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Abstract

In this paper, we investigate quantitative propagation of smallness properties for
the Schrödinger operator on a bounded domain in R

d. We extend Logunov, Ma-
linnikova’s results concerning propagation of smallness for A-harmonic functions to
solutions of divergence elliptic equations perturbed by a bounded zero order term. We
also prove similar results for gradient of solutions to some particular equations. This
latter result enables us to follow the recent strategy of Burq, Moyano for the obtaining
of spectral estimates on rough sets for the Schrödinger operator. Applications to ob-
servability estimates and to the null-controllability of associated parabolic equations
posed on compact manifolds or the whole euclidean space are then considered.
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1 Introduction

This paper contains several quantitative results on propagation of smallness for solutions
of elliptic partial differential equations and their applications to spectral estimates.

More precisely, our attempt is to derive three spheres theorems for solutions and their
gradients to divergence elliptic equations perturbed by a bounded zero order term, i.e.
Schrödinger type equations

−div(A(x)∇u) + V (x)u = 0, x ∈ Ω, (1.1)

where Ω is a smooth bounded open connected set of R
d, with d ≥ 1, A = A(x) is a

symmetric uniformly elliptic matrix with Lipschitz entries and V = V (x) is a bounded
real-valued function. From Carleman estimates, it is by now classical that the following
interpolation inequality holds. For B ⊂ K ⊂⊂ Ω with B open and K compact, there exist
C > 0 and α ∈ (0, 1) such that for every solution u to (1.1), we have

sup
K

|u| ≤ C(sup
B

|u|)α(sup
Ω

|u|)1−α. (1.2)

See for instance [LRL12, Theorem 5.1] or [LM20, Corollary 2.3] and the references therein.
In [LM18], in relation to the applications of the Yau’s conjecture on the volume of the

nodal sets for Laplace eigenfunctions (see [Log18a] and [Log18b]), generalization of the
three spheres theorems (1.2) for wild sets for solutions u to

−div(A(x)∇u) = 0, x ∈ Ω, (1.3)

was considered. More precisely, Logunov and Malinnikova obtain in [LM18, Theorem 2.1]
that, given E ⊂ K ⊂⊂ Ω with E of positive d-dimensional Lebesgue measure, there exist
C > 0 and α ∈ (0, 1) such that for every solution u to (1.3), we have

sup
K

|u| ≤ C(sup
E

|u|)α(sup
Ω

|u|)1−α. (1.4)

One can even assume that E has positive (d − 1 + δ)-Hausdorff content for every δ > 0.
Note that this latter result is sharp in the sense that zeros of harmonic functions in R

d

for d ≥ 2 may have positive (d − 1)-Hausdorff content. The propagation of smallness for
gradients from sets of positive (d − 1 − δ)-Hausdorff content for some (small) δ was also
obtained in [LM18, Theorem 5.1]. As the zeros of |∇u| was shown in [NV17] to have finite
(d− 2)-Hausdorff measure, it was conjectured in [LM18] that the result for |∇u| should be
expected to hold from sets of positive (d − 2 + δ)-Hausdorff content for any δ > 0. Up to
now, this conjecture is still open.

The first goal of this paper is then to extend Logunov, Malinnikova’s results to the
Schrödinger type equation (1.1). Propagation of smallness for solutions are obtained in
full generality in the same setting of [LM18]. On the other hand, propagation of smallness
for gradients are only derived in a particular setting. Indeed, one cannot expect to derive
propagation of smallness for gradients of solutions to (1.1) in full generality because as
noted in [HHOHON99, Remark p. 362], every closed subset of R

d could be the critical
set of such a function so there is no hope to propagate smallness from sets of (d− 1− δ)-
Hausdorff contents, even for small δ > 0. Nevertheless, our particular result is sufficient
for the applications to spectral estimates that we next describe.

Let M be a compact connected Riemannian manifold of dimension d, possibly with
boundary, equipped with a Riemannian metric g. We assume that M is a C1 ∩W 2,∞, in
the sense that the changes of charts are C1 with Lipschitz derivatives. We consider the
following associated elliptic operator

Hg,V u = −∆gu+ V (x)u, x ∈ M, (1.5)
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where g is assumed to be a Lipschitz positive definite metric, ∆g = divg ◦ ∇g is the
Laplace-Beltrami operator and V = V (x) is a bounded real-valued function. The oper-
ator Hg,V eventually completed with Dirichlet or Neumann boundary conditions, is an
unbounded self-adjoint with compact resolvent operator in L2(M). Consequently, it ad-
mits an orthonormal basis in L2(M) of eigenfunctions denoted by (φk)k≥1, associated to
the sequence of real eigenvalues (λk)k≥1 which satisfies λk −→

k→+∞
+∞ and λk ≥ −‖V ‖L∞ ,

for all k ∈ N. Given Λ > 0, we introduce the spectral projector ΠΛ as follows

ΠΛu =
∑

λk≤Λ

〈u, φk〉L2φk ∀u ∈ L2(M). (1.6)

Given a nonempty open subset ω of M , Jerison and Lebeau obtain in [JL99] through
Carleman estimates the following spectral inequality

‖ΠΛu‖L2(M) ≤ CeC
√
Λ ‖ΠΛu‖L2(ω) ∀u ∈ L2(M). (1.7)

This type of estimate (1.7) is a generalization to linear combination of eigenfunctions of the
well-known doubling inequality of Donnelly, Fefferman [DF88] valid for one eigenfunction.
Moreover, (1.7) combining with the so-called Lebeau-Robbiano method [LR95] leads to the
small-time null-controllability of the associated parabolic equations with a control localized
in ω. In [AEWZ14] (see also [AE13]), Apraiz, Escauriaza, Wang and Zhang generalize (1.7)
to ω of positive d-dimensional Lebesgue measure by assuming that g and V are analytic.
In the very recent work [BM23], Burq and Moyano withdraw the analyticity on the metric
g, replacing it by the sharp Lipschitz assumption, but assuming V = 0, and obtain (1.7)
for ω of positive (d − δ)-Hausdorff content thanks to the new propagation of smallness
results from [LM18].

The second goal of the paper is then to follow Burq, Moyano’s strategy starting from
our new propagation of smallness results for gradients of solutions of (1.1) to get new
spectral estimates for the Schrödinger operator (1.5) in the compact setting.

On the Euclidean space, we are interesting in the following Schrödinger operator

Hg,V,κu = − 1

κ(x)
div(g−1(x)κ(x)∇u) + V (x)u, x ∈ R

d, (1.8)

where g = g(x) is a symmetric uniformly elliptic matrix with Lipschitz entries, κ = κ(x)
is a positive bounded Lipschitz function and V = V (x) is a bounded real-valued function.
Notice that Hg,V,κ is an unbounded self-adjoint operator on L2(Rd, κdx). As a consequence,
one can still definite spectral projectors by

ΠΛu = 1Hg,V,κ
u =

∫ Λ

−‖V ‖∞
dm ∀u ∈ L2(Rd, κdx), (1.9)

where dm is the spectral measure of Hg,V,κ. Contrary to the case of compact manifolds,
spectral inequalities of the form

∀Λ > 0, ∃CΛ > 0, ∀u ∈ L2(Rd), ‖ΠΛu‖L2(Rd) ≤ CΛ‖ΠΛu‖L2(ω), (1.10)

may require some geometric condition on ω to hold. When g = Id, κ = 1 and V = 0, the
Logvinenko-Sereda theorem [LS74] shows that (1.10) holds if and only if the measurable
subset ω is thick. We say that ω is a thick subset of Rd, if there exist R, γ > 0 such that

|ω ∩B(x,R)| ≥ γ|B(x,R)|, ∀x ∈ R
d. (1.11)
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Under this assumption and still in the case where g = Id, κ = 1 and V = 0, Kovrijkine
establishes in [Kov01] a quantitative version of the Logvinenko-Sereda theorem and shows
the following inequality: for every Λ > 0,

‖ΠΛu‖L2(Rd) ≤
(
Cd

γ

)Cd(1+R
√
Λ)

‖ΠΛu‖L2(ω) ∀u ∈ L2(Rd), (1.12)

where Cd > 0 is a positive constant depending only on the dimension. Thanks to the es-
timate (1.12), Egidi and Veselic [EV18] and Wang, Wang, Zhang and Zhang [WWZZ19] es-
tablished that (1.11) is actually a necessary and sufficient condition for the null-controllability
of the associated parabolic equation. These results were generalized by Lebeau and Moy-
ano in [LM19] under analyticity assumption on g, V and κ. Very recently, [BM21] extended
these results to the case of a Lipschitz metric g, a Lipschitz density κ but without potential
(V = 0), again starting from propagation of smallness results from Logunov, Malinnikova.
They were even able to deduce some spectral estimates under weaker assumptions on ω
which allow it to be of Lebesgue measure zero.

The third goal of the paper is then to follow Burq, Moyano’s strategy starting from
our new propagation of smallness results for (1.1) to get new spectral estimates for the
Schrödinger operator (1.8) in the non-compact setting.

Acknowledgements: Both authors are partially supported by the Project TRECOS
ANR-20-CE40-0009 funded by the ANR (2021–2024).

2 Main results

The goal of this part is to state the main results of the paper that are quantitative propaga-
tion of smallness results for solutions to Schrödinger type equations in a bounded domain
of Rd and their applications to spectral estimates for Schrödinger operators on compact
Riemannian manifolds and on the whole euclidean space.

Recall that for d ≥ 0, the d-Hausdorff content (or measure) of a set E ⊂ R
n is

Cd
H(E) = inf




∑

j

rdj ; E ⊂
⋃

j

B(xj , rj)



 ,

and the Hausdorff dimension of E is defined as

dimH(E) = inf{d ≥ 0 ; Cd
H(E) = 0}.

We shall denote by |E| the Lebesgue measure of the set E. Let us recall that the Hausdorff
content of order d is equivalent to the Lebesgue measure,

∃Cd, cd > 0, ∀A borelian set, cd|A| ≤ CH(A) ≤ Cd|A|,

and
Cd
H(E) > 0 ⇒ ∀d′ ∈ (0, d), Cd′

H(E) ≥ inf(1, Cd
H(E)). (2.1)

2.1 Propagation of smallness for the Schrödinger operator

Let Ω be a bounded domain of Rd. Let us consider the second order elliptic operator

HA,V u = −div(A(x)∇u) + V (x)u, x ∈ Ω, (2.2)

where A = (aij(x))1,≤i,j≤d is a symmetric uniformly elliptic matrix with Lipschitz entries

Λ−1
1 |ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ1|ξ|2, |aij(x)− aij(y)| ≤ Λ2|x− y|, x, y ∈ Ω, ξ ∈ R

d, (2.3)
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for some Λ1,Λ2 > 0, where |x| denotes the Euclidean norm of x ∈ R
d, and V = V (x) is a

real-valued bounded function, i.e.

V ∈ L∞(Ω;R). (2.4)

The first main result is about propagation of smallness for solutions to Schrödinger
type equations.

Theorem 2.1. Let ρ,m, δ > 0 and K, E ⊂ Ω, be measurable subsets such that

dist(K, ∂Ω) ≥ ρ, dist(E, ∂Ω) ≥ ρ, and Cd−1+δ
H (E) ≥ m. (2.5)

There exist C = C(Ω,Λ1,Λ2, ‖V ‖∞, ρ,m, δ) > 0 and α = α(Ω,Λ1,Λ2, ‖V ‖∞, ρ,m, δ) ∈
(0, 1) such that for every weak solution u ∈ W 1,2(Ω) ∩ L∞(Ω) of the elliptic equation

−div(A(x)∇u) + V (x)u = 0 in Ω, (2.6)

we have

sup
K

|u| ≤ C(sup
E

|u|)α(sup
Ω

|u|)1−α. (2.7)

Let κ = κ(x) ∈ W 1,∞(Ω) satisfying

Λ−1
1 ≤ κ(x) ≤ Λ1 and |κ(x)− κ(y)| ≤ Λ2|x− y|, ∀x, y ∈ R

d. (2.8)

The second main result is about propagation of smallness of gradient of particular
solutions to Schrödinger type equations.

Theorem 2.2. There exists δd ∈ (0, 1) depending only on the dimension d such that the

following holds. Let ρ,m > 0, δ ∈ [0, δd] and K, E ⊂ Ω be measurable subsets such that

dist(K, ∂Ω) ≥ ρ, dist(E, ∂Ω) ≥ ρ and Cd−δ
H (E) ≥ m. (2.9)

There exist C = C(Ω,Λ1,Λ2, ‖V ‖∞, ρ,m, δ) > 0 and α = α(Ω,Λ1,Λ2, ‖V ‖∞, ρ,m, δ) ∈
(0, 1) such that for every weak solution û(x, t) ∈ W 1,2(Ω × (−1, 1)) ∩ L∞(Ω × (−1, 1)) of

the elliptic equation

{
−divx · (A(x)∇xû)− κ(x)∂ttû+ V (x)û = 0 in Ω× (−1, 1),
û(x, 0) = 0 in Ω,

(2.10)

we have

sup
x∈K

|∂tû(x, 0)| ≤ C
(
sup
x∈E

|∂tû(x, 0)|
)α

‖û‖1−α
W 1,∞(Ω×(−1,1)) . (2.11)

The new difficulty for proving Theorem 2.1 and Theorem 2.2 is that the results of
[LM18] are actually proved for divergence elliptic operators and their extensions to opera-
tors as in (2.15) are not straightforward. One way to do it could consist in trying to adapt
all the steps of their proof to a more general elliptic operator as considered here. But it
is worth mentioning that [LM18] is not self-contained as recalled by the authors and it
uses some new deep results from [Log18a] and [Log18b]. We should also mention that one
cannot expect to derive propagation of smallness for gradients of solutions to (2.6) in full
generality as in [LM18, Theorem 5.1] because as noted in [HHOHON99, Remark p. 362],
every closed subset of Rd could be the critical set of such a function so there is no hope
to propagate smallness for gradients from sets of (d − 1 − δ)-Hausdorff contents, even for
small δ > 0. These are the main reasons why we decide to follow another easiest path that
uses [LM18, Theorems 2.1, 5.1] as a black box.
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We now present the main steps for the obtaining of Theorem 2.1 and Theorem 2.2.
Without loss of generality, we first reduce to the case V ≥ 0. This reduction enables
us to construct a positive multiplier that converts the Schrödinger type equation into a
divergence elliptic equation.

Reduction to the case V ≥ 0. We note that one can reduce the proof of Theorem 2.1
and Theorem 2.2 to the case

V ≥ 0. (2.12)

For Theorem 2.1, by looking at the function û(x, t) = u(x) exp(λt) that solves

−divx · (A(x)∇xû)− ∂ttû+ (V (x) + λ2)û = 0 in Ω× (−1,+1). (2.13)

For λ ≥ ‖V ‖1/2∞ , we have that V̂ (t, x) = V (x) + λ2 ≥ 0, then one can apply Theorem 2.1
with Ω̂ = Ω× (−1,+1), K̂ = K × (−1/2,+1/2) ⊂⊂ Ω̂, Ê = E × (−1/2,+1/2) ⊂⊂ Ω̂ to û
satisfying (2.13). For Theorem 2.2, the argument is in the same spirit by adding a ghost

variable considering v̂(x, y, t) = û(x, t) exp(λy) for some λ ≥ ‖V ‖1/2∞ and applying Theo-
rem 2.2 with Ω̂ = Ω×(−1, 1), K̂ = K×(−1/2, 1/2) ⊂⊂ Ω̂ and Ê = E×(−1/2, 1/2) ⊂⊂ Ω̂
to v̂. Therefore in all the following, we will only consider the case (2.12).

Reduction to a divergence elliptic equation. The key ingredient in the proofs of
Theorem 2.1 and 2.2 consists in constructing a suitable positive multiplier to the equation
HA,V φ = 0, in the case when V ≥ 0, that is showing the existence of φ ∈ W 1,∞(Ω0)
satisfying

−div(A∇φ) + V φ = 0 in Ω0 and φ > 0 in Ω0,

where Ω0 is a smooth domain satisfying

dist(K, ∂Ω0) ≥ ρ/2, dist(E, ∂Ω0) ≥ ρ/2, and Ω0 ⊂⊂ Ω.

This enables us to reduce the obtaining of propagation of smallness of solutions to (2.6)
to the application of propagation of smallness of solutions to divergence elliptic equations
for v = u/φ. Indeed, v now satisfies

−div(φ2A∇v) = 0 in Ω0.

Thanks to suitable lower and upper bounds on φ, these propagation of smallness estimates
obtained on v provides estimates on u. For the case when u satisfies (2.10), the same
strategy works but now the equation satisfied by v̂ = û/φ is

−divx · (φ2A(x)∇xv̂)− ∂t(φ
2κ(x)∂tv̂) = 0 in Ω0 × (−1, 1),

that is a divergence elliptic equation with the extra condition v̂(x, 0) = 0. Propagation
of smallness estimates on |∇t,xv| on particular sets will then provide the expected result
(2.11).

The following remarks are in order.
The main advantage of our proof is that we obtain propagation of smallness for solutions

to Schrödinger type equations in a general setting without redoing all the arguments of
Logunov and Malinnikova. But the main drawback of such a strategy is that for gradient
of solutions, the application of propagation of smallness for gradients [LM18, Theorem 5.1]
is applied to v = u/φ from which it is difficult to deduce estimates on |∇u|. Actually, this
is not only a technical difficulty since, as recalled previously, one cannot expect to obtain
propagation of smallness for gradients in full generality. Nevertheless, this method allows
us to deal with the particular setting of (2.10) and to obtain Theorem 2.2. Fortunately,
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propagation of smallness estimates (2.11) are sufficient for our applications to spectral
estimates.

Finally, we would like to highlight the very recent preprint [Zhu24] from which one can
also obtain Theorems 2.1 and 2.2, assuming that V ∈ W 1,∞(Ω;R), starting from [LM18,
Theorem 2.1 and Theorem 5.1] as a black box. His strategy is rather different from ours
because it consists in putting the zero order term V in the principal part of the operator
by adding a ghost variable. The Lipschitz assumption on V seems to be difficult to remove
with such a method.

Last but not least, the parameter δd ∈ (0, 1) appearing in Theorem 2.2 is small a priori
and actually comes from [LM18, Theorem 5.1]. The extension to an arbitrary δd ∈ (0, 1)
is an open and very likely difficult open problem. However, it is worth mentioning that for
d = 1, we can take an arbitrary δ ∈ (0, 1) by using the propagation of smallness result for
gradients [Zhu23, Theorem 1.2] in dimension d + 1 = 2 instead of [LM18, Theorem 5.1],
together with our strategy of reduction to divergence elliptic equation. The same remark
will apply in the next for spectral estimates and applications. See also [SSY23] for a similar
strategy when d = 1 but with the use of [Zhu23, Theorem 1.1].

2.2 Spectral estimates on compact manifolds and applications

Let M be a C1 ∩W 2,∞, connected, compact manifold of dimension d ≥ 1, possibly with
boundary, equipped with a Riemannian metric g. In this section, we fix an Atlas A =
(Vσ,Ψσ)σ∈J containing a finite number of charts with (W 2,∞ ∩C1)-diffeomorphisms Ψσ :
Vσ −→ Ψσ(Vσ) ⊂ R

d−1×R+ such that there exists a family of open sets (Uσ)σ∈J satisfying

M =
⋃

σ∈J
Uσ, (2.14)

and such that Uσ is compactly included in the open set Vσ in M , for all σ ∈ J . In the
case when M is assumed to be without boundary, then for any σ ∈ J , Ψ(Vσ) is an open
set of Rd.

Let us consider the second order elliptic operator

Hg,V u = −∆gu+ V (x)u, x ∈ M, (2.15)

where V = V (x) is a real-valued bounded function, i.e.

V ∈ L∞(M ;R), (2.16)

and g is assumed to be Λ1-elliptic and Λ2-Lipschitz, in the sense that if (gσi,j)1≤i,j≤d are
the local coordinates of g in a local chart (Vσ,Ψσ),

Λ−1
1 |ξ|2 ≤

∑

i,j

gσi,j(Ψ
−1
σ (x))ξiξj ≤ Λ1|ξ|2, ∀x ∈ Ψσ(Vσ), ξ ∈ R

d, (2.17)

and
|gσij ◦Ψ−1

σ (x)− gσij ◦Ψ−1
σ (y)| ≤ Λ2|x− y|, ∀x, y ∈ Ψσ(Vσ), (2.18)

for some Λ1 > 0 and Λ2 > 0.
Let us define

Dom(Hg,V ) = {u ∈ H2(M) ; u = 0 on ∂M or ∂νu = 0 on ∂M}. (2.19)

Note that if ∂M = ∅ then Dom(Hg,V ) = H2(M). Under these assumptions, this is well-
known that Hg,V admits an orthonormal basis in L2(M) of eigenfunctions denoted by
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(φk)k≥1, associated to the sequence of real eigenvalues (λk)k≥1. Given Λ > 0, we introduce
the spectral projector ΠΛ as follows

ΠΛu =
∑

λk≤Λ

〈u, φk〉L2φk, ∀u ∈ L2(M). (2.20)

Our first main result states the following spectral estimates for the Schrödinger operator
(2.15).

Theorem 2.3. There exists δd ∈ (0, 1) such that for all δ ∈ [0, δd], for every observation

set ω ⊂ M satisfying Cd−δ
H (ω) ≥ m > 0, there exists C = C(M,g, V,A, δ,m) > 0 such that

for every Λ > 0, we have

‖ΠΛu‖L∞(M) ≤ CeC
√
Λ sup

x∈ω
|(ΠΛu)(x)| ∀u ∈ L2(M). (2.21)

In particular, for every measurable set ω ⊂ M satisfying |ω| ≥ m > 0, there exists

C = C(M,g, V,A,m) > 0 such that for every Λ > 0, we have

‖ΠΛu‖L∞(M) ≤ CeC
√
Λ ‖ΠΛu‖L1(ω) ∀u ∈ L2(M). (2.22)

The following comments are in order. First, Theorem 2.3 generalizes [BM23, Theorem
1] to the case of the Schrödinger operator as in (2.15). Secondly, the inequality (2.22)
is a L∞-L1 spectral estimate from which one can easily deduce the more standard L2-
L2 spectral estimate as recalled in (1.7) by using the continuous embeddings L∞(M) →֒
L2(M) and L2(ω) →֒ L1(ω)

‖ΠΛu‖L2(M) ≤ CeC
√
Λ ‖ΠΛu‖L2(ω) ∀u ∈ L2(M). (2.23)

On the other hand, the inequality (2.21) is a L∞-L∞ spectral estimate from which one can
only deduce a L2-L∞ spectral estimate

‖ΠΛu‖L2(M) ≤ CeC
√
Λ sup

x∈ω
|(ΠΛu)(x)| ∀u ∈ L2(M). (2.24)

Moreover, without extra assumption on ω here, there is no hope to transform (2.24) into a
L2-L2 estimate because one can have |ω| = 0. Last but not least, the parameter δ ∈ (0, 1)
is small a priori and actually comes from Theorem 2.2 so from [LM18, Theorem 5.1]. The
extension to an arbitrary δ ∈ (0, 1) is an open and very likely difficult open problem.

The strategy of the proof of Theorem 2.3 will follow the one of [BM23, Theorem 1] that
uses propagation of smallness for gradient of solution to elliptic equations from [LM18,
Theorem 5.1]. The new difficulty here is that the results of [LM18] are actually proved
for divergence elliptic operators and their extensions to operators as in (2.15) are not
straightforward. This is why we will actually use our new Theorem 2.2.

We now focus on the time evolution equation

{
∂tu+Hg,V u = 0 in (0,+∞)×M,
u(0, ·) = u0 in M,

(2.25)

completed with homogeneous Dirichlet or Neumann boundary conditions if ∂M 6= ∅.
Our second main result is the establishment of the following observability inequalities.

Theorem 2.4. There exists δd ∈ (0, 1) such that for all δ ∈ [0, δd], m > 0 and for

every measurable set ω ⊂ M satisfying Cd−δ
H (ω) ≥ m > 0, there exists a positive constant
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C = C(M,g, V,A, δ,m) > 0 such that for every T ∈ (0, 1), u0 ∈ L2(M), the solution

u ∈ C([0, T ];L2(M)) of (2.25) satisfies

‖u(T, ·)‖2L2(M) ≤ Ce
C
T

∫ T

0

(
sup
x∈ω

|u(t, x)|
)2

dxdt. (2.26)

For every measurable set ω ⊂ M satisfying |ω| ≥ m > 0, there exists a positive constant

C = C(M,g, V,A,m) > 0 such that for every T ∈ (0, 1), u0 ∈ L2(M), the solution

u ∈ C([0, T ];L2(M)) of (2.25) satisfies

‖u(T, ·)‖2L2(M) ≤ Ce
C
T

∫ T

0
‖u(t, ·)‖2L2(ω)dt. (2.27)

By using the spectral estimates (2.23), the proof of (2.27) is by now classical and
originally comes from the Lebeau-Robbiano method for obtaining the null-controllability
of the heat equation starting from a spectral estimate, see [LR95] and [LRL12, Section 6].
This strategy was latter extended by Miller in [Mil10]. Therefore, (2.27) directly comes
from [Mil10, Theorem 2.2] or [BPS18, Theorem 2.1]. The proof of (2.26) is in the same
spirit but adapted to the the particular functional setting of the L2−L∞ spectral estimate
(2.24), see [BM23, Section 4] for details. The restriction T ∈ (0, 1) that we will keep in the
following is simply for the obtaining of the constant of observability in small time of the

form Ce
C
T .

For a measurable ω ⊂ M , we finally focus on the controlled system
{

∂ty +Hg,V y = h1ω in (0,+∞)×M,
y(0, ·) = y0 in M,

(2.28)

completed with homogeneous Dirichlet or Neumann boundary conditions if ∂M 6= ∅. In
(2.28), at time t ∈ [0,+∞), y(t, ·) : M → R is the state and h(t, ·) : ω → R is the control.
In the following, we denote by M(M) the space of Borel measure on M .

Our last main result of this section provides null-controllability results for (2.28).

Theorem 2.5. There exists δd ∈ (0, 1) such that for all δ ∈ [0, δd], m > 0 and for every

measurable set ω ⊂ M satisfying Cd−δ
H (ω) ≥ m > 0, there exists C = C(M,g, V,A, δ,m) >

0 such that for every T ∈ (0, 1) and y0 ∈ L2(M), there exists h ∈ L2(0, T ;M(M)) supported

in (0, T ) × ω satisfying

∫ T

0
‖h(t)‖2M(M)dt ≤ Ce

C
T ‖y0‖2L2(M) , (2.29)

such that the solution y of (2.28) satisfies y(T, ·) = 0.
For every measurable set ω ⊂ M satisfying |ω| ≥ m > 0, there exists a positive

constant C = C(M,g, V,A,m) > 0 such that for every T ∈ (0, 1), y0 ∈ L2(M), there

h ∈ L2(0, T ;L2(ω)) satisfying

‖h‖L2(0,T ;L2(ω)) ≤ Ce
C
T ‖y0‖L2(M) , (2.30)

such that the solution y ∈ C([0, T ];L2(M)) of (2.28) satisfies y(T, ·) = 0.

Recall that the norm of the space of Borel measures on the metric space ω, denoted by
M(ω), is defined as

‖µ‖M(M) = sup
f∈C0(M)

∣∣∫
M fdµ

∣∣
‖f‖∞

. (2.31)

The second part of Theorem 2.5 comes from a classical duality argument together with
the use of the observability estimate (2.27), see for instance [Cor07, Theorem 2.44]. The
first part is less standard due to the functional setting but details can be found in [BM23,
Section 5].
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2.3 Spectral estimates on the Euclidean space and applications

Let us consider the second order elliptic operator

Hg,V,κu = − 1

κ(x)
div(κ(x)g−1(x)∇u) + V (x)u, x ∈ R

d, (2.32)

where g(x) = (gij(x))1,≤i,j≤d is a symmetric uniformly elliptic matrix with Lipschitz entries

Λ−1
1 |ξ|2 ≤ 〈g(x)ξ, ξ〉 ≤ Λ1|ξ|2, |gij(x)−gij(y)| ≤ Λ2|x−y|, x, y ∈ R

d, ξ ∈ R
d, (2.33)

for some Λ1,Λ2 > 0, V = V (x) is a real-valued bounded function, i.e.

V ∈ L∞(Rd;R), (2.34)

and κ ∈ W 1,∞(Rd,R∗
+) is a positive bounded Lipschitz density satisfying

Λ−1
1 ≤ κ ≤ Λ1. (2.35)

The operator Hg,V,κ is an unbounded self-adjoint operator on L2(Rd, κdx) with domain
H2(Rd). Notice that, under the assumption (2.35), we have

Λ
− 1

2

1 ‖ · ‖L2(Rd) ≤ ‖ · ‖L2(Rd,κdx) ≤ Λ
1

2

1 ‖ · ‖L2(Rd),

and L2(Rd) = L2(Rd, κdx). However, let us insist on the fact that the self-adjointness of
Hg,V,κ is related to the scalar product

〈f, g〉L2(Rd,κdx) =

∫

Rd

f(x)g(x)κ(x)dx.

Given Λ > 0, we introduce the spectral projector as follows

ΠΛu = 1Hg,V,κ
u =

∫ Λ

−‖V ‖∞
dm ∀u ∈ L2(Rd, κdx), (2.36)

where dm is the spectral measure of Hg,V,κ.
In the sequel, we need the following definition.

Definition 2.6. Let R > 0 and 0 < γ ≤ 1. A measurable subset ω ⊂ R
d is said to be

γ-thick at scale R if

|ω ∩B(x,R)| ≥ γ|B(x,R)|, ∀x ∈ R
d. (2.37)

A subset ω ⊂ R
d is said to be thick if and only if it is γ-thick at scale R for some R > 0

and 0 < γ ≤ 1.
Let R > 0, m > 0, and 0 < d′ ≤ d. A measurable set ω ⊂ R

d is said to be (m,d′)-
uniformly distributed at scale R if

Cd′
H(ω ∩B(x,R)) ≥ m, ∀x ∈ R

d. (2.38)

A subset ω ⊂ R
d is said to be d′-uniformly distributed if and only if it is (m,d′)-uniformly

distributed at scale R for some R,m > 0.

Notice that, since the d-dimensional Hausdorff measure is equivalent to the Lebesgue
measure of Rd, a subset ω ⊂ R

d is d-uniformly distributed if and only if it is thick. In
(2.37) and (2.38), the parameter R > 0 will be always chosen such that

R
d =

⋃

k∈Zd

B(k,R). (2.39)

Our main result of this section states the following spectral estimates for the Schrödinger
operator (2.32) with particular observation sets.

10



Theorem 2.7. Let R > 0 be such that (2.39) holds, 0 < γ ≤ 1 and m > 0.
There exists δd ∈ (0, 1) such that for all δ ∈ [0, δd] and for every (m,d − δ)-uniformly

distributed set ω ⊂ R
d at scale R, there exists C = C(Λ1,Λ2, ‖V ‖L∞ , R,m, δ) > 0 such

that for every Λ > 0, we have

‖ΠΛu‖L2(Rd) ≤ CeC
√
Λ
∑

k∈Zd

sup
x∈ω∩B(k,R)

|(ΠΛu)(x)| ∀u ∈ L2(Rd). (2.40)

For every γ-thick set ω ⊂ R
d at scale R, there exists C = C(Λ1,Λ2, ‖V ‖L∞ , R, γ) > 0

such that for every Λ > 0, we have

‖ΠΛu‖L2(Rd) ≤ CeC
√
Λ ‖ΠΛu‖L2(ω) ∀u ∈ L2(Rd). (2.41)

The following remarks are in order. First, Theorem 2.7 generalizes [BM21, Theorem
1] to the case of the Schrödinger operator as in (2.32). Note that (2.41) has been previ-
ously established in [LM19] assuming some analyticity condition on the potential V and in
[SSY23] in the one-dimensional case by exploiting the recent improvement of propagation
of smallness for solutions to elliptic equations in dimension d = 2 in [Zhu23]. See also
[AS23], [Wan24] and [Zhu24] for the case of unbounded potentials V . Note in particular
that [Zhu24] obtains (2.41) for Lipschitz bounded potentials V by an adaptation of the
propagation of smallness argument for gradients of [LM18, Theorem 5.1] but his approach
is different from us because it consists in putting the zero-order perturbation term V in the
principal part of the elliptic operator, that explains the Lipschitz assumption on V . The
same remark as in the compact setting can be done for the parameter δ ∈ (0, 1) appearing
for the proof of (2.40).

The strategy of the proof of Theorem 2.7 will follow the one of [BM21, Theorem 1] and
again the new difficulty comes from the fact that the results of [LM18] are actually proved
for divergence elliptic operators.

We now focus on the evolution equation

{
∂tu+Hg,V,κu = 0 in (0,+∞)× R

d,
u(0, ·) = u0 in R

d.
(2.42)

Our second main result is the establishment of the following observability inequalities.

Theorem 2.8. Let R > 0 be such that (2.39) holds, 0 < γ ≤ 1 and m > 0.
There exists δd ∈ (0, 1) such that for all δ ∈ [0, δd] and for every (m,d − δ)-uniformly

distributed set ω ⊂ R
d at scale R, there exists C = C(Λ1,Λ2, ‖V ‖L∞ , R,m, δ) > 0 such

that for every T ∈ (0, 1) and u0 ∈ L2(Rd), the mild solution u ∈ C([0, T ];L2(Rd)) of (2.42)
satisfies

‖u(T, ·)‖2L2(Rd) ≤ Ce
C
T

∑

k∈Zd

∫ T

0
sup

x∈ω∩B(k,R)
|u|2(t, x)dt. (2.43)

For every γ-thick set ω ⊂ R
d at scale R, there exists C = C(Λ1,Λ2, ‖V ‖L∞ , R, γ) > 0

such that for every T ∈ (0, 1) and u0 ∈ L2(Rd), the solution u ∈ C([0, T ];L2(Rd)) of (2.42)
satisfies

‖u(T, ·)‖2L2(Rd) ≤ Ce
C
T

∫ T

0
‖u(t, ·)‖2L2(ω)dt. (2.44)

This result is in particular a generalization of [DYZ21] and [BM21] by the adding of
the zero-order term V . This constitutes also an improvement of [NTTV20] and [DWZ20]
which consider the case where ω is a union of disjoint open balls. Note that the thickness
condition turns out to be necessary for (2.44) for g = Id and V = 0 by recalling [EV18]
and [WWZZ19]. Other necessary and sufficient conditions were derived in [BEPS20] when
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looking at controls of the form h1ω(t). For a complete proof of Theorem 2.8 from the
spectral estimates of Theorem 2.7, see [BM21] and the references therein.

For a measurable ω ⊂ R
d, we finally focus on the controlled system

{
∂ty +Hg,V,κy = h1ω in (0,+∞)× R

d,
y(0, ·) = y0 in R

d,
(2.45)

In (2.45), at time t ∈ [0,+∞), y(t, ·) : Rd → R is the state and h(t, ·) : ω → R is the
control.

Let us denote by M(Rd) the space of Borel measures on R
d. Our last main result

provides null-controllability results for (2.45).

Theorem 2.9. Let R > 0 be such that (2.39) holds, 0 < γ ≤ 1 and m > 0.
There exists δd ∈ (0, 1) such that for all δ ∈ [0, δd] and for every (m,d − δ)-uniformly

distributed set ω ⊂ R
d at scale R, there exists C = C(g, V, κ,R,m, δ) > 0 such that for

every T ∈ (0, 1) and y0 ∈ L2(Rd), there exists h ∈ L2(0, T ;M(Rd)) supported in (0, T )×ω
satisfying

∑

k∈Zd

∫ T

0
‖h(t)‖2M(B(k,R))dt ≤ Ce

C
T ‖y0‖2L2(Rd) , (2.46)

such that the solution y ∈ C([0, T ];L2(Rd)) of (2.45) satisfies y(T, ·) = 0.
For every γ-thick set ω ⊂ R

d at scale R, there exists C = C(g, V, κ,R, γ) > 0 such that

for every T ∈ (0, 1) and y0 ∈ L2(Rd), there h ∈ L2(0, T ;L2(ω)) satisfying

‖h‖L2(0,T ;L2(ω)) ≤ Ce
C
T ‖y0‖L2(Rd) , (2.47)

such that the solution y ∈ C([0, T ];L2(Rd)) of (2.45) satisfies y(T, ·) = 0.

In (2.46), ‖h(t)‖M(B(k,R)) is the norm of the restriction of h(t) on B(k,R), which is
therefore supported on ω ∩B(k,R), defined as

‖h(t)‖M(B(k,R)) = sup
f∈C0(B(k,R))

∫
B(k,R) fdh(t)

‖f‖L∞(B(k,R))
.

For a complete proof of Theorem 2.9 from the observability inequalities of Theorem 2.8,
see [BM21] and the references therein.

3 Proof of propagation of smallness for Schrödinger opera-

tors

The goal of this section is to establish quantitative propagation of smallness for solutions
to Schrödinger operators.

Let Ω be a bounded domain of Rd. We consider the elliptic operator HA,V defined in
(2.2), with the Lipschitz assumption on A, i.e. (2.3) and the boundedness assumption on
V , i.e. (2.4). Moreover, as explained under Theorem 2.2, one can assume that V ≥ 0.

Reduction to a smooth bounded domain Ω0. Given K, E such that (2.5) or (2.9)
hold then from [Dan08, Proposition 8.2.1], one can find a C∞-domain Ω0 such that

dist(K, ∂Ω0) ≥ ρ/2, dist(E, ∂Ω0) ≥ ρ/2, and Ω0 ⊂⊂ Ω. (3.1)
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3.1 Existence of a positive multiplier and reduction to divergence form

In this part, we will construct the positive multiplier φ in Ω0 then reduce the Schrödinger
type equation to a divergence elliptic equation in Ω0 with the help of the multiplier.

The following result is quite standard.

Lemma 3.1. There exists φ ∈ W 1,∞(Ω0) satisfying

−div (A(x)∇φ) + V (x)φ = 0 in Ω0. (3.2)

Moreover, there exists c = c(Ω,Ω0,Λ1,Λ2, ‖V ‖∞) > 0 and C = C(Ω,Ω0,Λ1,Λ2, ‖V ‖∞) >
0 such that

φ ≥ c in Ω0, (3.3)

and

‖φ‖W 1,∞(Ω0) ≤ C. (3.4)

Proof. We first solve the boundary elliptic problem, by [GT01, Theorem 8.3], there exists
φ ∈ W 1,2(Ω),

−div (A(x)∇φ) + V (x)φ = 0 in Ω, φ = 1 on ∂Ω. (3.5)

Let us take x0 ∈ R
d such that for every x = (x1, . . . , xd) ∈ Ω, we have x1−x0 ≥ 0. Let

λ ≥ 0 and let us then define

φ−(x) = exp(−λ(x1 − x0)), φ+(x) = 1 ∀x = (x1, . . . , xd) ∈ Ω.

Then, φ−, respectively φ+, is a subsolution, respectively a supersolution, to (3.5) for some
λ > 0 depending on Λ1,Λ2, ‖V ‖∞, that is

−div (A(x)∇φ−) + V (x)φ− ≤ 0 in Ω, φ− ≤ 1 on ∂Ω,

and
−div (A(x)∇φ+) + V (x)φ+ ≥ 0 in Ω, φ+ ≥ 1 on ∂Ω.

So by the weak maximum principle stated in [GT01, Theorem 8.1], we have that

φ−(x) ≤ φ(x) ≤ φ+(x) ∀x ∈ Ω.

In particular, this proves that there exists c = c(Ω,Ω0,Λ1,Λ2, ‖V ‖∞) > 0 such that

c ≤ φ(x) ≤ 1 ∀x ∈ Ω. (3.6)

In particular, (3.6) implies (3.3).
Moreover, from local W 2,p-regularity estimate from [GT01, Theorem 9.11] and (3.6),

we have that for 1 < p < +∞, there exists C = C(Ω,Ω0,Λ1,Λ2, ‖V ‖∞, p) > 0 such that

‖φ‖W 2,p(Ω0) ≤ C‖φ‖Lp(Ω) ≤ C|Ω|1/p‖φ‖L∞(Ω) ≤ C|Ω|1/p+1.

By taking p sufficiently large and by using Sobolev embeddings [GT01, Theorem 7.26]
to guarantee that W 2,p(Ω0) →֒ W 1,∞(Ω0), we therefore deduce (3.4) from the previous
estimate.

We have the following result.
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Lemma 3.2. Let u ∈ W 1,2(Ω) be a weak solution to

−div (A(x)∇u) + V (x)u = 0 in Ω. (3.7)

Let φ be as in Lemma 3.1. Then, v = u/φ ∈ W 1,2(Ω0) satisfies

−div
(
φ2A∇v

)
= 0 in Ω0. (3.8)

Moreover, the symmetric matrix Â = φ2A is uniformly elliptic and has Lipschitz entries,

there exists C1 = C(Ω,Ω0,Λ1,Λ2, ‖V ‖∞) > 0 and C2 = C(Ω,Ω0,Λ1,Λ2, ‖V ‖∞) > 0 such

that

C−1
1 |ξ|2 ≤ 〈Â(x)ξ, ξ〉 ≤ C1|ξ|2, |âij(x)− âij(y)| ≤ C2 ∀x, y ∈ Ω0, ∀ξ ∈ R

d. (3.9)

Proof. The proof is a straightforward computation at the variational formulation level so
we omit it.

3.2 Propagation of smallness

In this part, we assume that the Lipschitz assumption on A, i.e. (2.3) and the boundedness
assumption on V , i.e. (2.4) still hold together with V ≥ 0.

We first deal with propagation of smallness for solutions to elliptic equations. We
have the following quantitative propagation of smallness for solutions to divergence elliptic
equations from [LM18].

Theorem 3.3 ([LM18, Theorem 2.1]). Let ρ,m, δ > 0 and K, E ⊂ Ω, be measurable

subsets such that

dist(K, ∂Ω) ≥ ρ, dist(E, ∂Ω) ≥ ρ and Cd−1+δ
H (E) ≥ m. (3.10)

There exist C = C(Ω,Λ1,Λ2, ρ,m, δ) > 0 and α = α(Ω,Λ1,Λ2, ρ,m, δ) ∈ (0, 1) such that

for every weak solution u ∈ W 1,2(Ω) ∩ L∞(Ω) of the elliptic equation

−∇ · (A(x)∇u) = 0 in Ω, (3.11)

we have

sup
K

|u| ≤ C(sup
E

|u|)α(sup
Ω

|u|)1−α. (3.12)

As a consequence, the proof of Theorem 2.1 is as follows.

Proof of Theorem 2.1. From Lemma 3.1, there exists φ ∈ W 1,∞(Ω0) satisfying the elliptic
equation (3.2) and the lower bound (3.3). Then from Lemma 3.2 defining v = u/φ, v
satisfies (3.8). As a consequence, one can apply Theorem 3.3 to v and to the Lipschitz
diffusion matrix Â = φ2A that satisfies (3.9) in Ω0, note that we use (3.1). We deduce the
propagation of smallness for v that leads to the propagation of smallness for u i.e. (2.7)
by using the lower bound (3.3), the W 1,∞-bound (3.4) and again (3.1) ensuring that

‖u‖L∞(Ω0) ≤ ‖u‖L∞(Ω̂).

This concludes the proof.

We now present results on propagation of smallness for gradient of solutions to elliptic
equations.
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Theorem 3.4 ([LM18, Theorem 5.1]). There exists δd ∈ (0, 1) depending only on the

dimension d such that the following holds. Let ρ,m > 0, δ ∈ [0, δd] and K, E ⊂ Ω, be

measurable subsets such that

dist(K, ∂Ω) ≥ ρ, dist(E, ∂Ω) ≥ ρ and Cd−1−δ
H (E) ≥ m. (3.13)

There exist C = C(Ω,Λ1,Λ2, ρ,m, δ) > 0 and α = α(Ω,Λ1,Λ2, ρ,m, δ) ∈ (0, 1) such that

for every weak solution u ∈ W 1,2(Ω) ∩ L∞(Ω) of the elliptic equation

−∇ · (A(x)∇u) = 0 in Ω, (3.14)

we have

sup
K

|∇u| ≤ C

(
sup
E

|∇u|
)α(

sup
Ω

|∇u|
)1−α

. (3.15)

By now, we aim at studying elliptic equations in non-divergence form. Actually, we are
only able to deal with some particular cases, that are (2.10) from Theorem 2.2.

Proof of Theorem 2.2. Let φ = φ(x) be as in Lemma 3.1. Then v̂ = u(x, t)/φ(x) is a
solution to

{
−∇x · (φ2A(x)∇xv̂)− κ(x)∂tt(φ

2v̂) = 0 in Ω0 × (−1, 1),
v̂(x, 0) = 0 in Ω0.

(3.16)

One can then apply Theorem 3.4 to Ω̂0 = Ω0 × (−1,+1), K̂ = K × {0} and Ê = E × {0}.
Note that

dist(K̂, ∂Ω̂0) ≥ ρ/2, dist(Ê, ∂Ω̂0) ≥ ρ/2 and Cd+1−1−δ
H (Ê) ≥ m. (3.17)

We then have

sup
x∈K

|∂tv̂(x, 0)| ≤ C

(
sup
x∈E

|∂tv̂(x, 0)|
)α
(

sup
(x,t)∈Ω0×(−1,1)

|∇x,tv̂(x, t)|
)1−α

.

By using (3.3), the W 1,∞-bound on φ, i.e. (3.4) in Ω0 and also

‖û‖W 1,∞(Ω̂0×(−1,1)),

we then deduce (2.11).

4 Proof of the spectral estimates

This section aims at proving Theorem 2.3 and Theorem 2.7.

4.1 Spectral estimates on compact manifolds

The goal of this part is to prove Theorem 2.3. In the first part, we first reduce the obtaining
of the spectral estimates for sets of positive Lebesgue measures (2.22) to the obtaining of
spectral estimates for sets of positive Hausdorff measures (2.21). In the second and third
parts, we establish the results of Theorem 2.3 for manifold M without boundary. Firstly,
we prove a local version of (2.21) i.e. replacing the L∞-bound on M in the left hand
side of (2.21) to a L∞-bound on a chart of M . Secondly, by using the compactness and
the connectedness of the manifold M , we propagate these local spectral estimates to the
whole manifold. In the fourth part, we end the proof of Theorem 2.3 and prove the case
when ∂M 6= ∅ with Dirichlet or Neumann boundary conditions on ∂M . The proof is an
application of the double manifold trick introduced in [BM23, Section 3].
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4.1.1 Reduction of spectral estimates to sets of positive Hausdorff measures

In this part, we prove that the spectral estimates for sets of positive Hausdorff measures
(2.21) imply the spectral estimates for sets of positive Lebesgue measures (2.22).

Let ω ⊂ M such that |ω| > m > 0. Let us define u = ΠΛu with ‖u‖L2(M) = 1. Let us
consider

ω̂ = {x ∈ ω ; |u(x)| ≤ 1

2C
e−C

√
Λ‖u‖L∞(M)}. (4.1)

If |ω̂| ≥ m/2, then we have for δ = δ(d) ∈ (0, 1), by applying (2.1),

Cd
H(ω̂) > cd

m

2
⇒ Cd−δ

H (ω̂) ≥ min(1, cd
m

2
).

Then, one can apply (2.21) to ω̂ to get by definition of (4.1),

‖u‖L∞(M) ≤ CeC
√
Λ sup

x∈ω̂
|u(x)| ≤

‖u‖L∞(M)

2
.

This is impossible because this leads to u = 0. Therefore |ω̂| < m/2 and consequently

∫

ω
|u(x)|dx ≥

∫

ω\ω̂
|u(x)|dx ≥ m

(4C)
e−C

√
Λ‖u‖L∞(M),

leading to (2.22).

4.1.2 Local spectral estimates

In this part, we assume that M is without boundary, ∂M = ∅. The purpose is to establish
local spectral estimates holding in each charts of the manifold M . We recall that, in
section 2.2, we have fixed an atlas A = (Vσ,Ψσ)σ∈J containing a finite number of charts
with W 2,∞ ∩C1-diffeomorphisms Ψσ : Vσ −→ Ψσ(Vσ) ⊂ R

d−1 ×R+ such that there exists
a family of open sets (Uσ)σ∈J satisfying

M =
⋃

σ∈J
Uσ, (4.2)

and such that Uσ is compactly included in the open set Vσ in M , for all σ ∈ J . Moreover,
since ∂M = ∅, Ψσ(Vσ) is an open set of Rd, for any σ ∈ J .

The main result of this part is the following one.

Proposition 4.1. There exists δd ∈ (0, 1) such that for all δ ∈ [0, δd] and for every σ ∈ J
and m > 0, there exist C = C(M,g, V, σ,m, δ) > 0 and α = α(M,g, V, σ,m, δ) ∈ (0, 1)
such that for all subsets ω with Cd−δ

H (ω ∩ Uσ) > m and Λ > 0,

‖ΠΛu‖L∞(Uσ) ≤ CeC
√
Λ

(
sup
ω∩Uσ

|ΠΛu|
)α

‖ΠΛu‖1−α
L∞(M) ∀u ∈ L2(M). (4.3)

Proof. First, one can assume that V ≥ 0 just by considering the elliptic operator

Hg,V + ‖V ‖∞u ∀u ∈ Dom(Hg,V ), (4.4)

that has the same eigenfunctions (φk)k≥1 as the elliptic operator Hg,V corresponding to
the shifted eigenvalues λk + ‖V ‖∞.

We fix σ ∈ J , we now work in a coordinate patch Uσ ⊂⊂ Vσ and we define the sets

V = Ψσ(Vσ), U = Ψσ(Uσ) and E = Ψσ(ω ∩ Uσ). (4.5)
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For Λ > 0, we then consider

u(x) =
∑

λk≤Λ

ukφk(x) x ∈ M, (4.6)

and its local push forward version U

U(x) = u ◦Ψ−1
σ (x) =

∑

λk≤Λ

uk(φk ◦Ψ−1
σ )(x) =

∑

λk≤Λ

ukΦk(x) x ∈ V. (4.7)

We then add an extra-variable to u by defining

û(x, t) =
∑

λk≤Λ

uk
sinh(

√
λkt)√

λk
φk(x) (x, t) ∈ M × (−2,+2), (4.8)

and its local push forward version Û

Û(x, t) =
∑

λk≤Λ

uk
sinh(

√
λkt)√

λk
Φk(x) (x, t) ∈ V × (−2,+2). (4.9)

In the chart (Vσ,Ψσ), let us consider (gi,j)1≤i,j≤d the local coordinates of the metric g.

We define for x ∈ V, G(x) = (gi,j(Ψ
−1
σ (x)))1≤i,j≤d. We observe that Û solves

{
−∇x · (A(x)∇xÛ)− κ(x)∂ttÛ + V̂ (x)Û = 0 in V × (−2, 2),

Û(x, 0) = 0 in V, (4.10)

with A = G(x)−1
√

detG(x), κ(x) =
√

detG(x) and V̂ (x) =
√

detG(x)V
(
Ψ−1

σ (x)
)

sat-

isfying the hypotheses (2.3), (2.4) and (2.8). We can then apply Corollary 2.2 to Û with
Ω = Ṽ, K = U and E = Ψσ(ω ∩ Uσ) such that U ⊂⊂ Ṽ ⊂⊂ V to get

sup
x∈U

|∂tÛ(x, 0)| ≤ C

(
sup
x∈E

|∂tÛ(x, 0)|
)α ∥∥∥Û

∥∥∥
1−α

W 1,∞
t,x (Ω×(−1,1))

. (4.11)

The left hand side of (4.11) exactly gives

sup
x∈U

|∂tÛ(x, 0)| = sup
x∈U

|U(x)| = sup
x∈Uσ

|u(x)|. (4.12)

The first right hand side term of (4.11) exactly gives

sup
x∈E

|∂tÛ(x, 0)| = sup
x∈E

|U(x)| = sup
x∈ω∩Uσ

|u(x)|. (4.13)

Moreover, by elliptic regularity, see [GT01, Theorem 9.11], Sobolev embeddings and a
bootstrap argument, using in particular the elliptic equation (4.10), we obtain that the
second right hand side term of (4.11) is bounded as follows

‖Û‖
W 1,∞

t,x (Ω×(−1,1))
≤ C‖Û‖L2(V×(−2,+2)). (4.14)

By using a change of variable, we then obtain that

‖Û‖L2(V×(−2,+2)) ≤ C‖û‖L2(Vσ×(−2,+2)) ≤ ‖û‖L2(M×(−2,+2)). (4.15)

Now, by using the orthogonality of the eigenfunctions (φk)k≥1 in L2(M), we then obtain
that

‖û‖L2(M×(−2,+2)) ≤ C exp(C
√
Λ)‖u‖L2(M). (4.16)

We now gather (4.11), (4.12), (4.13), (4.14), (4.15), (4.16) to get (4.3).
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4.1.3 Propagation to the whole manifold

In this part, we prove Theorem 2.3 by using the connectedness of the manifold M to
propagate the estimates (4.3) to the whole manifold M , which is still assumed to be
without boundary.

Proof of Theorem 2.3 in the case ∂M = ∅. We define the following subset I ⊂ J such that
σ ∈ I if and only if there exist Cσ > 0 and ασ ∈ (0, 1) so that

‖ΠΛu‖L∞(Uσ) ≤ Cσe
Cσ

√
Λ(sup

x∈ω
|ΠΛu(x)|)ασ‖ΠΛu‖1−ασ

L∞(M) ∀u ∈ L2(M), ∀Λ > 0. (4.17)

Thanks to (4.2), we have

M =
⋃

σ∈I
Uσ ∪

⋃

σ/∈I
Uσ.

First of all, I is not empty. Indeed, since Cd−δ′

H (ω) > m, there exists σ0 ∈ J such that

Cd−δ′

H (ω∩Uσ0
) > m

N , where N denotes the cardinality of the finite set J . It is then sufficient
to apply Proposition 4.1 to obtain σ0 ∈ I .

Let us assume by contradiction that I 6= J . Since M is connected, there exist σ ∈ I
and σ̃ /∈ I such that Uσ∩Uσ̃ 6= ∅. By applying Proposition 4.1 with j = σ̃ and ω = Uσ∩Uσ̃

that is open, there exist Cσ,σ̃ > 0 and 0 < ασ,σ̃ < 1 such that for Λ > 0 and u ∈ L2(M),

‖ΠΛu‖L∞(Uσ̃) ≤ Cσ,σ̃e
Cσ,σ̃

√
Λ‖ΠΛu‖ασ,σ̃

L∞(Uσ∩Uσ̃)
‖ΠΛu‖1−ασ,σ̃

L∞(M),

so that

‖ΠΛu‖L∞(Uσ̃) ≤ Cσ,σ̃e
Cσ,σ̃

√
Λ‖ΠΛu‖ασ,σ̃

L∞(Uσ)
‖ΠΛu‖1−ασ,σ̃

L∞(M). (4.18)

Moreover, since σ ∈ I , there exist C ′
σ > 0 and 0 < α′

σ < 1 such that

‖ΠΛu‖L∞(Uσ) ≤ C ′
σe

C′

σ

√
Λ(sup

x∈ω
|ΠΛu(x)|)α

′

σ‖ΠΛu‖1−α′

σ

L∞(M) ∀u ∈ L2(M), ∀Λ > 0. (4.19)

Let Λ > 0 and u ∈ L2(M) such that ‖ΠΛu‖L∞(M) = 1. We therefore deduce from
(4.18) and (4.19) that

‖ΠΛu‖L∞(Uσ̃) ≤ C ′′
σ,σ̃e

C′′

σ,σ̃

√
Λ(sup

x∈ω
|ΠΛu(x)|)βσ,σ̃

with 0 < βσ,σ̃ = α′
σασ,σ̃ < 1 and C ′′

σ,σ̃ = max(C ′ασ,σ̃
σ Cσ,σ̃ , ασ,σ̃C

′
σ +Cσ,σ̃). It readily follows

that for all Λ > 0 and for all u ∈ L2(M),

‖ΠΛu‖L∞(Uk) ≤ C ′′
σ,σ̃e

C′′

σ,σ̃

√
Λ(sup

x∈ω
|ΠΛu(x)|)βσ,σ̃‖ΠΛu‖1−βσ,σ̃

L∞(M).

Thus, σ̃ ∈ I and this provides a contradiction.
To conclude this subsection, we have I = J and by defining

0 < α = min
σ∈J

ασ < 1 and C = max
σ∈J

Cσ > 0,

we have

‖ΠΛu‖L∞(M) ≤ CeC
√
Λ(sup

x∈ω
|ΠΛu(x)|)α‖ΠΛu‖1−α

L∞(M) ∀u ∈ L2(M), ∀Λ > 0,

which readily provides

‖ΠΛu‖L∞(M) ≤ C
1

α e
C
α

√
Λ sup

x∈ω
|ΠΛu(x)| ∀u ∈ L2(M), ∀Λ > 0.

This concludes the proof.
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4.1.4 The double manifold

In this part, we prove Theorem 2.3 for a manifold with boundary M and Dirichlet or
Neumann boundary conditions on ∂M . The idea consists in reducing this question to the
case of a manifold without boundary by gluing two copies of M along the boundary in
such a way the new double manifold M̃ inherits a Lipschitz metric, which allows to apply
the previous results (without boundary) to this double manifold. This is done in [BM23,
Section 3] but the only point that we need to check in our setting is the equation satisfied
by the eigenfunctions on the double manifold.

Let M̃ = M × {−1, 1}/∂M the double space made of two copies of M where we
identified the points on the boundary, (x,−1) and (x, 1), x ∈ ∂M .

Theorem 4.2 (The double manifold). There exist a C∞ structure on the double manifold

M̃ , a metric g̃ ∈ W 1,∞ on M̃ , a potential Ṽ ∈ L∞(M̃ ) such that the following holds.

• The maps

i± : x ∈ M → (x,±1) ∈ M̃ = M × {±1}/∂M
are isometric embeddings.

• The potential Ṽ is such that

Ṽ (x,±1) = V (x) x ∈ M.

• For any eigenfunction φλ with eigenvalue λ of the operator Hg,V with Dirichlet or

Neumann boundary conditions, there exists an eigenfunction φ̃λ with the same eigen-

value λ of the operator Hg̃,Ṽ on M̃ such that

φ̃λ |M×{1}= φλ, φ̃λ |M×{−1}=

{
−φλ (Dirichlet boundary conditions),

φλ (Neumann boundary conditions).
(4.20)

The proof exactly follows the same lines as the one of [BM23, Theorem 7]. The main
difference comes from the fact that we need to deal with a potential V ∈ L∞. One of
the main difficulty in the proof of [BM23, Theorem 7] consists in computing the Laplacian
of φ̃λ on the new manifold M̃ , thanks to the jump formula. In particular, there is no
new difficulty to add this potential in the proof of [BM23, Theorem 7]. For the sake of
conciseness, we omit the proof of Theorem 4.2.

The results of Theorem 2.3 are readily implied by Theorem 4.2.

4.2 Spectral estimates on the Euclidean space

The goal of this part is to prove Theorem 2.7. In the first part, we first show that (2.41)
can be deduced from (2.40) in the case when δ = 0. In the second part, we prove the
spectral estimates (2.40).

4.2.1 Reduction of spectral estimates to uniformly distributed sets

In this first part, we explain how (2.41) can be deduced from (2.40). Let g ∈ L2(Rd) and
Λ > 0 such that g = ΠΛg. If ω ⊂ R

d is a thick subset, i.e. satisfying (2.37) we define an
auxiliary subset ω̃ =

⋃
k∈Zd ω̃k, where for all k ∈ Z

d,

ω̃k =

{
x ∈ ω ∩B(k,R), |g(x)|2 ≤ 2

|ω ∩B(k,R)|

∫

ω∩B(k,R)
|g(y)|2dy

}
⊂ B(k,R).
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By definition, we have for all k ∈ Z
d,

∫

ω∩B(k,R)
|g(x)|2dx ≥

∫

(ω∩B(k,R))\ω̃k

|g(x)|2dx ≥ 2|(ω ∩B(k,R)) \ ω̃k|
|ω ∩B(k,R)|

∫

ω∩B(k,R)
|g(y)|2dy.

Thus, if ∫

ω∩B(k,R)
|g(y)|2dy > 0,

then

|(ω ∩B(k,R)) \ ω̃k| ≤
|ω ∩B(k,R)|

2
,

which implies

|ω̃k| ≥
γ

2
|B(k,R)|,

thanks to the thickness property satisfied by ω i.e. (2.37). Otherwise, if

∫

ω∩B(k,R)
|g(y)|2dy = 0,

then g ≡ 0 in ω ∩B(k,R) so ω̃k = ω ∩B(k,R), therefore

|ω̃k| = |ω ∩B(k,R)| ≥ γ|B(k,R)| > γ

2
|B(k,R)|.

Finally, ω̃ is still a thick subset of Rd, and it follows from the spectral estimate (2.40) that

‖g‖2L2(Rd) ≤ CeC
√
Λ
∑

k∈Zd

sup
x∈ω̃k

|g(x)|2

≤ CeC
√
Λ
∑

k∈Zd

2

|ω ∩B(k,R)|

∫

ω∩B(k,R)
|g(x)|2dx

≤ 2

γ|B(0, R)|CeC
√
Λ
∑

k∈Zd

∫

ω∩B(k,R)
|g(x)|2dx

≤ CeC
√
Λ

∫

ω
|g(x)|2dx,

since
1 ≤

∑

k∈Zd

1lB(k,R) ≤ C(d).

This concludes the proof of (2.41).

4.2.2 Spectral estimates

In this part, we prove the spectral estimates (2.40). We can assume V ≥ 0 since spectral
estimates for Hg,V,κ + ‖V ‖L∞ readily imply spectral estimates for Hg,V,κ. Let m,R > 0
and ω ⊂ R

d satisfying
∀x ∈ R

d, Cd−δ
H (ω ∩B(x,R)) ≥ m,

for δ ∈ [0, δd] with 0 < δd < 1 provided by Theorem 2.2.
Let us fix λ > 0 and f = Πλf . The strategy, inspired by the works [BM21, BM23],

consists in adding a ghost dimension and defining the following (d+1)-dimensional function

Fλ(x, y) =
sinh

(√
Hg,V,κy

)
√

Hg,V,κ

Πλf(x), (x, y) ∈ R
d × (−1, 1). (4.21)
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Notice that Fλ ∈ H2(Rd × (−5R, 5R)) and satisfies the following elliptic equation

−∇x · (κ(x)g−1(x)∇xFλ)− κ(x)∂2
yFλ + κ(x)V (x)Fλ = 0 in R

d × (−5R, 5R). (4.22)

Moreover, we have

Fλ(·, 0) = 0 and ∂yF (·, 0) = Πλf on R
d.

In the following, the constants will be of the form C = C(M,Λ1,Λ2, ‖V ‖∞, R,m, δ) > 0
and can change from one line to another.

Since the conclusion of Corollary 2.2 is invariant by translations and because of the
uniform bounds on g and V and κ, we have that there exist positive constants C > 0 and
0 < α < 1 such that for all k ∈ Z

d,

sup
x∈B(k,R)

|∂yFλ(x, 0)| ≤ C( sup
x∈ω∩B(k,R)

|∂yFλ(x, 0)|)α‖Fλ(x, y)‖1−α

W 1,∞
x,y (B(k,2R)×(−R,R))

,

which implies

sup
x∈B(k,R)

|Πλf(x)| ≤ C( sup
x∈ω∩B(k,R)

|Πλf(x)|)α‖Fλ(x, y)‖1−α

W 1,∞
x,y (B(k,2R)×(−R,R))

. (4.23)

By elliptic regularity, see [GT01, Theorem 9.11], Sobolev embeddings and a bootstrap
argument, using in particular the elliptic equation (4.22) there exists a positive constant
C > 0 such that

‖Fλ(x, y)‖W 1,∞
x,y (B(k,2R)×(−R,R)) ≤ C‖Fλ‖L2(Bd+1((k,0),5R)).

This implies, together with (4.23), that

‖Πλf‖2L2(B(k,R)) ≤ sup
x∈B(k,R)

|Πλf(x)|2

≤ C( sup
x∈ω∩B(k,R)

|Πλf(x)|)2α‖Fλ‖2(1−α)
L2(Bd+1((k,0),5R))

. (4.24)

It therefore follows from Young’s inequality that there exists β > 0 such that for all ε > 0,

‖Πλf‖2L2(B(k,R)) ≤ Cε−β sup
x∈ω∩B(k,R)

|Πλf(x)|2 + ε‖Fλ‖2L2(Bd+1((k,0),5R)).

By summing over all the integers k ∈ Z
d and using the facts that

1 ≤
∑

k∈Zd

1lB(k,R) and
∑

k∈Zd

1lBd+1((k,0),5R) ≤ C(d)1lRd×(−5R,5R),

for some positive constant C(d) ≥ 1 depending only on the dimension, we have for all
ε > 0,

‖Πλf‖2L2(Rd) ≤
∑

k∈Zd

‖Πλf‖2L2(B(k,R))

≤ Cε−β
∑

k∈Zd

sup
x∈ω∩B(k,R)

|Πλf(x)|2 + εC(d)‖Fλ‖2L2(Rd×(−5R,5R)). (4.25)

By now, let us show that there exists a positive constant C > 0 such that

‖Fλ‖2L2(Rd×(−5R,5R)) ≤ CeC
√
λ‖Πλf‖2L2(Rd). (4.26)
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Indeed, by using the fact that there exists a positive constant C > 0 such that

sinh(yt)2

t2
≤ CeC

√
λ ∀y ∈ (−5R, 5R),∀t ∈ (0,

√
λ),

we have

‖Fλ‖2L2(Rd×(−5R,5R)) ≤
∫ 5R

−5R

∫

Rd

∣∣∣∣∣
sinh

(
y
√
Hg,V,κ

)
√

Hg,V,κ

Πλf(x)

∣∣∣∣∣

2

≤ 10RCeC
√
λ‖Πλf‖2L2(Rd).

Finally, we have shown that (4.26) holds for some constant C > 0. It follows from

(4.25) with ε = 1
C e

−C
√
λ and (4.26) that

‖Πλf‖2L2(Rd) ≤ CeC
√
λ
∑

k∈Zd

sup
x∈ω∩B(k,R)

|Πλf(x)|2.

This ends the proof of Theorem 2.7.
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