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Alexander Yu Pogromsky, Alexey Pavlov, Senior Member, IEEE , and Nathan van de Wouw, Fellow, IEEE

Abstract— This paper considers the problem of model
reduction for Lur’e-type models consisting of a feedback
interconnection between linear dynamics and static nonlin-
earities. We propose an optimal variant of the time-domain
moment-matching method in which the H∞-norm of the
error transfer-function matrix of the linear part of the model
is minimised, while the static nonlinearities are inherited
from the full-order model. We show that this approach also
minimises an error bound on the L2-norm of the steady-
state error between the responses of the full-order nonlin-
ear model and the reduced-order nonlinear model. Further-
more, the proposed approach preserves both the Lur’e-type
model structure as well as global stability properties. The
problem is cast as an optimisation problem with bilinear
matrix inequality constraints.This problem is then solved
using a novel algorithm, although global convergence of
the algorithm is not guaranteed.The effectiveness of the
approach is illustrated in the reduction of a structural dy-
namics model of a linear beam with nonlinear supports.

Index Terms— Model reduction, Moment matching,
Global stability, Nonlinear feedback, Bilinear matrix in-
equalities, Coordinate-descent algorithm.

I. INTRODUCTION

Model order reduction aims at finding reduced-order models
that accurately describe the dynamical behaviour of full-order
models [1], [2]. In this problem, it is a challenging task to find
reduced-order models with optimal accuracy. For linear time-
invariant (LTI) models, the optimal H∞-reduction problem has
been posed as an optimisation problem with bilinear matrix
inequality (BMI) constraints [3]. Alternatively, optimal H2-
reduction problems have pointed out necessary conditions for
optimality and proposed sophisticated numerical algorithms,
see [4] and references therein. Recently, [5] showed that the
H2-problem can be solved globally, although its implementa-
tion is limited to small-scale models.
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In the nonlinear case, it is difficult to characterise, let
alone optimise, the error between the full-order model and
the reduced-order model. For example, the moment matching
approach [2] or the balancing approach [6] are local meth-
ods for which error bounds do not exist for generic inputs.
Nonlinear reduction approaches with error bounds rely on the
preservation of global model stability properties, see, e.g., [7]–
[11] and references therein. However, these error bounds
cannot be influenced in other ways than changing the order
of the reduced-order model.Abstraction methods [12] also
provide error bounds that are instrumental for guaranteeing the
closed-loop performance of the full-order model for controllers
designed based on the reduced-order model. However, these
bounds have not been used for optimal model reduction.

This paper presents a moment-matching approach for the
reduction of Lur’e-type models consisting of multivariable
high-order LTI dynamics placed in feedback with a static mul-
tivariable nonlinear function, see Fig. 1. Lur’e-type models can
capture physical systems (see [12], [13] and references therein)
and also arise from system identification procedures [14]
and nonlinear control designs [15]. The proposed reduction
method preserves the Lur’e-type model structure by inheriting
the nonlinear function from the full-order model and only
reducing the order of the LTI dynamics to a user-defined and
arbitrarily small order, see Fig. 1. First, we parameterise a
set of reduced-order models using multivariable time-domain
moment matching [16].We show that this set always contains
at least one model that preserves the global input-to-state
convergence (ISC) property [17], which is a strong form of
model stability that guarantees the existence and uniqueness
of steady-state responses. Preserving the ISC property is a
prerequisite for deriving an error bound. Second, we search
within this set for the model that (i) preserves the ISC property
and (ii) minimises the error bound. The reduction problem
is cast as an optimisation problem with BMI constraints, for
which we propose a novel algorithm. This algorithm is of inde-
pendent interest as it can be applied with minor adaptations to
general optimisation problems with BMI constraints. Although
the global convergence of the algorithm is not guaranteed,we
show that the algorithm is effective in a case study based
on an actuated beam with nonlinear supports. The numerical
implementation of the BMI constraints currently limits the
approach to models with up to hundreds of states.
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Fig. 1: Full-order (left) and reduced-order (right) Lur’e-type
models, consisting of LTI dynamics placed in feedback with
static nonlinearities. The order of the LTI dynamics is reduced.

The current paper (i) extends the single-input, single-output
LTI approach in [18] to nonlinear multiple-input, multiple-
output (MIMO) Lur’e-type models, (ii) derives and minimises
an error bound between responses of the full-order and
reduced-order nonlinear models, (iii) derives conditions for
preserving the convergence stability property, (iv) provides an
existence result for a convergence-preserving reduced-order
model for any reduction order, (v) provides a completeness
result for the set of reduced-order nonlinear models, and (vi)
presents a numerical case study based on a nonlinear struc-
tural dynamics model. Furthermore, the current approach has
several advantages over the recently published method [13],
namely: (i) it uses a recently developed MIMO version of LTI
moment matching [16] to achieve a more efficient reduction;
and (ii) it directly minimises the error bound on the responses
of the nonlinear model as opposed to a proxy for it.

The remainder of this paper is structured as follows. Sec-
tion II proposes a model order reduction approach for Lur’e-
type models. Section III presents an algorithm for solving this
problem. Section IV describes the results of two numerical
case studies. Section V gives the concluding remarks. This
paper is an extended author version of a brief paper in press
for publication in the Transaction of Automatic Control (TAC)
journal with title ‘Optimal model reduction by time-domain
moment matching for Lur’e-type models’. This extended ver-
sion includes the proofs of all the results, some of which were
omitted from the TAC paper for reasons of space. All proofs in
this extended version were made available to the TAC review
process.

Notation: The symbols R,C,C0,C−, and N denote the set
of real numbers, complex numbers, complex numbers with
zero real parts, complex numbers with negative real parts,
and natural numbers (excluding 0), respectively. The symbols
In and 0n denote the n × n identity and zero matrices,
respectively, and 0n×ν denotes the zero matrix of dimensions
n × ν. For A ∈ Rn×n, σ(A) denotes its spectrum and A⊤

denotes its transpose. For a symmetric matrix A ∈ Rn×n,
A ≻ 0 (A ≺ 0) denotes that A is positive (negative) definite.
In symmetric block matrices, the element ⋆ is induced by
transposition. For matrices X , A ∈ Rn×n,B ∈ Rn×m, C ∈
Rp×n, and the constant γ ≥ 0, we use the short-hand notations

He (A) := A+A⊤, (1a)

Nγ(A,B, C,X ) :=

He (XA) XB C⊤

⋆ −γIm 0m×p
⋆ ⋆ −γIp

 . (1b)

For γ = 1, we write N instead of N1. For a vector x, its
Euclidean norm is denoted by |x|. For a piecewise-continuous
T -periodic signal x defined on R, the L2-norm is denoted
and defined by ∥x∥22 := 1

T

∫ T
0
|x(t)|2dt. The symbol Lm2 (T )

denotes the class of T -periodic piecewise-continuous functions
u : R → Rm satisfying ∥u∥2 < +∞, whereas Lm∞ denotes the
class of essentially-bounded piecewise-continuous functions
u : R → Rm. For a transfer-function matrix Φ defined
on C, with all its poles in C−, its H∞-norm is defined
by ∥Φ∥H∞

:= supω∈[0,∞) ρ̄(Φ(jω)) with ρ̄ the maximum
singular value of Φ and j :=

√
−1.

II. OPTIMAL MOMENT MATCHING FOR MULTIVARIABLE
LUR’E-TYPE MODELS

This section presents a moment-matching approach for the
order reduction of the Lur’e-type models depicted in Fig. 1.
First, in Section II-A, preliminaries on moments for Lur’e-
type models are recalled. Then, in Section II-B, the considered
reduction problem is formalised. Finally, in Section II-C, we
cast this problem into an equivalent, tractable problem, which
we solve by an algorithm presented in Section III.

A. Moments of convergent Lur’e-type models

Consider Lur’e-type models described by:

Σlin :

 ẋ = Ax+Buu+Bww,
y = Cyx,
z = Czx,

(2a)

Σnl :
{
w = φ(z), (2b)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, y(t) ∈
Rp is the output, z(t) ∈ Rq is the input to the nonlinear block,
and w(t) ∈ Rq is the output of the nonlinear block. The model
matrices are A ∈ Rn×n, Bu ∈ Rn×m, Bw ∈ Rn×q, Cy ∈
Rp×n, and Cz ∈ Rq×n. We define B :=

[
Bu Bw

]
and

C⊤ :=
[
C⊤
y C⊤

z

]
. The nonlinear block Σnl is a decentralised

nonlinear function φ : Rq → Rq , such that each element
φ(i), i ∈ {1, . . . , q}, is only a function of the i-th input z(i) and
satisfies both φ(i)(0) = 0 and the incremental sector condition

|φ(i)(z
a
(i))− φ(zb(i))| ≤ |za(i) − zb(i)|, ∀ za(i), z

b
(i) ∈ R. (3)

Models (2) with globally Lipschitz nonlinearities can be
transformed so that (3) is satisfied, see [19]. Fig. 1 depicts
model (2) schematically.

Consider the signal generator

τ̇ = Sτ, u = Lτ, (4)

where τ(t) ∈ Rν , u(t) ∈ Rm, and the pair (S ∈ Rν×ν , L ∈
Rm×ν) is observable. A global definition of moments of the
model (2) is recalled next from [13].

Definition 1 ([13]): Consider model (2) with u generated
by (4) with (S,L) observable. Suppose there exists a unique
function π : Rν → Rn : τ 7→ π(τ), such that the graph

M := {(τ, x) : x = π(τ), τ ∈ Rν} (5)

is invariant. Then, the function Cyπ is called the moment of
the model (2) at (S,L).
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A global form of model stability is required to ensure the
existence and uniqueness of π. We recall the notions of global
uniform convergence and input-to-state convergence (ISC).

Definition 2 ([17]): The model (2) is said to be globally
uniformly convergent if for every input u ∈ Lm∞, there exists
a solution x̄u to (2) that satisfies the following conditions:

• x̄u is defined and bounded on R,
• x̄u is globally uniformly asymptotically stable.

The solution x̄u is called the steady-state solution.
Definition 3 ([17]): The model (2) is said to be input-to-

state convergent if it is globally uniformly convergent and, for
every input u ∈ Lm∞, model (2) is input-to-state stable with
respect to the steady-state solution x̄u.

Sufficient conditions for the global uniform convergence and
the ISC property of the model (2) are presented next.

Theorem 1: Consider the model (2). Suppose that
• the matrix A is Hurwitz, i.e., σ(A) ⊂ C−.
• the decentralised nonlinearity φ satisfies φ(0) = 0 and

the incremental sector condition (3).
• the gain condition∥∥Φ(z,w)

∥∥
H∞

=: γzw < 1 (6)

is satisfied, where Φ(z,w)(s) := Cz(sI−A)−1Bw, s ∈ C.
Then, the model (2) is globally uniformly convergent and
input-to-state convergent for the class of inputs Lm∞.

Proof: The proof can be found in Appendix I.
To streamline the presentation, we summarise the required

assumptions.
Assumption 1: Model (2) satisfies all the conditions of

Theorem 1. The pair (S,L) in (4) is observable and the
eigenvalues of S are simple and located on the imaginary axis.

Under Assumption 1, the mapping π in (5) exists and
is unique, see [13, Lemma 5]. Furthermore, the steady-state
solution x̄u of the model (2) satisfies x̄u = π(τ), where τ is
the state of the signal generator (4).

B. The optimal nonlinear moment-matching problem

As an approximation to (2), consider the Lur’e-type model

Σ̂lin :

 ξ̇ = Fξ +Guu+Gλλ,
ψ = Hψξ,
ζ = Hζξ,

(7a)

Σnl :
{
λ = φ(ζ), (7b)

where ξ(t) ∈ Rν , u(t) ∈ Rm, ψ(t) ∈ Rp, ζ(t) ∈ Rq ,
λ(t) ∈ Rq , F ∈ Rν×ν , Gu ∈ Rν×m, Gλ ∈ Rν×q, Hψ ∈
Rp×ν , and Hζ ∈ Rq×ν . We define G :=

[
Gu Gλ

]
and

H⊤ :=
[
H⊤
ψ H⊤

ζ

]
. The model (7) inherits the nonlinear

block Σnl of (2) and thus preserves the Lur’e-type structure,
see Fig. 1. The transfer functions associated with (7a) are

Γ(i,k)(s) := Hi(sI − F )−1Gk, s ∈ C, (8)

for i ∈ {ψ, ζ}, k ∈ {u, λ} and, for σ(F ) ⊂ C−, the following
corresponding gains are defined as:

γik :=
∥∥Γ(i,k)

∥∥
H∞

< +∞, i ∈ {ψ, ζ}, k ∈ {u, λ}. (9)

The collection of transfer-function matrices is defined as:

Γ(s) :=

[
Γ(ψ,u)(s) Γ(ψ,λ)(s)
Γ(ζ,u)(s) Γ(ζ,λ)(s)

]
, s ∈ C. (10)

Similarly, the transfer-function matrices associated with the
LTI part of the full-order model (2) are denoted by Φ and
Φ(i,k), for i ∈ {y, z}, k ∈ {u,w}, and are defined similarly
to Γ in (10) and Γ(i,k) in (8), respectively. Similar to (9), we
define the gains γik, i ∈ {y, z}, k ∈ {u,w}.

By Assumption 1, σ(A) ⊂ C−. The proposed reduction
approach ensures that the reduced-order model (7) satisfies
the conditions of Theorem 1, resulting in σ(F ) ⊂ C−. Then,
there exists a 0 ≤ γ < +∞ such that:

∥Φ− Γ∥H∞
≤ γ. (11)

Although γ characterises an error bound on LTI transfer-
function matrices, we show that it also plays a central role
in the error between the responses of the Lur’e-type models.

Lemma 1: Consider models (2) and (7) and suppose that
both satisfy the conditions of Theorem 1. Then, for any u ∈
Lm2 (T ), the steady-state output error ȳu − ψ̄u is bounded by∥∥ȳu − ψ̄u

∥∥
2
≤ γ

(
1 +

γyw
1− γzw

)(
1 +

γζu
1− γζλ

)
∥u∥2 (12)

with γ defined in (11), the constants γζu and γζλ defined in
(9), and γyw and γzw defined similarly.

Proof: The proof can be found in Appendix II.
Let Hψθ be the moment of the reduced-order model (7),

where θ plays the role of π in Definition 1. Then, noting that
x̄u = π(τ) and ξ̄u = θ(τ), we observe that (12) also bounds
the mismatch in moment Cyπ(τ)−Hψθ(τ).

Model reduction by moment matching aims to find reduced-
order models that share the same moment as the full-order
model [2], i.e., match Hψθ to Cyπ. However, achieving
moment matching in the structure-preserving setting faces two
challenges. First, because Σnl generates an infinite number
of harmonics, moment matching generally requires an infinite
number of interpolation points, i.e., ν = ∞, see [13]. Sec-
ond, finding an analytical expression for the mapping π in
Definition 1 is challenging, or even infeasible. Therefore, the
proposed method in this paper aims to achieve linear moment
matching between the LTI parts of the Lur’e-type models.
In addition, it exploits the parametric freedom of moment
matching to ensure ISC preservation and to minimise the error
bound in Lemma 1, thus ensuring an accurate approximation
between the moments Cyπ and Hψθ.

The moment of Σlin in (2a) at (S,L) is CΠ [2], where
Π ∈ Rn×ν is the solution of the Sylvester equation

ΠS = AΠ+BL. (13)

Analogously, the moment of Σ̂lin in (7a) is HΘ, where Θ
plays the role of Π. The linear model Σ̂lin in (7a) achieves
moment matching at (S,L) if HΘ = CΠ. The reduction
problem for Lur’e-type models is formally presented next.

Problem 1: Consider the full-order model (2) and a given
pair (S,L) in (4). Suppose Assumption 1 holds. Consider
the reduced-order model (7). The problem of Optimal H∞-
model reduction by approximate moment matching consists in
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solving the following constrained optimisation problem:

min
F,Gu,Gλ,Hζ ,Hψ,γ

γ (14a)

subject to ∥Φ− Γ∥∞ < γ, (14b)∥∥Γ(ζ,λ)

∥∥
∞ < 1, (14c)

CΠ = HΘ. (14d)
Problem 1 minimises γ, which plays a prominent role in
the error bound in Lemma 1. Constraint (14c) guarantees
the satisfaction of condition (6) in Theorem 1 (written for
model (7)), which leads to the preservation of ISC. Con-
straint (14d) guarantees LTI moment matching and provides a
frequency-domain interpretation of the reduction method [16].

Remark 1: The interpolation points σ(S) can be chosen as
the zero frequency, resonance frequencies, and other frequen-
cies of interest. The selection of tangential directions in the
matrix L is less intuitive and we refer to [16] for more details
on the relation between tangential directions and moments.

C. An equivalent, tractable, and solvable problem
The set of models that satisfy (14d) is given in the following

theorem. Hereto, given a S and L, the set GM is defined as

GM :=
{
G ∈ Rν×(m+q) : σ(S) ∩ σ(S −GL) = ∅

}
. (15)

Theorem 2 ([16]): Consider the full-order model (2a) and
the observable pair (S,L) in (4). Suppose σ(S) ∩ σ(A) = ∅.
Then, for any G ∈ GM , model (7a) with matrices

F := S −GL, H := CΠ, (16)

where Π ∈ Rn×ν is the unique solution to (13) achieves
moment matching at (S,L).

The set GM is parameterised by the matrix G. It contains
all models that satisfy constraint (14d) as stated in the next
lemma. This is a MIMO extension of [2, Proposition 1].

Lemma 2: Consider any ν-th-order model described by

˙̂
ξ = F̂ ξ̂ + Ĝuu+ Ĝλλ, ψ̂ = Ĥψ ξ̂, ζ̂ = Ĥζ ξ̂, (17)

that satisfies the constraint (14d), i.e., admits a unique full-rank
solution Θ̂ ∈ Rν×ν to

F̂ Θ̂ + ĜL = Θ̂S, CΠ = ĤΘ̂, (18)

where Ĝ :=
[
Ĝu Ĝλ

]
, Ĥ⊤ :=

[
Ĥ⊤
ψ Ĥ⊤

ζ

]
. Model (7a)

with (F,H) in (16) and G = Θ̂−1Ĝ ∈ GM is equivalent to
(17) under the similarity transformation ξ̂ = Θ̂ξ.

Proof: The proof can be found in Appendix III.
Next, we exploit the freedom in the matrix G in GM to

parameterise a subset of GM that satisfies the constraints (14b)
and (14c) for a fixed γ > 0.

Consider the LTI error dynamics:[
ẋ

ξ̇

]
=

[
A 0n×ν

0ν×n S −GL

]
︸ ︷︷ ︸

A

[
x
ξ

]
+

[
Bu Bw
Gu Gλ

]
︸ ︷︷ ︸

B

[
u w

]
[
ey
ez

]
=

[
Cy −Hψ

Cz −Hζ

]
︸ ︷︷ ︸

C

[
x
ξ

]
,

(19)

and the set of models

Gγ := {G ∈Rν×(m+q) : ∃X1 ≻ 0n+ν ,∃X2 ≻ 0ν :

Nγ(A,B, C,X1) ≺ 0n+ν+m+p+2q,

N (S −GL,Gλ, Hζ ,X2) ≺ 0ν+2q},
(20)

where Nγ and N are defined in (1b), A,B, C are defined in
(19), Hζ is defined in Theorem 2, and Gλ is a submatrix
of G. The satisfaction of the constraints in (20) ensures the
satisfaction of (14b) and (14c), where the latter guarantees ISC
preservation for the reduced-order Lur’e-type model (7). We
first show that, regardless of the order ν of the reduced model,
the set Gγ is non-empty for some γ < ∞. This is a stronger
result than the results in [8], [10], [11], where the reduction
order ν must be sufficiently large to preserve model stability.

Lemma 3: Consider the full-order model (2) and the
reduced-order model (7). Suppose Assumption 1 holds. Then,
there exists a 0 ≤ γ[0] < +∞ and G[0] ∈ Rν×(m+q) such that
G[0] ∈ Gγ[0] with Gγ in (20). Furthermore, such a G[0] is given
by G[0] = X−1

[
Q1 Q2

]
, where X ≻ 0ν , Q1 ∈ Rν×m, and

Q2 ∈ Rν×q are such that the linear matrix inequalities

N (XS −
[
Q1 Q2

]
L,Q2, Hζ , Iν) ≺ 0. (21)

are satisfied. The corresponding γ[0] is given by γ[0] =
∥Ψ− Γ∥H∞

< +∞.
Proof: The proof can be found in Appendix IV.

We are now ready to present the main result of this paper.
Theorem 3: Consider the full-order model (2) and the signal

generator (4). Suppose Assumption 1 holds. Then, the follow-
ing statements are true for any order ν ∈ N:

1) The set of all reduced-order models (7) satisfying con-
straints (14b)–(14d) of Problem 1 is characterised, up to
a similarity transformation, by (F,H) defined by (16)
with G ∈ Gγ ⊂ GM .

2) The set Gγ is non-empty for some 0 ≤ γ < +∞. In
addition, if the LTI part (2a) of the full-order model
is balanced with Hankel singular values h̄1 ≥ . . . ≥
h̄ν ≥ h̄ν+1 ≥ . . . ≥ h̄n, then the set Gγ is empty for
γ < h̄ν+1.

3) For any model (7) satisfying (14b)–(14d), the difference
between the steady-state outputs of (2) and (7) corre-
sponding to an input u ∈ Lm2 (T ), is bounded by (12).

Proof: The proof can be found in Appendix V.
Consequently, the optimisation problem in Problem 1 is

replaced by the equivalent problem

min
G,γ

γ

subject to G ∈ Gγ .
(22)

Compared to (14), optimisation problem (22) contains only
ν × (m+ q) model parameters. Note that the set Gγ contains
all models that satisfy the constraints of Problem 1, up to a
similarity transformation.In addition, regardless of the order ν,
the set Gγ is not empty for some, possibly large, γ.
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III. ALGORITHM FOR SOLVING THE OPTIMAL
MODEL REDUCTION PROBLEM

This section presents a coordinate-descent algorithm
(CDA) [20] for solving the optimisation problem (22) subject
to BMI constraints. The proposed iterative algorithm combines
two CDAs and allows switching if either CDA becomes stuck.

A. Primal and Finsler’s form constraints
The set Gγ in (20) is characterised by bilinear matrix

inequality constraints in the matrix variable G and positive
definite matrices X1 and X2, the latter collected in X :=
{X1,X2}. These constraints can be written in a standard
(primal) form Rp(X , G, γ) ≺ 0, where

Rp(X , G, γ) := M1(X , γ) + He
(
M2(X )M⊤

3 (G)
)
, (23)

and

M1(X , γ) :=blkdiag
(
−X1,−X2, N̄γ , Ñ

)
,

N̄γ :=Nγ

([
A 0n×ν

0ν×n S

]
,

[
B

0ν×(m+q)

]
, C,X1

)
,

Ñ :=N (S, 0ν×q, Hζ ,X2) ,

M2(X ) :=blkdiag

0n+2ν ,

 X1

0(m+q)×(n+ν)

0(p+q)×(n+ν)

 ,
 X2

0q×ν
0q×ν

 ,

M3(G) :=blkdiag

0n+2ν , Ḡ
⊤,

−(GL)⊤

G⊤
λ

0q×ν

 ,

Ḡ :=

[
0n 0n×ν 0n×(m+q) 0n×(p+q)

0ν×n −GL G 0ν×(p+q)

]
.

Note that M1,M2, and M3 are linear in their arguments, and
products between X and G in (23) only arise from products
between M2 and M3. The square matrix Rp has 2n+ 4ν +
4q +m+ p rows.

Thanks to the Finsler’s Lemma [21], the constraint in
the primal form Rp(X , G, γ) ≺ 0 can be rewritten in the
so-called Finsler’s form: RF (X , N,G, γ) ≺ 0 with N ∈
R(2n+4ν)×(4n+8ν+4q+m+p) an additional decision variable.
The matrix RF is as follows:

RF (X , N,G, γ) := M(X , γ) + He
([

M3(G)
−I2n+4ν

]
N⊤

)
, (24)

where

M(X , γ) :=
[
M1(X , γ) M2(X )

⋆ 02n+4ν

]
. (25)

The matrix RF (X , N,G, γ) contains no products between X
and G, but instead contains a product between G and N .
By Finsler’s Lemma [21], the constraints are equivalent in
primal and Finsler’s form, i.e., for given X , G, γ, the inequality
Rp(X , G, γ) ≺ 0 holds if and only if there exists an additional
matrix N such that RF (X , N,G, γ) ≺ 0. The square matrix
RF has 4n+ 8ν + 4q +m+ p rows.

B. Combination of CDAs
The CDA is listed in Algorithm 1 for both the primal

and the Finsler’s forms. In Step 3, for a given, fixed G, the

Algorithm 1 CDA for constraints in primal or Finsler’s form
Input: Constraints Rp ≺ 0 in (23) in primal form or RF ≺ 0
in (24) in Finsler’s form, any γ[0] > 0 and matrix G[0] ∈ Gγ[0] ,
and accuracy threshold ϵ > 0.

1: Set iteration index i = 1.
2: while (γ[i−1] − γ[i])/γ[i] ≥ ϵ do
3: Solve the optimisation problem

Switch form do
case primal(

X [i], ·
)
=argmin

X ,γ
γ subject to Rp(X , G[i−1], γ) ≺ 0.

case Finsler’s(
·, N [i], ·

)
=argmin

X ,N,γ
γ subject to RF (X , N,G[i−1], γ) ≺ 0.

4: Solve the optimisation problem
Switch form do

case primal(
G[i], γ[i]

)
=argmin

G,γ
γ subject to Rp(X [i], G, γ) ≺ 0.

case Finsler’s(
·, G[i], γ[i]

)
=argmin

X ,G,γ
γ subject to RF (X , N [i], G, γ) ≺ 0.

5: Update i = i+ 1.
6: end

Output: Matrix G = G[i−1] and scalar γ = γ[i−1].

optimisation problem with LMI constraints in X in primal
form or X and N in Finsler’s form is solved for X and γ, or
respectively X , N , and γ. The X , respectively N , computed
in Step 3 is fixed in Step 4 and the optimisation problem with
LMI constraints in G is solved for G and γ, or respectively
X , G, and γ. The CDAs can be initialised using Lemma 3.

Algorithm 1 allows switching when it can no longer re-
duce γ in either the primal or the Finsler’s form. For example,
suppose that Algorithm 1 is run in primal (Finsler’s) form and
returns γI and GI ∈ GγI . Then, GI , γI can be used as a
starting point for Algorithm 1 in Finler’s (primal) form. Such
switching is possible because the constraints in the primal
and the Finsler’s forms are equivalent. The resulting novel
algorithm is formalised in Algorithm 2.

Although formal convergence proofs for generic CDAs do
not yet exist, CDAs work well in practice and guarantee a
non-increasing sequence of γ over the iterations [20]. The
study in [18] shows that Algorithm 2 can potentially avoid
getting stuck prematurely. Furthermore, the switching nature
of Algorithm 2 provides numerical robustness, which is par-
ticularly relevant for high-dimensional matrix inequalities and
a large number of decision variables.These observations are
highlighted in the case studies presented in the next section.

IV. NUMERICAL CASE STUDIES

This section first presents a realistic case study in Sec-
tion IV-A. Then, we provide an LTI example in Section IV-B to
highlight the numerical properties of Algorithm 2. The source
code for both case studies can be downloaded from https:

https://github.com/FahimShakib
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Algorithm 2 Combination of CDAs
Input: Constraints Rp ≺ 0 in (23) and RF ≺ 0 in (24), any
γ[0] > 0 and G[0] ∈ Gγ[0] , and accuracy threshold ϵ > 0.

1: Set iteration index k = 1 and G0
II = G[0].

2: while (γ[k−1] − γ[k])/γ[k] ≥ ϵ, do
3: Obtain G[k]

I = G and γ[k] = γ by running
Algorithm 1 in primal form starting from G

[k−1]
II .

4: Update k = k + 1.
5: Obtain G[k]

II = G and γ[k] = γ by running
Algorithm 1 in Finsler’s form starting from G

[k−1]
I .

6: Update k = k + 1.
7: end

Output: Matrix G = G
[k−1]
II and scalar γ = γ[k−1].

2 m

Input u

1 m 1 m

Output y

Fig. 2: One-sided clamped flexible beam supported by two
nonlinear one-sided springs.

//github.com/FahimShakib. All computations are per-
formed on an Intel Xeon E5-1650, 3.50 GHz processor.

A. Flexible beam with nonlinear support
Consider the flexible beam depicted schematically in Fig. 2.

The beam has dimensions of length × width × height = 2 m ×
50 mm × 30 mm and is characterised by a Young’s modulus
of 200 GPa and a density of 7746 kg/m3. Its dynamics are
described by a n = 48-dimensional LTI model obtained by
the finite-element method. The scalar input u acts in the centre
of the beam, while the scalar output y is the deflection at the
end of the beam. The q = 2 outputs z are the deflections
at the locations of the one-sided nonlinear springs, as in
Fig. 2. The spring functions can be written as w = φ(z) :=
3 · 103 max(02×1, z), z ∈ R2, where max is an element-wise
operator. After a loop transformation [19], the model satisfies
all conditions of Theorem 1.

We select the interpolation frequencies s1 = 0, s2,3 =
±j ·2π10.2, and s4,5 = ±j ·2π64.1 rad/sec, which correspond
to the zero frequency and the frequencies of the first two
resonances. We define S and L in (4) as

S = blkdiag
(
0, 2π

[
0 10.2

−10.2 0

]
, 2π

[
0 64.1

−64.1 0

])
,

L =
[
ℓ ℓ 03,1 ℓ 03,1

]
, ℓ :=

[
1 1 1

]⊤
.

Launching Algorithm 2 from the pair (G[0], γ[0] = 1.363)
found by Lemma 3 results in γ = 0.155. This γ is close to the
theoretical lower bound γ > 0.0284 given by Theorem 3.
The lower bound is conservative since it does not take into

TABLE I: Analysis of the reduction performance in terms
of γ (second column), the norms ∥ȳu∥2,

∥∥ȳu − ψ̄◦
u

∥∥
2
, and∥∥ȳu − ψ̄u

∥∥
2

for the block-wave input (third column for the
0.5 Hz input and fourth column for the 10 Hz input), the
error bound (12) (fifth column), and the elapsed time for
the simulation with input frequency 0.5 Hz, averaged over 5
simulations (last column). The error bound (12) has the same
value for both input frequencies.

γ 0.5 Hz 10 Hz Error bound Time [s]
Σ − 0.132 1.06 − 17.53
Σ̂◦ 1.363 0.111 1.591 3.5 · 106 0.75
Σ̂ 0.155 0.028 0.171 6.2 · 103 0.46

account moment-matching constraints. In the remainder, the
superscript (·)◦ is used for variables attributed to the initial
reduced-order model corresponding to G[0], while variables
attributed to the final model are denoted by a hat symbol.

The Bode magnitude plots of the error between Σlin and
the reduced-order models Σ̂◦

lin and Σ̂lin are depicted in Fig. 3.
It can be observed that the model Σ̂lin (blue curve) obtains
a significantly smaller error than the initial model Σ̂◦

lin (red
curve), especially for frequencies below 100 Hz. Fig. 4 depicts
the steady-state response of the Lur’e-type models Σ, Σ̂◦,
and Σ̂ for block-wave excitations with amplitude 104 and
frequencies f = 0.5 Hz and f = 10 Hz. The bottom plot
shows that the error is significantly reduced, which can also
be deduced from Table I. The value of the error bound (12)
in Table I also indicates a steep reduction, although the bound
is conservative due to approximation steps in its derivation,
see [13]. Nevertheless, this study shows that a reduction in the
error bound also leads to a reduction in the mismatch between
the steady-state responses. The elapsed time for computing the
steady-state outputs of Σlin,Σ

◦
lin, and Σ̂lin in Table I shows

a significant reduction of over 95%, which is one of the main
motivations for model reduction. Solving Problem 1 took less
than 30 minutes and successfully reduced a 48-th-order model
to a 5-th-order model.

B. Robustness of Algorithm 2 for reducing LTI models

The results of this paper apply to LTI models by neglecting
the nonlinearity φ in the models (2) and (7) and taking
q = 0. Stability preservation is guaranteed by the constraint
Nγ(A,B, C,X1) ≺ 0 in Gγ in (20). Therefore, the constraint
N (S −GL,Gλ, Hζ ,X2) ≺ 0 in Gγ can be neglected.

Consider the sixth-order transfer function

Φ(s) =
(s− 5)(s− 4)(s− 3)(s− 2)(s− 1)

(s+ 6)(s+ 5)(s+ 4)(s+ 3)(s+ 2)(s+ 1)
, s ∈ C,

and take a minimal, balanced realisation. We reduce this model
to a second-order model using Theorem 2 with

S =

[
0 2π

−2π 0

]
, L =

[
1 0

]
.

This results in a family of models parameterised by G ∈ R2

and constrained to σ(S) ∩ σ(S − GL) = ∅. To find the
optimal G, we run Algorithm 2 starting from the following

https://github.com/FahimShakib
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Fig. 3: Bode magnitude plot of error dynamics Σlin − Σ̂◦
lin (red) and the error dynamics Σlin − Σ̂lin (blue). The horizontal

dashed lines indicate the peak error in the correspondingly coloured transfer function.

Fig. 4: Top plots: One period of the steady-state output
response of the full-order model Σ (black), the initial reduced-
order model Σ̂◦ (red), and the final reduced-order model Σ̂
(blue). The input is a block-wave signal with a frequency of
0.5 Hz in the left plots and a frequency of 10 Hz in the right
plots. Bottom: The corresponding steady-state error between
the outputs of the full-order and reduced-order models.

different initialisations:

G[0] =

{[
0.1
0.1

]
,

[
0.1
−1

]
,

[
1
1

]
,

[
1
−1

]
,

[
10
25

]}
, (26)

called Init I, ..., Init V, respectively. According to Theorem 3,
a conservative lower bound for γ is 0.151.

The iteration history in Fig. 5 depicts that, regardless of the
starting point, the algorithm converges to approximately the
same value of γ ≈ 0.166, which is close to the theoretical
conservative lower bound. It also shows that switching, indi-
cated by the cross in Fig. 5, allows γ to be further reduced.
Fig. 6 depicts the iteration history of G and shows that G
converges to approximately the same solution indicated by the
circles, again independent of the starting point indicated by the
squares. Crucially, all initialisation result in a G that is close to
the optimal G indicated by the orange cross, which was found
as a numerical minimiser on a finite grid. We conclude that, in
this example, Algorithm 2 is robust to the starting point, since
it converges to approximately the same solution regardless
of the starting point.Each problem was solved within a few
minutes. As can be seen in Fig. 5, the computation time can be

Fig. 5: The iteration history of γ for the starting points in
(26). The crosses indicate a switch in Algorithm 2 between
the primal and Finsler’s form.

Fig. 6: The colormap of γ over the iteration history of G for
the starting points in (26), indicated by the squares, and the
final points, indicated by the circles. All curves converge to the
same optimal value indicated by the orange cross. For clarity
of visualisation, any γ > 3 is capped at 3.

significantly reduced by terminating the algorithm prematurely
as most of the accuracy improvement occurs in the first few
iterations.

V. CONCLUSIONS

This paper presents a model reduction approach based on
time-domain moment matching for MIMO Lur’e-type models
consisting of a feedback interconnection of LTI dynamics and
nonlinear static functions. The approach exploits parametric
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freedom to minimize the H∞-norm of the error transfer-
function matrix of the LTI dynamics, which also implies the
minimisation of an L2-error bound on the nonlinear steady-
state model responses. Furthermore, both the model structure
and the global convergence stability properties of the full-order
nonlinear model are preserved.

APPENDIX I
PROOF OF THEOREM 1

Proof: By [22, Theorem 12], model (2) is globally
uniformly convergent for the class of inputs Lm∞ if, for any
input u ∈ Lm∞, (i) there exists a positively invariant compact
set with respect to model (2); (ii) model (2) is globally
incrementally stable [22, Theorem 12]; and (iii) the vector
field is locally Lipschitz in x. The latter condition is satisfied
thanks to the incremental sector condition (3). Input-to-state
convergence follows from global uniform convergence and
input-to-state stability of model (2), see [17].

We first prove the existence of a positively invariant compact
set. Consider the function V = |x|2P , where |x|2P := x⊤Px and
consider its time-derivative along trajectories of (2):

V̇ = x⊤(A⊤P + PA)x+ 2u⊤B⊤
u Px+ 2w⊤B⊤

wPx. (27)

Using Young’s inequality for products, for any γu > 0, the
following inequality holds

V̇ ≤ x⊤(A⊤P + PA)x+
1

γu
|x|2P + γu|Buu|2P

+ x⊤PBwB
⊤
wPx+ w⊤w.

(28)

Furthermore, by the sector condition (3) and φ(0) = 0, i.e.,
w⊤w ≤ z⊤z, we write

V̇ ≤ x⊤(A⊤P + PA+ PBwB
⊤
wP + C⊤

z Cz)x

+
1

γu
|x|2P + γu|Buu|2P .

(29)

Note that by the Bounded-Real Lemma [23], the small-
gain condition (6) and A being Hurwitz is equivalent to the
existence of a P ≻ 0 such that N (A,Bw, Cz, P ) ≺ 0 is
satisfied. This implies that, under the condition of Theorem 1,
there exists an ϵ > 0 such that

A⊤P + PA+ PBwB
⊤
wP + C⊤

z Cz ≺ −ϵP. (30)

By (30) and taking γu := 2ϵ−1, it follows from (29) that the
following inequality holds:

V̇ ≤ − ϵ

2
V + Cu, Cu := 2ϵ−1|Buu|2P . (31)

Using the fact that u ∈ Lm∞, the inequality in (31) implies the
existence of a positively invariant set [24, Theorem 1].

Next, we prove global incremental stability. Consider the
incremental Lyapunov function δV = δx⊤Pδx, where δx ∈
Rn is the difference between two states xa ∈ Rn and xb ∈ Rn
(i.e., δx = xa−xb) for the same input u ∈ Lm∞ (i.e., δu = 0).
Using the same steps as in (27)–(31), now for δx ∈ Rn and
δu = 0, we find that there exists a constant ϵ > 0 such that

˙δV ≤ −ϵδV ∀ δx ∈ Rn. (32)

This inequality proves global incremental stability, see [25,
Theorem 1]. By the existence of a positively invariant compact
set concluded from (31) and global incremental stability con-
cluded from (32), model (2) is globally uniformly convergent
by [22, Theorem 12].

Finally, we conclude input-to-state stability of model (2)
from the inequality in (31), see [19, Theorem 4.19]. Global
uniform convergence and input-to-state stability together imply
input-to-state convergence of model (2), see [17].

APPENDIX II
PROOF OF LEMMA 1

Proof: The exponentially stable linear dynamics (2a)
defines four linear steady-state operators, namely P(i,k), i ∈
{y, z}, k ∈ {u,w}. Each steady-state operator P(i,k) defines a
mapping from inputs u ∈ Lm2 (T ) or w ∈ Lq2(T ) to the steady-
state outputs ȳ ∈ Lp2(T ) or z̄ ∈ Lq2(T ). The operator P(y,u) is
incrementally bounded as follows:∥∥P(y,u)(u2)− P(y,u)(u1)

∥∥
2
≤ γyu ∥u2 − u1∥2 , (33)

where γyu is defined in accordance with (9). Similarly, all
operators P(i,k), i ∈ {y, z}, k ∈ {u,w}, are bounded using the
corresponding constants γik in (9). In the same manner, the
exponentially stable linear dynamics (7a) of the reduced-order
model defines the operators P(i,k), i ∈ {ψ, ζ}, k ∈ {u, λ}.
These operators are also bounded in the sense of (33) with
the corresponding constants defined in (9). Furthermore, the
inequality ∥∥∥P(i,k)(·)− P(̂i,k̂)(·)

∥∥∥
2
≤ γ ∥·∥2 (34)

with γ defined in (11), holds true for all pairs

(i, k, î, k̂) ∈{(y, u, ψ, u), (y, w, ψ, λ),
(z, u, ζ, u), (z, w, ζ, λ)}.

(35)

The mismatch characterised by γ thus bounds the mismatch
between the linear operators of the full-order model and the
reduced-order model.

Let us consider the mismatch∥∥ȳ − ψ̄
∥∥
2
=
∥∥P(y,u)(u)− P(ψ,u)(u)+

P(y,w)(w̄)− P(ψ,λ)(λ̄)
∥∥
2

(36a)

=
∥∥P(y,u)(u)− P(ψ,u)(u)+

P(y,w)(w̄)− P(ψ,λ)(λ̄)+

P(y,w)(λ̄)− P(y,w)(λ̄)
∥∥
2

(36b)

≤
∥∥P(y,u)(u)− P(ψ,u)(u)

∥∥
2
+∥∥P(y,w)(w̄)− P(y,w)(λ̄)

∥∥
2
+∥∥P(y,w)(λ̄)− P(ψ,λ)(λ̄)
∥∥
2

(36c)

The first and third terms in (36c) can be bounded by (34), and
the second term in (36c) can be bounded by (33), resulting in∥∥ȳ − ψ̄

∥∥
2
≤ γ ∥u∥2 + γyw

∥∥w̄ − λ̄
∥∥
2
+ γ

∥∥λ̄∥∥
2
. (37)

Furthermore, (3) implies
∥∥w̄ − λ̄

∥∥
2
≤

∥∥z̄ − ζ̄
∥∥
2
, leading to∥∥ȳ − ψ̄

∥∥
2
≤ γ ∥u∥2 + γyw

∥∥z̄ − ζ̄
∥∥
2
+ γ

∥∥λ̄∥∥
2
. (38)
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Repeating (36)–(38) for the mismatch
∥∥z̄ − ζ̄

∥∥
2
, we find∥∥z̄ − ζ̄

∥∥
2
≤ γ ∥u∥2 + γzw

∥∥z̄ − ζ̄
∥∥
2
+ γ

∥∥λ̄∥∥
2
. (39)

From here, we find∥∥z̄ − ζ̄
∥∥
2
≤ γ

1− γzw

(
∥u∥2 +

∥∥λ̄∥∥
2

)
, (40)

where the fraction is well-defined since γzw < 1 by the gain
condition in Theorem 1 under Assumption 1.

Next, we derive a bound for
∥∥λ̄∥∥

2
. Note that

∥∥λ̄∥∥
2

=∥∥φ(ζ̄)∥∥
2

≤
∥∥ζ̄∥∥

2
by (3). Furthermore, we have

∥∥ζ̄∥∥
2

=∥∥P(ζ,u)(u) + P(ζ,λ)(λ̄)
∥∥
2

≤
∥∥P(ζ,u)(u)

∥∥
2
+

∥∥P(ζ,λ)(λ̄)
∥∥
2
.

Then, by (33), we find∥∥λ̄∥∥
2
≤ γζu ∥u∥2 + γζλ

∥∥λ̄∥∥
2
, (41a)

⇒
∥∥λ̄∥∥

2
≤ γζu

1− γζλ
∥u∥2 , (41b)

where the fraction is well-defined since γζλ < 1 by the gain
condition in Theorem 1.

By substituting the bound (41b) for
∥∥λ̄∥∥

2
in (40), we find∥∥z̄ − ζ̄

∥∥
2
≤ γ

1− γzw

(
1 +

γζu
1− γζλ

)
∥u∥2 . (42)

Finally, substituting the bounds (41b) for
∥∥λ̄∥∥

2
and (42) for∥∥z̄ − ζ̄

∥∥
2

into (38) and collecting terms, we find the bound
(12), which completes the proof.

APPENDIX III
PROOF OF LEMMA 2

Proof: Consider (7a) and apply the similarity transfor-
mation ξ = Θ̂−1ξ̂:

˙̂
ξ = Θ̂F Θ̂−1ξ̂ + Θ̂G

[
u
λ

]
, (43a)[

ψ
ζ

]
= HΘ̂−1ξ̂. (43b)

By (16), we have

˙̂
ξ = Θ̂(S −GL)Θ̂−1ξ̂ + Θ̂G

[
u
λ

]
, (44a)

= Θ̂SΘ̂−1ξ̂ − Θ̂GLΘ̂−1ξ̂ + Θ̂G

[
u
λ

]
, (44b)[

ψ
ζ

]
= CΠΘ̂−1ξ̂. (44c)

Now, using (18) and Θ̂G = Ĝ, we find

˙̂
ξ = (F̂ Θ̂ + ĜL)Θ̂−1ξ̂ − Θ̂GLΘ̂−1ξ̂ + Θ̂G

[
u
λ

]
, (45a)

= F̂ Θ̂Θ̂−1ξ̂ + ĜLΘ̂−1ξ̂ − ĜLΘ̂−1ξ̂ + Ĝ

[
u
λ

]
, (45b)

= F̂ ξ̂ + Ĝ

[
u
λ

]
, (45c)[

ψ
ζ

]
= ĤΘ̂Θ̂−1ξ̂ = Ĥξ̂. (45d)

Thus, after performing the similarity transformation and using
the specified G, the model is equivalent to (17). To show that

G ∈ GM , i.e., σ(S) ∩ σ(S − GL) = ∅, we note that σ(S −
GL) = σ(F̂ ) since a similarity transformation does not affect
the eigenvalues. Finally, since Θ̂ in (18) is unique and full
rank, we have that σ(F̂ ) ∩ σ(S) = ∅, and therefore G ∈ GM ,
which completes the proof.

APPENDIX IV
PROOF OF LEMMA 3

Proof: Since the full-order model satisfies the condition
of Theorem 1, there exists a X̃ ≻ 0 such that

N (A,Bw, Cz, X̃ ) ≺ 0, X̃ ≻ 0n. (46)

Given that X̃ ≻ 0 satisfies (46), let us first show that

X = Π⊤X̃Π, G[0] = (Π⊤X̃Π)−1Π⊤X̃B, (47)

satisfy

X ≻ 0, N (S −G[0]L,G
[0]
λ , CzΠ,X ) ≺ 0. (48)

First, note that X ≻ 0 is satisfied since Π ∈ Rn×ν is full
column rank. The selection (47) gives the identities

X (S −G[0]L) = Π⊤X̃AΠ, XG[0] = Π⊤X̃B, (49)

where the Sylvester equation (13) has been used in the
derivation of the first identity. Then, (48) can be manipulated:

N (S −G[0]L,G
[0]
λ , CzΠ,X ) (50a)

= N (X (S −G[0]L),XG[0]
λ , CzΠ, Iν) (50b)

= N (Π⊤X̃AΠ,Π⊤X̃Bw, CzΠ, Iν) (50c)

= T⊤N (X̃A, X̃Bw, Cz, Iν)T (50d)

= T⊤N (A,Bw, Cz, X̃ )T ≺ 0, (50e)

where T := blkdiag(Π, Ip+m). From here, we can conclude
that since the matrix T is full column rank, the choice for
X and G[0] in (47) satisfies the inequalities (48). Finally, the
change of variables

[
Q1 Q2

]
= X

[
G

[0]
u G

[0]
λ

]
shows the

equivalence between the inequalities (48) and (21), and we
can thus conclude that (21) is always feasible, provided that
the full-order model satisfies the conditions of Theorem 1.

Satisfaction of (48) results in a S − G[0]L being Hurwitz,
which implies asymptotic stability of the linear error dynam-
ics (19). Consequently, there exists an X1 ≻ 0 such that
γ[0] = ∥Ψ− Γ∥H∞

< +∞ satisfies Nγ[0](A,B, C,X1) ≺ 0
with A,B, and C as in (19). Then, all the constraints in (20)
are satisfied and G[0] ∈ Gγ[0] , which completes the proof.

APPENDIX V
PROOF OF THEOREM 3

Proof: We prove the three statements individually.
Statement 1) is proven by noting that the constraints (14b)

and (14c) can be written equivalently as the matrix inequal-
ity constraints in the set Gγ in (20) by the bounded real
lemma [23]. Therefore, Gγ contains all the models that satisfy
the constraints (14b) and (14c). To prove that Gγ contains
all the models that additionally satisfy the constraint (14d),
we first show that Gγ ⊂ GM . Under Assumption 1, the
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condition σ(S) ∩ σ(A) = ∅ is satisfied since σ(S) ⊂ C0,
while σ(A) ⊂ C−. Furthermore, for any G ∈ Gγ , the con-
straint (14c) ensures that the reduced-order model also satisfies
the conditions of Theorem 1 for convergence. Therefore, the
condition σ(S)∩ σ(S −GL) = ∅ is satisfied for any G ∈ Gγ .
Then, by application of Theorem 2 and Lemma 2, the set
Gγ contains all the models that satisfy the constraint (14d),
completing the proof of Statement 1.

Statement 2) contains two statements that are proven sepa-
rately. First, the set Gγ is non-empty for some 0 ≤ γ < +∞
as a direct consequence of Lemma 3 under Assumption 1.
Second, the set Gγ is empty for γ < h̄ν+1 by the application
of [3, Corollary 1].

Statement 3) is a direct consequence of Lemma 1 after
noting that the full model satisfies the conditions of Theorem 1
by assumption and the reduced model satisfies the conditions
of Theorem 1 by the constraints in Gγ .
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