
HAL Id: hal-04625507
https://hal.science/hal-04625507v1

Submitted on 9 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Neural dynamics of predictive timing and motor
engagement in music listening

Arnaud Zalta, Edward Large, Daniele Schön, Benjamin Morillon

To cite this version:
Arnaud Zalta, Edward Large, Daniele Schön, Benjamin Morillon. Neural dynamics of predictive
timing and motor engagement in music listening. Science Advances , 2024, 10 (10), pp.eadi2525.
�10.1126/sciadv.adi2525�. �hal-04625507�

https://hal.science/hal-04625507v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Zalta et al., Sci. Adv. 10, eadi2525 (2024)     6 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 12

N E U R O S C I E N C E

Neural dynamics of predictive timing and motor 
engagement in music listening
Arnaud Zalta1,2*, Edward W. Large3,4, Daniele Schön1, Benjamin Morillon1*

Why do humans spontaneously dance to music? To test the hypothesis that motor dynamics reflect predictive tim-
ing during music listening, we created melodies with varying degrees of rhythmic predictability (syncopation) 
and asked participants to rate their wanting-to-move (groove) experience. Degree of syncopation and groove 
ratings are quadratically correlated. Magnetoencephalography data showed that, while auditory regions track the 
rhythm of melodies, beat-related 2-hertz activity and neural dynamics at delta (1.4 hertz) and beta (20 to 30 hertz) 
rates in the dorsal auditory pathway code for the experience of groove. Critically, the left sensorimotor cortex co-
ordinates these groove-related delta and beta activities. These findings align with the predictions of a neurody-
namic model, suggesting that oscillatory motor engagement during music listening reflects predictive timing and 
is effected by interaction of neural dynamics along the dorsal auditory pathway.

INTRODUCTION
Dancing to the beat of music is universal (1, 2). However, it is also 
distinctly specific, being exclusive to the auditory modality, musical 
stimuli, and certain music. Music is most often considered as an 
auditory phenomenon, but, under an ecological and phylogenetic 
perspective, it is tightly coupled to dance (3, 4). Dance requires syn-
chronizing body movements with the musical rhythm via audio-
motor interactions (5–8). Not all music induces dance equally, but 
why does it sometimes urge us to dance? What are the brain mecha-
nisms supporting the musical wanting-to-move experience called 
groove (9–15)?

The sensation of groove engages motor and reward networks (13, 
16, 17). Even in the absence of physical movement, the perception of 
temporally structured musical rhythms triggers activity in motor re-
gions, encompassing premotor cortices, supplementary motor areas, 
and the basal ganglia (18–21). This motor activity has been associated 
with the neural recycling of action circuits for time estimation (22–
26). This is related to the framework of active sensing (27–30). Active 
sensing refers to the fact that perception is strongly shaped by motor 
activity, which notably imposes temporal constraints on the sampling 
of sensory information, particularly in the delta band. This frequency 
corresponds to the time constant of motor-related neural dynamics 
(31–33), which is conserved across species (34) and reflected in the 
range of natural movements and of music (35).

Accordingly, during auditory perception, the motor system en-
codes temporal predictions information and can optimize auditory 
processing (7, 36–39). Recently, a Bayesian model of groove has been 
proposed, in which the experience of groove is related to predictive 
timing and more precisely correlates with the precision-weighted 
temporal prediction error computation during the processing of mu-
sical rhythms (5, 40).

However, the neurophysiology of groove is still unclear. For in-
stance, it remains uncertain whether groove ratings correlate with the 
neural cortical activity that tracks the beat (41, 42), with intrinsic 
motor-related neural dynamics (43), or how the transition from 
perceiving musical rhythms to motor engagement unfolds. Neurody-
namic models offer a computationally rigorous and neurophysio-
logically plausible approach to understanding the emergence of 
music-related cognitive phenomena (44), being more closely in-
formed by neural dynamics than Bayesian models (45). By combining 
a neurodynamic model (44, 46) with the concept of auditory active 
sensing (37, 47), we propose a canonical dynamical framework to un-
derstand the spontaneous emergence of movements during music 
listening. We hypothesize that manipulating the rhythmic properties 
of music suffice to induce a covert motor engagement during music 
listening, via changes in audio-motor neural dynamics.

RESULTS
We created a stimulus set of 12 short melodies with a 2-Hz beat. To 
vary their level of rhythmic predictability, three variants were derived 
from each melody, using an ascending degree of syncopation (low, 
medium, high; Fig. 1, A to C). As expected, the degree of syncopation 
was inversely proportional to the amplitude of the acoustic dynamics 
at 2 Hz [coefficient of determination r2(34) = 0.81, P < 0.001; Fig. 1D]. 
Nonetheless, when asked to reproduce the rhythm of their dance step 
while listening to the melodies, a first group of participants (n = 14) 
predominantly moved at the 2-Hz beat across conditions (Fig. 1E), 
confirming that, when listening to music, movements tend to be syn-
chronized to the beat, the most salient rhythmic event (21, 48, 49). 
Next, in a second experiment, we recorded magnetoencephalography 
(MEG) data while participants (n = 29) listened to the melodies. A 
first multivariate pattern (decoding) analysis on channel-level MEG 
data showed an absence of 1:1 mapping between the acoustic tempo-
ral envelope and neural frequencies. Instead, acoustic dynamics are 
decoded at 2 Hz and, to a lesser extent, at its harmonics [q < 0.05, false 
discovery rate (FDR)–corrected; Fig. 1F; see Materials and Methods). 
Thus, both behavioral motor and neural cortical dynamics principally 
track the 2-Hz beat.

We also asked the participants to rate the groove for each melody 
(Fig. 2A). Participants’ desire to move highly correlates with the 
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Fig. 1. Stimulus set. Twelve 8-s melodies with a 2-Hz beat were created. For each melody, three variants were designed to vary the level of rhythmic predictability (degree 
of syncopation) while minimizing other acoustic variations. (A) Example of a melody with a low (black), medium (gray), or high (light gray) degree of syncopation. 
(B) Averaged modulation spectrum of the acoustic temporal envelope of the melodies, for each of the three conditions. a.u., arbitrary units. (C) Degree of syncopation of 
the melodies, grouped by condition. Each dot represents one melody. (D) Amplitude of the acoustic envelope at 2 Hz (in decibels; “2-Hz acoustic”), as a function of the 
degree of syncopation, across melodies. Data were approximated with a linear function. Pearson’s r2 is reported. Shades of gray indicate the conditions. (E) Behavioral 
tapping experiment: distribution of the instantaneous frequency of finger tapping per condition, cumulated across melodies and participants, recorded while partici-
pants were reproducing the rhythm of their dance step while listening to the melodies. (F) MEG experiment: Statistical map of neural coding of the acoustic temporal 
modulation spectrum, from the power spectrum of the whole-brain MEG signals recorded while participants were listening to melodies (q < 0.05, FDR-corrected).
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Fig. 2. Behavioral experiments and neurodynamic model. (A) Main experimental design: In two experiments (online and MEG), participants listened to melodies. After 
each melody, they were asked to rate it in terms of groove, defined as the extent to which they wanted to move to the music. (B and C) Behavioral rating of participants 
(groove) acquired (B) online (from 1 to 7) or (C) during the MEG experiment (from 1 to 5), as a function of the degree of syncopation, across melodies. Data were approxi-
mated with a quadratic function. Adjusted r2 is reported. Shades of gray indicate the conditions. Error bars indicate SEM. (D) Neurodynamic model: Each layer represents 
a network of coupled oscillators at different frequencies. The rhythm of melodies was input in the first layer. Arrows represent the coupling across layers (black is excit-
atory, and red is inhibitory). (E) Amplitude of the output of layer 1 at 2 Hz, as a function of the degree of syncopation, across melodies. Data were approximated with a 
linear function. Pearson’s r2 is reported. Shades of gray indicate the conditions. (F) Amplitude of the output of layer 3 at 2 Hz, as a function of groove ratings (from the 
online experiment), across melodies. Same conventions as in (E).
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degree of syncopation but in a nonlinear manner. Furthermore, we 
replicated these results in a third group of participants (n = 66) per-
forming the experiment online (Fig. 2, B and C; see Supplementary 
Results). This inverse U-shape profile is well approximated with a 
quadratic function [online experiment: adjusted r2(33) = 0.73; MEG 
experiment: adjusted r2(33) = 0.67], confirming previous findings 
of moderately syncopated melodies inducing strongest wanting-to-
move experiences (12, 14, 15, 50, 51). This behavior shows that motor 
engagement indexes neither temporal predictability (highest in the 
low-syncopated condition) nor temporal prediction errors (highest in 
the high-syncopated condition) but is compatible with the notion of a 
precision-weighted temporal prediction error computation (5, 40).

Next, we created a neural network model composed of three lay-
ers, each layer representing a network of oscillators spanning a range 
of frequencies (44, 52, 53). Following previous modeling work on the 
perception of rhythmic pulse (44), the melodies’ rhythms were pre-
sented as input to a first network layer (layer 1), which modeled audi-
tory cortical dynamics as an oscillatory network operating near a 
Hopf bifurcation, and two other network layers (layers 2 and 3), which 
modeled motor cortical dynamics operating near a double limit cycle 
bifurcation (Fig.  2D; see Materials and Methods). This three-layer 
neurodynamic model accounts for the nonlinear transformation 
from a syncopated stimulus rhythm to the subjective experience of 
groove. We observed a dissociation between (i) a strong linear corre-
lation of the degree of syncopation with the 2-Hz activity in layer 1 
[r2(34) = 0.85, P < 0.001; Fig. 2E) and (ii) a strong linear correlation 
of groove ratings with the 2-Hz activity in layer 3 [online experiment: 
r2(34) = 0.66, P < 0.001; Fig. 2F], with far less contributions of the 
other layers (see Supplementary Results and fig. S1).

We next analyzed the neural dynamics of cortical activity while 
listening to the melodies. We first estimated the 1/f-rectified power 
spectrum (1 to 100 Hz; see Materials and Methods) of neural activity 
at the source level and observed that the spatial and spectral dimen-
sions are closely related, in the form of a bilateral spectral gradient 
along the dorsal auditory pathways (Fig. 3A). The frequency of 
the dominant activity progressively increases from auditory regions 
(<10 Hz) to the motor cortex (20 to 30 Hz), up to the inferior frontal 
cortex (>30 Hz; activity > 45 Hz was not observed).

We quantified this spectro-spatial relationship by fitting the domi-
nant frequency of each vertex to each spatial dimension (x, y, and z) 
and confirmed that this gradient travels conjointly along the antero-
posterior (Y) and ventro-dorsal (Z) dimensions, compatible with the 
localization of the dorsal auditory pathways (Fig. 3B). To investigate 
whether this spectral gradient is specific to music listening or reflects 
a more generic neurophysiological signature of brain dynamics, i.e., 
with intrinsic timescales exhibiting a spatial gradient (54, 55) along 
the dorsal auditory pathways, we performed the same analysis on 
resting-state data acquired on the same participants (n  =  29). We 
failed to observe a close relation between spectral and spatial dimen-
sions, as indexed by the much less spatially structured pattern of the 
spectral gradient (Fig. 3C). This dynamic reorganization in the form 
of a spectral gradient along the dorsal auditory pathways during mu-
sic listening was confirmed by an individual level estimation of the 
quality of fit for the two datasets [repeated-measures analysis of vari-
ance (rm-ANOVA): main effect of dataset: F1,28 = 54.4, P <  0.001; 
Fig. 3D, left].

Further analyses suggested that such spectral gradient is a general 
characteristic of music listening, independent of the specific acoustic, 
melodic, or cognitive attributes of the music. We observed that the 

spectral gradient does not vary across conditions (low, medium, and 
high), neither in shape (fig. S2A) nor in its quality of fits (Fig. 3D, right; 
rm-ANOVA: main effect of condition: F2,56 = 0.1, P = 0.9). This latter 
result was robust even at the level of individual melodies (fig. S2B; rm-
ANOVA: main effect of melodies: F35,980 = 0.8, P = 0.7).

Next, to investigate the neural correlates of the degree of syncopa-
tion and groove ratings across spatial or spectral dimensions, we con-
ducted multivariate pattern (decoding) analyses on the MEG data at 
either the source level (Fig. 4, A to C) or the channel level (Fig. 4D; see 
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Fig. 3. Spectral gradient of neural activity along the dorsal auditory pathways 
during music listening. (A) Dominant frequency across the brain volume during 
music listening of the melodies (1 to 45 Hz; after removal of the 1/f decay of 
the neural power spectrum). (B) Data were approximated at the group level 
with a polynomial function, independently for each dimension (X, Y, and Z) of the 
MNI space. (C) Control analysis: Same as in (B) but from a resting-state MEG dataset. 
(D) Comparison of the quality of fits (r2), estimated at the individual level, between 
(left) the music and rest MEG datasets and (right) the three melodic conditions. 
Error bars indicate SEM.
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Materials and Methods). Moreover, in each dimension, we computed 
the difference in coding precision between degree of syncopation and 
groove ratings, to investigate their selective neural underpinning 
(Fig. 4, C and D). These analyses first revealed that both the degree of 
syncopation and groove ratings are primarily coded in the bilateral 
and surrounding auditory regions (Fig.  4, A and B; q < 0.005, 

FDR-corrected) and in beat-related 2-Hz neural dynamics (Fig. 4D; 
q < 0.005, FDR-corrected), this latter result validating the key predic-
tion of the neurodynamic model. This neural pattern significantly 
preferentially codes for the degree of syncopation (Fig.  4C, spatial 
analysis, P < 0.005, uncorrected; Fig. 4D, spectral analysis, q < 0.05, 
FDR-corrected). By contrast, groove is better decoded in the left 
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Fig. 4. Spatial and spectral coding of degree of syncopation and groove ratings. (A to C) Spatial map of significant neural coding of (A) the degree of syncopation (blue) 
and (B) groove ratings (red), from the power spectrum (1 to 100 Hz) of neural data recorded while participants were listening to melodies. Significant results reported at 
q < 0.005, FDR-corrected. (C) Spatial map of the difference in coding precision between degree of syncopation and groove ratings. Blue (or red) indicates preferred coding 
for the degree of syncopation (or groove ratings; P < 0.005, uncorrected). (D) Spectrum of neural coding of the degree of syncopation (blue) and groove ratings (red), from 
whole-brain MEG signals. Blue and red horizontal lines indicate frequencies with significant coding values (q < 0.005, FDR-corrected) for degree of syncopation and groove 
ratings, respectively. The black line indicates frequencies with significant differences in coding precision between degree of syncopation and groove ratings (q < 0.05, FDR-
corrected). Error bars indicate SEM. (E) Spectrum of neural coding of the 2-Hz amplitude of layer 1 (blue), layer 2 (gray), and layer 3 (red) of the neurodynamic model, from 
whole-brain MEG signals. Red and blue horizontal lines indicate frequencies with significant coding values for layers 1 and 3 (q < 0.005, FDR-corrected). The black line indi-
cates frequencies with significant differences in coding precision between layers 1 and 3 (q < 0.05, FDR-corrected). Error bars indicate SEM.
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parietal, supplementary motor, and right motor cortex (Fig. 4C, spa-
tial analysis, p < 0.005, uncorrected) and at low-delta (1.3 to 1.5 Hz) 
and beta (20 to 31 Hz and 38 to 39 Hz) neural dynamics (Fig. 4D, 
spectral analysis, q < 0.05, FDR-corrected). A complementary region-
of-interest (ROI) analysis (estimated from Fig. 4E) confirmed that the 
degree of syncopation is significantly coded only in bilateral auditory 
regions at 2 Hz (and harmonics) and that the experience of groove is 
preferentially coded in (left-lateralized) auditory and parietal delta 
dynamics and in (alpha) beta neural dynamics (fig. S3; q < 0.05, FDR-
corrected; see Materials and Methods).

Additional analyses show that the 2-Hz amplitude in layers 1 and 
3 of the neurodynamic model, which, respectively, exhibit strong lin-
ear correlations with the degree of syncopation and groove ratings (as 
depicted in Fig. 2, E and F), are significantly coded in 2-Hz neural 
dynamics (and harmonics; Fig. 4E; q < 0.005, FDR-corrected; neural 
coding of layer 2 amplitude does not reach statistical significance). 
However, delta (1.4 Hz) and beta (20 to 30 Hz) neural dynamics, 
which also coded for groove ratings, are conspicuously absent from 
the predictions of the neurodynamic model (notably layer 3; Fig. 4, D 
versus E).

To further investigate the neural coding of groove ratings beyond 
the predictions of the model, we computed decoding analyses on 
source-level MEG data focusing on beat-related 2-Hz (fig. S4), delta 
(1.3 to 1.5 Hz; Fig. 5A), and beta (20 to 30 Hz; Fig. 5B) neural dynam-
ics. This coding of groove ratings is adjusted to the spectral gradient of 
activity along the dorsal auditory pathway (Fig. 3, A and B): Groove-
related delta and beta activities are visible respectively along the infe-
rior portion of the dorsal auditory pathway bilaterally (Fig.  5A; 
q < 0.005, FDR-corrected) and in dorsal, premotor regions (Fig. 5B; 
q  <  0.005, FDR-corrected). Critically, the left sensorimotor cortex 
couples groove-related delta and beta activities through phase-
amplitude coupling (Fig. 5C; q < 0.005, FDR-corrected) during music 
listening and the reported coupling is specific to low-delta (1.3 to 
1.5 Hz) and beta (20 to 30 Hz) dynamics and is not significant for 
beat-related 2-Hz activity (Fig. 5E). Moreover, within this region, 
delta activity increases, while beta amplitude monotonically decreases 
with groove ratings (Fig. 5D). This observation aligns with the whole-
brain decoding results (Figs. 4D and 5, A and B) and suggests that the 
experience of groove is reflected in amplitude fluctuations in the dor-
sal auditory pathway. These analyses evidence the distributed neural 
dynamics implicated in the nonlinear transformation from a synco-
pated stimulus rhythm to the subjective experience of groove.

DISCUSSION
Why do humans spontaneously want to move to music? Here, we 
characterize the computational and neurophysiological bases of this 
phenomenon by demonstrating that (i) behavioral motor and neural 
cortical dynamics principally track the beat of music (Fig. 1, E and F); 
(ii) the pleasurable wanting to move to music, the experience of 
groove, depends on the temporal regularities present in the music 
(the degree of syncopation; Fig. 2, B and C); (iii) this phenomenon is 
accounted for by a neurodynamic model and may be described in 
terms of the timing of auditory events relative to expectancies embod-
ied in oscillations (Fig. 2, D to F); (iv) an ascending spectral gradient 
along the dorsal auditory pathways emerges during music listening 
(Fig. 3, A to D); (v) the dorsal auditory pathways contribute to the 
coding of the degree of syncopation in auditory regions and of the 
experience of groove more dorsally, selectively in low-delta (1.3 to 

1.5 Hz) and beta (20 to 30 Hz) neural dynamics (Figs. 4, A to D, and 
5, A and B); and (vi) these groove-related delta-beta neural dynamics 
are coupled in the left sensorimotor cortex (Fig. 5, C to E).

These results extend seminal studies on the quadratic relationship 
between rhythmic predictability and the experience of groove (9, 10), 
which we replicated with an original set of melodies, in two indepen-
dent experiments (see Materials and Methods). This relationship has 
been explained using Bayesian inference, with groove arising when 
precise temporal priors are violated by sensory evidence, here recur-
ring syncopated rhythmic patterns (5, 56). Here, we provide an alter-
native dynamical system account (44). Mode locking of neural 
oscillations to complex rhythms allows the emergence of neural reso-
nance at metrical frequencies. Our dynamical model shows that the 
experience of groove can be parsimoniously explained as embodied 
resonance to a beat and result from the combination of excitatory 
and inhibitory inputs from two successive layers. Our MEG results 
further suggest that this is implemented along the dorsal auditory 
pathway, which connects the auditory and motor dynamics. The 
Bayesian and dynamical models converge in the sense that groove 
may be described as affordance for movements that interact with the 
stimulus temporal structure, relying on the timing of auditory events 
relative to expectancies. The neurodynamic model further specifies 
temporal expectations as being the consequence of neural resonance, 
i.e., being embodied in oscillations, and hence provides a physiologi-
cally plausible model to predictive timing (7, 24, 25, 47) and the ex-
perience of groove (5, 15).

The first two network layers were intended to reflect the auditory 
rhythm (auditory cortex) and the perception of pulse and meter (mo-
tor planning cortex) (44). Oscillations in layer 2 may be considered as 
temporal predictions, i.e., expectations about the timing of rhythmic 
events (57, 58). Critically, layer 2 activity arise not based on a learned 
model but based on mode locking of neural oscillators to other fre-
quencies in the rhythm. To these, we added a third layer that received 
inhibitory connections from layer 2 and excitatory connections from 
layer 1 (see Materials and Methods). Hence, layer 3 responds to the 
difference between the time-dependent oscillations of layer 2 (pulse 
per meter) and layer 1 (auditory rhythm) and can thus be interpreted 
as reflecting the divergence between temporal predictions (layer 2) 
and the actual input (layer 1). That groove ratings only correlate with 
2-Hz amplitude in layer 3 indicates that the groove phenomenon may 
be described in terms of the timing of auditory events (layer 1) relative 
to expectancies (layer 2) embodied in oscillations.

The neurodynamic model was not implemented to reflect the 
specificity of different cortical areas regarding their cyto- and myelo-
architectonic structure, local and long-range connectivity, activity, or 
function (59). In particular, it did not carry any information regarding 
the intrinsic rhythmic neural activity characteristic of auditory and 
motor areas (31, 32, 60, 61). In light of this, it is notable that layer 3, 
which captures groove ratings, is specifically coded in beat-related 2-Hz 
neural activity but not in low-delta (1.4 Hz) and beta (20 to 30 Hz) 
dynamics. The wanting-to-move (groove) is a multidimensional phe-
nomenon (10), hypothesized to be affected by a variety of cognitive 
processes such as temporal predictions (“inner representation of tem-
poral regularity”), temporal attention (“time-related interest”), musi-
cal pleasure, and arousal (62). The neural underpinnings of these 
cognitive processes are likely partially reflected in distinct neural dy-
namics, such as delta (1.4 Hz), beat-related 2-Hz, and beta frequen-
cies. The neurodynamic model precisely captures the groove-related 
variance exclusively coded within the 2-Hz neural activity, possibly 
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related to temporal predictions of the 2-Hz beat. A model capturing 
the other cognitive dimensions of groove, associated with delta (1.4 Hz) 
and beta dynamics, remains to be developed.

That the motor system contributes to auditory perception is also 
supported by human psychophysics and neuroimaging data, particu-
larly when listening to rhythmic auditory streams (20, 21, 37, 39). 
Here, we extend these findings to an ecological music listening situa-
tion and further reveal that activity in the dorsal auditory pathway is 
organized in the form of a spectral gradient. This anatomo-spectral 
gradient could be instrumental in structuring the information flow. 
Our finding extends a few recent reports of the presence of a spectral 

gradient along different cortical pathways (54, 55, 63, 64) and provide 
clear evidence of a tight relation between the anatomical and dynami-
cal dimensions of the brain. Whether this gradient acts as a support 
for information transfer, directly codes for music-specific infor-
mation, or is constitutive of auditory perception at large remains 
to be investigated, but our results indicate that it does not code for the 
sensory (degree of syncopation) or cognitive (groove ratings) investi-
gated variables.

During music listening, this gradient is organized around the left 
sensorimotor cortex that is implicated in feedback signaling during 
auditory perception (37, 65). This region might correspond to area 
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Fig. 5. Groove-related neural dynamics in the dorsal auditory pathway. (A) Spatial map of neural coding of groove ratings from delta (1.3 to 1.5 Hz) neural activity. 
(B) Spatial map of neural coding of groove ratings from beta (20 to 30 Hz) neural activity. (C) Spatial map of significant local phase-amplitude coupling (PAC) between 
delta (1.3 to 1.5 Hz) phase and any amplitude frequency (3 to 45 Hz). (D) Amplitude of delta (1.3 to 1.5 Hz; gray) and beta (20 to 30 Hz; black) neural activity as a function 
of groove ratings, in the significant PAC cluster [from (C)]. Error bars indicate SEM. (E) Details of PAC estimates in the significant PAC cluster [from (C); plain lines] or aver-
aged across whole brain (dashed lines), between 1.3- and 1.5-Hz (orange) or 2-Hz (beat frequency; black) phase and any amplitude frequency (3 to 45 Hz). The orange 
horizontal line indicates a significant increase of PAC in the inset cluster compared to whole brain. (A to E) Significant results reported at q < 0.005, FDR-corrected.
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55b, a proposed keystone of sensorimotor integration critical in both 
music (66) and speech (67, 68) perception. This area contributes to 
the emergence of audio-motor coupling and plays a role in coordinat-
ing ventral delta (1.4 Hz) and dorsal beta (20 to 30 Hz) neural dynam-
ics. These dynamics were not present in the stimulus and instead 
reflect intrinsic cortical dynamics. While beta dynamics (∼12 to 30 Hz) 
are typical of sensorimotor areas and associated with movement 
planning and execution (69), low (<20 Hz) and high (20–30 Hz) beta 
bands stem from distinct neurophysiological origins [e.g., (70)] and, 
respectively, predominate in the primary motor cortex and associative 
motor areas [notably the premotor cortex; (71)]. Our findings of 
groove ratings being preferentially coded in premotor high beta (20 to 
30 Hz) dynamics are well in line with its reported role in temporal 
predictions and dynamic attention (24, 37, 38, 71, 72). The groove-
related delta (1.4 Hz) activity observed in the dorsal auditory pathway 
corresponds to the optimal rate for auditory temporal predictions. 
This timescale characterizes the capacity for auditory temporal atten-
tion (36), a function associated with the left parietal cortex (73). This 
finding notably supports a model that considers neuronal oscillations 
as intrinsic dynamical mechanisms capable of embodying neural 
computations (45, 74). The reported delta-beta coupling could reflect 
the temporal alignment between temporal predictions and attention 
fluctuations (39, 47, 75). Our results further show that the spectral 
gradient is not spatially reorganized between melodies, while the am-
plitude of delta and beta dynamics fluctuates with groove ratings. 
Hence, the experience of groove is probably reflected in amplitude 
fluctuations within a stable spectral gradient of activity. In conclusion, 
we show that interacting neural dynamics along the dorsal auditory 
pathway correlate with the spontaneous emergence of the pleasurable 
wanting to move during music listening.

MATERIALS AND METHODS
Participants and stimuli
Participants
A total of 66, 30, and 15 participants (age range, 19 to 71 years; 77% 
females) were recruited for the online, MEG, and control tapping ex-
periments, respectively. The number of participants was determined 
as follows. The online experiment was accessible for 2 weeks, with no 
stopping rule. The MEG experiment followed the guidelines of our 
MEG center, balancing data collection costs with statistical power. 
Last, the participant count for the control tapping experiment 
matched that of a prior similar-task study (36). All experiments fol-
lowed the local ethics guidelines from Aix-Marseille University. In-
formed consent was obtained from all participants before the 
experiments. All had normal audition and vision and reported no his-
tory of neurological or psychiatric disorders. We did not select par-
ticipants on the basis of musical or dance training and a short survey 
made at the end of the experiment informed us that none of them 
were professional musicians. Participants were financially compen-
sated for their time during the MEG experiment.
Acoustic stimuli
A professional musician first composed in MIDI (Musical Instru-
ment Digital Interface) format 12 original melodies lasting 8 s each 
(stimuli are available on github.com/DCP-INS/Groove). All had the 
same strictly periodic drum beat at 2 Hz combined with a specific 
bass melody. To vary the level of rhythmic predictability while mini-
mizing other acoustic variations, two types of variants were derived 
from each of these 12 original melodies, by varying the degree of 

syncopation (the amount of syncopation is inversely proportional to 
the rhythmic predictability). The 12 original melodies constituted 
the condition of medium degree of syncopation. The condition of 
low syncopation was created by synchronizing every bass note to the 
periodic drumbeat, resulting in 12 melodies having a degree of syn-
copation of 0. The condition of high syncopation was created by 
maximizing the number of syncopations present in each melody. 
Syncopation was defined as the appearance of a beat on a metrically 
weak accent preceding a rest on a metrically strong accent and quan-
tified after Longuet-Higgins and Lee (76). The bass melodies were 
maximally matched between the three variants of the same original 
melody, with the number of notes per measure, their pitch, and their 
order being identical or closely matched. Other musical characteris-
tics (volume, timbre, etc.) were kept constant. This procedure result-
ed in 36 melodies, with degrees of syncopation ranging from 0 to 15, 
and divided in three conditions, reflecting a low (black), medium 
(gray), or high (light gray) degree of syncopation for each melody 
(Fig. 1). Last, the songs were recorded in stereo with a sampling rate 
of 48 kHz and a bit depth of 24 bit.

Experimental designs and data acquisition
Experimental design of the online experiment
Participants were invited to visit a web page to take part in the survey, 
hosted by PsyToolkit. After completing the questionnaire, partici-
pants were invited to start the experiment. They were first prompted 
to use headphones or earphones and given the opportunity to pre-
evaluate the output volume to adjust them comfortably. Then, the ex-
periment consisted of a listening task in which each of the 36 melodies 
was presented binaurally once to participants, in a randomized man-
ner. After stimulus offset, participants reported on a keyboard the as-
sociated level of groove, defined as the extent to which they wanted to 
move to this music (9–15). They had 60 s to answer. A Likert scale 
between 1 and 7 was used. Instructions were visually displayed on a 
mid-gray background on a screen computer. During each trial, par-
ticipants had to fixate a cross, located at the center of the screen. The 
online experiment lasted ~10 to 15 min.
Experimental design of the control tapping experiment
The experiment was performed in the laboratory, using the Psycho-
physics-3 Toolbox and additional custom scripts written for MATLAB 
(The MathWorks). Trials consisted of a tapping task in which partici-
pants were asked to reproduce, with their indexes on the computer 
keyboard, the rhythm of the dance step that they would naturally pro-
duce when listening to the melodies. Each of the 36 melodies was pre-
sented binaurally once to participants, in a randomized manner, at a 
comfortable hearing level via headphones. Instructions were visually 
displayed on a mid-gray background on the screen laptop situated at 
a viewing distance of around 50 cm. On each trial, participants had to 
fixate a cross, located at the center of the screen.
Experimental design of the MEG experiment
The experiment consisted of a listening task in which melodies were 
presented binaurally to participants, in a randomized manner. Par-
ticipants were requested to stay completely still while they were listen-
ing to the melodies. Each original melody was duplicated, while 
maintaining the beat structure, which resulted in 16-s-long melodies. 
This allowed us to optimize the signal-to-noise ratio of the MEG re-
sponse. Moreover, the experiment was composed of four blocs. In 
each bloc, each of the 36 duplicated melodies was presented binau-
rally once to participants, in a randomized manner (144 trials in to-
tal). After stimulus offset, participants had 4 s to report on a keyboard 
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the associated level of groove on a Likert scale between 1 and 5. The 
experiment lasted ~48 min. Of note, we adjusted the scale and dura-
tion of responses between online and MEG experiments, due to the 
limited number of keys on the MEG system’s response box, and to 
improve comfort and maintain participant concentration throughout 
the MEG experiment.
Experimental design of the resting state experiment
Participants performed two 4-min eyes-open resting-state sessions, at 
the beginning and at the end of the MEG experiment. The two ses-
sions were pooled for subsequent analyses.
MEG data acquisition
MEG data were acquired at the Epileptology and Cerebral Rhythmol-
ogy Unit from the La Timone hospital, APHM, Marseille (France), 
using a 4-D Neuroimaging 3600 whole-head system (4-D Neuroim-
aging, San Diego, CA, USA) composed of 248 magnetometers; at a 
sampling frequency of 2034.51-Hz electrooculogram and electrocar-
diogram channels, one audio and five response buttons (LUMItouch 
optical response keypad) were recorded simultaneously and synchro-
nized with the MEG signal. Presentation software was used for stimu-
lus delivery and experimental control during MEG acquisition. 
Auditory stimuli were presented binaurally at a comfortable hearing 
level through insert earphones (E-A-RTONE 3A, Aero Company). 
Participants were comfortably reclined in the MEG scanner, so that 
they were physically constrained in their movement and muscularly 
relaxed. Instructions were visually displayed on a mid-gray back-
ground on a screen computer situated at a viewing distance of around 
50 cm. On each trial participants had to fixate a cross, located at the 
center of the screen, to get a visual constant stimulation. Location of 
the participant’s head with respect to the MEG sensors was recorded 
both at the beginning and end of each session to potentially exclude 
sessions and/or participants with large head movements. However, 
none of the participants moved >3 mm during all sessions.
MRI data acquisition
For volume MEG source analysis (i.e., the projection of the MEG sen-
sor data onto the full brain volume), a T1-weighted magnetic reso-
nance imaging (MRI) acquisition of the brain was obtained from each 
participant (1-mm isotropic voxel resolution).

Data analyses
Timing of motor acts in the control tapping experiment
One participant was excluded from subsequent analyses (hence, 
n = 14) as we failed to detect proper tapping responses. To investi-
gate the dynamics of occurrence of the motor events m produced 
at time t (in seconds) by participants during the listening of the 
melodies, we estimated the instantaneous frequency F(t) (in hertz) 
of their finger taps by computing the inverse of the inter-tap inter-
val, given by

Spectral decomposition of the acoustic stimuli
To estimate the temporal envelope of each melody, the sound signal 
was decomposed into 32 narrow frequency bands using a cochlear 
model, and the absolute value of the Hilbert transform was computed 
for each of these narrowband signals. The broadband temporal enve-
lope resulted from the summation of these absolute values and was 
used as the acoustic signal for all subsequent analyses. Using a fast 
Fourier transform, we then decomposed the acoustic signal of each 

melody from 1 to 9 Hz, to obtain the acoustic temporal modulation 
spectrum (i.e., the spectrum of the temporal envelope).
MEG data preprocessing
Preprocessing was performed with Brainstorm (77), following the 
good practice guidelines (78). Briefly, we removed electrical artifacts 
using notch filters (at 50 Hz and its first three harmonics), slow drifts 
using high-pass filtering (at 0.3 Hz), and eye blink and heartbeat arti-
facts using source signal projections. Data were split into 20-s trials, 
from −2 to +18 s relative to stimulus onset. MRI volume data were 
segmented with Freesurfer and transformed in Montreal Neurologi-
cal Institute space. A template source grid covering the entire brain 
volume was created on the default anatomy (10-mm resolution) and 
projected to individual anatomies to be used for the individual source-
reconstruction procedure. We computed individual MEG forward 
head models using the overlapping-sphere method (volume) and 
source imaging using dSPM (v. 2016, median eigenvalue) onto pre-
processed data, all by using default Brainstorm parameters. We ob-
tained 1673 source volumes (i.e., vertices), each composed of three 
orientations (x, y, and z). The procedure also included an empirical 
estimate of the variance of the noise at each MEG sensor, obtained 
from a 2-min empty-room recording done at the beginning of each 
scanning session. One participant was excluded from subsequent 
analyses (hence, n  =  29) as we failed to detect proper auditory 
responses.
Spectral decomposition of the MEG data
For both channel-level and source-level MEG data, trial-by-trial 
time-frequency decomposition was conducted in a range of 100 fre-
quencies, logarithmically spaced from 1 to 100 Hz. Morlet wavelet 
transform was applied to the data using the Brainstorm (MATLAB) 
function bst_timefreq with parameter Method = “morlet,” central fre-
quency Morlet_Fc = 1, and time resolution Morlet_FwhmTc = 3.
Normalized power spectrum
For each vertex, trial, and participant, we estimated the power spec-
trum by time-averaging the spectrally decomposed power signals in 
the [0.5 to 16] second range. 1/f Aperiodic component was removed 
by z-scoring the data across voxels for each frequency. We hence ob-
tained, for each frequency, the distribution of power across voxels, 
centered around zero.
Modeling of the spectral gradient
We fitted the source-reconstructed spatial distribution of the MEG 
power spectrum, both at the group and individual levels, for both the 
MEG experiment and resting-state datasets. We approximated the 
data by estimating coefficients p1 to p6 with a five-order polynomial 
function p(v) = p1v5 + p2v4 + p3v3 + p4v2 + p5v + p6 using the polyfit 
function in MATLAB (MATLAB 2018b), fitting across vertices the 
dominant frequency of each vertex v to its spatial coordinate, for each 
spatial dimension independently (the x, y, and z coordinates of the 
source-reconstructed data). We projected the fitted function p(v) in 
the three-dimensional (3D) space, with the polyval function. More-
over, we estimated the quality of fit by means of the adjusted r2, which 
determines the proportion of variance explained by the model, ad-
justed for the number of coefficients.

Multivariate pattern analysis on channel-level MEG data
Multivariate pattern decoding analyses were conducted by capitaliz-
ing on the spatial patterns of the MEG power signal, i.e., spectrally 
decomposed and time-averaged (0.5 to 16 s, to exclude the stimulus-
onset period), for each participant, each neural frequency and each 
regressor (degree of syncopation, groove ratings, and acoustic 
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temporal modulation spectrum). We used a cross-validated multi-
variate linear decoding model to estimate the spatial MEG patterns ŵ 
of a specific data associated with each stimulus characteristic X. For 
each cross-validation fold [n = 10, interleaved; see (79)], we defined 
the spatial MEG patterns ŵ on the training set by regressing, in a ridge 
sense (ridge α parameter set at 2), each z-scored MEG feature 
Ztrain (248 channels in total) against the stimulus characteristic Xtrain 
across stimulus exemplars (n = 130 for each cross-validation fold), by 
solving ŵ = (ZT

train
∗Ztrain+α∗ Ip)

−1 ∗ ZT
train

∗ Xtrain , where Ip is the 
p*p identity matrix with p corresponding to the number of MEG 
channels (248 in total). We then projected the MEG data on the test 
set Ztest, on the dimension defined by the coding weights ŵ to obtain 
neural predictions of the stimulus characteristic Xtest for each epoch of 
the test set (n = 14 for each cross-validation fold). After applying this 
procedure for each cross-validation fold, we computed the linear 
Pearson’s correlation coefficient between neural predictions X̂ and 
ground-truth values X of the stimulus characteristic. The coding pre-
cision metric reported in the results section corresponds to the Fisher 
transform of the correlation coefficient, which is approximately nor-
mally distributed, such that we could compute standard parametric 
statistics at the group level.

Searchlight analysis on source-level MEG data
We conducted searchlight-based multivariate pattern analyses on the 
entire power signal of the reconstructed volume sources (vertices), for 
each participant and each regressor (degree of syncopation and 
groove ratings). The searchlight procedure was applied to each vertex 
position by using as features the entire power spectrum of the current 
vertex and its 50 closest neighbors (in terms of Euclidean distance). 
Similarly, we estimated the coding of groove ratings at the source-
level for three specific frequency bands, namely, beat-related (2 Hz), 
delta (1.3 to 1.5 Hz), and beta (20 to 30 Hz) neural dynamics.
Multivariate pattern analysis on ROIs
We defined five ROIs of 20 vertices each based on the contrast be-
tween the decoding of degree of syncopation and groove ratings at the 
source-level (Fig. 3G). The 20 vertices surrounding (in terms of Eu-
clidean distance) the maximally significant vertex were selected. We 
then conducted multivariate pattern analyses on the power signal, for 
each participant, each frequency, each regressor, and each ROI.
Phase-amplitude coupling
We estimated phase-amplitude coupling over time (0.5 to 16 s) and 
melodies for each source-reconstructed vertex, between the phase at 
1.4 or 2 Hz and the amplitude between 3 and 45 Hz following the 
procedure described in (80). In brief, from the spectral decomposi-
tion analysis (see above) we extracted the time-resolved phase ϕ of the 
1.4- and 2-Hz activity. Simultaneously, we extracted the time-resolved 
amplitude signal ɑ of each investigated frequency (3 to 45 Hz). Then, 
we computed the phase-amplitude coupling ρ, estimated over t (time 
and melodies concatenated), for each combination of phase ϕ and 
amplitude ɑ frequencies

Statistical procedures
All analyses were performed at the single-subject level and followed 
by standard parametric tests at the group level (e.g., two-tailed paired 

t tests, two-tailed t tests against zero, and rm-ANOVAs). The type 1 
error rate arising from multiple comparisons was controlled for using 
FDR correction over the dimensions of interest (i.e., time, vertices, 
and frequencies), using the procedure introduced by Storey (81).
Neural network model
We implemented a canonical model for gradient frequency neural 
networks based on the GrFNN Toolbox [for more information, 
please see on musicdynamicslab.uconn.edu/home/multimedia/grfnn-
toolbox/ and (44–46, 52, 53, 74)]. The aim of this modeling approach 
was twofold. We first investigated whether neural resonance can ex-
plain the experience of groove during music listening and, specifically, 
whether a neurodynamic model can capture the nonlinear relation-
ship between degree of syncopation and groove ratings (Fig. 2, B and 
C). Our secondary goal was to understand which neurodynamic 
mechanisms may underlie the experience of groove.

Our model is composed of three 1D networks of nonlinear oscilla-
tors, tuned to different natural frequencies. Such networks are con-
ceptually like banks of band-pass filters, except that they consist of 
nonlinear oscillators rather than linear resonators. Network elements 
are canonical Hopf oscillators, a fully expanded canonical model for 
excitation-inhibition oscillations near a Andronov-Hopf bifurcation 
(45, 46, 82). As a generic model of excitation-inhibition oscillations, 
the canonical model represents the firing rates of interacting excit-
atory and inhibitory neural subpopulations as sinusoidal oscillations 
in the complex plane. The oscillators of each network are tuned to a 
range of distinct frequencies spanning the delta-theta frequency range 
and stimulated with time-varying acoustic signals given by

where zi is the complex-valued state of the ith oscillator in the network 
(subscript i = 1,…, N), ai = αi + iωi, bi = β1i + iδ1i, di = β2i + iδ2i(αi, ωi, 
β1i, δ1i, β2i, δ2i ∈ R; i denotes the imagery unit), and xi is the sum of 
input terms. The parameters αi, β1i and β2i determine the intrinsic dy-
namics of the ith oscillator, where αi is the bifurcation parameter; ωi is 
its natural frequency; δ1i and δ2i determine the dependence of intrin-
sic frequency on amplitude. The input to the ith oscillator xi can in-
clude both an external signal si(t) corresponding to the onsets of 
rhythmic auditory stimuli and coupling from other oscillators

where cij is the coupling coefficient (46) and k:m is the mode-locking 
ratio (i.e., 1:1, 2:1, and 3:1).

For the first (auditory) layer, we set the parameters as α = 0.0001, 
β1 = 0, and β2 = −3. Thus, each oscillator in this network produces a 
low-amplitude intrinsic oscillation at its own intrinsic frequency that 
can be entrained by an external rhythmic stimulus (52, 83, 84). The 
second (motor planning) layer parameters were chosen as α = −0.8, 
β1 = 4, and β2 = −3. In this parameter regime, each oscillator was 
bistable (or double limit cycle) regime, exhibiting both a stable limit 
cycle at zero and a stable limit cycle at a higher amplitude. Oscillators 
in this network begin at rest, and, when it receives a signal that is 
strong enough and long enough, it can jump to a stable limit cycle. 
The third (groove) layer has the same parameters as layer two. The 
remaining parameters were all set to zero: δ1 = 0 and δ2 = 0. All the 
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layers were based on 321 oscillators of internal frequency ωi, which 
span a range between 0.375 and 12 Hz (inclusive of the delta-theta 
frequency range) according to a log scale.

In this network, connections are learned according to the Hebbian 
rule (74, 85)

To make the dynamical interactions as transparent as possible, we 
designed a feedforward model with a minimal connection topology. 
Layer 1 is connected only to the auditory input, represented by the 
onset of the notes in the stimuli. We assumed learned multifrequency 
connections (black arrows in Fig. 2D) between layers 1 and 2. Initial 
connection strengths were chosen such that each frequency is con-
nected to its one-fourth, one-third, one-half, first, second, third, and 
fourth harmonics. We then fixed the learning parameters as λ = −1, 
μ1 = 4, μ2 = −2.2, and κ = 0.2 (74). We then assumed fixed 1:1 excit-
atory connections from layers 2 and 3 with a coupling strength fixed 
as w = 0.8 and fixed 1:1 inhibitory connections from layers 1 to 3 (red 
arrow in Fig. 2D) with a coupling strength fixed as w = −0.7. Thus, 
oscillators in layer 3 received in-phase stimulation from the motor 
planning network and anti-phase stimulation from the auditory net-
work. This means that the input to layer 3 was the difference between 
the time-dependent oscillations of layer 2 (pulse/meter) and layer 1 
(auditory rhythm).

We ran the model as follows: The MIDI representation of each 
melody was used to provide a clear estimate of the note onsets. Note 
onsets were encoded as a sequence of continuous time onset pulses 
and transformed into a complex-valued signal using a Hilbert trans-
form (a complex input is more relevant for this model, but real-valued 
signals can also be used). The model entrained to the onsets for the 
entire duration of the melodies (16 s). As with the data from the hu-
man experiment, we removed the initial (evoked) response of the 
model (here, the first 2 s). We then computed the mean field of each 
network individually [the mean of all oscillators in the network; see 
(44)]. Last, we computed fast fourier transform of the mean field (for 
2 to 16 s of the stimulus) and extracted the amplitude of the response 
at 2 Hz for each layer of the model, for each melody. We repeated this 
procedure 29 times (similar to the number of participants in our 
MEG experiment) to obtain a robust estimate of the model’s response. 
Of note, the network dynamics were deterministic, but initial condi-
tions were chosen at random, so the network output for each run of 
the same stimulus differed somewhat. Overall, this procedure pro-
duced an estimate of the amplitude of the time-averaged 2-Hz oscilla-
tions in each of the three network layers, in response to each of the 36 
melodies.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4
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