
HAL Id: hal-04626381
https://hal.science/hal-04626381

Submitted on 26 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Developing a connector for the Madbot API
Jaffar Gura

To cite this version:
Jaffar Gura. Developing a connector for the Madbot API. institut française de Bioinformatique. 2024.
�hal-04626381�

https://hal.science/hal-04626381
https://hal.archives-ouvertes.fr

Université Paris Saclay
Master of Bioinformatics and Biostatistics

Developing a Connector for the Madbot API

Presented by

GURA Jaffar

Internship supervisors: Imane Messak Institut Français de Bioinformatique
Baptiste Rousseau Institut Français de Bioinformatique

June 26, 2024

Contents

1 Introduction 1

1.1 Research Institute . 1

1.2 Problem in Bioinformatics Data Management . 2

1.2.1 Data Diversity and Fragmentation . 2

1.2.2 Data Volume, Integration, and Interoperability 2

1.3 Madbot’s Approach . 3

1.4 Standardization . 4

1.5 Objectives of the Internship . 4

2 Materials and Methods 5

2.1 Development Tools and Environment . 5

2.2 Building the Connector Module . 5

3 Results 6

3.1 Prototyping Stage . 6

3.1.1 Permission Issues and Solution Implementation 6

3.1.2 Performance Challenges . 6

3.2 Implementation Challenges with fsspec and Paramiko 7

3.3 Discovery and Implementation of sshfs . 8

3.4 Development of the Unified Connector . 8

4 Discussion 9

4.1 Advances Made . 9

4.2 Limitations . 9

4.3 Future Work . 10

4.4 Conclusion . 10

Bibliography 11

1 Introduction

1.1 Research Institute

The internship was conducted within the IFB-Core team (UMS 3601, CNRS) at the IFB (Institut
Français de Bioinformatique). I was welcomed by the Madbot (Metadata And Data Brokering
Online Tool) team. IFB is renowned for its contributions to the field of bioinformatics, providing
critical infrastructure and tools for data management and analysis.The main missions of the IFB
are:

• Deploy Physical and Software Infrastructure: Establish and maintain physical and software
infrastructure for bioinformatics services.

• Support Research Programs: Provide support for research programs in biology, health,
environment, biotechnology, and agronomy through shared expertise and skills.

• Offer Continuing Education: Provide ongoing bioinformatics training for biologists and
bioinformaticians.

• Develop Strategic Vision: Maintain France at the highest level of expertise in biological
data analysis and provide access to cutting-edge bioinformatics technologies.

• Innovate Tools: Develop innovative tools to address the challenges of integrative bioinfor-
matics.

• Facilitate Ambitious Research Projects: Serve as a lever for the conception and implemen-
tation of ambitious national research projects.

• International Representation: Represent the French bioinformatics community interna-
tionally, particularly within the European network ELIXIR (European Life-Science Infras-
tructure for Biological Information) [ELIXIR, 2024].

The team comprises experts in bioinformatics, data science, and software development, work-
ing collaboratively in an agile framework(Scrum) to enhance data accessibility and usability for
researchers.

Scrum is a specific Agile methodology that focuses on iterative development, flexibility, and close
collaboration with a working group. Projects are divided into small units called sprints, typically
lasting two to four weeks. This approach allows teams to frequently reassess and adapt their plans,
ensuring continuous improvement and responsiveness to change, ultimately enhancing the quality
and usability of their outputs [Beck et al., 2001].

1

IFB-CORE (UMR 3601), CNRS

Thomas DENECKER
Scrum Master
IFB Core Paris

Imane Messak
Full Stack Developer

IFB Core Paris

Baptiste Rousseau
Full Stack Developer

IFB Core Paris

Julien SEILER
Scrum Master

IFB Core Strasbourg

Laurent BOURI
Full Stack Developer
IFB Core Strasbourg

Jaffar GURA
Intern

IFB Core Paris

Figure 1: Organizational Chart of the Madbot team

A Scrum team typically consists of a Product Owner, Scrum Master, and Development Team. The
Scrum Master facilitates the Scrum process, ensuring that the team adheres to Scrum principles
and practices. The Development Team is a self-organizing group of professionals who deliver the
product in increments.A simplified organization structure of the team is shown in Figure 1.

1.2 Problem in Bioinformatics Data Management

1.2.1 Data Diversity and Fragmentation

Managing and organizing large amounts of data from different sources is a significant challenge
in bioinformatics. This is because there are many types of data, like DNA sequences, protein
structures, gene expression profiles, and clinical data. Each type needs specific tools and formats
for storage and analysis, which makes data integration difficult. Scientists use different systems to
store and analyze their data, leading to inefficiencies. They spend a lot of time ensuring different
formats and tools are compatible. The lack of standard protocols makes it even harder to keep data
consistent and reliable.

1.2.2 Data Volume, Integration, and Interoperability

High-throughput sequencing technologies produce huge amounts of data, making real-time or
near-real-time data management challenging. Traditional data management systems often can’t

2

handle this large scale efficiently. Integrating data from various sources, such as public databases,
laboratory management systems, and electronic lab notebooks, is crucial but complex. These
sources have different access policies, formats, and update schedules, making integration time-
consuming and error-prone. Tools used in bioinformatics need to work together smoothly for
effective data exchange and analysis. However, many tools are developed independently, leading to
compatibility issues that slow down research progress and make collaboration harder.

1.3 Madbot’s Approach

Madbot is an open-source project available on GitLab,that offers a dashboard designed to manage
research data and metadata. The application aggregates metadata related to scientific projects and
accurately identifies the data’s storage locations via multiple connectors. Its primary goal is to
assist researchers in publishing their data and metadata to numerous scientific repositories.

Figure 2: Various bioinformatics tools with which Madbot is connected and will connect in the near future.
The currently accessible connectors are SSHFS and Galaxy. Labguru and Omero are under transformation,
while iRODS is still a work in progress.

Madbot connects to several key platforms, including:

• SSHFS: Connection to Clusters and NAS (Network Attached Storage) Servers.

• Galaxy: An open-source platform used for data-intensive biomedical research [The Galaxy
Project Team, 2024].

• Labguru: An electronic lab notebook that helps scientists manage their lab work, inventory,
and data [BioData Inc., 2024] (currently under transformation).

• ENA (European Nucleotide Archive): A data warehouse that stores large amounts of nu-
cleotide sequencing data [Yuan et al., 2023].

3

https://gitlab.com/ifb-elixirfr/madbot

• Zenodo: A research data repository that allows scientists to share and preserve their research
outputs, including datasets, software, reports, and more [Zenodo, 2024].

• Omero: A platform for visualizing, managing, and analyzing large sets of image data [Allan
et al., 2012](currently under transformation).

• iRODS: A data management software that enables users to handle large-scale data [Rajasekar
et al., 2010] (work in progress).

The currently connected and those that are under development are illustrated in figure 2 While these
platforms excel individually, they often operate in isolation. Madbot integrates these tools, allowing
scientists to access and manage their data from a single interface. This integration streamlines data
management and submission, enabling researchers to focus on their scientific work rather than
dealing with fragmented data sources.

1.4 Standardization

Madbot adheres to the ISA (Investigation, Study, Assay) standard, ensuring that data and metadata
are organized consistently. This adherence promotes good data management practices and helps
achieve FAIR [Deutz et al., 2020] (Findable, Accessible, Interoperable, and Reusable) publication
standards. The ISA model is developed and supported by ELIXIR, an intergovernmental organi-
zation aiming to establish and maintain a sustainable infrastructure for biological information in
Europe. Since IFB is the French node of ELIXIR [ELIXIR, 2024] and ENA is one of the core nodes
of ELIXIR, it is natural for IFB to use the ISA model and for ENA to seek its implementation.

1.5 Objectives of the Internship

The primary objectives of the internship were to:

• Develop a unified connector module that can handle various protocols.

• Simplify the management of connections to different data sources.

• Ensure the new module provides a consistent interface for the Madbot front end.

• Improve the performance and scalability of data interactions in Madbot.

• Adhere to data management standards to ensure high-quality and reliable data integration.

4

2 Materials and Methods

2.1 Development Tools and Environment

Our team is developing the project using Python 3.10 because of its readability and versatility. We
are using Visual Studio Code (VSCode) as our code editor and managing software dependencies
with Conda to keep a consistent development setup. The API (Application Programming Interfaces)
is built on Django 5.0.3, a popular web development framework, along with DRF (Django Rest
Framework) 3.14.0 to handle the API endpoints [Django Software Foundation, 2023]. APIs
allow different software systems to communicate with each other, improving the application’s
interoperability. On the client side, the web application is built on Vue.js, a progressive JavaScript
framework.

For the database management system, we are using PostgreSQL 16.0. Django’s ORM (Object-
Relational Mapper) is making it easy to interact with the database using Python code. We are
doing all the development on MacOS Sonoma 14.5 and deploying the application on Ubuntu 20.04
LTS (Long Term Support).

We are managing project configurations and dependencies using a TOML (Tom’s Obvious, Min-
imal Language) file, which is simple and human-readable, ensuring consistency across different
development environments. We are using Git for version control, with our repository hosted on
GitLab. This setup is facilitating efficient collaboration and tracking of code changes. You can
access the repository at https://gitlab.com/ifb-elixirfr/madbot.

2.2 Building the Connector Module

The connector module, designed to link the main application with external data sources, was
built using the fsspec library (version 2024.6.0) [Durant, 2024]. This library provides a unified
interface for interacting with various file systems, whether local or remote. Additionally, sshfs
and asyncssh (both version 2024.6.0) were used to establish secure connections to remote servers
and NAS, and to execute custom scripts on remote servers, thereby automating various tasks.

We began our development process by creating a clone of the SSH connector that was previously
available, without changing the underlying architecture, as a proof of concept. The original SSH
connector was designed to interact with remote file systems via the SSH protocol. This initial
step was crucial as it allowed us to test the feasibility of using fsspec for our unified connector.
By cloning the existing connector, we established a baseline for performance and functionality,
ensuring that fsspec could handle the necessary SSH interactions. This approach minimized the
risk associated with major architectural changes, allowing us to incrementally adapt the existing,
proven system and maintain core functionalities during the transition.

5

https://gitlab.com/ifb-elixirfr/madbot

3 Results

3.1 Prototyping Stage

During the dry running the SSH Connector clone, I encountered several issues:

3.1.1 Permission Issues and Solution Implementation

During the implementation, I discovered that, similar to the paramiko implementation, this solution
allowed visibility of objects that had POSIX permissions but not ACL (Access Control List)
permissions. Consequently, files, folders, and links appeared in the directory listings even though
they did not have the necessary permissions to access them. This resulted in a cluttered user
interface, displaying items that users could not interact with, and potentially posed a security risk
in other use cases.

To address these issues, I implemented an additional verification step using asynchronous SSH
(asyncssh). This solution involved running a bash script on the cluster in parallel with the fsspec
requests. The script performed the following functions:

• Permission Verification: It checked the file permissions of each item, ensuring that only
files, directories, and links that the user is permitted to see were included in the results.

• Enhanced Data Retrieval: For cases where the fsspec data object returned None for MIME
types, the script also retrieved the MIME types of the files.

The use of asyncssh allowed these checks to be executed in parallel, minimizing performance
overhead and ensuring that the directory listings returned by our application were both accurate
and secure. Additionally, the script provided a way to piggy-back more commands in case there is
need for other fields not provided natively by fsspec.

3.1.2 Performance Challenges

While asyncssh solved the permissions problem, it introduced an additional problem: the process
was slow, especially when handling a large number of files. For example, processing 1000 files
sequentially took approximately 3 minutes, which was unacceptable for a web application.

To improve the performance bottleneck, I experimented with alternative methods:

Parallel Requests with Async IO asyncio is a Python library that allows us to run single-
threaded concurrent code inside coroutines, which are special functions that can pause and resume

6

their execution. Its method asyncio.gather allowed me to run multiple coroutines at once, hence
handle concurrent file requests. With this, I significantly improved the processing time. The time
dropped from around 3 minutes to 1.2 minutes for a path with 1760 objects. Although this was
very efficient, it did not scale well with multiple users, and the scrum master, who is also the cluster
administrator, noted the concern about overloading the cluster.

Bash Parallelization Instead of writing simple bash scripts, I decided to create a comprehensive
script that would be executed on the cluster. This involved creating a loop that scans the ACL and
POSIX permissions of each file in the cluster. By doing this, I shifted the computational load from
the backend to the cluster. This improvement meant that I could send a script and only receive
the results back, eliminating the need for post-processing as the list of authorized files would be
directly sent to the frontend.

Initially, I considered further speeding up the process by running the program in parallel, similar
to what was achieved with Python’s asyncio. This led me to explore two tools: GNU Parallel and
the POSIX standard command, xargs. Although GNU Parallel is powerful and easy to use, it is
not available by default on all clusters. Therefore, I opted for xargs, which, despite creating fewer
parallel processes (maximum nine in our case), offered compatibility and ease of integration with
existing UNIX systems.

3.2 Implementation Challenges with fsspec and Paramiko

After the clone implementation, I also noticed that the fsspec implementation for creating SSH
and SFTP connections was using Paramiko under the hood. This was inconvenient because the
original SSH/NAS connector already used the Paramiko library, which had several drawbacks:

• Performance Issues: Paramiko is not optimized for high concurrency, leading to slower
connection times and data transfer rates.

• Scalability Concerns: Handling a large number of simultaneous connections with Paramiko
can cause significant performance degradation.

• Complex Error Handling: Paramiko has less intuitive error handling mechanisms, making
it harder to debug and maintain.

Given these issues, there was a need for a new implementation. I considered either building one
myself or find an existing solution. As mentioned earlier, asyncssh is particularly well-suited
for applications requiring high concurrency and low latency, making it a preferable choice over
Paramiko.

7

3.3 Discovery and Implementation of sshfs

During our exploration for alternatives to the solutions we had, we found sshfs, an implementation
of fsspec for the SFTP protocol using asyncssh. sshfs provided several notable advantages
over our previous approaches:

• A Complete Implementation of the fsspec Protocol: sshfs fully implements the fsspec
protocol through SFTP, ensuring comprehensive support of file system operations. This
would ensure consistency with the unified connector down the line.

• Performance: sshfs is quite fast compared to the alternative use case of Paramiko due to
its asynchronous nature.

• Ease of Use: Since it is built on top of fsspec, it allows seamless integration into the
existing architecture.

3.4 Development of the Unified Connector

The development of a unified connector for Madbot was a critical aspect of my internship. This
unified connector aimed to streamline the process of linking external data sources, providing a
consistent and reliable interface for the Madbot client.

Building upon the successful implementation of the SSH clone, I simplified the workload of creating
the unified connector. The unified connector integrates the various connections as illustrated in
Figure 2, ensuring a consistent and homogeneous result is returned to the client regardless of
the backend format. This unification is crucial for maintaining a streamlined and user-friendly
interface.

To enhance performance, the unified connector leverages the improvements achieved during the SSH
clone implementation. By using asynchronous SSH (asyncssh) and parallel processing techniques,
the connector efficiently handles multiple connections and data retrieval tasks concurrently. This
ensures that the system remains responsive and scalable, even under heavy load.

Furthermore, the unified connector addresses the performance and scalability issues identified
with Paramiko. By adopting asyncssh, the connector benefits from improved concurrency and
reduced latency, which are essential for high-performance applications.

8

4 Discussion

4.1 Advances Made

During my internship, I successfully developed and implemented a new universal connector using
the fsspec library. This development included the integration of sshfs to address the limitations
posed by the existing SSH connector built on Paramiko. The primary improvements enabled by
these results include:

• Enhanced permission verification processes, ensuring secure and reliable data access.

• Improved data retrieval capabilities, especially in handling large numbers of files.

• Significant performance enhancements through the implementation of asynchronous pro-
cesses, which reduced processing times.

• Adoption of a consistent and reliable interface for data access within Madbot, facilitating
better data management and integration.

4.2 Limitations

Despite the improvements, several limitations were encountered during the project:

• Performance Bottlenecks with asyncssh: While asyncssh provided faster performance, it
posed a risk of overloading the cluster when handling multiple concurrent users.

• Limitations of the Paramiko Library: The existing SSH connector based on Paramiko had
several drawbacks, including performance issues and complex error handling.

• Complexity of Bash Scripts: Reliance on bash scripts for permission verification introduced
an additional layer of complexity that could impact maintainability and troubleshooting.

• Parallel Process Limitations: The adoption of XARGS over GNU Parallel, while necessary
for compatibility, resulted in fewer parallel processes, which might not fully utilize the
cluster’s capabilities.

• Additional Overhead for Permissions: Running a separate connection to the cluster for
permission checks added an overhead, as fsspec does not support running commands through
SSH directly.

9

4.3 Future Work

Future work should focus on several key areas to further enhance the functionality and performance
of the unified connector:

• Optimization of Parallelization Strategy: Further refine the parallelization strategy to
better balance the load across the cluster without compromising performance. This could
involve exploring alternative scripting tools that offer greater scalability.

• Expanding Integration Capabilities: Expand the functionality of the unified connector to
support additional protocols and data sources, enhancing its versatility and applicability in
various bioinformatics contexts.

• Advanced Error Handling and Troubleshooting: Investigate the integration of advanced
error handling mechanisms and automated troubleshooting tools to improve the robustness
and user experience of the connector.

• Functional Testing: Develop and implement functional tests to ensure the reliability and
stability of the connector, thereby enhancing its usability for researchers.

• Continued Integration Improvements: Continue to improve the integration and write
additional functional tests to ensure the connector’s reliability and performance.

4.4 Conclusion

In conclusion, the development and testing of the SSH connector within the Madbot project have
demonstrated significant advancements in data management and integration. The implementation
of asynchronous processes and the adoption of the fsspec library have resulted in improved perfor-
mance and scalability. Despite the challenges encountered, the outcomes of this internship provide
a solid foundation for future enhancements and integrations, paving the way for a more effective
and comprehensive data management solution in madbot and bioinformatics at large.The unified
connector represents a significant advancement in the Madbot infrastructure. It not only consoli-
dates various data connections into a single, coherent interface but also enhances performance and
scalability. This development is expected to facilitate more efficient data integration and retrieval
processes for Madbot users, ultimately contributing to the overall success of the platform.

10

References

[Allan et al., 2012] Allan, C., Burel, J.-M., Moore, J., Blackburn, C., Linkert, M., Loynton, S.,
MacDonald, D., Moore, W. J., Neves, C., Patterson, A., Porter, M., Tarkowska, A., Loranger,
B., Avondet, C., Lagerstedt, I., Lianas, L., Leo, S., Hands, K., Hay, R. T., Patwardhan, A., Best,
C., Kleywegt, G. J., Zanetti, G., and Swedlow, J. R. (2012). Omero: flexible, model-driven data
management for experimental biology. Nature Methods, 9(3):245–253.

[Beck et al., 2001] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto for Agile
Software Development. Accessed: 2024-06-20.

[BioData Inc., 2024] BioData Inc. (2024). Labguru laboratory management software. https:
//www.labguru.com. Accessed: 2024-06-19.

[Deutz et al., 2020] Deutz, D., Buss, M., Hansen, J., Hansen, K., Kjelmann, K., Larsen, A.,
Vlachos, E., and Holmstrand, K. (2020). How to fair: a danish website to guide researchers on
making research data more fair.

[Django Software Foundation, 2023] Django Software Foundation (2023). Django (version 5.0.3)
[computer software]. Lawrence, Kansas.

[Durant, 2024] Durant, M. (2024). fsspec: Filesystem specification. Accessed: 2024-06-18.

[ELIXIR, 2024] ELIXIR (2024). Elixir: A distributed infrastructure for european biological data.
https://elixir-europe.org/about-us/who-we-are/nodes/france. Accessed: 2024-
06-19.

[Rajasekar et al., 2010] Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C., Marciano, R., de Torcy,
A., Wan, M., Schroeder, W., Chen, S.-Y., Gilbert, L., Tooby, P., and Zhu, B. (2010). iRODS
Primer: Integrated Rule-Oriented Data System, volume 2 of Synthesis Lectures on Information
Concepts, Retrieval, and Services. Morgan & Claypool Publishers.

[The Galaxy Project Team, 2024] The Galaxy Project Team (2024). Galaxy project: Enabling
accessible, reproducible, and transparent computational biomedical research. https://

galaxyproject.org. Accessed: 2024-06-19.

[Yuan et al., 2023] Yuan, D., Ahamed, A., Burgin, J., Cummins, C., Devraj, R., Gueye, K., Gupta,
D., Gupta, V., Haseeb, M., Ihsan, M., Ivanov, E., Jayathilaka, S., Kadhirvelu, V. B., Kumar, M.,
Lathi, A., Leinonen, R., McKinnon, J., Meszaros, L., O’Cathail, C., Ouma, D., Paupério, J.,
Pesant, S., Rahman, N., Rinck, G., Selvakumar, S., Suman, S., Sunthornyotin, Y., Ventouratou,
M., Vijayaraja, S., Waheed, Z., Woollard, P., Zyoud, A., Burdett, T., and Cochrane, G. (2023).
The European Nucleotide Archive in 2023. Nucleic Acids Research, 52(D1):D92–D97.

[Zenodo, 2024] Zenodo (2024). Zenodo: Open science at cern. https://openscience.cern/
zenodo. Accessed: 2024-06-19.

11

https://www.labguru.com
https://www.labguru.com
https://elixir-europe.org/about-us/who-we-are/nodes/france
https://galaxyproject.org
https://galaxyproject.org
https://openscience.cern/zenodo
https://openscience.cern/zenodo

	Introduction
	Research Institute
	Problem in Bioinformatics Data Management
	Data Diversity and Fragmentation
	Data Volume, Integration, and Interoperability

	Madbot’s Approach
	Standardization
	Objectives of the Internship

	Materials and Methods
	Development Tools and Environment
	Building the Connector Module

	Results
	Prototyping Stage
	Permission Issues and Solution Implementation
	Performance Challenges

	Implementation Challenges with fsspec and Paramiko
	Discovery and Implementation of sshfs
	Development of the Unified Connector

	Discussion
	Advances Made
	Limitations
	Future Work
	Conclusion

	Bibliography

