinking
agents [58, 59]. Moreover, the obtained porosity of our aerogels was higher than 98% in all instances. Therefore,
we were interested in the porosity values higher than ≥ 94% (see Fig. 17 on the right). It was easy to see that
the 0.35 GPa value for Young’s modulus of chitosan gave numerical results that matched the experimental results.
Therefore, the value ECS = 0.35 GPa will be used in the following studies.

In the second step, after selecting a chitosan Young modulus value of ECS = 0.35 GPa, the model that was
used to estimate the effective mechanical properties of the hybrid graphene-chitosan aerogels was confirmed by
comparison with the uniaxial compression tests on aerogel samples with different graphene contents. Since the
freezing method used in the preparation of the material was isotropic, the samples were compressed in one direction
to determine Young’s modulus assuming that the material was isotropic [10]. The uniaxial compression test was
performed using a universal testing machine at room temperature (Instron 5567, Boston, Massachusetts, America).
The sample was cylindrical in shape with a diameter of 30 mm and a height of 20 mm. Cylindrical samples are
subjected to a vertical compression test with a speed of 1 mm/min as shown in Fig. 18(a). Young’s modulus was
calculated as the ratio between stress and strain in the elastic domain. For each aerogel, the compression test was
performed on three samples, and the results were averaged. The experimental results are shown in Fig. 18(b).
For comparison purposes, the results obtained through the model for graphene block inclusion as described in the
previous sections are also presented in Fig. 18.

The two models included in the comparison were the model φa = 98.24% and model φa modified. In particular,
the first one used a constant porosity value (φa = 98.24%) for all aerogels, while the second one used variable porosity
corresponding to different graphene contents present in the aerogel, as calculated in Tab. 1 (see section 3.3). It could
be seen that both models gave results quite close to the experimental results, supporting the validity of the used
model. As explained, the porosity of the aerogels did not change significantly at low graphene content (fw ranges
from 0% to 5%), the value of 98.24% porosity was averaged by porosity of the aerogels at this graphene content, so
the results of the two models were coincident. However, when the graphene content increased, in particular in the
case of fw = 10%, model φa = 98.24% underestimated Young’s modulus of the aerogel compared with experimental
results. Indeed, at the high graphene content, which led to a significant decrease in the aerogel porosity, specifically
from 98.24% to 98.08%. For this reason, the model φa modified gave the overall results closer to the experimental
results than the first model. From this, it could also be inferred that graphene enhanced the mechanical strength
of chitosan-based aerogels not only by enhancing the elasticity of the solid phase but also through changing the
porosity of the aerogels. Besides, our model was only built up to a graphene content of 10% (corresponding to
graphene volume fraction fv ≈ 6%) for an inclusion aspect ratio of 40. This was because our model generated
inclusions that were randomly distributed in the polymer matrix to ensure that the inclusions did not overlap,
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Figure 18: (a) Uniaxial compression test of graphene-chitosan aerogel using Instron 5567 and (b) numerical results with the model
φa = 98.24% and model φa modified compared to the experimental results.

but due to their large aspect ratio, they tended to align in an almost parallel arrangement when the content was
too high. Therefore, the model had difficulty building random inclusions at a too large a concentration, which
was consistent with the work of Hbaieb et al. [54]. This information helped us to explain that the strength of
aerogels at the mass percent graphene of 15% was reduced compared with the mass percent graphene of 10% in the
experimental results. When the graphene content was too high (larger than 10% by weight), the graphene sheets
became more difficult to disperse in the chitosan matrix, and they tended to remain sticked together in parallel
to form large agglomerates. These agglomerates weakened the mechanical properties of the aerogels because they
hindered the fluidity of the matrix, reducing the bond between the reinforcement and the matrix. This result was
also experimentally confirmed in previous works [60, 61]. These results showed that the investigation of the influence
of graphene’s microstructural parameters on the effective mechanical properties of the aerogels should be carried
out in the range 0− 5% of the graphene weight fraction fw (corresponding to the range 0− 3% of graphene volume
fraction fv) with the aim of eliminating possible effects of porosity.

5.4.2. Effect of porosity

In order to consider the material symmetry, an example for the result of the effective elasticity matrix of the
chitosan aerogel with the porosity of 98.24%, ECS = 0.35 GPa and νCS = 0.4 was shown below:

Ĉ
(3)

=


2.35 0.41 0.41 0 0 0
0.41 2.35 0.41 0 0 0
0.41 0.41 2.35 0 0 0

0 0 0 6.66 0 0
0 0 0 0 6.66 0
0 0 0 0 0 6.66

 (MPa). (76)

This result showed that the elasticity tensor contained three non-zero independent components and had a cubic
material symmetry which was characterized by the equalities:

Ĉ11 = Ĉ22 = Ĉ33, (77)

Ĉ12 = Ĉ13 = Ĉ23, (78)

Ĉ44 = Ĉ55 = Ĉ66. (79)

These equalities reflected three mutually orthogonal planes of reflection symmetry plus 90° (degrees) rotation
symmetry with respect to these planes.

Therefore, the three engineering constants E(3), µ(3) and ν(3) characterized the effective mechanical properties
of aerogels at the macroscale. To study the effect of porosity on the mechanical properties of aerogels, their
porosity was varied from 86 − 99% by changing the wall thickness of the hollow spherical unit cell. The results
of three engineering constants E(3), µ(3) and ν(3) are shown in Fig. 19. It is noteworthy that all three engineering
constants decreased sharply as the aerogel porosity increased. Specifically, when porosity increased from 86% to
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Figure 19: Effect of porosity on the mechanical properties of aerogel.

99%, E(3), µ(3) and ν(3) decreased by 99.0%, 95.3% and 89.8%, respectively. This showed that porosity greatly
affected the mechanical strength of the aerogels. Besides, the relationship between ν(3) and µ(3) with porosity was
close to a linear relationship. This relationship was slightly nonlinear for Young’s modulus, E(3) decreasing more
strongly in the small porosity range than in the larger porosity range. Interestingly, Young’s modulus E(3) was
smaller than the shear modulus µ(3) when the porosity was larger than 87%, whereas most materials typically had
Young’s modulus higher than the shear modulus. With regard to porosity, we could control porosity by controlling
the polymer concentration in solution. Thus, by increasing the initial amount of polymer in the solution, the
porosity of the resulting aerogel decreased. From this result, it could be concluded that porosity had an important
influence on the mechanical behavior of aerogels, reducing porosity enhanced the mechanical strength. However,
it should be noted that the reduction of porosity could lead to an increase in the density, thus a decrease in the
thermal and sound insulation of the aerogel [62, 63]. Therefore, the control of porosity needs to be taken into
account in the fabrication of aerogels depending on the targeted applications.

5.4.3. Effect of aspect ratio of inclusions

In this section, the influence of aspect ratio ra of inclusions at the microscale varying in the range of 8−65 on the
effective mechanical properties of aerogels for the aggregate structure of graphene was investigated. Figure 20(a)
presents the variation of Young’s modulus with respect to the aspect ratio of graphene block in 4 cases of the graphene
volume fraction given by the values 0.5%, 1%, 1.5% and 2%. The results showed that Young’s modulus increased
as the aspect ratio increased, with a more pronounced increase observed at higher graphene volume fraction. In
addition, Fig. 20(b) shows a near-linear relationship of all three engineering constants (Young’s modulus, shear
modulus and Poisson’s ratio) with respect to the aspect ratio of inclusion at 2% graphene volume fraction. As
the aspect ratio increased, Young’s modulus and shear modulus both increased, while Poisson’s ratio decreased.
However, it could be seen that the change in magnitude is different between these three engineering constants.
Specifically, when the aspect ratio increased from 8 to 65, Young’s modulus increased by 35.5% (corresponding to
0.06 MPa), and shear modulus increased more with 38.6% (corresponding to 0.22 MPa), while Poisson’s ratio was
almost unchanged (only decreased from 0.043 to 0.042). The results showed interesting mechanical behavior of
aerogels as a function of aspect ratio, and also showed the potential of inclusions at high aspect ratio in reinforcing
polymer-based aerogels. These results were in good agreement with some previous numerical results from the
literature [55, 19]. In fact, the aspect ratio of graphene or graphene oxide could be controlled through ultrasonic
treatment or preparation method of graphene oxide [29, 30, 64]. Therefore, this result guided the selection or
synthesis of graphene or graphene oxide sheets to achieve high mechanical strength aerogels.

5.4.4. Effect of microstructural morphology

In this section, the influence of type-related structural parameters, such as the aggregate structure of graphene,
the exfoliated structure of graphene oxide and the intercalated structure of graphene oxide on the macromechanical
properties of aerogels, was examined. Figure 21 shows Young’s modulus, the shear modulus and Poisson’s ratio of
aerogels as a function of graphene volume fraction in different inclusion types.
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Figure 20: Effect of aspect ratio of inclusion on (a) Young’s modulus at different graphene volume fractions, and (b) Young’s modulus,
shear modulus and Poisson’s ratio at 2% graphene volume fraction.

Figure 21: Effect of the inclusion type-related structural parameter on (a) Young’s modulus E(3), (b) shear modulus µ(3) and (c)
Poisson’s ratio ν(3).
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It could be seen that Young’s modulus and the shear modulus increased while Poisson’s ratio decreased in all
three inclusion types. Although graphene oxide had a Young’s modulus lower than half that of graphene, thanks to
its intercalated structure, graphene oxide improved the mechanical properties of the aerogels more effectively than
graphene. This effect became significantly more important as the reinforcement content increased. The reason was
that when graphene existed as aggregates, the interaction between adjacent graphene sheets was based on weak
Van der Waals interactions, resulting in much weaker out-of-plane mechanical properties than the in-plane ones (as
discussed in section 3.1). On the other hand, the stacking of graphene sheets to form aggregates directly reduced
the aspect ratio of inclusions, thus also increasing the elasticity of the aerogel. Therefore, it was understandable
that the intercalated structure of graphene oxide had the lowest mechanical strength when it possessed both weak
elasticity and low aspect ratio of inclusions simultaneously. Through this study, it could be concluded that when
graphene and graphene oxide had the same lateral dimensions, which could occur when synthesized from the same
graphite source, graphene oxide with an exfoliated structure provided superior reinforcement of polymer-based
aerogels compared to graphene. Therefore, the attempt to oxidize graphene to enhance its dispersibility in the
polymer with the aim of creating a exfoliated structure has yielded the expected results. It should be added that
the preparation of exfoliated graphene oxide sheets was significantly more cost-effective than exfoliated graphene
sheets, therefore graphene oxide was the preferred choice for mechanical reinforcement of polymer-based aerogels.

6. Conclusion

This work focused on the numerical and experimental characterizations of the effective mechanical properties
associated with composite aerogels based on graphene and chitosan. Such aerogels were synthesized through an
environmentally friendly freeze-drying method by directly replacing the liquid phase in the wet gel by the gas
phase through sublimation. The effective mechanical properties of materials were obtained by using the multiscale
approach. More specifically, the geometrical configurations at different scales were built based on the experimental
results. Three types of inclusions were studied namely graphene block, graphene oxide monolayer and graphene
oxide block at the nanoscale, then, the positions and orientations of these inclusions were randomly generated in
the chitosan matrix at the microscale, and finally, a hollow spherical unit cell was used to describe the macroscopic
behavior of the material. In addition, molecular mechanics and Milton’s method were used to calculate the effective
mechanical properties of graphene block and graphene oxide block type inclusions at the nanoscale, respectively;
the method of asymptotic homogenization was applied to study the mechanical behavior of materials at the micro-
and macroscales. Following the determination of effective mechanical properties by the homogenization method,
a compression test on cylindrical samples of graphene-chitosan aerogels with different graphene contents was also
carried out to compare with numerical results. Based on the results of the parametric study, the present paper
showed that the aerogels had higher mechanical elasticity as their porosity decreased, which could be achieved
by increasing the polymer concentration in the initial solution in the material manufacturing process. However, as
discussed, excessive porosity reduction could be detrimental to the characteristic properties of aerogels such as ultra-
lightness, excellent thermal insulation and sound insulation properties. Therefore, there is a need for establishing a
balance between mechanical elasticity and other properties of aerogels for a specific application.

Concerning the influence of the aspect ratio of inclusions, this paper demonstrated that inclusions with large
aspect ratio gave aerogels with improved properties, suggesting for the selection or synthesis of graphene or graphene
oxide sheets. Regarding the strengthening ability of graphene and graphene oxide to the mechanical strength of
polymer-based aerogels, the results indicated that graphene oxide in the exfoliated state had a better strengthening
capacity than graphene in the aggregated state. In contrast, graphene oxide in the intercalated structure gave the
weakest reinforcement out of the three inclusion types investigated. This implied that the attempt to improve the
effect of graphene on the mechanical properties of polymer-based aerogels by oxidizing the graphene sheets should
be achieved when the graphene oxide sheets are completely exfoliated in the polymer matrix. This is possible as
graphene oxide has a much higher dispersibility than graphene thanks to its surface functions and is demonstrated
by experimental results in previous works where the exfoliated structure of graphene oxide sheets was obtained
[65, 22]. Therefore, exfoliated graphene oxide sheets with low cost and high reinforcement efficiency are preferred
for mechanical reinforcement of polymer-based aerogels.

Besides, the comparison with experimental results not only confirmed the validity of the model, but also provided
more information about the mechanism of aerogel elasticity strengthening in presence of graphene. Specifically, this
paper showed that adding graphene to the chitosan matrix on the one hand enhanced the elasticity of the solid phase
thanks to the excellent mechanical properties of graphene, thereby improving the aerogel elasticity. On the other
hand, reducing the porosity of the aerogel (at high graphene content) led to an increase in the aerogel elasticity.
However, the results also showed that increasing the graphene content too much reduced its dispersibility, leading
to a decrease in the mechanical strength of aerogels.
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The multiscale approach focusing on the ideal disc shape of graphene and the spherical shape of the pore showed
to be useful in the material development stage to obtain an initial estimate of the mechanical properties of the studied
materials. The relationships between microstructure and effective mechanical properties of materials established
from numerical studies provided suggestions for improving the mechanical strength of materials. Nonetheless, taking
into account the imperfections in the two-dimensional structure of graphene related to the out-of-plane folds may
provide further insights into the effects of graphene on the effective properties of materials based on polymers
[66]. In addition, studies on the influence of pore shape including isotropic and anisotropic pores or of uneven
arrangement of pores will also be the subject of a further study.

Appendix A. Kelvin notation

It is noteworthy that to apply projections
L

1(n) and
L

2(n) to the second-order symmetric tensors of stress and
strain σ and ε, these two tensors should be treated in the identical way. Therefore, the Kelvin notation was used
in this work, that is:

σ̂ =


σ̂1

σ̂2

σ̂3

σ̂4

σ̂5

σ̂6

 =



σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

 , ε̂ =


ε̂1

ε̂2

ε̂3

ε̂4

ε̂5

ε̂6

 =



ε11

ε22

ε33√
2ε23√
2ε31√
2ε12

 ,

and the stiffness matrix:

Ĉ =



Ĉ11 Ĉ12 Ĉ13 Ĉ14 Ĉ15 Ĉ16

Ĉ12 Ĉ22 Ĉ23 Ĉ24 Ĉ25 Ĉ26

Ĉ13 Ĉ23 Ĉ33 Ĉ34 Ĉ35 Ĉ36

Ĉ14 Ĉ24 Ĉ34 Ĉ44 Ĉ45 Ĉ46

Ĉ15 Ĉ25 Ĉ35 Ĉ45 Ĉ55 Ĉ56

Ĉ16 Ĉ26 Ĉ36 Ĉ46 Ĉ56 Ĉ66



=


C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C1122 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C1133 C2233 C3333

√
2C3323

√
2C3313

√
2C3312√

2C1123

√
2C2223

√
2C3323 2C2323 2C2313 2C2312√

2C1113

√
2C2213

√
2C3313 2C2313 2C3131 2C1312√

2C1112

√
2C2212

√
2C3312 2C2312 2C2313 2C1212

 .
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[39] D. Aztatzi-Pluma, E. Castrejn-González, A. Almendarez-Camarillo, J. Alvarado, Y. Durán-Morales, Study of
the molecular interactions between functionalized carbon nanotubes and chitosan, The Journal of Physical
Chemistry C 120 (4) (2016) 2371–2378. doi:10.1021/acs.jpcc.5b08136.
URL https://pubs.acs.org/doi/10.1021/acs.jpcc.5b08136

[40] N. Mushi, S. Utsel, L. Berglund, Nanostructured biocomposite films of high toughness based on native chitin
nanofibers and chitosan, Frontiers in chemistry 2 (2014) 99.

[41] L. Girifalco, R. Lad, Energy of cohesion, compressibility, and the potential energy functions of the graphite
system, The Journal of Chemical Physics 25 (4) (1956) 693–697.

[42] B. Kelly, M. Duff, On the validity of Lennard-Jones potentials for the calculation of elastic properties of a
graphite crystal, Carbon 8 (1) (1970) 77–83.

[43] J. Aboudi, S. Arnold, B. Bednarcyk, Chapter 2 - Constituent material modeling, in: J. Aboudi, S. Arnold,
B. Bednarcyk (Eds.), Micromechanics of Composite Materials, Butterworth-Heinemann, Oxford, 2013, pp.
19–85. doi:https://doi.org/10.1016/B978-0-12-397035-0.00002-1.
URL https://www.sciencedirect.com/science/article/pii/B9780123970350000021
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