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Abstract 

Object: Diffusion tensor magnetic resonance imaging (DT-MRI, or DTI) is a promising technique for 

invasively probing biological tissue structures. However, DTI is known to suffer from much longer 

acquisition time with respect to conventional MRI and the problem is worsened when dealing with in 

vivo acquisitions. Therefore, faster DTI for both ex vivo and in vivo scans is highly desired.  

Materials and Methods: This paper proposes a new compressed sensing (CS) reconstruction method 

that employs local low-rank (LLR) model and three-dimensional (3D) total variation (TV) constraint 

to reconstruct cardiac diffusion-weighted (DW) images from highly undersampled k-space data. The 

LLR model takes the set of DW images corresponding to different diffusion gradient directions as a 

3D image volume and decomposes the latter into overlapping 3D blocks. Then, the 3D blocks are 

stacked as two-dimensional (2D) matrix. Finally, low-rank property is applied to each block matrix 

and the 3D TV constraint to the 3D image volume. The underlying constrained optimization problem 

is finally solved using the first-order fast method. The proposed method is evaluated on real ex vivo 

cardiac DTI data as a prerequisite to in vivo cardiac DTI applications.    

Results: The results on real human ex vivo cardiac DTI images demonstrate that the proposed 

method exhibits lower reconstruction errors for DTI indices, including fractional anisotropy (FA), 

mean diffusivities (MD), transverse angle (TA) and helix angle (HA), compared to existing CS-based 

DTI image reconstruction techniques. 

Conclusion: The proposed method provides better reconstruction quality and more accurate DTI 

indices in comparison with the state-of-the-art CS-based DW image reconstruction methods. 

Keywords：Cardiac Diffusion Tensor Imaging, Compressed sensing, Sparse sampling, Constrained 

reconstruction, Locally low-rank regularization. 
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1. Introduction 

Diffusion tensor magnetic resonance imaging (DT-MRI, or DTI) is an MRI technique that allows 

for investigating noninvasively the fiber architectures of the human heart [1-11]. However, cardiac 

DTI is known to suffer from long acquisition time to obtain high quality images (in terms of 

temporal resolution, spatial resolution, and signal-to-noise-ratio—SNR) for both ex vivo [12-16] and 

in vivo [17-19] hearts. This is because DTI requires, with respect to conventional MRI, 

supplementary acquisitions at different (at least six) diffusion gradient directions. The problem is 

worsened when dealing with in vivo DTI acquisitions since patient movement and cardiac motion 

often cause image quality degradation and motion artifacts [20-24]. Therefore, shortening acquisition 

time is highly desired for both ex vivo and in vivo DTI. It becomes indispensable in reducing motion 

artifacts and improving image quality for clinical cardiac DTI. Many attempts have been made to 

shorten the acquisition time by reducing the amount of acquisition data, such as parallel imaging 

[25-29], partial k-space imaging [30,31], and simultaneous multi-slice (SMS) imaging [32,33]. 

In recent years, compressed sensing (CS) has emerged as a new framework for reconstructing 

signals with high quality from less measurements than the traditional Shannon-Nyquist sampling 

theorem [34-36]. CS exploits sparsity or compressibility of signals in certain domain (pixel or 

transform domain) and combines sampling and compression into a unified framework. To date, CS 

has been successfully applied to biomedical imaging [37,38], and has shown great potential for MRI 

[39-41] and computed tomography (CT) [42-44]. 

In light of the time-reducing potential of CS and considering that the diffusion-weighted (DW) 

images obtained along different diffusion gradient directions of DTI are often correlated, a 

constrained image reconstruction technique for cardiac DTI based on a regularization framework was 

proposed [45], in which the total variation (TV) constraint was chosen in both spatial domain and 

diffusion direction to accelerate DTI acquisitions. Both sparsity prior and intra- and inter-correlation 

of DW images were also embedded in a single constraint term in the CS extensions (distributed CS) 

to further reduce DTI acquisition time [46]. Utilizing the inter-image correlation of DW images, the 

combination of CS and parallel imaging further improved acquisition efficiency [47]. By stacking the 

DW images as column vectors of a matrix, the resulting matrix is then rank-deficient, which allowed 

the authors of [48,49] to formulate the CS-based DTI image reconstruction from undersampled 

k-space as a low-rank matrix approximation problem. Observing that phase changes drastically 

across diffusion gradient directions, a phase-constrained low-rank (PCLR) approach was developed 
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[50]. In [51-53], model-based CS methods for DTI were proposed, which use the signal intensity 

model to directly estimate diffusion tensor fields from undersampled k-space data. 

Meanwhile, local low-rank (LLR) model has been recently proposed in various medical imaging 

applications such as quantitative water-fat MRI [54], dynamic MRI image reconstruction [55] and 

MRI parameter mapping [56]. Compared to global low-rank (GLR) methods that capture global 

correlation among whole images, the LLR model is more suitable for accounting for local 

information. The present study proposes a new CS reconstruction method that employs both LLR 

model and three-dimensional (3D) TV constraint to reconstruct cardiac DTI images. The LLR model 

takes the set of DW images corresponding to different diffusion gradient directions as a 3D volume 

and decomposes the latter into overlapping 3D blocks. Then, the 3D blocks are stacked as 

two-dimensional (2D) matrix. Finally, low-rank property is applied to each block matrix and the 3D 

TV constraint to the 3D image volume. The underlying constrained optimization problem is finally 

solved using the first-order fast method. The proposed method is evaluated on real ex vivo cardiac 

DTI data as a prerequisite to in vivo cardiac DTI applications.  

The rest of the paper is organized as follows. In Section 2, the mathematical formulation of the 

proposed method and experimental settings are given. Then, in Section 3, the proposed method is 

evaluated on human ex vivo heart DW images and compared to the state-of-the-art methods. Finally, 

the discussion and conclusion are given in Sections 4 and 5, respectively. 

 

2. Materials and methods 

2.1. Proposed method 

Assuming that x l
 is a vectorised DW image and u

lF  is a partial Fourier transform for 
thl  

diffusion direction. The undersampled k-space data yl
 of the DW image for each direction in 

k-space can then be formulated as: 

 y xu

l l l lF   , (1) 

where l  is the observed noise and l = 1, 2,…, L the diffusion direction, and u

lF P F   with F  

denoting Fourier transform and P  the undersampling pattern (mask). Note that in practical 

acquisitions, raw k-space data are always complex and non-Hermitian symmetric. As a result, the 

corresponding spatial DW image x l
 is always complex and contains a spatial phase. 
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All the undersampled k-space data Y  of the DW images in all the diffusion gradient directions 

can be written as: 

 
uY F X    , (2) 

where  1 2y ,y ,...,yLY  ,  1 2x ,x ,...,xLX   whose columns represent the vectorised DW image, 

 1 2, ,..., L    , and uF  is a partial Fourier transform for all the diffusion directions and is defined 

as: 

 

1 0

0

u

u

u

L

F

F

F

 
 
 
 
 
 

. (3) 

The DW images are sparse/compressible in certain domain such as wavelet domain. In addition, 

since the DW images acquired in different diffusion gradient directions have similar anatomical 

structures, they are somewhat correlated. Consequently, by stacking these images as column vectors 

of a matrix X , the latter will be low rank. Then, the reconstruction of DW images from 

undersampled k-space data is performed by solving the following optimization problem (i.e. GLR 

model, as illustrated in figure 1(a)): 

 
2

12

1
argmin

2

u

X
X F X Y X T X 



 
      

 
  (4) 

where 
2

2

uF X Y  represents data fidelity term, X

 is the nuclear norm or sum of singular values 

of the matrix X, 
1

T X  is the l1-norm of X with sparsity transform T, and 0   and 0   are 

the regularization parameters. 

However, as mentioned before, GLR models involving entire images capture only globally 

correlated information in the image. We are then led to use the LLR model to account for local image 

information. As illustrated in figure 1(b), the LLR model-based method includes the following main 

steps: a) consider the set of DW images corresponding to different diffusion gradient directions as a 

3D image volume; b) divide the 3D image volume into overlapping 3D image blocks of size 

x y dn n n   with 
dn  indicating the size in the diffusion gradient direction; c) stack each 2D DW 

image block of size x yn n  as a column vector of a 2D matrix, thus forming a block matrix of size 

x y dn n n  ( ib  matrix in figure 1(b)); d) apply low-rank property (singular values shrinkage operator) 

to the block matrix; e) reconstruct the DW images X by concatenating all the block matrices. 
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Fig. 1 Illustration of the principle of global low-rank (GLR) and local low-rank (LLR) methods. In the GLR matrix 

X, each column corresponds to an entire DW image and the number of its columns is equal to the number of 

diffusion gradient directions L.  

 

Using the above-described LLR method, the reconstruction then becomes the following 

optimization problem: 

  
2

*2

1
argmin 3

2

u

b
X

b

X F X Y R X TV D X 


 
     

 
 , (5) 

where uF  is the partial Fourier transform for all diffusion directions as defined in (3), 
bR  is the 

operator that extracts the 
thb  block,   designates the set of blocks,  3TV D   is the TV 

regularization term, which can either be the anisotropic or the isotropic TV norm. In this paper, we 

choose the isotropic TV defined as:

       
2 2 2

, , , , 1, , , , , 1, , , , , 12
, , , ,

3 i j k i j k i j k i j k i j k i j k i j k

i j k i j k

TV D X D X X X X X X X          , where 
, ,i j kD  

means the forward finite-difference operators along the horizontal, vertical, and diffusion gradient 

directions of DW images, respectively. 

This problem can be effectively solved using the Fast Composite Splitting Algorithm (FCSA) 

introduced in [57]. This method is based on the combination of both variable and operator splitting 

techniques, which decompose the regularization problem (5) into two simpler regularization 

subproblems. The main steps of this method is as follows: (a) splitting variable x  into two variables 
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 
1,2i i

x


; (b) performing operator splitting to minimize total variation regularization and nuclear norm 

regularization subproblems over  
1,2i i

x


 respectively, and (c) obtaining the solution x  by linear 

combination of  
1,2i i

x


. Let  
2

2

1

2

uf X F X Y   that is a convex and smooth function with the 

Lipschitz constant Lf ,  1 *b

b

g X R X


  that is a convex but non-smooth function and 

   2 3g X TV D X  . Then, the      1 2g X g X g X   problem can be divided into two 

subproblems: nuclear norm regularization and TV-norm regularization. Each subproblem is actually 

a convex function that can be solved by a proximal mapping operation [58]:

    1 2 3*
and 2k k

b g gTV D
b

X prox R X x X prox X x  


 
  

 
 . According to [58], given a 

continuous convex function g(x) and any scalar q > 0, the proximal map associated with function g is 

defined as:     
2

2

1
argmin

2u

prox x u u x  


 
   

 
 , where   is the inverse of the Lipschitz 

constant Lf  having    
'

2

2

1

2

T
u u uf F X Y F F X Y

 
     

 
 with  

T
uF  indicating the inverse 

partial Fourier transform. 

The reconstruction problem (5) is outlined in the following algorithm. 

INPUT： 

K : the maximum number of iterations; 

,  : the regularization parameters; 

, ,x y dn n n  : the block sizes; 

tol : the tolerance parameter. 

INIT: 1 0 11 , 1, 0, 0;t X r k
L

        

REPEAT: 

1;k k   

 ;k k

gx r f r    

 

  

1 *

2 3

1 2

;

2 ;

;
2

k

b g

b

k

gTV D

k k
k

X prox R X x

X prox X x

X X
X











 
  

 







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 ;k kX abs X  

 
2

1
1 1 4

;
2

k

k
t

t 
 

  

 
1

1 11
;

k
k k k k

k

t
r X X X

t


 
    

UNTIL k K  OR 

1

2

2

k k

k

X X
tol

X

 
 . 

OUTPUT:  

 kX abs X : the reconstructed DW images. 

 

2.2. Experimental data 

The real DW data correspond to ex vivo samples of the human hearts [59,12,60] from the website 

http://cvrgrid.org/data/ex-vivo. The corresponding acquisition parameters are the following: image 

size=256×256×134, image spatial resolution=0.43×0.43×1.0 mm
3
, and number of diffusion gradient 

directions 21. In the present study, seven slices of the image volume have been used to evaluate the 

proposed method (the b0 image of the 5
th

 slice was shown in figure 2(a)). We used the same k-space 

sampling patterns as those used in [61,62], which concern Cartesian undersampling patterns with 

one-dimensional (1D) variable density phase-encode random undersampling (i.e. in ky direction) and 

2D variable density random undersampling pattern. An example of the 1D and 2D random k-space 

undersampling patterns is shown in figure 2(b) and figure 2(c), in which the sampling ratio (R) was 

set to 15%. 

The above initial DW data are in fact spatial magnitude data (so, their corresponding k-space data are 

complex but Hermitian symmetric) while in practice DW data are always spatial complex because the 

acquired raw k-space data are always complex and non-Hermitian symmetric. To mimic actual acquisitions, 

we have rendered the magnitude DW data complex in the following manner: a) take the Fourier transform of 

spatial magnitude DW data, providing complex but Hermitian-symmetric k-space data; b) undersample the 

complex k-space data, thus making the k-space data asymmetric; c) add complex Gaussian white noise to the 

asymmetric k-space data, rendering them even more asymmetric; d) take the inverse Fourier transform of the 

undersampled noisy k-space data, leading to complex spatial DW data containing phase information. 

http://cvrgrid.org/data/ex-vivo
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Fig. 2 Example of (a) the b0 image of the 5

th
 slice, (b) 1D random k-space 

undersampling mask and (c) 2D variable density random k-space undersampling 

pattern with a sampling ratio of 15% (i.e. keeping 15% of the full k-space data). 

2.3. Evaluation 

To evaluate the performance of the proposed method (LLR+TV3D), comparison was performed 

with zero-filling (replace the non-acquired k-space data by zeros and then inverse Fourier transform 

the zero-filled k-space data), joint sparsity (JS) [46], JS with TV3D (JS+TV3D), global low-rank 

(GLR) [48], GLR with TV3D (GLR+TV3D) and, local low-rank without TV3D (LLR) methods. 

In addition to qualitative assessment consisting of visually comparing reconstruction results, 

several quantitative indices were calculated for the DW images reconstructed with different methods. 

They are the fractional anisotropy (FA), mean diffusivity (MD), helix angle (HA) and transverse 

angle (TA) [63,7].  

The MD characterizes the mean diffusivity of the tissue: 

 1 2 3MD
3

   
 . (6) 

The FA is used to describe the diffusion anisotropy of the tissue: 

 
     

 

2 2 2

1 2 3

2 2 2

1 2 3

3 MD MD MD
FA

2

  

  

      
 

  
. (7) 

The HA is defined as the angle between the projection of the primary eigenvector onto the tangent 

plane and the imaging plane, and the TA is defined as the angle between the projection of the 

primary eigenvector onto the imaging plane and the tangent plane [63,7]. The pair (HA, TA) 

describes completely fiber orientation. 

To quantitatively compare different reconstruction methods, the root mean square errors (RMSE) 

was first calculated for each slice according to: 

 
   

2

2
-

RMSE
rec refvec x vec x

N
 , (8) 



9 
 

where 
recx  and refx  denote respectively the calculated quantity and the reference quantity, and N  

the total number of signals. Then, the mean RMSE (mRMSE) values of FA, MD, TA and HA were 

calculated to evaluate and compare the reconstruction performance. 

The observation measurement Y  is corrupted by complex Gaussian white noise   with 

standard deviation 
n . The associated input SNR (ISNR) [64] is defined as 10ISNR 20log x

n





 
  

 
 

with 
x  denoting the standard deviation of the reference image. 

2.4. Parameter setting  

In the following experiments, 1D variable density phase-encode random undersampling was used. 

The ISNR was set to 20 dB. The Daubechies wavelets with four decomposition levels were used. 

The threshold parameter   in soft-thresholding operator for each 3D block was set in an adaptive 

manner using Stein’s unbiased risk estimate (SURE) thresholding [65]. The regularization parameter 

  was set to 0.1 and the 3D block size x y dn n n   was set 8 8 21  , respectively. 

3. Results  

3.1. Visual comparison 

Figures 3 to 6 show the T-DWI, FA, MD, TA and HA maps of 5
th

 slice with the sampling ratio of 

25%. In the calculations, the diffusion tensors corresponding to the complete k-space were taken as 

the references. As observed, the FA, MD, TA and HA maps generated by the proposed method are 

visually better than those obtained with the other methods. 

 

Fig. 3 FA maps of 5
th

 slice. Top row: FA reconstruction maps. Middle row: FA error maps. Bottom row: the ROIs 

marked by the red boxes in the error maps. The reference FA is shown in the first column of the top row. Reconstructions 
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from undersampled k-space (sampling ratio 25%) using (a) zero-filling method (RMSE=0.0663), (b) JS method 

(RMSE=0.0529), (c) JS+TV3D method (RMSE=0.0460), (d) GLR method (RMSE=0.0706), (e) GLR+TV3D method 

(RMSE=0.0555), (f) LLR method (RMSE=0.0459) and (g) the proposed method (RMSE=0.0402). 

 

Fig. 4 MD maps of 5
th

 slice. Top row: MD reconstruction maps. Middle row: MD error maps. Bottom row: the ROIs 

marked by the red boxes in the error maps. The reference MD is shown in the first column of the top row. 

Reconstructions from undersampled k-space (sampling ratio 25%) using (a) zero-filling method (RMSE=0.1310), (b) JS 

method (RMSE=0.0994), (c) JS+TV3D method (RMSE=0.0896), (d) GLR method(RMSE=0.0975), (d) GLR+TV3D 

method (RMSE=0.0877), (e) LLR method (RMSE=0.0868) and (f) the proposed method (RMSE=0.0748). 

 

Fig. 5 TA maps of 5
th

 slice. Top row: TA reconstruction maps. Middle row: TA error maps. Bottom row: the ROIs 

marked by the red boxes the in error maps. The reference TA is shown in the first column of the top row. Reconstructions 

from undersampled k-space (sampling ratio 25%) using (a) zero-filling method (RMSE=15.2867), (b) JS method (RMSE 

=14.7117), (c) JS+TV3D method (RMSE=13.4796), (d) GLR method (RMSE=13.3053), (e) GLR+TV3D method 

(RMSE=13.1900), (f) LLR method (RMSE=13.7366) and (g) the proposed method (RMSE=12.6375). 
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Fig. 6 HA maps of 5
th

 slice. Top row: HA reconstruction maps. Middle row: HA error maps. Bottom row: the ROIs 

marked by the red boxes in the error maps. The reference HA is shown in the first column of the top row. 

Reconstructions from undersampled k-space (sampling ratio 25%) using (a) zero-filling method (RMSE=15.0506), (b) JS 

method (RMSE =14.1850), (c) JS+TV3D method (RMSE=12.9166), (d) GLR method (RMSE=12.9376), (e) 

GLR+TV3D method (RMSE=12.5925), (f) LLR method (RMSE=13.0880) and (g) the proposed method 

(RMSE=11.9483). 

3.2. Sampling ratios 

Figure 7 compares the reconstruction performance (mRMSE of FA, MD, TA and HA) of different 

methods as a function of sampling ratios ranging from 10% to 50%. As observed, the proposed 

method resulted in clearly smaller errors than the other methods for all the quantitative indices. 

 
a 

 
b 
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c d 

Fig. 7 Performance comparison of different reconstruction methods on real human heart data with different sampling 

ratios. (a) mRMSE of FA. (b) mRMSE of MD. (c) mRMSE of TA. (d) mRMSE of HA. 

3.3. Robustness to noise 

The performance of reconstruction from undersampled DTI data using the proposed method for 

different values of ISNR and sampling ratio (R) is illustrated in figure 8. It is seen that the 

reconstruction performance changes with the sampling ratio and ISNR. Increasing the sampling ratio 

reduces the reconstruction error mRMSEs (except in the case ISNR=10dB) and reducing ISNR 

increases the reconstruction error mRMSEs. For example, when fixing ISNR at 20 dB, a better 

reconstruction performance is obtained with higher sampling ratios.  

 
a 

 

 
b 

 
c 

 

 
d 

Fig. 8 Reconstruction performance of the proposed method with various ISNRs and sampling 

ratios (Rs) on human heart data. (a) mRMSE of FA. (b) mRMSE of MD. (c) mRMSE of TA. 

(d) mRMSE of HA. 

3.4. Sampling patterns 

Figure 9 shows the reconstruction performance of the proposed method on two different sampling 

patterns, namely the 1D variable density random undersampling in phase-encoding direction and 2D 

variable density random undersampling pattern [61,66], in terms of FA, MD, TA and HA (with 

sampling ratios from 10% to 50% and without noise). As observed, for the same sampling ratio, the 
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2D variable density random undersampling resulted in significant reduction of reconstruction errors 

compared to the 1D variable density random undersampling. 

 
a 

 
b 

 
c 

 
d 

Fig. 9 Effect of sampling patterns on (a) mRMSE of FA, (b) mRMSE of MD, (c) mRMSE of 

TA, and (d) mRMSE of HA. 

3.5. Choice of patch size 

The choice of patch size [ , , ]x y dn n n  has effects on reconstruction quality. To show that, we 

calculate the mRMSE values of FA, MD, TA and HA for different 
xn  and yn  (fix the number of 

diffusion directions 
dn ) and different sampling ratios, as shown in figure 10. Clearly, there exists an 

optimal value [ , ] [8,8]nx ny  , which gives the smallest mRMSE.  

 
a 

 
b 
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c 

 
d 

Fig. 10 Effect of block sizes on reconstruction quality. (a) mRMSE of FA. (b) mRMSE of MD. (c) 

mRMSE of TA. (d) mRMSE of HA. 

 

4. Discussion 

4.1. Combination of local low-rank and 3D TV constraints 

The comparison of the reconstructions with and without 3D TV constraints shows that the 

proposed method (with 3D TV) always generated the smallest mRMSE regardless of sampling ratios 

(figure 7), which means that the reconstruction using the combination of local low-rank penalty and 

3D TV penalties clearly reduces reconstruction artifacts and preserves image edges and fine 

structures. This can be explained as follows. Since the proposed method operates on image blocks, 

the matrix is more rank-deficient from local image blocks than from 3D image volume. As a result, 

the use of the LLR allows better reconstructing local image structure information, but may produce 

excessive edge blurring in the case of high undersampling ratios (e.g. undersamplng ratio of 0.1). 

Meanwhile, the 3D TV constraint is particularly suitable for reconstructing edges, but tends to 

over-smooth image details at high undersampling ratios. Hence, the combination of the two 

constraints has enabled us to achieve better reconstruction quality. 

4.2. Determination of regularization parameter 

The regularization parameter   was empirically determined. It also impacts on reconstruction 

quality. Figure 11 illustrates the variation of RMSE with different   values on 5
th

 slice with ISNR 

20dB. The reconstruction RMSE of FA changes slightly at 0.05=  and 0.1=  with better 

performance than the other values (figure 11(a)). On the other hand, the reconstruction RMSE of MD 

changes slightly when   is larger than 0.05 (figure 11(b)). Therefore, the chosen 0.1=  in the 

present study seemed the best choice. 
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a 

 
b 

Fig. 11 Effect of regularization parameters (DW image of 5
th
 slice, ISNR 20 dB). (a) RMSE of FA. 

(b) RMSE of MD. 

4.3. Effect of sampling patterns 

As observed (figure 9), the 2D variable density random undersampling pattern gives better 

performance than the 1D variable density random undersampling pattern. This can be explained as 

follows. It is well known that when k-space is undersampled, the zero-filled inverse Fourier 

reconstruction exhibits aliasing artifacts since the Nyquist criterion is violated. The appearance of the 

aliasing artifacts depends on the undersampling pattern. Equispaced sampling results in coherent 

folding effects; as a result, image structure overlapping is very visible. In contrast, random or 

pseudo-random undersampling leads to incoherent interferences [39,66]; the final effect of the 

interferences appears much like additive random noise and consequently, the reconstructed image 

preserves more initial information. Figure 12 shows an example where the sampling patterns and the 

corresponding images reconstructed using zero-filling method are given. 

Note however that, although ideal, the 2D variable density random undersampling pattern cannot 

be implemented on current MRI systems whereas the implementation of 1D variable density random 

undersampling (in phase-encoding direction) scheme is simpler and requires only minor 

modifications to existing pulse sequences [61,66]. 
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Fig. 12 k-space undersampling patterns and the corresponding images reconstructed using 

zero-filling method. (a) DW image of 5
th

 slice in a given diffusion gradient direction; (b) 

Equispaced k-space undersampling; (c) 1D variable density random k-space undersampling in 

phase-encoding direction; (d) 2D variable density random undersampling. 

 

4.4. Influence of phase information 

In the present study, image reconstruction is formulated as an optimization problem (Eq. 5), in 

which there are three terms. In each of the three terms, complex images (i.e. phase information) were 

used. However, we have not used the complex images all the time during the reconstruction process. 

Indeed, after calculating the above three terms, we used the magnitude of complex image when 

computing 
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   , in which  k kX abs X . That 

aimed to simplify the calculation while focusing on the energy of images by taking the magnitude of 

complex image. It is however possible to use only the magnitude of complex image (by taking 

 g gx abs x ) or simply take as such the complex image all the time during the reconstruction, which 

will then lead to respectively the so-called “Abs” method (no phase information is used) and 

“Complex” method (phase information is used). Of course, no matter what method we used, the last 

step is always to take the magnitude of complex image as the final desired image. 

The results for ISNR=0 dB (noise-free) and ISNR=20 dB are respectively illustrated in Figure 13 

and Figure 14. 

These results show that, for highly undersampled k-space data (sampling ratio smaller than 15%), 

the proposed method gives rise to smaller errors with respect to the cases of using the magnitude of 
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complex image or using purely complex image. After certain sampling ratio (saying greater than 

20%), using the magnitude of complex image leads to the best results while using complex image 

during the whole reconstruction process yields the worst results. The difference in performance 

between the three methods can be explained as follows. The “Abs” method always works on the 

energy (magnitude) of complex image. Since in MRI, images are always produced in such a way that 

the imaginary part of the complex image is small with respect to the real part, the magnitude image 

always preserves such importance proportionality during all the calculations. In contrast, with the 

“Complex” method, the imaginary part has been left to freely and “arbitrarily” vary, which may 

amplify its weight and thus generate bigger errors. Our proposed method is situated between them 

with the imaginary part more or less confined. 

 

a 

 

b 

 

c 

 

d 

Fig. 133 Comparison of reconstructions using or without using phase information for ISNR=0 dB (noise-free). (a) 

mRMSE of FA, (b) mRMSE of MD, (c) mRMSE of TA, and (d) mRMSE of HA. “Abs” no phase information is 

used. “Complex”: phase information is used. 
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Fig. 144 Comparison of reconstructions using or without using phase information for ISNR=20 dB. (a) mRMSE 

of FA, (b) mRMSE of MD, (c) mRMSE of TA, and (d) mRMSE of HA. “Abs” no phase information is used. 

“Complex”: phase information is used. 

 

 

On the other hand, for a given acquisition, k-space data can be altered and highly asymmetric, or 

equivalently the formation of the phase can be very complicated. A number of factors, such as 

k-space sampling (random, irregular, etc.), noise, cardiac pulsations, respiratory motion, and 

multi-shot induced phase incoherence, can contribute to the formation of phase. Although the present 

study was also dealt with phase information, as shown in the above, but this phase stems from 

k-space undersampling and noise. In the future, it would be interesting to investigate multi-shot DWI 

reconstruction using explicit phase (by estimating for example low-resolution phase map from the 

fully sampled k-space data of each shot) or implicit phase (by using a structured low-rank matrix 

completion scheme [1]) to recover artifact-free images. Also, it is possible to undersample multi shot 

acquisitions using compressed sensing, the estimation of phase from the data would however be 

more complex and effective correction of motion-induced ghosting artifacts would be more difficult. 

More specifically for phase problems in cardiac DTI, there are phase changes not only in a given 
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diffusion gradient direction (low variation) but also across diffusion gradient directions (drastic 

variation). It would then be interesting to study undersampled reconstruction based on phase 

correction [2], phase-constrained [3] or phase regularized reconstruction [4]. 

4.5. Application to in vivo cardiac DTI 

The successful use of the proposed sampling-reconstruction method on in vivo cardiac DTI data 

would be conditioned by other two factors: motion correction and registration. Motion artifact may 

be due to cardiac and/or respiratory motion or any other phenomena such as arrhythmia. It is 

reflected by the presence of MRI signal loss. In in vivo DTI acquisitions, due to physical and 

technical limitations of MRI machines, all the images cannot be acquired at the same time point. 

Therefore, image registration is mandatory to correct for geometrical inconsistency among different 

scans. However, for a given in vivo DTI dataset, we are not able to determine the origin of errors in 

the calculated DTI indices if we do not separately consider sampling-reconstruction, motion and 

registration. In any case, if the sampling-reconstruction does not work, that will not make sense to 

investigate motion correction or image registration. However, motion correction and image 

registration in cardiac DTI still remain very challenging problems. Designing new imaging 

sequences less sensitive to motion artifacts, such as MUSE [67] and 3D‐DISPENSE [68] 

techniques, could be an interesting way to explore. Once the problems are resolved, in vivo data 

would be rather close to the situation of ex vivo data. 

Another particularity of in vivo cardiac DTI is the mixture of noise and artifacts due for example 

to motions. Noise designates electronics noise and thermal noise from subject while artifacts 

represent degradations due to motions. Therefore, once appropriate motion correction (and image 

registration to some extent) is achieved, in vivo data would be rather close to the situation of ex vivo 

data. 

 

5. Conclusion 

This work has proposed an efficient method for reconstructing DW images in DTI from highly 

undersampled k-space data using the LLR model and 3D TV constraints. The LLR model exploits 

the fact that the block matrices constructed from the set of DW images corresponding to different 

diffusion gradient directions are more strongly rank-deficient than the global matrix formed of entire 

DW images. The reconstruction using the combination of local low-rank penalty and 3D TV 

penalties thus enables us to improve reconstruction performance. The results on real human ex vivo 
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cardiac DW images showed that, for a large range of sampling ratios from 10% to 50%, the proposed 

method provides better reconstruction quality and more accurate DTI indices such as mean 

diffusivity, fractional anisotropy, helix angle and transverse angle, in comparison with the 

state-of-the-art CS-based DW image reconstruction methods. In the future work, we will apply the 

proposed method to in vivo cardiac DTI. To this end, phase correction, motion correction and image 

registration would have to be performed to obtain correct DTI indices. 
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