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Compositional discriminant analysis
through calibrated evidence functions

Paul-Gauthier Noé, Andreas Nautsch, Driss Matrouf, Pierre-Michel Bousquet and Jean-François Bonastre

Overview
Compositional discriminant analysis is a non-linear discriminant function where the discriminant components form a calibrated isometric-log-ratio transformed likelihood
function over the set of classes. The latter can be called evidence function and can be seen as a multiclass extension of the weight-of-evidence in Bayesian updating.

The compositional nature of the approach is on the treatment of the likelihood function (not on the modelled data) allowing a novel analysis method.

Bayesian updating on the Aitchison simplex [1]
Considering a set of classes C = {ci}1≤i≤N and an individual who wants to infer
the class of an observation x, its posterior probabilities are given by:

P (x) = w(x)⊕ π, ⇐⇒ ilrP (x) = ilrw(x)︸ ︷︷ ︸
Evidence function

+ ilrπ,

where P (x) = [P (ci | x)]1≤i≤N , w(x) = [P (x | ci)]1≤i≤N and π = [P (ci)]1≤i≤N

are respectively the posterior distribution, the likelihood function and the prior.

The idempotence and the distribution of evidence function
An evidence function l(x) = ilrw(x) is calibrated if it results in the same posterior
probabilities whether l(x) or the data x is given [2]:

∀i ∈ J1, NK, P (ci | x) = P (ci | l(x)) ⇐⇒ l(l) = l(x) (idempotence),

leading to the following proposition extending a well-known result for LLRs [3],

Proposition 1 [2]: If l | c1 ∼ N (µ1,Σ), then ∀i ∈ J2, NK, l | ci ∼ N (µi (Σ) ,Σ),

where µ1 = µ1 (Σ) = A−1B vec(Σ), and µi (Σ) = µ1 (Σ)−Σai−1 −
i−2∑
j=1

1

j + 1
Σaj,

A ∈ MN−1,N−1(R) and B ∈ MN−1,(N−1)2(R) are constant matrices, and ai =
√

i+1
i ei

where ei is the ith vector of the standard canonical basis of RN−1.
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(a) d1,2 = d2,3 = d1,3 = 6.
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(b) d1,2 = 5, d2,3 = 7, d1,3 = 4.
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(c) d1,2 = 8, d2,3 = 2, d1,3 = 4.

Figure: Gaussian conditional densities of the likelihood function in a 3 classes case. The covariance
matrix can be expressed in terms of the three divergences between each density. The densities on the
ILR space (top) are with respect to the Lebesguemeasure while the densities on the simplex (bottom)
are with respect to the Aitchison measure [4].

The method
Notations and objective

Let,

x ∈ X ⊂ Rd be an observation,
l(x) ∈ L ⊂ RN−1 the evidence function,
r(x) ∈ R ⊂ Rd−N+1 the residual,

Z = L ⊕R the base space,

Find a diffeomorphism g−1 : X 7→ Z ,
such that

z = g−1(x)

x = g(z)

z =
[
l1, . . . , lN−1︸ ︷︷ ︸
discriminant
components

=
evidence function

, r1, . . . rd−N+1︸ ︷︷ ︸
residual

]
∈ Z

Class-conditional densities in the base space
We choose the densities in the base space according to Proposition 1:

∀i ∈ J1, NK, z | ci ∼ N (mi (Σ) ,C (Σ)) ,

where the covariance matrix Σ is the only parameter and:

• mi (Σ) is the concatenation of µi (Σ) and the (d−N + 1)-dimensional zero vector
• the covariance matrix C (Σ) is the following block matrix:

C (Σ) =

[
Σ 0N−1,d−N+1

0d−N+1,N−1 Id−N+1

]
,

In this way,

• the first N − 1 dimensions of z form the evidence function,
• the others form the residual normally distributed with a zero mean vector and

an identity covariance matrix regardless of the class.

Learning the discriminant function with normalizing flow
Normalizing flow—a cascade of invertible neural-networks [5]—is used to learn
the mapping g through data likelihood maximization:

log f (D | θg,Σ) =

N∑
i=1


∑

(x,c)∈D|c=ci

log

(
fZ|ci,Σ (z)

∣∣∣∣det(∂x∂z
)∣∣∣∣−1

)
︸ ︷︷ ︸

Change of variable

 ,

where the mapping’s parameters θg and the log-Cholesky parametrized Σ are
learned with automatic differentiation and gradient descent.

Toy experiments

With Gaussians

Figure: Training set. Figure: Testing set in the CDA’s (top) and
LDA’s (bottom) base space.

Table: Cllr measures [6]. Samples from the non-concerned class are discarded.

compared classes LDA QDA CDA
Cllr [bit] Cmin

llr [bit] Cllr Cmin
llr Cllr Cmin

llr
1 vs 2 1.7210−3 0.0 0.0 0.0 4.8510−5 0.0
1 vs 3 1.98 1.4310−1 1.7210−9 0.0 9.4610−3 5.0410−3

2 vs 3 2.0010−1 1.7610−2 6.3710−4 0.0 8.4610−3 5.3110−3

With MNIST

The flattened images reduced to 40 principal components are used as inputs

Table: Cross-entropy and accuracy measures on the testing set for the MNIST’s digit recognition task.

empirical cross-entropy [nat] accuracy [%]

LDA 5.4410−1 87.67
QDA 8.5610−1 96.24
CDA 2.2310−1 94.43

Figure: UMAP visualization of the evidence function. Figure: UMAP visualization of the residual.

Interpolation between digits in the space of evidence functions

Discussion

• The discriminant components form a calibrated isometric-log-ratio
transformed likelihood function: an evidence function;

• No explicit assumption is made on the distribution of the data (except the
existence of a diffeomorphism that would transform the data into the target
Gaussians);

• Each discriminant component expresses a weight-of-evidence in favour of
a group of classes against another group according to the used Aitchison basis;

• This can be used for uncertainty-aware decisions avoiding under or
overconfident predictions;

• In addition, the discriminant space has the intuitive Euclidean vector space
structure given by the Aitchison geometry, allowing interpretability, distance
measures, interpolations, and straightforward computation of the posterior
probability distribution by simply shifting the evidence function by the prior.
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