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Abstract

Drought events rank as the second most costly natural disasters within the French legal frame-

work of the natural disaster compensation scheme. A critical aspect of the national compensation

scheme involves cities submitting requests for the government declaration of natural disaster for a

drought event as a key step. We take on the challenge of forecasting which cities will submit such

requests.

The problem can be tackled as a classification task, leveraging the power of classification algo-

rithms. Taking a slightly different perspective, we introduce an alternative procedure that hinges

on optimal transport theory and iPiano, an inertial proximal algorithm for nonconvex optimiza-

tion. The optimization problem is designed so as to yield a sparse vector of predictions because it is

known that relatively few cities will submit requests. Additionally, we develop a hybrid procedure

that synergistically combines and utilizes predictions derived from both perspectives, resulting in

enhanced forecasting accuracy.

A simulation study illustrates the procedures. The real data application is presented and dis-

cussed in details. The convergence of the iPiano algorithm is established, using the notion of

o-minimal structures from the field of tame geometry.

Keywords. Kurdyka-Lojasiewicz inequality, natural disaster, o-minimal structures, optimal

transport, proximal algorithm, Sinkhorn algorithm, Sinkhorn divergence

1 Introduction

We define a drought event in this study as the phenomenon of clay shrinking and swelling during a cal-

endar year. For a comprehensive introduction to drought events and their economic consequences, we

refer to (Charpentier et al., 2022, Sections 1 and 2). In brief, the clay in the soil undergoes alternating

shrinkage and swelling in dry and humid conditions, leading to instabilities and cracks in buildings. The

costs incurred by these cracks are covered by all private property insurance policies (MTES, 2016). As

90% of the French natural disasters insurance market is reinsured by Caisse Centrale de Réassurance

(henceforth abbreviated as CCR) (CCR, 2022), a public-sector reinsurer providing coverage against

natural catastrophes and uninsurable risks, the French state ultimately bears the risk.

Due to intricacies of the French legal framework (known as the natural disasters compensation

scheme, see Charpentier et al., 2022, Section 2.1), two prerequisites must be met in order to initiate
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the compensation scheme. Firstly, the property that has been lost and/or damaged must be covered

by a property and casualty insurance policy, which is a condition of private nature. Secondly, a

government decree declaring a natural disaster must be published in the Official Journal, which is a

condition of public nature. The responsibility of initiating the request for the government declaration

of a natural disaster for the cities they administer lies with the mayors. Of note, we adopt here and

henceforth the term “city” regardless of the size of the commune, encompassing a wide range from

small hamlets to large urban centers.

Forecasting the cost of drought events in France is a critical task for CCR. CCR currently addresses

two sub-problems separately: sub-problem 1 involves predicting which cities will submit a request for

the government declaration of natural disaster for a drought event, while sub-problem 2 is centered

on predicting the cost of a drought event for those cities that have already obtained the government

declaration of natural disaster for a drought event. In this study, we concentrate on sub-problem 1.

(Ecoto et al., 2021; Ecoto and Chambaz, 2022; Ecoto et al., 2024) focus on sub-problem 2. In con-

trast, (Chatelain and Loisel, 2021) takes on both sub-problems simultaneously. On the other hand,

(Charpentier et al., 2022; Heranval et al., 2022) predict which cities will experience claims (a proxy for

sub-problem 1) and subsequently estimate the cost for these cities. We acknowledge that the problem

we address in this study is, therefore, more narrowly focused than those studied in (Chatelain and

Loisel, 2021; Charpentier et al., 2022; Heranval et al., 2022).

Quoting (Logar and van den Bergh, 2011, page 4, first paragraph), “[t]he existing literature on

the costs of drought [events] is scarce, fragmented and heterogeneous and there is a need for compre-

hensive costs estimations to help designing effective policy responses.” To the best of our knowledge,

(Chatelain and Loisel, 2021; Charpentier et al., 2022; Heranval et al., 2022; Ecoto et al., 2021; Ecoto

and Chambaz, 2022; Ecoto et al., 2024) are the only six references available about the prediction of the

cost of drought events, thus susceptible to address the problem of predicting which cities will submit

a request for the government declaration of natural disaster for a drought event. It is worth noting

that studies conducted by insurance companies are often kept confidential, further emphasizing the

scarcity of available literature on this subject.

In (Chatelain and Loisel, 2021), the authors use Generalized Linear Models (GLM) and the extreme

gradient boosting algorithm to predict which cities will submit a request for the government declaration

of natural disaster for a drought event (see Section 3.1 therein). We also tackle the problem as

a classification task, leveraging the power of classification algorithms. However, taking a slightly

different perspective, our main contribution consists in introducing an alternative procedure that

hinges on optimal transport theory and an inertial proximal algorithm for nonconvex optimization.

The optimization problem is designed so as to yield a sparse vector of predictions because it is known

that relatively few cities will submit requests. Additionally, we develop a hybrid procedure that

synergistically combines and utilizes predictions derived from both perspectives.

The rest of the study is organized as follows. Section 2 introduces the data set that we obtained by

merging several data sets, some of which either provided by CCR’s cedents1 while others were collected

from other trusted sources. This section also outlines the statistical challenge that we undertake and

presents insights into the data. Section 3 is a modicum of optimal transport theory. Section 4

exposes our novel procedure to make sparse predictions and discusses how to solve the nonconvex

optimization task that sits at its core using the algorithm iPiano (Ochs et al., 2015), from both

1A cedent is a party in an insurance contract that passes the financial obligation for certain potential losses to the
insurer. In return for bearing a particular risk of loss, the cedent pays a reinsurance premium.
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theoretical and computational perspectives. Section 5 presents a simulation study and introduces

the hybrid procedure. Section 6 describes the full-fledged application to the challenge of forecasting

which cities will submit a request for the government declaration of natural disaster for a drought

event. Section 7 discusses our results and outlines potential avenues for future research. In the

appendix, Section A gathers the proofs of the convergence of the iPiano algorithm using a theorem

proven in (Ochs et al., 2015). The Kurdyka-Lojasiewicz property (Attouch et al., 2010) and notion of

o-minimal structures (Wilkie, 1996) play a central role.

2 Data and statistical challenge

2.1 Presentation of the data, first pass

The data set is obtained by merging several data sets, either provided by CCR’s cedents or collected

from other sources, namely the National Institute for Statistical and Economic Studies (Insee), Geo-

graphic National Institute (IGN), French Geological Survey (BRGM) and Météo-France. While there

are numerous similarities between the present data set and the one comprehensively presented and

used in (Ecoto and Chambaz, 2022, see Section 2), there are also major differences.

From now on, France refers to Metropolitan or Mainland France, and the adjective French to what

is related to France with the restricted acceptation of the word. This is justified because drought

events are not a threat in Overseas France (essentially because there is little clay in these parts of the

country).

The experimental units are the French cities. Each of them can contribute a data structure for

a given year t (by convention, t = 1, 2, 3 respectively correspond to years 2019, 2020 and 2021) and

a given week u (the integer u ∈ Ut ⊂ N∗ being the number of weeks starting from the first week

of year t, with 44 ≤ u ≤ 85). A data structure encompasses multiple aspects of a city’s profile,

aiming to provide a comprehensive representation of its context and potential triggers for requesting

the government declaration of natural disaster for a drought event. It consists of the following blocks

of variables:

City description (16 variables). This block provides detailed information about the city, covering

various aspects such as housing stock age, housing stock exposure to clay-shrinkage-swelling

hazard, and climatic zone. By capturing these variables, a holistic understanding of the city’s

characteristics is obtained.

City exposure to drought events (25 variables). The variables within this block outline the city’s

exposure to drought events. They build upon the Soil Wetness Index (SWI), and include an

indicator of whether or not the city is eligible for the government declaration of natural disaster

for a drought event.

City history of requests (12 variables). This block provides a record of the city’s previous requests

for the government declaration of natural disaster for a drought event, including information

on the success or failure of the requests. The record gives us insight into the city’s decision-

making process, intentions and actions regarding the submission of a request for the government

declaration of natural disaster for a drought event.

City current request status (1 variable). This variable indicates whether or not the city submitted

a request for the government declaration of natural disaster for a drought event for year t during
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week u or before.

City’s vicinity description (13 variables). This block focuses on the city’s surroundings. It pro-

vides information about the neighboring cities’ claims and requests for the government declara-

tion of natural disaster for a drought event.

2.2 Presentation of the data, second pass

Description of a city. The description of a city notably consists of its population, of the (estimated)

number of houses located within the city’s limits (the estimation is based on census data: Insee, 2000),

of the city’s average altitude and area (source: IGN, 2018), house density (defined as the ratio of the

number of houses to the city’s area), and proportions of buildings built prior to 1949, between 1950

and 1974, between 1975 and 1989, and after 1989 (the proportions are computed based on data found

in Insee, 2000). In addition, the description of the city also includes the proportions of houses located

within the city’s limits that fall in each of the four clay-shrinkage-swelling hazard categories (as defined

by, and obtained from BRGM: MI, 2019); the city’s seismic zone (a four-category variable attributed

to each city by the French Code de l’environnement); the climatic zone of the city’s department (the

French State attributes to each department this five-category variable; a department is a level of

government between the administrative regions and communes).

Up to now, the variables that we listed are essentially static. The description of the city is

completed by the (estimated) insured sum corresponding to the houses located within its limits. The

estimations are based on data from Insee and portfolios data provided by CCR’s cedents. This last

piece of information depends on the year, but the variations from one year to another are limited.

To conclude, let us stress that the age of the housing stock is used here as a proxy for the house

building technology, an important factor to consider because some buildings are more vulnerable than

others (France Assureurs, 2022, page 28). Furthermore, accounting for clay concentration is mandatory

since it is the clay present in the soil that, by shrinking and swelling in dry and humid conditions,

creates instabilities and generates cracks in buildings.

Description of a city’s exposure to drought events. The description of a city’s exposure

to drought events builds upon the SWI in a manner presented almost comprehensively in (Ecoto

and Chambaz, 2022, Section 2.3.2). For self-containedness, we recall here the main elements of the

presentation.

Provided by Météo-France since 1959, the SWI data consist of time series of values (one value

every ten-day period) ranging between -3.33 (very dry soil) and 2.33 (very wet soil). There are as

many SWI time series as the number of 8 × 8 km2 squares used by Météo-France to partition the

French territory.

Note that for any year t and week u ∈ Ut∩J44, 52K (that is, before the end of year t), we necessarily

have access to fewer than 37 values of the SWI for year t. We use a prediction model to predict future

values of the SWI so that all the time series of SWI cover the whole year. As u increases, the predicted

values are replaced by the actual values provided by Météo-France, until the complete time series for

year t are all observed.

For every year t and every city, we then derive a city-specific SWI time series by taking the convex

average of the possibly completed SWI time series attached to the squares that overlap the city’s

area, the weights being proportional to the areas of the intersections. The description of a city’s
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exposure to drought events for year t builds upon the corresponding SWI time series. It notably

consists of the minimum value of the SWI time series, of the overall average of the time series, of

the averages restricted to the first, second, third and fourth quarters of year t respectively (that is,

January-March, April-June, July-September, October-December), and of the averages restricted to the

unions of the second and third quarters (April-September) or of the first, second and third quarters

(January-September). The description is complemented by measures of how exceptional the monthly

and quarterly average SWI (say SWI) are relative to historical SWI data. Specifically, for every

month (respectively, every quarter), we compute the empirical cumulative distribution function of the

monthly (respectively, quarterly) average SWI using all data for the city of interest from 1959 to 2009

and then evaluate that function at SWI. The smaller is the resulting proportion, the more pronounced

is the soil dryness and, conversely, the larger is the resulting proportion, the more pronounced is the

soil wetness. Moreover, the description includes an indicator of whether or not the city is eligible for

a government declaration of natural disaster for a drought event.

This description holds utmost relevance as it focuses on the critical role of soil humidity in causing

the shrinkage and swelling of clay, eventually leading to instabilities and the formation of cracks in

buildings.

Requests for the government declaration of natural disaster for a drought event. Being

the secretary of the Commission Interministérielle Catastrophe Naturelle, CCR has been having access,

since 1989, to the requests for the government declaration of natural disaster for a drought event as

they accrue. Formally, a city can submit a request for the government declaration of natural disaster

for a drought event for year t until the end of June of year (t+ 2). However, anticipating which cities

will submit a request for year t is only a necessity typically between the months of November of year

t and of September of year (t+ 1).

Description of a city’s request history. Given a year t and a week u, the (t, u)-specific description

of a city’s request history consists of t and u, of the overall number of French cities that submitted a

request for year t during week u or before, and of the ratio of the logarithm of that overall number

to u. In addition, the description includes the number of requests submitted by the city since 1990

(respectively, between years (t − 4) and t), the number of times the city obtained the government

declaration of natural disaster for a drought event since 1990 (respectively, between years (t− 4) and

t), and the ratio of the aforementioned number of requests submitted by the city since 1990 to the

number of years between 1990 and year t. Moreover, the description includes an indicator of whether

or not the city was denied the government declaration of natural disaster for a drought event on year

(t−1), and the numbers of denied requests between (t−2) and (t−1) and between (t−4) and (t−1).

This description holds significant relevance, primarily due to its ability to provide valuable insights

into the city’s inclination to submit a request for a government declaration of natural disaster for a

drought event. By examining the city’s historical pattern of submitting such requests since 1990 or

within the previous five years, regardless of their success, we can gather essential information about the

city’s familiarity with the administrative procedure. Additionally, this serves as a proxy for assessing

the city’s exposure to drought events.

Description of a city’s vicinity. Using the flux of requests, we compile a collection of variables

describing the vicinity of a city. The variables concern either the neighboring cities or, more broadly,

the cities in the same department. Given a year t and a week u, the (t, u)-specific collection notably
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consists of the following five numbers: the number of neighboring cities that requested the government

declaration of natural disaster for a drought event for year t during week u or before, the number of

neighboring cities (respectively, of cities in the same department) that submitted such a request

for the first time for year t, and the number of neighboring cities (respectively, of cities in the same

department) that submitted such a request for the first time between years (t−4) and t. The collection
is complemented by the ratios of the four last numbers to either the number of neighboring cities or

the number of cities in the same department. In addition, the collection also includes the number of

claims for year t made during week u or before by the neighboring cities (respectively, by the cities of

the same department), and the ratio of that number to the number of neighboring cities (respectively,

of cities in the same department).

To conclude, it is important to emphasize the potential relevance of these variables for several com-

pelling reasons. For instance, it is common for mayors of neighboring cities to exchange information,

particularly if their cities are part of the same federation of municipalities. This interconnectedness

means that if a city submits a request for a government declaration of natural disaster for a drought

event, then that raises the likelihood that neighboring cities will do the same, either in the same year

or later. Furthermore, it is worth noting that drought events are not necessarily confined to a single

city’s territory. Even if the mayors do not actively share information, the occurrence of a drought

event in one city that prompts the submission of a request for a government declaration of natural

disaster for a drought event increases the likelihood that a similar drought event has taken place in

nearby areas. Consequently, the likelihood of submitting a request for such a declaration also increases

in those affected vicinity areas.

2.3 The statistical challenge and some facts about the data

As elaborated in Section 2.1, each French city can contribute a data structure for a given year t and

a given week u (the integer u being the number of weeks starting from the first week of year t). It

is worth mentioning that the composition of the set of French cities undergoes slight changes from

one year to another. To address this variability, we define At as the set of cities for year t (with the

aforementioned convention t = 1, 2, 3 for years 2019, 2020 and 2021, respectively). Furthermore, we

introduce Ut as the comprehensive list of weeks during which CCR received the latest submissions of a

request for the government declaration of natural disaster for a drought event for year t, encompassing

a period of up to 85 weeks following the first week of year t.

We report that cardA1 = cardA2 = 34, 841 and cardA3 = 34, 836. Moreover,

U1 = {44, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 69, 75},

U2 = {48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 70, 71, 73, 75, 78, 81, 85},

U3 = {49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 71, 72, 73, 77, 78}.

For every year t = 1, 2, 3 and each week u ∈ Ut, we let

• ξα,t,u ∈ X ⊂ Rd be city α’s vector of covariates on week u relative to year t (for any city α ∈ At);

• ζα,t,u ∈ {0, 1} be the indicator equal to 1 if and only if (iff) city α submitted a request before or

during week u relative to year t (for any city α ∈ At);

• u− := max{ν ∈ Ut : ν < u} index the week before u in Ut (with convention u− = 0 if u = minUt),
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numbers of new requests 2019 2020 2021
(
∑

α∈At
(ζα,t,u − ζα,t,u−), u ∈ Ut) (t = 1) (t = 2) (t = 3)

minimum 104 41 10
1st quartile 138 75 32

median 245 166 47
3rd quartile 386 208 69
maximum 776 589 129

initial number (and proportion)
of requests (

∑
α∈At

ζα,t,minUt) 776 (2.2%) 589 (1.7%) 81 (0.2%)

overall number (and proportion)
of requests (

∑
α∈At

ζα,t,maxUt) 5142 (14.8%) 4958 (14.2%) 1169 (3.3%)

overall number (and proportion)
of requests (

∑
α∈At

ζα,t) 6240 (17.9%) 5335 (15.3%) 1696 (4.9%)

Table 1: Summary measures of the sets {
∑

α∈At
(ζα,t,u − ζα,t,u−) : u ∈ Ut} (t = 1, 2, 3), that is, of

the numbers of new requests for the government declaration of natural disaster for a drought event as
weeks go by, for years 2019, 2020 and 2021 respectively. In addition, the overall numbers

∑
α∈At

ζα,t
and proportions

∑
α∈At

ζα,t/ cardAt (t = 1, 2, 3) of requests for the government declaration of natural
disaster for a drought event relative to year t are also reported for years 2019, 2020 and 2021.

so that (ζα,t,u − ζα,t,u−) ∈ {0, 1} equals 1 iff city α submitted a request during week u relative

to year t (for any city α ∈ At, with convention ζα,t,0 = 0).

In addition we also define, for each year t = 1, 2, 3 and any city α ∈ At, ζα,t ∈ {0, 1}, the indicator

equal to 1 iff city α submitted a request relative to year t (possibly after the week maxUt). Note

that ζα,t ≥ maxu∈Ut ζα,t,u. In words, some cities may submit a request for the government declaration

of natural disaster for a drought event relative to year t beyond week maxUt. This fact is discussed

further in the next paragraph.

Table 1 reports the quartiles of the sets{∑
α∈At

(ζα,t,u − ζα,t,u−) : u ∈ Ut

}
, t = 1, 2, 3,

that is, the quartiles of the sets of the week-specific numbers of new requests for the government

declaration of natural disaster for a drought event relative to year t, for t = 1, 2, 3. Table 1 also reports

the initial numbers and proportions of requests for the government declaration of natural disaster for a

drought event relative to year t (that is,
∑

α∈At
ζα,t,minUt and

∑
α∈At

ζα,t,minUt/ cardAt), their overall

numbers and proportions at week maxUt (that is,
∑

α∈At
ζα,t,maxUt and

∑
α∈At

ζα,t,maxUt/ cardAt),

and the overall numbers and proportions of requests for the government declaration of natural disaster

for a drought event relative to year t (that is,
∑

α∈At
ζα,t and

∑
α∈At

ζα,t/ cardAt), for t = 1, 2, 3. We

emphasize that only 12.5% (776/6240), 11.0% (589/5335) and 4.8% (81/1696) of the requests for

the government declaration of natural disaster for a drought event relative to year t were already

submitted at week minUt, while only 82% (5142/6240), 92.9% (4958/5335) and 69.0% (1169/1696)

of the overall numbers of requests for the government declaration of natural disaster for a drought

event relative to year t were submitted at week maxUt, for t = 1, 2, 3. Moreover, between the first and

last weeks minUt and maxUt, the median numbers of newly submitted requests corresponded to 4.7%

(245/5142), 3.3% (166/4958) and 4% (47/1169) of the overall numbers of requests at week maxUt, for
t = 1, 2, 3.

Our ultimate objective is to achieve sequential forecasting of which cities will submit a request
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for the government declaration of natural disaster for a drought event leveraging past data and, in

particular, knowing which cities already did. Formally, our objective is the following: for every u ∈ U3,
leveraging past observations, that is

{(ξα,t,ν , ζα,t,ν , ζα,t) : t = 1, 2, α ∈ At, ν ∈ Ut st ζα,t,ν = 0 or (ζα,t,ν− , ζα,t,ν) = (0, 1)}

if u = minU3 and otherwise

{(ξα,t,ν , ζα,t,ν , ζα,t) : t = 1, 2, α ∈ At, ν ∈ Ut st ζα,t,ν = 0 or (ζα,t,ν− , ζα,t,ν) = (0, 1)}

∪{(ξα,3,ν , ζα,3,ν , 0) : α ∈ A3, ν ∈ U3, ν < u st ζα,3,ν = 0 or (ζα,3,ν− , ζα,3,ν) = (0, 1)}, (1)

we wish to predict ζα,3 using ξα,3,u for every α ∈ A3 such that ζα,3,u = 0. Of note, the set defined in

(1) when u = maxU3 consists of more than 2.05 million triplets.

The focus on “making sparse predictions” which is explicit in the title of the manuscript is justified

by the last row of Table 1: in 2019, 2020 and 2021, the proportions of cities that eventually submitted

a request for the government declaration of natural disaster for a drought event were respectively

17.9%, 15.3% and 4.9%. Finally, promoting 0-predictions as part of the control of the sparsity of a set

of predictions {ζ̂uα,3 : α ∈ A3 st ζα,3,u = 0} for a week u ∈ U3 holds merit in itself. Indeed, denoting by

ISα,3 the 2021 (estimated) insured sum corresponding to the houses located within the limits of any

city α ∈ A3 (one of the entries of ξα,3,u, see Section 2.2), the sum∑
α∈A3

ISα,3 1{ζα,3,u = 1}+
∑
α∈A3

ζ̂uα,3ISα,3 1{ζα,3,u = 0} (2)

may be used as an estimator of financial exposure due to the 2021 drought events. The contribution

to (2) of a single city α ∈ A3 with a large ISα,3 may be significant even if its prediction ζ̂uα,3 is small

but not 0. In addition, the contribution to (2) of many cities with moderate insured sums may be

significant even if their prediction are small but not 0.

3 A modicum of optimal transport theory

This section introduces the few tools from optimal transport theory that will be instrumental in

developing our novel procedure in the next section.

Fix arbitrarily two integers R,R′ ≥ 2. Let z := (z1, . . . , zR) and z′ := (z′1, . . . , z
′
R′) be two

collections of elements of a space Z. Let c : Z × Z → R+ map any couple (z, z′) to a nonnegative

number interpreted as the cost to move z to z′, a cost function. The cost function c induces the R×R′

matrix C(z, z′) ∈ RR×R′
+ whose (r, r′)-specific component (C(z, z′))r,r′ := c(zr, z

′
r′) is interpreted as

the cost to move zr to z′r′ (relative to c).

Let ΠR,R′ := {P ∈ RR×R′
+ : P 1R′ = 1

R 1R, P
⊤ 1R = 1

R′ 1R′} represent the joint laws on JRK× JR′K
with uniform marginal laws, where JdK := {1, . . . , d} for every integer d ≥ 1. For each P ∈ ΠR,R′ , let

E(P ) := −
∑

r∈JRK,r′∈JR′K

Pr,r′ logPr,r′
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denote the entropy of P . For every P ∈ ΠR,R′ and C ∈ RR×R′
+ , let

⟨P,C⟩ :=
∑

r∈JRK,r′∈JR′K

Pr,r′ × Cr,r′ .

When C = C(z, z′), ⟨P,C⟩ is interpreted as the (P,C)-specific cost to transport z onto z′.

For any γ > 0 and C ∈ RR×R′
+ , introduce

Wγ(C) := min
P∈ΠR,R′

[⟨P,C⟩ − γE(P )] . (3)

In particular, when C = C(z, z′), Wγ(C(z, z
′)) is the γ-regularized optimal cost to transport z onto

z′, abbreviated to “the γ-regularized OT cost”. Considering the γ-regularized OT cost Wγ(C(z, z
′))

instead of the regular OT cost W0(C(z, z
′)) (defined as in (3) with γ = 0) has two important mer-

its (Peyré and Cuturi, 2020, Chapters 3, 4, 9). First, RR×R′
+ ∋ C 7→ W0(C) ∈ R is not differentiable

whereas RR×R′
+ ∋ C 7→ Wγ(C) ∈ R is differentiable. Second, for any C ∈ RR×R′

+ , computing W0(C)

requires solving a costly linear program via network simplex methods whereas computing Wγ(C) can

be performed easily thanks to the so-called Sinkhorn algorithm (Cuturi, 2013).

Finally, we use the γ-regularized OT cost to define the γ-regularized Sinkhorn cost

Sγ(z, z′) :=Wγ(C(z, z
′))− 1

2

[
Wγ(C(z, z)) +Wγ(C(z

′, z′))
]

(the dependence of Sγ(z, z′) on the cost function c is hidden). By (Feydy et al., 2019b, Theorem 1),

Sγ(z, z′) ≥ Sγ(z, z) = 0. Moreover, we stress that Sγ(z, z′) can be computed with little additional

computational cost compared to Wγ(z, z
′).

4 Making sparse predictions

The procedure we are about to present is funded on two core ideas. Firstly, we aim to predict whether

a city will submit a request for the government declaration of natural disaster for a drought event

by employing an interpretable comparison of the city’s covariates with those of other cities whose

submission status may be already known. Secondly, we want to have a control on the sparsity of the

set of predictions and encourage 0-predictions, which correspond to cases where we predict that a city

will not submit a request.

4.1 Translation to an optimization problem

As elaborated in Section 2.3, our objective is to predict ζα,3 based on ξα,3,u for every α ∈ A3 such

that ζα,3,u = 0, using past observations (1), and so repeatedly for each u ∈ U3. In the rest of

the study, it will be convenient to denote generically {(xm, ym) : m ∈ JMK} ⊂ X × {0, 1} and

{(x′n, y′n) : n ∈ JNK} ⊂ X × {0, 1} two collections of couples for which it is desired to predict y′n based

on x′n, for every n ∈ JNK, using past observations (x1, y1), . . . , (xM , yM ). To do so, we propose to

solve the following optimization problem:

argmin
θ∈RN

{
Sγ(z, z′(θ)) + gτ (θ)

}
, (4)

where

9



• for all θ ∈ RN ,

z := ((x1, y1), . . . , (xM , yM )) , z′(θ) :=
(
(x′1, θ1), . . . , (x

′
N , θN )

)
;

• the cost function c : (X × R)× (X × R)→ R+ is given by

c
(
(x, y), (x′, θ)

)
:= dis(x, x′)2 + (y − θ)2 (5)

for a distance or dissimilarity dis on X ;

• gτ is a convex function given by either gτ (θ) := τ∥θ∥1+I{θ ∈ [0, 1]N}, with ∥θ∥1 :=
∑

n∈JNK |θn|,
or gτ (θ) := I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N}, where I{A} equals 0 if A is true and +∞ otherwise;

• γ, τ > 0 are some user-supplied constants.

A few comments are in order. Firstly, the argmin in (4) is over RN but could equivalently be over

[0, 1]N (even if the term I{θ ∈ [0, 1]N} was dropped from the definitions of gτ (θ)). We thus view θn

as the probability that the city described by x′n will submit a request of the government declaration

of natural disaster for a drought event.

Secondly, though hidden in the notation, the cost function c obviously plays a pivotal role. It

operationalizes the core idea of making predictions based on comparisons between the covariates of

different cities.

Thirdly, for both choices of gτ , the ℓ1-norm of θ can be seen as a measure of sparsity of θ, a

substitute for the integer card{n ∈ JNK : θn ̸= 0}. Incorporating the penalization term +gτ (θ)

operationalizes the core idea of promoting sparse solutions, aligning with our prior understanding

that only a limited number of cities will eventually submit a request of the government declaration of

natural disaster for a drought event (see Table 1 for the actual numbers and proportions of cities that

did in 2019, 2020 and 2021). Finally, the case where gτ (θ) = I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N} is quite

interesting because, as we will see, there is a natural way to select τ .

4.2 On solving (4)

Solving (4) is not straightforward, in part because the criterion to minimize is the sum of the

non-convex differentiable function f : θ 7→ Sγ(z, z′(θ)) (see Section A.1.2) and of the convex non-

differentiable function gτ . Luckily, we can rely on the so-called iPiano algorithm (Ochs et al., 2015)

which was developed precisely to deal with such optimization problems.

An instance of Forward-Backward Splitting (FBS) algorithm (Attouch et al., 2010), the iPiano

algorithm starts from an initial θ−1 = θ0 ∈]0, 1[N and the update scheme informally writes as (below,

α, β are positive constants)

θk+1 = Proxαgτ

(
θk − α∇f(θk) + β(θk − θk−1)

)
, (6)

where the proximal map Proxαgτ is defined by

Proxαgτ (t) := argmin
θ∈RN

{
1
2∥θ − t∥

2
2 + αgτ (θ)

}
. (7)
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On the one hand, if gτ (θ) = τ∥θ∥1 + I{θ ∈ [0, 1]N} then (7) is simply given by

(Proxαgτ (t))n = min{(|tn| − ατ)+ , 1}.

In particular, if t ∈ [0, 1]N then (Proxαgτ (t))n = (tn − ατ)+ for every n ∈ JNK. On the other hand,

if gτ (θ) = I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N} then the proximal map is the Euclidean projection onto

the ℓ1-ball centered at 0 and with radius τ . An efficient algorithm is available to implement this

projection (Duchi et al., 2008).

Moreover, following (Cuturi and Doucet, 2014, Section 4.3), we show in Section A.1.2 that the

gradient of f is given by

∇f(θ) = ∇Wγ(C(z, z
′(θ))− 1

2∇Wγ

(
C(z′(θ), z′(θ))

)
= 2( 1

N θ − P̂
⊤
θ y)− ( 2

N θ − (Q̂θ + Q̂⊤
θ )θ)

= −2P̂⊤
θ y + (Q̂θ + Q̂⊤

θ )θ (8)

with

P̂θ = argmin
P∈ΠM,N

{
⟨P,C(z, z′(θ))⟩ − γE(P )

}
, (9)

Q̂θ = argmin
P∈ΠN,N

{
⟨P,C(z′(θ), z′(θ))⟩ − γE(P )

}
. (10)

We check that the assumptions of (Ochs et al., 2015, Theorems 4.9 and 4.14) are met by proving

that f is C1-smooth with an L-Lipschitz gradient on dom gτ and that (f + gτ ) satisfies the Kurdyka-

Lojasiewicz property on its domain (the proof is presented in Section A). Therefore we can assert

that

• the sequence (θk)k≥0 converges to a critical point of θ 7→ f(θ) + gτ (θ);

• mink≤K ∥θk+1 − θk∥22 = O(K−1);

• if we set r(θ) := θ − Proxαgτ (θ − α∇f(θ)), then mink≤K ∥r(θk)∥22 = O(K−1).

The so-called proximal residual r(θ) is interesting because r(θ) = 0 means that the first-order op-

timality condition is met at θ. Indeed (denoting by ∂ℓ(x) either the subdifferential of the convex

function ℓ at x or the limiting-subdifferential of the proper lower semicontinuous function ℓ at x, see

Section A.2.1), r(θ) = 0 iff

θ = Proxαgτ (θ − θ∇f(θ)) iff 0 ∈ ∂
(
1
2∥θ − α∇f(θ)− ·∥

2
2 + αgτ

)
(θ)

iff 0 ∈ {θ − (θ − α∇f(θ))}+ α∂gτ (θ)

iff 0 ∈ {α∇f(θ)}+ α∂gτ (θ)

iff 0 ∈ ∂(f + gτ )(θ).

4.3 Implementation of the “OT-procedure”

Algorithm 1 solves (4) by using the iPiano algorithm and a mini-batch procedure to cope with sit-

uations where M and N are large. From now on, running the OT-procedure will mean applying

Algorithm 1.
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Algorithm 1 A mini-batch version of the inertial proximal algorithm for nonconvex optimization
(iPiano) tailored to solve (4). For any vector θ ∈ RN and subset N of JNK, we denote θ|N :=
(θn)n∈N ∈ RcardN .

Input: Data {(xm, ym) : m ∈ JMK}, {x′n : n ∈ JNK}; regularization parameter γ > 0, constraint
τ > 0; learning rate α > 0, momentum parameter β ≥ 0; batch size B ∈ N∗, number of iterations
T ∈ N∗

Output: Proposed optimizer θT

Sample θ−1 ∈ RN with independent components drawn from the uniform law on [0, 0.01]
Set θ−1 ← 0.5 + θ−1 and θ0 ← θ−1

Set t← 0
while t < T do

Independently, sample uniformly without replacementM⊂ JMK, N ⊂ JNK of cardinality B
Set z← ((xm, ym) : m ∈M) and z′(θt|N )← ((x′n, θ

t
n) : n ∈ N )

Compute F (θt|N ) = Sγ(z, z′(θt|N )) using Sinkhorn’s algorithm
Compute ∇F (θt|N ) using automatic differentiation
Set θt+1 ← θt and update θt+1|N ← θt+1|N − α∇F (θt|N ) + β(θt|N − θt−1|N )
Update θt+1 ← Proxαgτ (θ

t+1)
Update t← t+ 1

end while

We wrote a python/pytorch program that implements Algorithm 1. Available at https://

github.com/yen-nguyen-thi-thanh/OT_prediction/tree/main, the program hinges on the GeomLoss

package (Feydy et al., 2019a) which provides a very fast GPU implementation of the Sinkhorn algo-

rithm (Cuturi, 2013).

In Section 5, we conduct a simple simulation study in a simple context where X = R2 and both M

and N are relatively small. We compare the results obtained by aggregating the predictions acquired

from classification algorithms with those achieved through the OT-procedure. Notably, we report how

we select the pivotal cost function (5), gτ and the hyperparameters (γ, α, β) of Algorithm 1. Moreover,

we also introduce the hybrid procedure which synergistically combines and utilizes the two types of

predictions.

Section 6 is dedicated to the challenging task of forecasting the requests of the government declara-

tion of natural disaster for a drought event. This real-world application poses greater challenges than

the simulation study. Tangibly, these challenges arise because X ⊂ Rd is a relatively high-dimensional

space (d = 67) and both M and N are large. Intangibly, the intricacies lie in the mechanisms that

determine whether a request is submitted or not.

We compare the results obtained from a classification algorithm with those achieved through the

OT-procedure and the hybrid procedure. Regarding the OT-procedure, we notably rely on hyper-

band (Li et al., 2018), a bandit-based approach to hyperparameter optimization, to define the pivotal

cost function, and on a simple grid search to then fine-tune the hyperparameters (γ, α, β) of Algo-

rithm 1.

5 A simple simulation study, introducing the “hybrid procedure”

5.1 Simulated data

For any p ∈ (0, 1), let Pp be the law on R2 × {0, 1} such that

• if R and A are independently drawn from the χ2(1) law and from the uniform law on [0, 2π], if
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X = (R cos(A), R sin(A)) and if, conditionally on X, Y is drawn from the Bernoulli law with

parameter expit(cst(p) +R), then the joint law of (X,Y ) is Pp;

• the above constant cst(p) ∈ R is defined in such a way that EPp(Y ) = Pp(Y = 1) = p.

For instance, cst(15%) ≈ −3.13, cst(10%) ≈ −3.83 and cst(5%) ≈ −5.00. Note that, for any p ∈ (0, 1),

under Pp, the further X is from 0 the more likely it is that Y = 1.

We generate independently L = 30 data sets as follows. For each ℓ ∈ JLK, for every p ∈
{15%, 10%, 5%}, we independently sample n = 1000 independent copies of (X,Y ) under Pp. We

thus obtain M = 3n couples (xm,ℓ, ym,ℓ). Moreover, we also sample independently n = 1000 indepen-

dent copies of (X,Y ) from the law Pp with p = 5%. We thus obtain N = n couples (x′n,ℓ, y
′
n,ℓ). Our

objective is to recover, for each ℓ ∈ JLK, the vector (y′n,ℓ)n∈JNK based on {(xm,ℓ, ym,ℓ) : m ∈ JMK} and
on (x′n,ℓ)n∈JNK.

5.2 Fine-tuning the OT-procedure

Let us first describe how we fine-tune the OT-procedure in order to predict (y′n,ℓ)n∈JNK by solving (4)

with (xm, ym) = (xm,ℓ, ym,ℓ) and (x′n, y
′
n) = (x′n,ℓ, y

′
n,ℓ) for all m ∈ JMK and n ∈ JNK, for each ℓ ∈ JLK

in turn. On the one hand, we select the cost function c : (R2 × {0, 1})× (R2 × {0, 1})→ R+ (5) given

by

c((x1, x2, y), (x
′
1, x

′
2, y

′)) := 100×
∣∣∣∣√x21 + x22 −

√
(x′1)

2 + (x′2)
2

∣∣∣∣+ (y − y′)2.

Admittedly, this puts us in a favorable position because the true conditional probability of the event

Y = 1 given X only depends on
√
X2

1 +X2
2 . On the other hand, we choose the function gτ : θ 7→

I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N} for a τ whose choice is explained in Section 5.3. Furthermore, in view of

Algorithm 1, we set γ = 10−3, α = 10−3, β = 10−4, B = 128 and T = 2000.

5.3 Alternative, classification-based approaches

As an alternative approach, we also consider training an algorithm using {(xm,ℓ, ym,ℓ) : m ∈ JMK}
in order to learn to classify each x′n,ℓ individually (n ∈ JNK), for every ℓ ∈ JLK in turn. Instead of

selecting one algorithm, we rely on super learning to learn and train a meta-algorithm that builds

upon several algorithms to classify at least as well as (and sometimes better than) all the candidate

algorithms (van der Laan et al., 2007; Polley et al., 2021, 2011, and references therein). We rely

on four individual algorithms to learn the conditional probability of the event Y = 1 given X: an

algorithm that approximates it under the form of a constant function (in X); an algorithm that learns

which element of the working model {x 7→ expit(t0 + t1x1 + t2x2) : t ∈ R3} best approximates it (see

stats::glm); an algorithm that approximates it under the form of a tree, using the covariates X1 and

X2 (see rpart::rpart); an algorithm that approximates it under the form of a random forest, using

the covariates X1 and X2 (see ranger::ranger) – more details are given below.

In addition, we consider a second super learning procedure to learn the conditional probability

of the event Y = 1 given X by relying on: an algorithm that approximates it under the form of

a constant function (in X); an algorithm that learns which element of the working model {x 7→
expit(t0 + t1x1 + t2x2 + t3

√
x21 + x22) : t ∈ R4} best approximates it (see stats::glm); an algorithm

that approximates it under the form of a tree, using the covariates X1, X2 and
√
X2

1 +X2
2 = R

(see rpart::rpart); an algorithm that approximates it under the form of a random forest, using the
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covariates X1, X2 and R (see ranger::ranger). We expect the second super learner to perform better

than the first one because it can use the relevant covariate R.

We use the SuperLearner R package (R Core Team, 2022; Polley et al., 2021) to implement

and train the super learners. For both super learning procedures, we rely on V -fold cross valida-

tion with V = 10 folds and use the default hyperparameters specified in SuperLearner::SL.glm,

SuperLearner::SL.rpart (Therneau and Atkinson, 2019) and SuperLearner::SL.ranger (Wright

and Ziegler, 2017).

5.4 Results, introducing the “hybrid procedure”

For each ℓ ∈ JLK, we train the two super learners and denote by ŷ
′SL1
n,ℓ and ŷ

′SL2
n,ℓ the estimates of the

conditional probabilities that Y = 1 given X = x′n,ℓ that they output for each n ∈ JNK. Next, we

set τ = ∥ŷ
′SL2
n,ℓ ∥1 for the OT-procedure, run it, and denote by ŷ

′OT
n,ℓ the estimates of the conditional

probability that Y = 1 given X = x′n,ℓ for each n ∈ JNK that it yields.

Before discussing the results, we introduce a fourth procedure that we aptly refer to as the “hy-

brid procedure” because it builds upon the OT-procedure and the second super learning procedure.

Specifically, the hybrid procedure produces estimates of the above conditional probabilities which are

merely defined as the geometric means of the estimates output by the second super learner and yielded

by the OT-procedure. Hereafter, these estimates are denoted by ŷ
′HYB
n,ℓ := (ŷ

′SL2
n,ℓ × ŷ

′OT
n,ℓ )1/2 for every

n ∈ JNK.
Figure 1 provides insights into the predictions {ŷ′•

n,ℓ : n ∈ JNK} where the symbol • stands for

SL1,SL2,OT,HYB. On the one hand, the empirical cumulative distribution functions (ecdfs) plotted

in the left-hand side panel of Figure 1 reveal that the predictions ŷ
′OT
n,ℓ for (n, ℓ) ∈ JNK × JLK such

that yn,ℓ = 0 are often (17%) equal to 0 and are generally more concentrated around 0 than the other

predictions (the red ecdf dominates the others). In stark contrast, the predictions ŷ
′SL1
n,ℓ and ŷ

′SL2
n,ℓ for

the same couples (n, ℓ) are bounded away from 0 (being larger than 1.56% and 1.35%, respectively).

On the other hand, the ecdfs plotted in the right-hand side panel of Figure 1 reveal that the predictions

ŷ
′OT
n,ℓ for (n, ℓ) ∈ JNK × JLK such that yn,ℓ = 1 can be equal to 0 (2.7%) and are generally smaller

than the other predictions (the red ecdf dominates the others again). They also show that the second

super learner outperforms the first one in the sense that the maximum gap between their ecdfs is

large (a Kolmogorov-Smirnov viewpoint). Furthermore, by conducting a comparison across panels we

discern the notable and desirable trend wherein the predictions {ŷ′•
n,ℓ : n ∈ JNK, ℓ ∈ JLK st y′n,ℓ = y}

exhibit larger values when y = 1 as opposed to when y = 0. In conclusion, the hybrid predictions

seem to strike a fine balance between the predictions output by the second super learner and the

OT-procedure.

In order to complement this first analysis, we employ mean squared error (MSE) as a measure of

performance and compute, for each ℓ ∈ JLK,

MSE•
ℓ :=

1

N

∑
n∈JNK

(y′n,ℓ − ŷ
′•
n,ℓ)

2 (11)

where we substitute SL1, SL2,OT,HYB for the symbol •. The average and standard deviations of

these numbers are reported in Table 2. There is no stark differences in terms of standard deviations.

In terms of average, the estimates yielded by the OT-procedure outperform those obtained by super

learning. However, it is the hybrid procedure that emerges as the top performer. Figure 2 allows us

to go beyond comparisons in average. More that two thirds of the points are situated to the left of the
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Figure 1: Empirical cumulative distribution functions of the sets {ŷ′•
n,ℓ : ℓ ∈ JLK, n ∈ JNK st y′n,ℓ = y}

for y = 0 (left-hand side panel) and y = 1 (right-hand side panel), where the symbol • stands for
SL1,SL2,OT,HYB.
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Figure 2: Scatterplot of (MSEHYB
ℓ −MSE•

ℓ )/MSESL2
ℓ against (MSEOT

ℓ −MSESL2
ℓ )/MSESL2

ℓ (ℓ ∈ J30K)
where the symbol • stands for SL2 (blue) or OT (red). See also Table 2.

black vertical line, meaning that MSEOT
ℓ is smaller than MSESL2

ℓ for the corresponding ℓs. Likewise,

29 out of 30 blue points are situated below the horizontal black line, meaning that MSEHYB
ℓ is smaller

than MSESL2
ℓ for the corresponding ℓs, while 24 out of 30 red points are situated below the horizontal

black line, meaning that MSEHYB
ℓ is smaller than MSEOT

ℓ for the corresponding ℓs. In particular, the

average pattern unveiled by Table 2 remains consistent even before averaging: the hybrid procedure

exhibits superior performance, surpassing the OT-procedure, which in turn outperforms the second

super learning procedure.

MSE
procedure average std. deviation

SL1 0.0361 0.0046
SL2 0.0345 0.0048

HYB 0.0330 0.0045
OT 0.0337 0.0044

Table 2: Averages and standard deviations of the mean squared errors {MSE•
ℓ : ℓ ∈ JLK} (11) where

the symbol • stands for SL1,SL2,OT,HYB and L = 30. See also Figure 2. In each column, the
smallest value stands out in bold characters.
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6 Forecasting the requests of the government declaration of natural

disaster for a drought event in France

6.1 Fine-tuning the OT-procedure

Defining a cost function. To begin with, we address the challenge of defining a cost function

c : (X × R) × (X × R) → R+ (5). In view of the description of a generic vector of covariates x ∈ X
made in Section 2.1, let us rewrite x := (x[1], . . . , x[4]) where x[1], x[2], x[3] and x[4] respectively regroup

the covariates that collectively describe the corresponding city (x[1], 16 variables) and its exposure

to drought events (x[2], 25 variables), provide a history of its past requests of declaration of natural

disaster for a drought event, successful or not (x[3], 13 variables), and describe the city’s vicinity (x[4],

13 variables).

Let ξ̄1 and std1 be the vectors whose components are the component-specific mean and standard

deviation of {ξα,1,u : α ∈ A1, u ∈ U1} ⊂ X , that is, the set of covariates corresponding to year 2019,

and let ζ̄1 be the ∥ · ∥1-norm of {ζα,1 : α ∈ A1}, that is, the number of cities which made a request for

year 2019. For any generic vector of covariates x ∈ X , denote (using the entrywise division of vectors)

x̃ :=
x− ξ̄1
std1

. (12)

We select a cost function in the parametric set {ca : a ∈ R5
+} where, for any a ∈ R5

+ and x, x′ ∈ X ,
y, y′ ∈ R,

ca((x, y), (x
′, y′)) :=

4∑
k=1

ak∥x̃[k] − x̃′[k]∥
2
2 + a5(y − y′)2. (13)

To do so, we rely on Hyperband, an algorithm which reformulates hyperparameter optimization

as a pure-exploration, adaptive resource allocation problem addressing how to allocate resources among

randomly generated hyperparameter configurations (Li et al., 2018). Specifically, in view of (4), we

set γ = 10−2, gτ : θ 7→ I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N} with τ = ζ̄1 and, in view of (6) and Algorithm 1

in Section 4.3, we set

{(xm, ym) : m ∈ JMK} = {(ξα,1,75, ζα,1) : α ∈ A1 st ζα,1,75 = 0 or (ζα,1,75− , ζα,1,75) = (0, 1)}, (14)

{x′n : n ∈ JNK} = {ξα,2,85 : α ∈ A2 st ζα,2,85 = 0}, (15)

α = 10−3, β = 10−4 and B = 128. In words, setting (14) and (15) means that we exploit the data

associated with the last week relative to year 2019 (that is, the (75 − 52) = 23rd week of 2020) to

predict which cities will submit a request for the government declaration of natural disaster for a

drought event for year 2020 during the last week relative to year 2020 (that is, the (85 − 52) = 33rd

week of 2021). As for the random generation of configurations a = (a1, a2, a3, a4, a5) ∈ R5
+, we sample

independently a5 uniformly on [1/5, 10] and (a1, a2, a3, a4) from the law of 73 × exp(Z)/∥ exp(Z)∥1
with Z drawn in R4 from the centered Gaussian law with identity covariance matrix and where the

exponential is applied elementwise.

Moreover, in view of (Li et al., 2018, Algorithm 1, page 8), we set the maximum amount of re-

source that can be allocated to a single configuration (that is, the maximum number of iterations

in Algorithm 1 that can be allocated to a randomly generated candidate a ∈ R5
+) to R = 3000 and

the parameter controlling the proportion of configurations discarded in each round of Successive-

Halving to η = 10. For this specific couple (R, η), Hyperband consists of 4 independent “brackets”
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which we present in Table 3. In the bracket indexed by s = 0, n0,0 = 4 different a ∈ R5
+s (that is,

configurations) are independently randomly generated; then each is allocated r0,0 = 3000 iterations

in Algorithm 1 and associated with a score, a notion that we will clarify in the next paragraph. In

the brackets indexed by s ∈ {1, 2, 3}, ns,0 different a ∈ R5
+s are independently randomly generated;

then, each is allocated rs,0 iterations of Algorithm 1 and associated with a score. Next, recursively

for i = 1, . . . , s, each of the ns,i configurations with the smallest scores is allocated rs,i iterations of

Algorithm 1 and associated with a new score.

brackets
s = 3 s = 2 s = 1 s = 0

i n3,i r3,i n2,i r2,i n1,i r1,i n0,i r0,i

0 1000 3 134 30 20 300 4 3000
1 100 30 13 300 2 3000
2 10 300 1 3000
3 4 3000

Table 3: Resource allocations and numbers of configurations ((rs,i, ns,i), i ∈ {0, . . . , s}) in each bracket
s ∈ {0, 1, 2, 3} of the Hyperband procedure.

It only remains to clarify what are the aforementioned scores. For any configuration a randomly

generated and tested while running Hyperband, let us denote by ζ̂OT,85
α,2 (a) the predicted probability

output by Algorithm 1 that city α will eventually submit a request for the government declaration of

natural disaster for a drought event for year 2020 for every α ∈ A2 such that ζα,2,85 = 0. The score

associated with a is the MSE score

1

N

∑
α∈A2

(ζ̂OT,85
α,2 (a)− ζα,2)2 1{ζα,2,85 = 0}. (16)

This completes the description of the Hyperband algorithm that we run to select a cost function

of the form (13). Eventually, we select ca with a ≈ (16.75, 18.74, 30.57, 6.94, 0.34) (entries rounded to

two decimal places).

Relative importance of the four groups of covariates concerning the selected cost function.

To discuss the relative importance of each term in (13) with this choice of a, we sample uniformly

without replacement M = B = 128 elements x1, . . . , xm, . . . , xM from {ξα,1,44 : α ∈ A} ⊂ X and,

independently, N = B = 128 elements x′1, . . . , x
′
n, . . . , x

′
N from {ξα,2,48 : α ∈ A} (recall that minU1 =

44 and minU2 = 48). In view of (12), each xm yields x̃m,[1], x̃m,[2], x̃m,[3], x̃m,[4] and each x′n yields

x̃′n,[1], x̃
′
n,[2], x̃

′
n,[3], x̃

′
n,[4]. We then compute the quartiles of the sets {∥x̃m,[k] − x̃′n,[k]∥

2
2 : m ∈ JMK, n ∈

JNK} (k = 1, 2, 3, 4), which we report in Table 4.

Looking at Table 4 it seems that, for any x, x′ ∈ X viewed as two cities’ vectors of covariates,

the sum
∑4

k=1 ak∥x[k] − x′[k]∥
2
2 (the left-hand side sum in (13)) is mainly driven, in decreasing order

of importance, by x[2], x
′
[2] (the groups of 25 covariates describing the cities’ exposures to drought

events), x[3], x
′
[3] (the groups of 13 covariates describing the cities’ histories of requests of declaration

of natural disaster for a drought event), x[1], x
′
[1] (the groups of 16 covariates describing the cities) and

x[4], x
′
[4] (the groups of 13 covariates describing the cities’ vicinities). This is confirmed by Figure 3.

Figure 3 represents the cumulative distribution functions of the sets {cstm,n×ak∥x̃m,[k]− x̃′n,[k]∥
2
2 :
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m,n ∈ J128K} (k = 1, 2, 3, 4) where each cstm,n (any m,n ∈ J128K) is defined as

cstm,n :=

(
4∑

k=1

ak∥x̃m,[k] − x̃′n,[k]∥
2
2

)−1

.

The more a cumulative distribution function is shifted to the right the more a generic sum
∑4

k=1 ak∥x[k]−
x′[k]∥

2
2 (for any x, x′ ∈ X , the left-hand side sum in (13)) is driven by the corresponding groups of co-

variates. By this criterion, we recover the ordering suggested by Table 4.

covariates a its exposure to its request its
describing: city drought events history vicinity

(x̃[k]) (k = 1) (k = 2) (k = 3) (k = 4)

minimum 0.40 2.80 2.01 0.00
1st quartile 5.25 7.41 2.01 1.26

median 6.20 8.75 3.69 2.35
3rd quartile 7.25 10.22 6.20 3.83
maximum 15.94 20.78 15.80 20.18

a 16.75 18.74 30.57 6.94

Table 4: Quartiles of the sets {∥x̃m,[k]− x̃′n,[k]∥
2
2 : m,n ∈ J128KK} (k = 1, 2, 3, 4) where x̃1, . . . , x̃128 and

x̃′1, . . . , x̃
′
128 are derived from x1, . . . , x128 and x

′
1, . . . , x

′
128 which are independently sampled, uniformly

without replacement, from {ξα,1,44 : α ∈ A} and {ξα,2,48 : α ∈ A}. The last row recalls the four first
entries of a selected based on the Hyperband algorithm. See also Figure 3.

Setting the remaining hyperparameters. Once the cost function is defined, we carry out a grid

search to select values for γ (the regularization parameter in (4)), α and β (the learning rate and

momentum parameters in Algorithm 1), with

(γ, α, β) ∈ {10−2, 10−1, 1} × {10−3, 5× 10−3} × {10−4, 5× 10−4}.

For each possible triplet (γ, α, β), we run Algorithm 1 with gτ : θ 7→ I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N}
where τ = ζ̄1, (14), (15), B = 128 and collect the predicted probability ζ̂OT,85

α,2 (γ, α, β) that city α will

eventually submit a request for the government declaration of natural disaster for a drought event for

year 2020 for every α ∈ A2 such that ζα,2,85 = 0. The score associated with (γ, α, β) is the MSE score

defined as in (16) with ζ̂OT,85
α,2 (γ, α, β) substituted for ζ̂OT,85

α,2 (a). We select the triplet whose score is

the smallest: (γ, α, β) = (10−2, 10−3, 10−4).

6.2 Alternative, classification-based approaches

As in the simulation study presented in Section 5, we also develop an alternative approach to predict-

ing the requests of the government declaration of natural disaster for a drought event. We consider

four individual algorithms in order to learn to classify each x′n (n ∈ JNK) using {(xm, ym) : m ∈ JMK}.
From a probabilistic viewpoint, the first algorithm, CST, approximates the conditional probability

that Y = 1 given X under the form of a constant function (in X); the second algorithm, GLM, learns

which element in a linear working model best approximates it (see stats::glm); the third algorithm,

RANGER, approximates it under the form of a random forest (see ranger::ranger); the fourth al-

gorithm, KNN, uses the nearest labelled neighbors of any x to estimate the conditional probability

at X = x. More specifically, the linear working model at the core of GLM regresses Y linearly onto
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Figure 3: Cumulative distribution functions of the sets {cstm,n × ak∥x̃m,[k] − x̃′n,[k]∥
2
2 : m,n ∈ J128K}

(k = 1, 2, 3, 4) where x̃1, . . . , x̃128 and x̃′1, . . . , x̃
′
128 are derived from x1, . . . , x128 and x′1, . . . , x

′
128 which

are independently sampled, uniformly without replacement, from {ξα,1,44 : α ∈ A} and {ξα,2,48 :
α ∈ A}, where a is selected based on the Hyperband algorithm, and where each cstm,n is such
that cstm,n ×

∑4
k=1 ak∥x̃m,[k] − x̃′n,[k]∥

2
2 = 1 for all m,n ∈ J128K. The more a cumulative distribution

function is shifted to the right the more a generic sum
∑4

k=1 ak∥x[k] − x′[k]∥
2
2 (for any x, x′ ∈ X , the

left-hand side sum in (13)) is driven by the corresponding groups of covariates. See also Table 4.

each component of X, treating as categorical variables the covariates characterizing a city’s seismic

and climatic zones, and uses a logit link function. RANGER uses the Gini splitting rule while the

other hyperparameters are set to their default values specified in ranger::ranger (Wright and Ziegler,

2017). As for KNN, it relies on the python class sklearn.neighbors.KNeighborsClassifier (Buit-

inck et al., 2013) and uses k = 100 neighbors, uniform weights, the ball tree algorithm (Liu et al.,

2006, to handle the large learning data set) with a leaf size set to 30 and the weighted Euclidean

(x, x′) 7→ ∥x̃− x̃′∥2.
We adopt a sequential learning viewpoint. Firstly, we train the four algorithms using all the data

relative to year 2019, that is

{(xm, ym) : m ∈ JMK}

= {(ξα,1,u, ζα,1) : α ∈ A1, u ∈ U1 st ζα,1,u = 0 or (ζα,1,u− , ζα,1,u) = (0, 1)},

yielding four functions ζ̂•1 : X → [0, 1], where the symbol • stands for CST, GLM, RANGER or KNN.
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Secondly, for each algorithm in turn, we compute the predicted probabilities of submitting a request

relative to year 2020 for every week u ∈ U2 and all cities which did not submit a request yet by week u,

that is ζ̂•,uα,2 := ζ̂•1 (ξα,2,u) for every u ∈ U2 and α ∈ A2 such that ζα,2,u = 0. Thirdly, for each algorithm

in turn, we compute the overall MSE score∑
u∈U2

∑
α∈A2

(ζ̂•,uα,2 − ζα,2)2 1{ζα,2,u = 0}∑
u∈U2

∑
α∈A2

1{ζα,2,u = 0}
.

The top-performing algorithm, GLM, is defined as the one with the smallest overall MSE score among

all. We refer to it as the discrete super learner SL for year 2021 (we comment on the word “discrete”

in the next paragraph). Lastly we retrain GLM, leveraging all data relative to years 2019 and 2020,

that is

{(xm, ym) : m ∈ JMK}

= {(ξα,t,u, ζα,t) : t = 1, 2, α ∈ At, u ∈ Ut st ζα,t,u = 0 or (ζα,t,u− , ζα,t,u) = (0, 1)},

yielding the function ζ̂SL1:2 : X → [0, 1].

Returning to the word “discrete” mentioned in the previous paragraph, it suggests that our focus

lies in determining the top-performing algorithm rather than seeking the best combination of all the

algorithms. This approach is justified due to our limited hindsight, relying solely on two years of

data. To illustrate, consider a future scenario where we aim to forecast the requests of the government

declaration of natural disaster for a drought event for year t beyond 2021 based on data from years

2019 to (t − 1). The sequential learning procedure outlined above would naturally extend, opening

the possibility that another algorithm may outperform GLM as the best-performing algorithm.

6.3 Results

We compute the predicted probabilities of submitting a request relative to year 2021 for every week

u ∈ U3 and all cities which did not submit a request yet by week u, that is ζ̂SL,uα,3 := ζ̂SL1:2(ξα,3,u) for every

u ∈ U3 and α ∈ A3 such that ζα,3,u = 0. Moreover, we run Algorithm 1 sequentially for each u ∈ U3,
using the cost function (13) with a ≈ (16.75, 18.74, 30.57, 6.94, 0.34), (γ, α, β) = (10−2, 10−3, 10−4),

B = 128, T = 30, 000 and gτ : θ 7→ I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N} with τ = ∥(ζ̂SL,uα,3 )α∈A3 st ζα,3,u=0∥1.
This yields the predictions ζ̂OT,u

α,3 for every u ∈ U3 and α ∈ A3 such that ζα,3,u = 0. Finally, we

compute the predictions according to the hybrid procedure, that is, ζ̂HYB,u
α,3 := (ζ̂SL,uα,3 × ζ̂

OT,u
α,3 )1/2 for

every u ∈ U3 and α ∈ A3 such that ζα,3,u = 0. Of note, it necessarily holds by design that

∥(ζ̂HYB,u
α,3 )α∈A3 st ζα,3,u=0∥1 ≤ ∥(ζ̂SL,uα,3 )α∈A3 st ζα,3,u=0∥1 (17)

for every u ∈ U3. Indeed, for any θ, θ′ ∈ RN
+ such that ∥θ∥1 ≥ ∥θ′∥1, the Cauchy-Schwarz inequality

yields

∥([θnθ′n]1/2)n∈JNK∥1 ≤ (∥θ∥1 × ∥θ′∥1)1/2 ≤ ∥θ∥1.

Figure 4 shows on maps of France the probabilities {ζ̂HYB,u
α,3 : α ∈ A3 st ζα,3,u = 0} predicted by

the hybrid procedure of submitting a request relative to year 2021 for weeks u = 49 and u = 78. It

is worth emphasizing that there are no predicted probabilities within the range of 50% to 90% during

week 78.

Figure 5 represents the ecdfs of the predicted probabilities {ζ̂•,uα,3 : α ∈ A3 st ζα,3,u = 0} of sub-
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Figure 4: The left-hand side maps show the probabilities predicted by the hybrid procedure of sub-
mitting a request relative to year 2021 for weeks 49 (top) and 78 (bottom). The right-hand side maps
show the cities that did submit a request eventually. In both left-hand side maps, the cities for which
it was already known that they submitted a request are colored in blue. It is worth emphasizing that
there are no predicted probabilities within the range of 50% to 90% during week 78.
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mitting a request for the government declaration of natural disaster for a drought event for year 2021

output by the super learner, the OT-procedure and the hybrid procedure for a selection of weeks u:

the 49th week of 2021 (December 6th to 12th, u = minU3 = 49), the 7th, 17th and 26th weeks

of 2022 (February 15th to 21st, u = 59; April 26th to May 2nd, u = 69; June 28th to July 4th,

u = maxU3 = 78). For each week, the right-hand side and left-hand side panels respectively focus on

cities that will and that will not submit a request eventually. As expected, the curves in the left-hand

side panels dominate their counterparts in the right-hand side panels, illustrating the fact that the

predicted probabilities are smaller (in law) for cities that will not submit a request eventually than for

cities that will. The curves mainly differ around the origin. The left-hand side panels clearly showcase

the ability of the OT-procedure to rightly assign a 0 probability to submit a request to cities that, in-

deed, will not submit one eventually: this concerns 49.5%, 51.2%, 50.7% and 56.4% of them for weeks

49, 59, 69 and 78 respectively. In contrast, the quantiles of order 49.5%, 51.2%, 50.7% and 56.4% of the

super learner’s predictions for these cities are 1.5%, 1.3%, 0.8% and 0.5% respectively. This notable

ability comes at a price, as illustrated by the right-hand side panels showing that a 0-probability to

submit a request is wrongly assigned to a fraction of the cities that, in fact, will submit one eventu-

ally: this concerns 4.3%, 7.6%, 6.7% and 14.6% of them for weeks 49, 59, 69 and 78 respectively. In

comparison, the quantiles of order 4.3%, 7.6%, 6.7% and 14.6% of the super learner’s predictions for

these cities are 1.7%, 1.9%, 0.9% and 0.9% respectively. Figure 6 complements Figure 5 by providing

a ROC (Receiver Operating Characteristic) perspective. The figure clearly demonstrates that both

the OT- and hybrid procedures yield predicted probabilities predominantly below 50%. Furthermore,

zooming into the left part of the graphs, specifically examining false positive rates (FPR) between 0

and 50%, and concentrating on the 49th, 59th and 68th weeks, the figure reveals a slight superiority

of the hybrid procedure, in the sense that its curve consistently appears atop the others.

Figure 7 compares the predicted probabilities of submitting a request for the government dec-

laration of natural disaster for a drought event for year 2021 output by the super learner and by

the OT-procedure during the 49th week of 2021 (u = minU3 = 49) and the 26th week of 2022

(u = maxU3 = 78). For each week, the right-hand side and left-hand side panels respectively focus

on cities that will and that will not submit a request eventually. Points lying above the first bisecting

line correspond to cities α ∈ A3 for which ζ̂OT,u
α,3 > ζ̂SL,uα,3 . Colored points represent quantiles of order

10%, 50% and 90%. Two patterns emerge. On the one hand, for u = 48 and u = 79 both, when

concentrating on cities that will not submit a request eventually: (a) the 10%-quantile and median

of {ζ̂OT,u
α,3 : α ∈ A3 st ζα,3,u = 0} are smaller than those of {ζ̂SL,uα,3 : α ∈ A3 st ζα,3,u = 0} while (b)

the 90%-quantile of the former set is larger than that of the latter. Finding (a) is in favor of the

OT-procedure while finding (b) is in favor of the super learner. On the other hand, for u = 48 and

u = 79 both, when centering on cities that will submit a request eventually: (c) the median of {ζ̂OT,u
α,3 :

α ∈ A3 st (ζα,3,u, ζα,3,u−) = (1, 0)} is larger than that of {ζ̂SL,uα,3 : α ∈ A3 st (ζα,3,u, ζα,3,u−) = (1, 0)}
while (d) the 10%- and 90%-quantiles of the former set are smaller than that of the latter. Finding

(c) is in favor of the OT-procedure while finding (d) is in favor of the super learner.

Figure 8 pays special attention to the medians, representing those of the predicted probabilities of

submitting a request for the government declaration of natural disaster for a drought event for year

2021 as output by the super learner, the OT-procedure and the hybrid procedure as weeks go by,

its right-hand side and left-hand side panels focusing on cities that will and that will not submit a

request eventually. A clear pattern emerges: when centering on cities that will not submit a request

eventually, the week-specific median of the predictions made by the super learner is consistently larger
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Figure 5: This plot shows, when week u is one of the 49th week of 2021 (December 6th to 12th), the
(59 − 52) = 7th, (69 − 52) = 17th and (78 − 52) = 26th weeks of 2022 (February 15th to 21st, April
26th to May 2nd, June 28th to July 4th), the empirical cumulative distribution functions (ecdfs) of
the predicted probabilities of submitting a request made by procedures SL, OT and HYB separately
for those cities that will not eventually submit a request for the government declaration of natural
disaster for a drought event for year 2021 (that is, the ecdfs of {ζ̂•,uα,3 : α ∈ A3 st ζα,3 = 0}, left-hand
side panels) and for those that will (that is, the ecdfs of {ζ̂•,uα,3 : α ∈ A3 st ζα,3 = 1}, right-hand side
panels). See also Figure 6 for a ROC perspective and Figure 8 for a focus on medians.

than that of the predictions made by the hybrid procedure which, in turn, is consistently larger than

that of the predictions made by the OT-procedure. Conversely, when concentrating on cities that will

submit a request eventually, the week-specific median of the predictions made by the super learner

is consistently smaller than that of the predictions made by the hybird procedure which, in turn, is

consistently smaller than that of the predictions made by the OT-procedure. From this perspective,

the OT-procedure outperforms the hybrid procedure which, in turn, performs better than the super

learner.

To conclude, we report in Table 5 the week-specific MSE scores∑
α∈A3

(ζ̂•,uα,3 − ζα,3)2 1{ζα,3,u = 0}∑
α∈A3

1{ζα,3,u = 0}
(18)

(all u ∈ U3, the symbol • standing for SL, OT and HYB). The key insight from Table 5 is that the

hybrid procedure exhibits superior performance, by consistently outperforming both the OT-procedure
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Figure 6: This plot shows, when week u is one of the 49th week of 2021 (December 6th to 12th),
the (59 − 52) = 7th, (69 − 52) = 17th and (78 − 52) = 26th weeks of 2022 (February 15th to 21st,
April 26th to May 2nd, June 28th to July 4th), ROC-like curves for the predicted probabilities of
submitting a request made by procedures SL, OT and HYB. FPR and TPR stand for False Positive
Rate and True Positive Rate, respectively. See also Figure 5 for a focus on cities that will or that will
not eventually submit a request for the government declaration of natural disaster and Figure 8 for a
focus on medians.
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Figure 7: This plot shows, for week u equal either to the 49th week of 2021 (December 6th to December
12th) or the (78 − 52) = 26th week of 2022 (June 27th to July 3rd), the predicted probabilities of
submitting a request made by procedures SL (x-axis) and OT (y-axis) separately for those cities that
will not eventually submit a request for the government declaration of natural disaster for a drought
event for year 2021 (that is, {(ζ̂SL,uα,3 , ζ̂OT,u

α,3 ) : α ∈ At st ζα,3,u = 0, ζα,3 = 0}, left-hand side panels) and

for those that will (that is, {(ζ̂SL,uα,3 , ζ̂OT,u
α,3 ) : α ∈ At st ζα,3,u = 0, ζα,3 = 1}, right-hand side panels). In

addition, three colored points represent in each panel the coordinate-specific quantiles of order 10%,
50% and 90%.
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Figure 8: This plot shows, as week u goes from the 49th week of 2021 (December 6th to December
12th) to the (78−52) = 26th week of 2022 (June 27th to July 3rd), the evolutions of the medians of the
predicted probabilities of submitting a request made by procedures SL, OT and HYB separately for
those cities that will not eventually submit a request for the government declaration of natural disaster
for a drought event for year 2021 (that is, of u 7→ median{ζ̂•,uα,3 : α ∈ At st ζα,3,u = 0, ζα,3 = 0}, left-
hand side panel) and for those that will (that is, of u 7→ median{ζ̂•,uα,3 : α ∈ At st ζα,3,u = 0, ζα,3 = 1},
right-hand side panel). See also Figure 5 for more comprehensive descriptions through empirical
cumulative distribution functions.
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MSE
week u SL OT HYB

49 0.0341 0.0341 0.0333
52 0.0336 0.0333 0.0327
53 0.0332 0.0331 0.0324
54 0.0317 0.0321 0.0309
55 0.0307 0.0311 0.0299
56 0.0294 0.0302 0.0288
57 0.0281 0.0290 0.0275
58 0.0268 0.0280 0.0264
59 0.0258 0.0271 0.0255
60 0.0248 0.0261 0.0245
61 0.0242 0.0248 0.0237

MSE
week u SL OT HYB

62 0.0236 0.0241 0.0231
64 0.0223 0.0228 0.0219
65 0.0216 0.0221 0.0212
66 0.0208 0.0214 0.0205
67 0.0202 0.0203 0.0198
68 0.0195 0.0195 0.0190
71 0.0179 0.0180 0.0176
72 0.0177 0.0177 0.0174
73 0.0168 0.0168 0.0165
77 0.0156 0.0156 0.0154
78 0.0150 0.0150 0.0148

Table 5: Evolution of MSE u 7→ n−1
3,u

∑
α∈A3

(ζ̂•,uα,3−ζα,3)2 1{ζα,3,u = 0} where n3,u :=
∑

α∈A3
1{ζα,3,u =

0} is the number of cities which have not submitted such a request yet at week u ∈ U3 and the symbol
• stands for SL, OT, HYB. In each row, the smallest value stand out in bold characters. See also
Figure 9.

and the super learner. Interestingly we also observe that, for every procedure, (18) decreases as

u ∈ U3 increases, suggesting that the challenge of forecasting which cities will eventually request the

government declaration of natural disaster for a drought event becomes progressively less challenging

as the weeks go by. The evolution of (18) for u ∈ U3 is represented in Figure 9, with those of the

stock of requests already submitted (u 7→
∑

α∈A3
ζα,3,u, necessarily increasing) and of the sum of the

predicted probabilities that the cities which have not yet submitted such a request will eventually do,

according to the hybrid procedure (u 7→
∑

α∈U3
ζ̂HYB,u
α,3 1{ζα,3,u = 0}). The quartiles and range of∑

α∈A3

ζα,3,u +
∑
α∈U3

ζ̂HYB,u
α,3 1{ζα,3,u = 0} : u ∈ U3

 (19)

(the heights of the bars in Figure 9) are 1572 (minimum), 1636 (first quartile), 1731 (median), 1853

(third quartile), 1908 (maximum), 336 (range) while its mean is 1740. In comparison, the quartiles

and range of ∑
α∈A3

ζα,3,u +
∑
α∈U3

ζ̂SL,uα,3 1{ζα,3,u = 0} : u ∈ U3

 (20)

are 1662 (minimum), 1776 (first quartile), 1881 (median), 2051 (third quartile), 2133 (maximum), 471

(range), while its mean is 1905 – note that we could have substituted OT for SL in the above display.

In view of (17), it was guaranteed that each of the quartile and mean associated to (19) would be

smaller then its counterpart associated to (20). Both convex hulls of (19) and (20) contain the true

value
∑

α∈A3
ζα,3 = 1696, the former being more concentrated around it than the latter. This last

observation stems from a comparison of the ranges of the sets and can be further substantiated by

comparing the interquartile intervals, with that of (19) encompassing the true value, unlike that of

(20).
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Figure 9: This plot shows, as week u goes from the 49th week of 2021 (December 6th to 12th)
to the (78 − 52) = 26th week of 2022 (June 27th to July 3rd), the evolutions of the cardinality
of the stock of requests already submitted for the government declaration of natural disaster for a
drought event for year 2021 (that is, of u 7→

∑
α∈At

ζα,3,u, in blue) and of the sum of the predicted
probabilities that the cities which have not yet submitted such a request will eventually do (that
is, of u 7→

∑
α∈At

ζ̂HYB,u
α,3 1{ζα,3,u = 0}, in red). The actual eventual number of such requests (that

is,
∑

α∈At
ζα,3, which equals 1696) is also represented (horizontal dashed line). In addition, the

plot shows the evolution of MSE (that is, of u 7→ n−1
3,u

∑
α∈A3

(ζ̂HYB,u
α,3 − ζα,3)

2 1{ζα,3,u = 0} where
n3,u :=

∑
α∈A3

1{ζα,3,u = 0} is the number of cities which have not submitted such a request yet at
week u, in yellow). See also Table 5.
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6.4 On the importance of the variables used to make predictions

In this last subsection, we consider the influence that each covariate ξα,3,u,s (note the additional

subscript s, indicating the sth covariate) in a generic ξα,3,u has on the prediction ζ̂HYB,u
α,3 that city

α ∈ A3 such that ζα,3,u = 0 will eventually submit a request for the government declaration of natural

disaster for a drought event relative to year 2021 based on data available at week u ∈ U3. The question
pertains to the definition and estimation of variable importance measures. The literature on this topic

is rich, with notable contributions from studies such as (van der Laan, 2006; Hubbard et al., 2016;

Williamson et al., 2021) on the one hand and (Lundberg and Lee, 2017, and references therein) on

the other hand, offering valuable insights on how to tackle this question. However, applying these

existing approaches to our specific scenario is impractical, mainly due to the interdependence of the

data-structures specific to each (α, u) ∈ A3 × U3 and the fact that we are dealing with a relatively

large number of covariates. As a result, we propose a simple approach tailored to the circumstances

of the present situation. The approach is very similar to the one developed in (Ecoto and Chambaz,

2022, Section 4.4).

Set arbitrarily s ∈ J67K and u ∈ U3.

• If s is such that the covariate ξα,3,u,s corresponds to the overall number of French cities that

submitted a request for year 2021 during week u or before, or to the ratio of the logarithm of

that overall number to u (two elements of the description of a city’s request history), then we

cannot quantify the covariate’s importance because all cities α ∈ U3 share a common value.

• If s is such that ξα,3,u,s (α ∈ A3 such that ζα,3,u = 0) take v values with 2 ≤ v ≤ 5, then we let

ρs be the correlation ratio computed based on {(ζ̂HYB,u
α,3 , ξα,3,u,s) : α ∈ A3 st ζα,3,u = 0}:

ρus :=

( ∑v
ν=1 nν(ζ̄ν − ζ̄)2∑

α∈A3
(ζ̂HYB,u

α,3 − ζ̄)2 1{ζα,3,u = 0}

)1/2

where nν is the number of ξα,3,u,s equal to ν, ζ̄ν is the average of the ζ̂HYB,u
α,3 s such that ξα,3,u,s = ν

and ζ̄ is the average of all ζ̂HYB,u
α,3 s.

• Otherwise, we treat the covariate ξα,3,u,s (α ∈ A3 such that ζα,3,u = 0) as a continuous variable

and let ρus be the absolute value of the Spearman rank correlation coefficient (Hollander and

Wolfe, 1999, Section 8.5) computed based on {(ζ̂HYB,u
α,3 , ξα,3,u,s) : α ∈ A3 st ζα,3,u = 0}.

Note that, in the second case, we could have defined ρus as Wilcoxon test’s statistic (case v = 2) or

the Kruskal-Wallis test’s statistics (case 3 ≤ v ≤ 5) (see Hollander and Wolfe, 1999, Sections 3.1 and

6.1). By guaranteeing that all ρus s naturally lie in [0, 1], the present choice eases comparisons.

In all cases, the magnitude of ρus directly reflects the strength of the association between the

sth covariate and the predictions made at week u ∈ U3. We resort to permutation tests to assess

significance levels, with one million independent permutations drawn uniformly in each of the above

cases. The maximum value obtained by permutation equals 3.16%.

Figure 10 shows the evolutions of u 7→ ρus for every eligible s ∈ J67K, where the covariates are

grouped based on the type of information they contribute. In each panel, values above the black

horizontal lines (y-intercept at (0, 3.16%)) are considered highly significant according to the permu-

tation tests. From this perspective, most covariates play an effective role in the predictions. For

the covariates related to a city’s description, its exposure to drought events, or its request history,
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Figure 10: This plot shows, as week u goes from the 49th week of 2021 (December 6th to 12th) to
the (78 − 52) = 26th week of 2022 (June 27th to July 3rd), the evolutions of the importance of each
variable used to make predictions, as defined in Section 6.4. For every eligible s ∈ J67K, the larger is
ρus , the stronger is the association between the sth covariate ξα,3,u,s and the prediction ζ̂HYB,u

α,3 across
α ∈ A3 such that ζα,3,u = 0. Values above the black horizontal lines are deemed highly significant
based on permutation tests. See also Table 6.

the curves appear relatively flat, indicating a steady strength of association with the predictions over

time. In contrast, for the covariates describing a city’s vicinity, the curves lying above the horizon-

tal line show an increasing trend before levelling off. This suggests that the strength of association

for each corresponding covariate gradually increases then stabilizes over time. In Table 6, we report

the five variables which, in each group of covariates, feature the largest average variable importance

(
∑

u∈U3
ρus/ cardU3).

7 Discussion

This study is motivated by the challenging task of forecasting which cities in France will submit a

request for the government declaration of natural disaster for a drought event. While the problem

can be addressed as a classification task using standard classification algorithms, we take a slightly

different perspective and introduce an alternative procedure based on optimal transport theory (Peyré

and Cuturi, 2020) and iPiano (Ochs et al., 2015), an inertial proximal algorithm for nonconvex opti-

mization.
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description of variable avg. importance

a city proportion of houses∗ in the 2nd clay-
shrinkage-swelling hazard category

0.392

climatic zone 0.275
insured sum 0.259
number of houses∗ 0.244
population 0.239

its exposure to average SWI over Q1, Q2, Q3† 0.436
drought events overall average SWI 0.420

average SWI over Q2, Q3 0.412
minimum SWI over Q2 0.412
global minimum SWI 0.402

its request his-
tory

number of requests submitted during the
5 previous years

0.757

number of requests submitted since 1990 0.744
number of requests denied during the 2
previous years

0.715

number of requests granted during the 2
previous years

0.708

indicator of request denied the previous
year

0.654

its vicinity number of claims in the same department 0.423
proportion of cities in the same depart-
ment that submitted a request for year
2023 before week u

0.416

proportion of cities in the same depart-
ment that submitted a request for the first
time during the 5 previous years

0.392

ratio of the number of claims in the same
department to the number of cities in the
department

0.308

number of neighboring cities that submit-
ted a request for year 2023 before week u

0.305

∗ within the city’s limits
† Q1, Q2, Q3, Q4 are the 1st to 4th quarters

Table 6: The five variables used to make predictions with the highest average importance
(
∑

u∈U3
ρus/ cardU3, see definition in Section 6.4) in each group of covariates. For every eligible s ∈ J67K,

the larger is ρus , the stronger is the association between the sth covariate ξα,3,u,s and the prediction

ζ̂HYB,u
α,3 across α ∈ A3 such that ζα,3,u = 0. See also Figure 10.
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We build the OT-procedure upon two core ideas. Firstly, we aim to predict whether a city will

submit a request by making an interpretable comparison of the city’s covariates with those of other

cities whose submission status may be already known. Secondly, recognizing that relatively few cities

will submit requests, we seek to control the sparsity of our predictions and encourage 0-predictions,

indicating cases where we predict that a city will not submit a request. Additionally, we develop a

hybrid procedure that synergistically combines and utilizes both types of predictions, derived from

classification algorithms and the OT-procedure.

We develop and program an algorithm that hinges on iPiano and a mini-batch procedure to cope

with large data sets, see Algorithm 1. The convergence of the iPiano algorithm is established, using the

notion of o-minimal structures from the field of tame geometry (Wilkie, 1996) to prove that a critical

function related to (4) satisfies the Kurdyka-Lojasiewicz property (Attouch et al., 2010). Coded in

python/pytorch, relying on the GeomLoss package (Feydy et al., 2019b) for its fast implementation of

the Sinkhorn algorithm, the program is available at https://github.com/yen-nguyen-thi-thanh/

OT_prediction/tree/main.

We conduct a simulation study to illustrate the use of the OT-procedure and of the hybrid pro-

cedure in a simple context, laying the groundwork for the real-world application. The latter poses

greater challenges than the former. Tangibly, these challenges arise because X ⊂ Rd is a relatively

high-dimensional space (d = 67) and because the sample sizes are large. Intangibly, the intricacies lie

in the mechanisms that determine whether a request is submitted or not.

We rely on the Hyperband algorithm (Li et al., 2018) and on a simple grid search to define a

relevant cost function and fine-tune the hyperparameters of Algorithm 1. An analysis of the cost

function reveals that the more relevant groups of covariates are, in decreasing order of importance,

the covariates related to a city’s exposure to drought events, its request history, its description and

its vicinity.

For a total of 22 weeks spanning from the 49th week of 2021 (December 6th to 12th) to the

26th week of 2022 (June 28th to July 4th), intermittently, we predict whether or not the cities that

have not yet submitted a request for the year 2021 will eventually do so. We employ the best of

four standard classification algorithms, the OT-procedure and the hybrid procedure to make these

predictions. Overall, the hybrid procedure yields enhanced forecasting accuracy, in particular while

focusing on the estimation of the eventual number of requests.

For confidentiality reasons, we cannot compare our predictions to the predictions obtained by

using the algorithm currently deployed at CCR. However, we were given the authorization to report

the following fact. The average across the weeks of the MSE shown in column HYB of Table 5 is more

than 20% smaller than the MSE of the predictions made by the algorithm currently deployed at CCR.

A simple analysis of the covariate’s importance sheds light on the strength of association between

each covariate and the predictions. It suggests that most covariates play an effective role in the

predictions.

We conclude by listing potential avenues for future research. Firstly, the procedures discussed in

the study may benefit from the use of an enhanced version of the city-level SWI. By considering the

variation in the nature of the soil across different regions of France, this refined version could contribute

to making more accurate predictions. Secondly, we could use cross-fitting to set the value of τ prior to

running Algorithm 1 (see the first paragraph of Section 6.3). Thirdly, to make the hybrid procedure

more acceptable to the experts at CCR, it would be interesting to complement the analysis of the

covariates’ importance. This additional analysis could offer further insights and explanations regarding
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the predictions. Fourthly, the current predictions obtained from the investigated procedures lack a

measure of confidence. Developping a methodology to address this issue would be highly valuable. In

conclusion, we acknowledge that the last two questions raised are very challenging, notably due to the

complex interdependence within the data set.
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A Appendix: checking the iPiano assumptions

The iPiano assumptions consist in

1. f being C1-smooth with a Lipschitz continuous gradient on dom gτ , see Section A.1;

2. for any δ > 0, Hδ : RN × RN → R given by Hδ(θ, θ
′) := f(θ′) + gτ (θ

′) + δ∥θ − θ′∥22 having the

Kurdyka-Lojasiewicz property at a cluster point (θ⋆, θ⋆) of the sequence (θk)k≥1, see Section A.2.

A.1 The function f is C1-smooth and its gradient is Lipschitz continuous on

dom gτ

A.1.1 Preliminaries

On matrix norms. For self-containedness, let us recall several definitions and results concerning

matrix norms. For any matrix A ∈ Rd×d′ , the Frobenius and maximum norms of A are given by

∥A∥F :=
(∑

i∈JdK,j∈Jd′KA
2
i,j

)1/2
and ∥A∥max := max{|Ai,j | : i ∈ JdK, j ∈ Jd′K}. For any vector x ∈ Rd,

the variation seminorm of x is defined as ∥x∥var := max{xi : i ∈ JdK} −min{xi : i ∈ JdK}. We will use

the following classical inequalities and equality:

∀A ∈ Rd×d′ , ∀B ∈ Rd′×d′′ , ∥AB∥F ≤ ∥A∥F ∥B∥F ; (21)

∀A ∈ Rd×d′ , ∀x ∈ Rd′ , ∥Ax∥2 ≤ ∥A∥F ∥x∥2; (22)

∀x ∈ Rd, ∥diag(x)∥F = ∥x∥2; (23)

∀x ∈ Rd, ∥x∥var ≤ 2∥x∥∞; (24)

∀x ∈ {0} × Rd−1, ∥x∥∞ ≤ ∥x∥var. (25)

On the Hilbert projective metric. The Hilbert projective metric on (R∗
+)

d is defined by

∀x, x′ ∈ (R∗
+)

d, dH(x, x
′) := logmax

{
xix

′
j

x′
ixj

: i, j ∈ JdK
}
.

We will use the following properties (Birkhoff, 1957):

∀x, x′ ∈ (R∗
+)

d, dH(x, x
′) = ∥ log(x)− log(x′)∥var; (26)

∀x, x′ ∈ (R∗
+)

d, dH(x, x
′) = dH(x/x

′,1d) = dH(1d /x
′,1d /x); (27)

∀K ∈ (R∗
+)

d×d′ , ∀x, x′ ∈ (R∗
+)

d′ , dH(Kx,Kx
′) ≤ λ(K)dH(x, x

′), (28)

where λ(K) :=

√
η(K)−1√
η(K)+1

< 1 with η(K) := max
{

Ki,kKj,ℓ

Kj,kKi,ℓ
: i, j ∈ JdK, k, ℓ ∈ Jd′K

}
.

We end this section with a lemma.
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Lemma 1. Let x, x′ ∈ (R∗
+)

d be such that 0 < t ≤ min{xj , x′j : j ∈ JdK} ≤ max{xj , x′j : j ∈ JdK} ≤ T .

It holds that 1
2 tdH(x, x

′) ≤ ∥x − x′∥2. Moreover, if x1 = x′1 = 1, then it also holds that ∥x − x′∥2 ≤√
dTdH(x, x

′).

Proof. Set x, x′ ∈ (R∗
+)

d as in the statement of the lemma, and denote ℓ := log(x), ℓ′ := log(x′) (the

logarithms are elementwise). Set arbitrarily i ∈ JdK. We can assume without loss of generality that

xi ≥ x′i (or, equivalently, ℓi ≥ ℓ′i). Therefore if x1 = x′1 = 1 (or, equivalently, ℓ1 = ℓ′1 = 0), then

|xi − x′i| = max(xi, x
′
i)× |1− e−|ℓi−ℓ′i||

≤ T × |ℓi − ℓ′i| because |1− e−|q|| ≤ |q| for all q ∈ R

≤ T × ∥ℓ− ℓ′∥∞
≤ T × ∥ℓ− ℓ′∥var by (25) since ℓ1 = ℓ′1 = 0

= TdH(x, x
′) by (26).

Consequently, ∥x− x′∥2 ≤
√
d∥x− x′∥∞ ≤

√
dTdH(x, x

′). Furthermore,

|xi − x′i| = min(xi, x
′
i)× |e|ℓi−ℓ′i| − 1|

≥ t× |ℓi − ℓ′i| because |e|q| − 1| ≥ |q| for all q ∈ R.

It follows that

∥x− x′∥2 ≥ ∥x− x′∥∞ ≥ t∥ℓ− ℓ′∥∞ ≥ 1
2 t∥ℓ− ℓ

′∥var by (24)

= 1
2 tdH(x, x

′) by (26).

This completes the proof.

A.1.2 The function f is differentiable

To prove that f is differentiable, we rely on the following classical result (Danskin, 1966):

Theorem 1 (Danskin’s theorem, Proposition B.25 in Bertsekas (1999)). Let C ⊂ Rd′ be a compact

set and ϕ : Rd × C → R be a continuous function such that ϕ(·, y) is convex for every y ∈ C. The

function ψ : Rd → R given by ψ(x) := maxy∈C ϕ(x, y) is convex. Moreover, if there exists a unique ŷ

maximizing ϕ(x, ·) and if ϕ(·, ŷ) is differentiable, then ψ is differentiable at x and ∇ψ(x) = ∇ϕ(·, ŷ)|x.

Let C = ΠR,R′ (a compact set) and ϕ : RR×R′ × ΠR,R′ → R be given by ϕ(C,P ) := −[⟨P,C⟩ −
γE(P )]. The function ϕ is continuous and ϕ(·, P ) is convex for every P ∈ ΠR,R′ . Therefore, by the

above theorem, the function ψ : RR×R′ → R given by ψ(C) := maxP∈ΠR,R′ ϕ(C,P ) = −Wγ(C) is

convex. Moreover, for every C ∈ RR×R′
, there exists a unique P̂C such that ψ(C) = ϕ(C, P̂C) (Cuturi

and Doucet, 2014, Proposition 4.3) and ϕ(·, P̂C) is affine hence differentiable. Therefore, C 7→ Wγ(C)

is differentiable at every C ∈ RR×R′
with a gradient given by ∇Wγ(C) = P̂C .

We use now that f = fa − 1
2fb + constant with fa, fb : RN → R given by

fa(θ) :=Wγ

(
C(z, z′(θ))

)
and fb(θ) :=Wγ

(
C(z′(θ), z′(θ))

)
where the cost matrices C(z, z′(θ)) and C(z′(θ), z′(θ)) are such that (C(z, z′(θ)))m,n := dis(xm, x

′
n)

2+

(ym − θn)2 and (C(z′(θ), z′(θ)))n,n′ := dis(x′n, x
′
n′)2 + (θn − θn′)2. In view of the previous paragraph,
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and by the chain rule, fa and fb are thus differentiable at every θ ∈ RN with gradients

∇fa(θ) = 2( 1
N θ − P̂

⊤
θ y) and ∇fb(θ) = 2( 2

N θ − (Q̂θ + Q̂⊤
θ )θ)

(P̂θ and Q̂θ are defined in (9) and (10)). Therefore f is differentiable at every θ ∈ RN and (8) follows

straightforwardly.

A.1.3 P̂θ and Q̂θ are Lipschitz continuous (as functions of θ)

The fact that θ 7→ P̂θ and θ 7→ Q̂θ are Lipschitz continuous on dom gτ is a consequence of the following

lemma.

Lemma 2. Let θ 7→ C(θ) be a bounded and Lipschitz continuous function from [0, 1]R
′
to RR×R′

+ . For

each θ ∈ [0, 1]R
′
, let P̂ (θ) be the minimizer in (3) with C(θ) substituted for C. Then θ 7→ P̂ (θ) is

Lipschitz continuous from [0, 1]R
′
to RR×R′

+ .

Indeed, θ 7→ C(z, z′(θ)) and θ 7→ C(z′(θ), z′(θ)) (defined in Section A.1.2) are obviously bounded and

Lipschitz continuous.

Let us prove Lemma 2. By (Cuturi and Doucet, 2014, Proposition 4.3), for every θ ∈ RR′
,

P̂ (θ) = diag(û(θ))K(θ) diag(v̂(θ)),

where û : RR′ → (R∗
+)

R, v̂ : RR′ → (R∗
+)

R′
and the Gibbs kernel functions K : RR′ → RR×R′

, given by

K(θ) :=
(
exp

[
− (C(θ))r,r′ /γ

])
r∈JRK,r′∈JR′K

satisfy the mass conservation constraints inherent to ΠR,R′ :

diag(û(θ))K(θ) diag(v̂(θ))1R′ = 1
R 1R (29)

diag(v̂(θ))K(θ)⊤ diag(û(θ))1R = 1
R′ 1R′ , (30)

Equivalently, using the entrywise division of vectors,

û(θ) =
1
R 1R

K(θ)v̂(θ)
, v̂(θ) =

1
R′ 1R′

K(θ)⊤û(θ)
. (31)

Note that (ρû(θ), v̂(θ)/ρ) also satisfy (29) and (30) for any ρ > 0. Thus, without loss of generality,

we can impose from now on that, for all θ ∈ dom gτ , the first element û1(θ) of û(θ) equals 1 (this

affects both û(θ) and v̂(θ)).

We now consider the following steps.

• The Gibbs kernel function K is Lipschitz continuous on dom gτ with Lipschitz constant LK :=

k2uL
2
C/γ

2 where ku := max{(K(θ))r,r′ : r ∈ JRK, r′ ∈ JR′K} and LC is the Lipschitz constant of

θ 7→ C(θ).

Proof: The function θ 7→ C(θ) is bounded, so θ 7→ K(θ) is bounded as well. For all θ, θ′ ∈ [0, 1]R
′
,

r ∈ JRK and r′ ∈ JR′K, it holds that

|(K(θ))r,r′ − (K(θ′))r,r′ |

= max{e−(C(θ))r,r′/γ , e−(C(θ′))r,r′/γ} × |1− exp(−|(C(θ))r,r′ − (C(θ′))r,r′ |/γ)|
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≤ ku
γ
× |(C(θ))r,r′ − (C(θ′))r,r′ |.

Therefore,

∥K(θ)−K(θ′)∥2F =
∑

r∈JRK,r′∈JR′K

[(K(θ))r,r′ − (K(θ′))r,r′ ]
2

≤ k2u
γ2

∑
r∈JRK,r′∈JR′K

[(C(θ))r,r′ − (C(θ′))r,r′ ]
2

≤
k2uL

2
C

γ2
∥θ − θ′∥22.

• Denote kℓ := min{(K(θ))r,r′ : r ∈ JRK, r′ ∈ JR′K}. For every θ ∈ dom gτ ,

λ(K(θ)) ≤ Λ := (ku − kℓ)/(ku + kℓ) < 1. (32)

Proof: Because kℓ ≤ (K(θ))r,r′ ≤ ku for all θ ∈ dom gτ , r ∈ JRK, r′ ∈ JR′K, it holds that

(K(θ))i,k(K(θ))j,ℓ/((K(θ))j,k(K(θ))i,ℓ) ≤ k2u/k
2
ℓ for all i, j ∈ JRK, k, ℓ ∈ JR′K. Consequently,

η(K(θ)) ≤ k2u/k2ℓ hence λ(K(θ)) = (
√
η(K)− 1)/(

√
η(K) + 1) ≤ (ku − kℓ)/(ku + kℓ).

• For every θ ∈ dom gτ , û(θ) and v̂(θ) are uniformly bounded: for all r ∈ JRK, r′ ∈ JR′K,

kℓ
kuR′ ≤ ûr(θ) ≤

kuR

kℓ
, (33)

kℓ
k2uR

′R2
≤ v̂r′(θ) ≤

1

kℓR
. (34)

Proof: Set arbitrarily θ ∈ dom gτ . In view of (29) (first row), since û1(θ) = 1, we have

kℓ∥v̂(θ)∥∞ ≤
1

R
=

∑
r′∈JR′K

(K(θ))1r′ v̂r′(θ) ≤ kuR′∥v̂(θ)∥∞. (35)

Set r′0 ∈ argmax{v̂i(θ) : i ∈ JR′K}. In view of (30) (r′th row), we have

1

R′ = v̂r′0(θ)
∑
r∈JRK

(K(θ))rr′0 ûr(θ) ≥ kℓ∥v̂(θ)∥∞∥û(θ)∥∞.

Hence, by (35),

∥û(θ)∥∞ ≤
1

kℓR′∥v̂(θ)∥∞
≤ kuRR

′

kℓR′ =
kuR

kℓ
. (36)

Furthermore, for any r′ ∈ JR′K, in view of (30) (r′th row) and (36),

1

R′ = v̂r′(θ)
∑
r∈JRK

(K(θ))rr′ ûr(θ) ≤ Rku∥û(θ)∥∞v̂r′(θ) ≤
k2uR

2

kℓ
v̂r′(θ). (37)

The inequalities (35) and (37) readily imply (34). Likewise, for any r ∈ JRK, in view of (29) (rth

row),
1

R
= ûr(θ)

∑
r′∈JR′K

(K(θ))rr′ v̂r′(θ) ≤ R′ku∥v̂(θ)∥∞ûr(θ) ≤
kuR

′

kℓR
ûr(θ). (38)

The inequalities (36)and (38) readily imply (33).
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• The function θ 7→ û(θ) is Lipschitz continuous on dom gτ with Lipschitz constant

Lû :=
2k3uR

2
√
R′LK

(1− Λ2)k4ℓ
(
√
R+ Λ

√
R′).

Proof. Set arbitrarily θ, θ′ ∈ dom gτ . Inequalities (33) and (34) imply that

min{(K(θ)v̂(θ′))r : r ∈ JRK} ≥ k2ℓ/(k2uR2),

min{(K(θ)⊤û(θ′))r′ : r
′ ∈ JR′K} ≥ k2ℓR/(kuR′).

In view of Lemma 1 (first inequality), (22) (second inequality), (34) and the fact that K is

LK-Lipschitz (third inequality), we obtain

dH(K(θ)v̂(θ),K(θ′)v̂(θ)) ≤ 2k2uR
2

k2ℓ
∥K(θ)v̂(θ)−K(θ′)v̂(θ)∥2

≤ 2k2uR
2

k2ℓ
∥K(θ)−K(θ′)∥F ∥v̂(θ)∥2

≤ 2k2uR
√
R′LK

k3ℓ
∥θ − θ′∥2. (39)

Likewise, using (33) instead of (34)

dH(K(θ)⊤û(θ),K(θ′)⊤û(θ)) ≤ 2kuR
′

k2ℓR
∥K(θ1)

⊤û(θ1)−K(θ2)
⊤û(θ1)∥2

≤ 2kuR
′

k2ℓR
∥K(θ)⊤ −K(θ′)⊤∥F ∥û(θ)∥2

≤ 2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2. (40)

We can now bound the Hilbert projective metric between v̂(θ) and v̂(θ′): by invoking in turn

(31), (27), the triangle inequality, (28) and both (40) and (32), we get

dH(v̂(θ), v̂(θ
′)) = dH

(
1R′ /R′

K(θ)⊤û(θ)
,

1R′ /R′

K(θ′)⊤û(θ′)

)
= dH

(
K(θ)⊤û(θ),K(θ′)⊤û(θ′)

)
≤ dH

(
K(θ)⊤û(θ),K(θ′)⊤û(θ)

)
+ dH

(
K(θ′)⊤û(θ),K(θ′)⊤û(θ′)

)
≤ dH

(
K(θ)⊤û(θ),K(θ′)⊤û(θ)

)
+ λ

(
K(θ′)

)
dH(û(θ), û(θ

′))

≤ 2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2 + ΛdH(û(θ), û(θ

′)). (41)

Likewise, by invoking in turn (31), (27), the triangle inequality, (28) and both (40) and (41), we

get

dH(û(θ), û(θ
′)) = dH

(
1R /R

K(θ)v̂(θ)
,

1R /R

K(θ′)v̂(θ′)

)
= dH

(
K(θ)v̂(θ),K(θ′)v̂(θ′)

)
≤ dH

(
K(θ)v̂(θ),K(θ′)v̂(θ)

)
+ dH

(
K(θ′)v̂(θ),K(θ′)v̂(θ′)

)
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≤ dH(K(θ)v̂(θ),K(θ′)v̂(θ)) + λ(K(θ′))dH(v̂(θ), v̂(θ
′))

≤ dH(K(θ)v̂(θ),K(θ′)v̂(θ))

+ Λ

(
2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2 + ΛdH(û(θ), û(θ

′))

)
.

The above inequality and (39) then yield

dH(û(θ), û(θ
′)) ≤ 1

1− Λ2

(
dH(K(θ)v̂(θ),K(θ′)v̂(θ)) + Λ

2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2

)

≤ 2k2u
√
RR′LK

(1− Λ2)k3ℓ
(
√
R+ Λ

√
R′)∥θ − θ′∥2.

Therefore, by Lemma 1 and (33), ∥û(θ)− û(θ′)∥2 ≤ Lû∥θ − θ′∥2, which completes the proof.

• The function θ 7→ v̂(θ) is Lipschitz continuous on dom gτ with Lipschitz constant

Lv̂ :=
kuLK

k3ℓ
√
R

+
ku
√
R′Lû

k2ℓR
3/2

.

Proof: Set arbitrarily θ, θ′ ∈ dom gτ . By (31) and (34),

∥v̂(θ)− v̂(θ′)∥2 =
∥∥∥∥ 1R′ /R′

K(θ)⊤û(θ)
− 1R′ /R′

K(θ′)⊤û(θ′)

∥∥∥∥
2

≤ ∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2
R′minr′∈JR′K{(K(θ1)⊤û(θ1))r′}minr′∈JR′K{(K(θ′)⊤û(θ′))r′}

=
∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2

minr′∈JR′K{v̂r′(θ)−1}minr′∈JR′K{v̂r′(θ′)−1}

≤ 1

k2ℓR
2
∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2.

Moreover, using in turn the triangle inequality, (22) then the fact that K and û are Lipschitz

continuous and bounded on dom gτ , we get

∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2 ≤ ∥K(θ)⊤û(θ)−K(θ′)⊤û(θ)∥2 + ∥K(θ′)⊤û(θ)−K(θ′)⊤û(θ′)∥2
≤ ∥K(θ)−K(θ′)∥F ∥û(θ)∥2 + ∥K(θ′)∥F ∥û(θ)− û(θ′)∥2

≤

(
kuR

3/2LK

kℓ
+
√
RR′kuLû

)
∥θ − θ′∥2.

Therefore, ∥v̂(θ)− v̂(θ′)∥2 ≤ Lv̂∥θ − θ′∥2, which completes the proof.

• The function P̂ (θ) is Lipschitz continuous on dom gτ .

Proof: We have proved that θ 7→ û, θ 7→ K(θ) and θ 7→ v̂(θ) are bounded and Lipschitz

continuous on dom gτ . Consequently, so is θ 7→ P̂ (θ) = diag(û(θ))K(θ) diag(v̂(θ)).

This completes the proof of Lemma 2, hence that of the fact that θ 7→ P̂θ and θ 7→ Q̂θ are Lipschitz

continuous on dom gτ .
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A.1.4 The gradient of f is Lipschitz continuous

Set arbitrarily θ, θ′ ∈ dom gτ ⊂ [0, 1]N . We begin by noting that, by the triangle inequality and (22),

1
2∥∇f(θ)−∇f(θ

′)∥2 ≤ ∥y∥2 × ∥P̂θ − P̂θ′∥F + ∥θ∥2 × ∥Q̂θ − Q̂θ′∥F + ∥Q̂θ′∥F × ∥θ − θ′∥2
≤ ∥y∥2 × ∥P̂θ − P̂θ′∥F +

√
N × ∥Q̂θ − Q̂θ′∥F + ∥θ − θ′∥2.

We then readily conclude because we showed in Section A.1.3 that θ 7→ P̂θ and θ 7→ Q̂θ are Lipschitz

continuous on dom gτ .

A.2 The function Hδ satisfies the Kurdyka-Lojasiewicz property

A.2.1 The Kurdyka-Lojasiewicz property

Let us first recall what is the Kurdyka-Lojasiewicz property. Let ℓ : Rd → R ∪ {+∞} be a proper,

lower semicontinuous function. For any −∞ < η1 < η2 ≤ +∞, the bracket [η1 < ℓ < η2] is the set

{x ∈ Rd : η1 < ℓ(x) < η2}. We refer the reader to (Attouch et al., 2010, Section 2) for elementary facts

of nonsmooth analysis, including the definition of ∂ℓ, the limiting-subdifferential of ℓ (Rockafellar and

Wets, 1998).

Definition 1 (Kurdyka-Lojasiewicz property, definition 3.1 in Attouch et al. (2010)). The function

ℓ is said to have the Kurdyka-Lojasiewicz property at x̄ ∈ dom ∂ℓ if there exists η ∈ (0,+∞], a

neighborhoood U of x̄ and a continuous concave function φ : [0, η)→ R+ such that:

• φ(0) = 0,

• φ is C1 on (0, η),

• for all s ∈ (0, η), φ′(s) > 0,

• and for all x ∈ U ∩ [ℓ(x̄) < ℓ < ℓ(x̄) + η], the Kurdyka-Lojasiewicz inequality holds:

φ′(ℓ(x)− ℓ(x̄)) dist(0, ∂ℓ(x)) ≥ 1. (42)

Inequality (42) can be interpreted as follows: subject to the reparametrization of f through φ,

we deal with a sharp function. To see this, consider the simple case where the finite-valued f is

differentiable and f(x̄) = 0, so that (42) rewrites as ∥∇φ ◦ f(x)∥ ≥ 1: the function φ transforms a

singular region, characterized by arbitrarily small gradients, into a regular region where the gradients

are bounded away from zero. Thus the transformation φ is aptly referred to as a “desingularizing

function” for f . For further theoretical and geometrical insights, we refer to (Bolte et al., 2010).

To prove that Hδ satisfies the Kurdyka-Lojasiewicz property, we apply Theorem 4.1 in (Attouch

et al., 2010). We state it below for the sake of completeness. The key notions necessary to understand

the theorem are succinctly presented after the statement.

Theorem 2 (Theorem 4.1 in Attouch et al. (2010)). Any proper lower semicontinuous function

ℓ : Rd → R∪{+∞} which is definable in an o-minimal structure O over R has the Kurdyka-Lojasiewicz

property at each point of dom ∂ℓ. Moreover the function φ appearing in (42) is definable in O.
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On o-minimal structures. An o-minimal structure over R can be viewed as an axiomatization of

the quantitative properties of semialgebric sets. Semialgebric sets are finite unions and intersections

of sets of the form {x ∈ Rd : Q(x) = 0, R(x) < 0} for some polynomial functions Q,R : Rd → R.
Algebraic sets are finite unions and intersections of sets of the form {x ∈ Rd : Q(x) = 0} for some

polynomial function Q : Rd → R.
Formally, a collection O = {On}n≥0 is a structure over R if the following conditions are met:

(a) for each n ≥ 0, On is a collection of subsets of Rn;

(b) for each n ≥ 0, all algebraic subsets of Rn are in On;

(c) for each n ≥ 0, On is a Boolean subalgebra, that is, ∅ ∈ On and, for every A,B ∈ On, A ∪ B,

A ∩B and Rn \A belong to On;

(d) if A ∈ Om and B ∈ On, then A×B ∈ Om+n;

(e) if p : Rn+1 → Rn is the projection on the first n coordinates and A ∈ On+1, then p(A) ∈ On.

It is o-minimal if, in addition,

(f) the elements of O1 are precisely the finite unions of intervals.

The smallest o-minimal structure over R containing the semialgebric sets is denoted Ralg. It is the

collection {On}n≥0 where each On is the class of semialgebric sets on Rn (Benedetti and Risler, 1990;

Bochnak et al., 1998).

The smallest structure containing the semialgebraic sets and the graph of the exponential function

exp : R→ R∗
+ is denoted Rexp. It extends Ralg and it is o-minimal over R (Wilkie, 1996).

On definable sets and definable functions. Given an o-minimal structure O = (On)n≥0 over

R, the elements of each On are called the definable subsets of Rn. A function φ : A→ B between to

definable sets is definable in O if its graph is definable in O.
For instance, a polynomial function Q : Rd → R is definable in Ralg, hence in Rexp as well.

We use the following properties (Attouch et al., 2010) (from now on, we write “definable” in lieu

of “definable in O”):

(g) if φ : A→ B is definable and if A′ ⊂ A is definable, then φ|A′ is definable;

(h) if φ is definable, then |φ| is definable;

(i) finite sums of definable function are definable;

(j) any indicator function I{A} (which equals 0 if the argument falls in A and +∞ otherwise) of a

definable set A is definable;

(k) generalized inverse functions of definable functions are definable;

(l) compositions of definable functions are definable;

(m) if ψ and C are definable, then Rn ∋ x 7→ infy∈C ψ(x, y) and Rn ∋ x 7→ supy∈C ψ(x, y) are

definable.
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A.2.2 The function Hδ is definable in Rexp

Let us prove now that Hδ is definable in Rexp – from now on, “definable” means definable in Rexp.

We consider the following steps.

• The set ΠR,R′ is semialgebric hence definable.

Proof: Introduce the sets Ar,r′ := {P ∈ RR×R′
: Pr,r′ ≥ 0}, Br := {P ∈ RR×R′

:
∑

r′∈JR′K Pr,r′ =
1
R} and Cr′ := {P ∈ RR×R′

:
∑

r∈JRK Pr,r′ =
1
R′ } (for all r ∈ JRK and r′ ∈ JR′K). Each of them

is semialgebraic. Therefore their intersection, which equals ΠR,R′ , is semialgebraic too, hence

definable.

• Consider F : RN × RM×N × RN×N → R given by

F (θ, P,Q) :=
∑

m∈JMK,n∈JNK

Pm,n

(
d(xm, x

′
n)

2 + (ym − θn)2
)

− 1
2

∑
m∈JMK,n∈JNK

Qn,n′
(
d(x′n, x

′
n′)2 + (θn − θn′)2

)
+ gτ (θ).

Proof: The function (θ, P ) 7→ F (θ, P,Q)− gτ (θ) is definable because it is polynomial. Moreover,

gτ is also definable.

– When gτ (θ) = τ∥θ∥1+I{θ ∈ [0, 1]N}: on the one hand, θ 7→ ∥θ∥1 =
∑

n∈JNK |θn| is definable
as a finite sum of definable functions (properties (i) and (h); on the other hand, I{[0, 1]N}
is definable because [0, 1]N is definable (property (j)). Therefore, gτ is definable (property

(i)).

– When gτ (θ) = I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N}: on the one hand, the set {θ ∈ RN : ∥θ∥1 ≤ τ}
is definable because it can be written as

⋃
ε∈{±1}N

 ⋂
n∈JNK

{
θ ∈ RN : εnθn ≥ 0

}
∩
{
θ ∈ RN :

∑
n∈JNK

εnθn − τ ≤ 0
} ,

which is semialgebraic since it is a finite union and intersection of semialgebraic sets; there-

fore, θ 7→ I{∥θ∥1 ≤ τ} is definable (property (j)). On the other hand, we already proved

that I{[0, 1]N} is definable, hence gτ is definable (property (i)).

It follows that F is definable (property (i)). Because the set RN × ΠM,N × ΠN,N is definable,

this implies that F |RN×ΠM,N×ΠN,N
is definable (property (g)).

• The function γE : P 7→ γ × E(P ) from ΠR,R′ to R is definable.

Proof: The function log : R∗
+ → R is definable (property (k)). Consequently, φ : R∗

+ → R2 given

by φ(x) := (log(x), x) is definable because its graph can be written as

(Γlog × R) ∩ {(x, y, z) ∈ R3 : x− z = 0}

where the graph Γlog of log is definable and the right-hand-side set is algebraic hence definable,

revealing that the graph of φ is definable as the intersection of two definable sets. Moreover,

the polynomial function Q : R2 → R given by Q(x, y) := −γx(y − 1) is definable. Therefore,

ϕ := Q ◦ φ : R∗
+ → R, so that ϕ(x) = −γx(log(x) − 1), is definable (property (l)). Setting

ϕ(0) := 0 extends ϕ by continuity and yields a definable function ϕ : R+ → R. It follows that
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γE : (R+)
R×R′ → R given by γE(P ) :=

∑
r∈JRK,r′∈JR′K ϕ(Pr,r′) is definable (property (i)), hence

γE := γE|ΠR,R′ is definable too (property (g)).

• The function (f + gτ ) : RN → R is definable.

Proof: This is a straightforward consequence of the fact that, for all θ ∈ RN ,

(f + gτ )(θ) := min
P∈ΠM,N

max
Q∈ΠN,N

{
F |RN×ΠM,N×ΠN,N

+ γE(P )− 1
2γE(Q)

}
,

where the sets ΠM,N and ΠN,N are definable (property (m)).

• The function Hδ is definable.

Proof: Recall that Hδ : RN × RN → R is given by Hδ(θ, θ
′) := f(θ′) + gτ (θ

′) + δ∥θ − θ′∥22. The

function (θ, θ′) 7→ f(θ′) + gτ (θ
′) between RN × RN and R is definable because its graph

{(θ, θ′, f(θ′) + gτ (θ
′)) : (θ, θ′) ∈ RN × RN} = RN × Γf+gτ ,

where Γf+gτ is the graph of (f +gτ ), is definable as the product of two definable sets. Moreover,

the function (θ, θ′) 7→ δ∥θ − θ′∥22 between RN × RN and R is polynomial, hence definable.

Therefore, Hδ is definable (property (i)).

A.2.3 The function Hδ is proper and lower semicontinuous, hence satisfies the Kurdyka-

Lojasiewicz property on the domain of ∂Hδ

The function Hδ never takes on the value −∞ and Hδ(0) is finite, so Hδ is proper. Moreover, f

is differentiable (see Section A.1), gτ is lower semicontinuous because it is either continuous (when

gτ (·) = τ∥ · ∥1) or lower semicontinuous (when gτ is the characteristic function of the closed ∥ · ∥1-ball
centered at 0 and with radius τ), and (θ, θ′) 7→ δ∥θ − θ′∥22 is continuous. Therefore, Hδ is proper and

lower semicontinuous. By Theorem 2, Hδ satisfies the Kurdyka-Lojasiewicz property on the domain

of ∂Hδ.
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