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Abstract—As part of industry 4.0, predictive maintenance aims
to achieve the best compromise between risk prevention and
repair costs. It leverages diagnostic and prognostic methods
that can be either model-based or data-driven. More recently, a
combination of both has been considered. This paper deals with
the estimation of the remaining useful life of a proton exchange
membrane fuel cell by predicting the evolution of its power over
time. We propose to combine a Kalman Filter (KF) with a Long
Short-Term Memory (LSTM) neural network. Contrary to recent
works, a tight coupling is considered. The LSTM neural network
is trained to learn only a part of the KF prediction model whereas
the remaining dynamics are described by knowledge models.
Moreover, the available data exhibit outliers due to interruptions
during the measurement campaign. To mitigate their impact, a
robust version of the KF and a robust cost function for the
training of the LSTM are considered as a second contribution.

Index Terms—Hybrid models, Kalman Filter, long short-term
memory neural network, Remaining Useful Life estimation, fuel
cells, predictive maintenance.

I. INTRODUCTION

Predictive maintenance is a concept that has been known
for many years but has become only recently feasible from
an economic and technological perspective. It is a compro-
mise between preventive and corrective maintenance with
the objective of saving costs while ensuring safety [1]. In
this paper, we focus on estimating the remaining useful life
(RUL) of proton exchange membrane fuel cells (PEMFC). The
latter represent an alternative to fossil fuels as they generate
electricity from hydrogen and do not emit carbon dioxide.
However, their limited lifespan hinders significant industrial
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deployment. Prognostics of their RUL offers a solution to al-
leviate this difficulty by enabling preventive actions that extend
their operational duration. It can be achieved by predicting the
PEMFC power degradation. The RUL is then defined as the
elapsed time until it reaches a critical threshold.

Many prediction algorithms exist. They can be based on
knowledge models that take the form of state space rep-
resentations, such as classically Kalman filters (KF) [2] or
particle filters [3]. Alternatively, deep learning uses past data
to train an evolution model. Long short-term memory (LSTM)
networks [4] are widely used to manage sequential data [5]
[6] and transformers have yielded promising results in some
fields such as large language models [7]. However, on the
one hand, for knowledge models, it is challenging to strike a
balance between generalization and high estimation accuracy.
On the other hand, data-driven models require rich databases,
which can be difficult to obtain depending on the application.
More recently, it has been proposed to take advantage of both
types of approaches by coupling them. Hybridization makes it
possible to estimate completely or partially unknown behaviors
in the evolution model while remaining attached to expert
knowledge.

Hybrid architectures have been considered in a variety of
applications. Most of them involve relatively simple couplings
where deep learning either replaces the dynamic or the obser-
vation equation of a state space representation, or provides
pre-processed measurements. For instance, in order to predict
hurricanes, Qin et al. [8] propose cascading an LSTM with a
KF, with the output of the former being used as a measure
in the KF correction step. Reference [9] employs a similar
hybridization between a transformer network and an unscented



particle filter [10]. Also, in [11], [12] and [13], it is suggested
replacing the state prediction step of a KF with an LSTM.
This method enables good short-term estimations.

The use of hybrid models for PEMFC RUL estimation is
widespread for two reasons: there is no evolution model that
takes into account all the degradations of the cell, and it is
complicated and costly to obtain extensive degradation data. In
[14], it is proposed to filter voltage degradation measurements
of a PEMFC using an Adaptative Extended KF (AEKF) while
estimating residual voltage using a Nonlinear AutoRegressive
eXogenous Neural Network (NARXNN). Then, the outputs
of both algorithms are summed to predict future voltage.
Similarly, Xia et al. [15] use a regression algorithm to separate
the measurement into a low-frequency behavior predicted by
an AEKF and a residual, high-frequency behavior predicted
by an LSTM. Once again, the combination is made a pos-
teriori. Deep learning models can also be leveraged during
the correction step of a filter, as illustrated in [16], wherein
the output of an LSTM-attention network serves as an online
Kalman observation to correct the state-of-charge prediction of
a PEMFC. Finally, a popular hybrid architecture is to predict
the prior state thanks to an LSTM network such as in [17] or
[6]. If the degradation behavior is fully unknown, this method
is interesting to bypass expert knowledge.

This literature review prompted us to ponder whether a more
tightly focused and less generalized hybridization could be
achieved. In this paper, we propose a tighter coupling approach
wherein an LSTM is integrated at the prediction step of a
Kalman filter but only handles a part of the state variables.
More precisely, it propagates the latter while estimating their
cross-correlation with the remaining variables which evolve
according to classical dynamic equations. The choice of an
LSTM network rather than a transformer is motivated by the
need to process our data sequentially, which the transformer
does not naturally do. Indeed, a positional index should be
added to the data, which would require a pre-processing step
and heavier operations. This increased cost is not necessary
in our context wherein the hybridization already alleviates
the difficulty of the learning task. Finally, PEMFC databases
include outliers that are due to the ageing process implemented
during the measurement campaigns. To accommodate them,
a solution could be to inflate the measurement variance at
the cost of a loss of estimation accuracy. To avoid such a
compromise, the proposed approach is made robust in two
complementary ways: a Huber lost function is used for the
LSTM training while a M-estimator version of the KF [18] is
considered.

This article is organized in four sections. After this introduc-
tion, section 2 is dedicated to the considered hybrid algorithm
to estimate PEMFC power over time. Section 3 illustrates
the performance of the latter by testing it on a reference
PEMFC database. It also includes comparisons with alterna-
tive architectures. Finally, section 4 presents conclusions and
perspectives.

II. PROPOSED RUL ESTIMATION METHOD

A. PEMFC power modelling

PEMFC degradation monitoring has been studied in dif-
ferent papers. A comprehensive review of existing techniques
and an introduction to PEMFC are proposed in [19] where it
is shown that the power at time step k can be expressed as a
function of the PEMFC physical characteristics as follows:

Pk =nIk
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where C = RaT
2Fa

with Ra the universal gas constant, Fa the
Faraday constant and T is the stack temperature. Erev is the
nominal voltage and Te is the sampling period. αa and αc are
the charge transfer coefficients at the electrodes, iloss represents
the internal currents within the stack whereas i0,a and i0,c are
the exchange current densities at each electrode, Rion is the
ionic resistance and bion, bloss are degradation coefficients while
p is a stack correction. In (1), the parameters indexed with k
are time-varying while the others are constant. The latter can
be identified using for instance a particle swarm optimization
algorithm [19]. As for the dynamic parameters Bk, Dk and
Rk, which respectively represent two diffusion and a contact
resistance degradation, their evolution can be well described by
a uniform rectilinear motion model. Conversely, the behaviour
of the active area deterioration over time, represented by Γk,
is not well-known whereas it plays a key role on the power
variation.

The estimation of the RUL can be performed by inferring
the time-varying parameters of (1) from a series of power
measurements. To this end, a non-linear recursive filter such
as an extended KF (EKF) or an Iterative KF (IKF) is well-
suited [19]. After this learning step, the filter can be run as
a predictor only to extrapolate the PEMFC power for future
time instants. The RUL is then obtained as the elapsed time
until the latter becomes lower than a threshold. The KF and its
variants are interesting prognostic tools in the sense that they
provide a measure of uncertainty associated to the estimates.
However, they require an accurate state model of the unknown
parameters and may not perform optimally with non-Gaussian
noise distributions. Both issues are addressed in the sequel.

B. State space representation

Recursive filters are based on a state space representation of
the parameters of interest, which are stacked in a state vector
denoted xk in the sequel. It comprises both a prior evolution
model of the latter, called the state equation, and an observa-
tion equation that relates it to a series of measurements referred
to as {yk}k≥1. In the considered setting, the state vector can be
decomposed in two parts: x1k = (Bk, Ḃk, Dk, Ḋk, Rk, Ṙk)

⊤

gathers the parameters with a known dynamic behaviour,
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Fig. 1. Tight integration of LSTM units in a robust iterative KF (IKF)

whereas x2
k = Γk corresponds to the parameter whose evo-

lution is assumed completely unknown. It should be noted
that the derivatives of Bk, Dk and Rk have to be appended
to the state vector in the case of uniform rectilinear motions.
The state variables satisfy the following discrete-time recursive
propagation model:

x1
k = F 1

k x1
k−1 + v1k (2)

x2
k = f2k(x

2
1:k−1, v

2
k) (3)
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The random processes
{

v1
k

}
k≥0

and
{
v2k
}
k≥0

are mutually
independent white noises. Under the assumption that the dif-
fusion and contact resistances are independent, the transition
matrix F 1

k and the covariance matrix of v1k, denoted Q1
k, are

block-diagonal. The expressions of their submatrices can be
found in [20, page 3]. The function f2k is unknown, as well as
the variance of v2k. As for the observation model, it is given
by (1), but by adding a white noise wk that encompasses the
uncertainties in the measurement process:

yk = hk(xk) + wk, (4)

where the actual PEMFC power writes Pk = hk(xk). A
difficulty is that the measurement noise wk is non-Gaussian,
since it is degraded by outliers. Its variance is denoted Ωk.

C. Proposed hybrid LSTM and robust iterative KF

A straightforward application of an EKF using the state
space representation (2)-(4) cannot be considered as f2k is
unknown and the measurement noise is non-Gaussian. The
contribution of the paper is twofold: firstly, an LSTM network
is integrated at the filter prediction step to learn the dynamic
behaviour of Γk, and secondly, a robust loss function is
considered for the LSTM training in combination with a robust
version of the EKF. It results in a hybrid algorithm that tightly
combines expert knowledge and deep-learning techniques.

LSTMs are a class of recurrent NNs which are efficient
to capture long-term dependencies and transient responses
that may not be explicitly modelled [21]. Widely employed
for automatic speech translation and time-series processing in
general, their architecture makes it possible to generate outputs
thanks to sequential combinations of inputs and previous
outputs [22]. They can handle variable time-series length and

have the advantage of mitigating gradient vanishing during
training.

The proposed approach is illustrated on Fig 1. At each time
step k, the prediction step leverages two LSTM NNs: Lx that
is dedicated to the prediction of x2

k, and LP that propagates
its posterior variance but also its intercorrelations with the
well-modelled states x1k. In the sequel, the index notation k|l
combined with an upper hat refers to the state estimation at
time k by taking into account all the measurements up to time
l. The hybrid prediction writes:

x̂1k|k−1 = F 1
k x̂1

k−1|k−1, (5)

(x̂2
k|k−1,mx

k) = Lx(x̂
2
k−1|k−1,mx

k−1), (6)

where mx
k gathers the hidden and cell states of the LSTM NN

at time k. The posterior covariance matrix of the state, denoted
Pk|l when based on the measurements up to time l, is also
updated by block. By denoting P 1

k|l the posterior covariance
matrix of x1k, it ensues:

P 1
k|k−1 = F 1

kP
1
k−1|k−1(F

1
k )

⊤ +Q1
k. (7)

In parallel, a second LSTM NN is leveraged for the remaining
blocks of Pk|k:

(P 2
k|k−1, P

1,2
k|k−1,mP

k )

= LP (P
2
k−1|k−1, P

1,2
k−1|k−1,mP

k−1, x̂k−1|k−1), (8)

with mP
k containing the hidden and cell states of the latter.

P 2
k|l and P 1,2

k|l stand for the posterior variance of x2
k and the

posterior intercovariance matrix of x1k and x2
k, respectively.

After state propagation, the estimates are updated by taking
into account the current power measurement. Robust KFs
consist in re-interpreting this step as the minimization of a
cost function and replacing the squared L2-norm by a robust
one. A Huber norm that mitigates the effects of abrupt changes
in the observation noise [23], [24] is usually considered. x̂k|k
is obtained by minimizing the following criterion [18]:

J (x) = ||x − x̂k|k−1||2Pk|k−1
+Rδ

(
Ω

− 1
2

k (yk − hk(x))
)

(9)

with Ω
−1/2
k the square-root of Ω−1

k . The function Rδ denotes
the Huber norm [24].

A Gauss-Newton (GN) algorithm is usually applied to min-
imize (9) and the posterior covariance Pk|k comes as a Gauss-
Laplace approximaton. The resulting algorithm is referred to



as robust iterated KF (IKF). It should be noted that only a
few iterations are required in practice since the GN optimizer
is embedded in a KF. In the considered setting, each iteration
is equivalent to applying a classical EKF correction step but
refining iteratively the linearization point and weighting the
measurement noise covariance matrix. The lth GN iteration
can be written:

K
(l+1)
k = P

(l)
k|k(H

(l)
k )⊤
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H

(l)
k P

(l)
k|k(H
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(10)

x(l+1)
k|k = xk|k−1 +K

(l+1)
k (yk − hk(x

(l)
k|k)). (11)

In the latter expression, H(l)
k is the Jacobian of hk computed

at x(l)k|k and Ω̃
(l)
k is obtained as:

Ω̃
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1/2
k (W
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1/2
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with W
(l)
k a weighting matrix expressed as

W
(l)
k = diag

[
w
(
Ω

−1/2
k

(
yk − hk(x

(l)
k|k)

))]
. (13)

The weight function w(·) is derived from the Huber score
function. Finally, the covariance is updated by:

P
(l+1)
k|k = (I−K

(l+1)
k H

(l)
k )P

(l)
k|k. (14)

For the initialization, x(0)k|k = x̂k|k−1 and P
(0)
k|k = Pk|k−1. The

final posterior state estimate x̂k|k and covariance matrix Pk|k
are taken as the outputs of the last GN iteration.

D. Training step

The training aims to adjust the parameters θ of the two
LSTM NNs so as to yield an estimated PEMFC power as close
as possible to the actual one during a reference time period.
It is classically performed by minimizing a cost function C.
However, the outages in the measurements can also impair
this crucial step. To prevent such difficulties, we propose to
consider also a Huber function [24]:

C(θ) = 1

N

N∑
k=1

Rδ(yk − ŷk|k−1), (15)

where ŷk|k−1 = hk(x̂k|k−1).
The whole procedure is the following: the proposed hybrid

IKF is run for N time steps which constitute the training
period and the successive estimates are stored and used to
infer the PEMFC power predictions ŷk|k−1 up to k = N .
The gradients of the network parameters are then computed
by back-propagation and are used to update the weights and
biases of the networks. These computations are reiterated over
the training period until a stopping criterion is satisfied.

III. EXPERIMENTS

The dataset corresponds to a 1100 h test [25] of a 5-cell
PEMFC stack with an active area of 100 cm2. To keep only
the part that aged at constant current, the data are shortened
at 985 h. The nominal current density is 0.70A cm−2 and
the nominal temperature is 55 ◦C. Intensities and voltages are
combined to generate single power measurements. The power

critical threshold is equal to 96% of the initial power [26] and
it is reached at 884.5 h. In the sequel the prognosis starts at
325 h which corresponds to a RUL of 559.5 h.
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Fig. 2. Examples of AEKF prognostic after different training times.

The proposed algorithm (denoted Algo 1 hereafter) is con-
fronted with alternative approaches either from the literature
or variants of its architecture to show the interest of both the
tight hybridization and the use of robust cost functions. The
non robust version of our algorithm (Algo 2), a simple hybrid
LSTM-EKF (Algo 3) wherein the entire prediction step is
carried out by a LSTM NN as presented in [6], and the robust
version (Algo 4) of the latter are considered. It should be noted
that the latter has not been published and is a by-product of
our study. A comparison is also made with a knowledge-based
method using an AEKF [14].

As for implementation, considering Algo 1 and Algo 2,
one LSTM layer with fifty neurons for x2

k and three LSTM
layers with forty neurons each for P 2

k|k−1 and P 1,2
k|k−1 are

trained. For Algo 3 and Algo 4, covariances are fixed and three
LSTM layers with thirty neurons each are used to estimate
all of xk. Weights and biases are updated with an AdamW
optimizer [27]. For the robust counterparts, at each time step,
five iterations of the GN algorithm are performed for the robust
KF updating. The model is trained during the 325 first hours.
The considered stopping criterion is cost function stabilization.

Firstly, the AEKF is tested to estimate RUL. It appears that
the long-term degradation trend captured by this algorithm
highly depends on the local bending of the signal at the start of
the prognostic, as illustrated in Fig. 2. This sensitivity discards
it to accurately estimate an RUL.

For hybrid algorithms, the parallel is made thanks to the
accuracy of the RUL prediction and the Mean Absolute
Percentage Error criterion of the PEMCF power estimation:
MAPE = 1

N−n

∑N
k=n

∣∣(yk − ŷk|k−1)/yk
∣∣ with n correspond-

ing to 325 h. This indicator allows us to verify the accuracy
of the long-term forecasting. The average of ten training
sessions with varying initializations led to the results depicted
in table I. It should be noted that a RUL underestimation
leads to negative error. It can be observed that our method
outperforms the others in terms of accuracy of both the RUL
and power degradation estimations. A major issue with Algo 3
and Algo 4 is that the neural networks experience difficulty
in discriminating signal and noise. Furthermore, whatever the



hybrid architecture, the robust versions yield the best results.
This further reinforces the importance of our model when
confronted with data showing significant variations. Fig. 3
illustrates MAPE differences between the two best algorithms
compared to database.

TABLE I
ALGORITHM COMPARISON

Hybrid Criteria
IKF-LSTM Model RUL RUL error MAPE

Algo 1 562.2h 2.7h 0.00181
Algo 2 306.0h −253.5h 0.010 24
Algo 3 584.9h 25.4h 0.004 02
Algo 4 549.1h −10.4h 0.002 73
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Fig. 3. Comparison of the two best forecasting algorithms.

Finally, another contribution of our work is the reduction in
the required training time to estimate an RUL. Compared to
the literature, like [14] or [15] that have a minimum training
set of 55% to 60% with an RUL estimation error of 3 hours,
we propose a slightly more precise RUL estimation (error of
2.7 hours) with only 32.5% of the training set.

IV. CONCLUSION AND PERSPECTIVES

This paper proposes a novel approach to perform prognos-
tics of fuel cell stacks by RUL estimation. It tightly fuses a
robust KF with deep learning techniques. The latter interact
with classical evolution models so that they only learn the
dynamics of the parameters that are difficult to characterize.
A good accuracy is obtained when testing the algorithm to
predict PEMFC power from a reference database. In perspec-
tive, it would be interesting to study alternative hybridizations
involving transformers and/or particle filters to better handle
the non linear measurement model.
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