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Abstract: This paper deals with the long-wavelength behaviour of a Euler beam periodically sup-
ported by co-located rotation and compression springs. An asymptotic homogenization method
is applied to derive the several macroscopic models according to the stiffness contrasts between
the elastic supports and the beam. Effective models of differential order two or four are obtained,
which can be merged into a single unified model whose dispersion relations at long and medium
wavelengths fit those derived by Floquet-Bloch. Moreover, the essential role of rotation supports is
clearly evidenced. A mixed “discrete/continuous” approach to the boundary conditions is proposed,
which allows the boundary conditions actually applied at the local scale to be expressed in terms of
Robin-type boundary conditions on macroscopic variables. This approach can be applied to both
dominant-order and higher-order models. The modal analysis performed with these boundary
conditions and the homogenised models gives results in good agreement with a full finite element
calculation, with great economy of numerical resources.

Keywords: homogenisation; dynamics; boundary conditions; asymptotic method; multi-supported
beams

MSC: 35B27;74H10;74Q10;74Q15

1. Introduction

Multi-supported beams are widely used in a variety of engineering fields, including
long multi-supported bridges, multi-span steel structures, rails connected to sleepers,
pipelines supported by regularly distributed foundations, and pipe networks attached to
structural elements. Understanding their vibratory behaviour is of interest for safer and
more efficient design, in particular for better control of their response to moving loads
or to stresses induced by external actions such as ambient vibrations, earthquakes, etc.
Another field of application is the monitoring and control of the in-service condition of
these structures using structural health monitoring (SHM) vibration methods.

Due to their wide range of applications, many studies have focused on dynamics
of beams that rest on continuous foundations or on discrete flexible supports. For good
reviews in this field one can refer to [1,2].

As for continuous foundations, the precursor works of [3–5] deal with Euler or Tim-
oshenko beams, respectively, lying on an elastic or visco-elastic foundation of a Winkler
compressional type. Let us mention the instability analysis developed by [6] and the
work of [7,8] dealing with non-linear foundations and stratified foundations, respectively.
The continuous approach has also been applied to discrete foundations by redistributing
discrete forces in continuous form, e.g., [9].

Studies that explicitly take into account the discrete nature of supports were initiated
by Mead for periodic [10] or non-periodic [11] distributions with the aim of determining
their vibro-acoustic behaviour. More recently, ref. [2] investigates the steady-state dynamic

Mathematics 2024, 12, 1844. https://doi.org/10.3390/math12121844 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12121844
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5549-398X
https://doi.org/10.3390/math12121844
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12121844?type=check_update&version=2


Mathematics 2024, 12, 1844 2 of 27

response under the influence of an axial force. It should be noted that in these studies the
supports are often restricted to compression springs, and their rotational stiffness is much
less frequently considered [10]. However, in a bending beam system, this type of spring
necessarily plays an essential role that cannot be neglected in practice.

Several methods have been used to address the dynamic behaviour of multi-supported
beams. Among them, the most usual are the transfer matrix method [9,12,13], the use of
Green functions e.g., [2], and the numerical approach by the finite element method e.g., [7].
Asymptotic methods have been used less frequently. Particular mention should be made of
the work of [14], who is interested in the dynamics of stretched beams with concentrated
masses and discrete compressional elastic supports.

The objective of this paper is twofold: first, to develop a unified model that encom-
passes the phenomena of rotation/compression/bending within a synthetic formulation,
thereby translating the overall behaviour of multi-supported structures; and second, to
formulate the relevant boundary conditions in order to perform the modal analysis.

Despite recent advances in the field, to our knowledge, no unified model is available
in the literature. Given the large number of possible situations, the study focuses on an
Euler beam periodically supported by co-localised compression and rotation elastic springs,
as illustrated in Figure 1. The stiffnesses of these springs, in comparison to that of the
beam, can vary over a wide range. From the academic point of view, this example is both
simple enough to allow analytical developments and rich enough to illustrate how to
overcome some theoretical issues. Nevertheless, the framework of the method would allow
Timoshenko beams or viscoelastic supports to be considered.

Figure 1. Above, irreducible period Ω. Bottom, beam periodically supported by the spring system
(C,K).

To establish this model, we will use an asymptotic method (homogenization of discrete
periodic media; HPDM) whose advantages are as follows: (i) the determination, within
a rigorous framework, of explicit macroscopic models that describe the long-wavelength
dynamics on the basis of period parameters and their contrasts; (ii) the identification of local
and global efforts; (iii) the delimitation of the domains of validity of each obtained model;
(iv) the significant savings in computational resources (compared with a full calculation)
thanks to the model reduction thus achieved; and (v) the physical understanding of the
various possible situations by retaining only the dominant effects on a macroscopic scale.

The modal analysis in the long-wave range requires, in addition to the identification
of the equivalent macroscopic model, the determination of the appropriate boundary
conditions. Let us briefly comment on these two aspects.

The homogenization method is based on the assumption of a strong separation of
scale between the macroscopic phenomenon and the microscopic structure. It has been first
developed for continuous media [15–17], then extended to discrete systems, such as retic-
ulated structures or continuous networks by [14,18–20]. The homogenization of periodic
discrete media (HPDM) has in particular been used to establish generalised beam mod-
els [21–23]. Furthermore, homogenization analysis has also shown its interest in exploring
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effects linked to imperfect scale separation through higher-order terms [24]. In quasi-static
regimes, this work has made it possible to establish a link between phenomenological
theories [25–27] of higher-order or micromorphic media and homogenised higher-order
descriptions e.g., [28–30]. In the field of elastodynamics, these higher-order terms make it
possible to tackle long wavelength dispersion, whether in 3D composite or stratified media,
cf. [31–33].

The homogenised models are to be applied within the domain and must be completed
at the edges of the domain. Nevertheless, the boundary conditions expressed on the vari-
ables of the homogenised model only imperfectly reflect the actual boundary conditions.
This difficulty has been identified since the work of [34]. A way to overcome this draw-
back is to introduce a boundary layer that connects the true boundary condition to the
homogenised condition inside the domain. The work of [35–37] provides a mathemati-
cal framework for these concepts. Despite these advances, this question is still topical,
as shown by the recent work [38] in static regime, [39] in dynamic regime, and [40] for
defining boundary layers in higher-order continuous media. As far as discrete media are
concerned, to our knowledge, no specific work on this subject has been developed.

The study presented in this article deals with the various aspects mentioned above. The
article is structured as follows: The first part is devoted to the determination of macroscopic
models. These are constructed at the leading order using the HPDM method for each
order of magnitude of stiffness contrasts in rotation and compression. The role of the
contrasts on the order of the differential operator governing the overall dynamic behaviour
is clearly highlighted. A so-called generic model, which encompasses all the descriptions,
is established. It is shown by comparison with a Floquet-Bloch analysis that its range
of validity extends well beyond the theoretical hypothesis of very large scale separation.
The second part focuses on the formulation of relevant boundary conditions. A mixed
“discrete/continuous” approach is proposed, which gives the effective boundary conditions
to be applied to the macroscopic variables in order to reproduce the real conditions. The
Robin-type conditions thus established associated with the macroscopic models can be
used directly to carry out the modal analysis of these systems. The results obtained are
very close to those obtained from a complete finite element calculation.

2. Method

In order to determine the eigenmodes of the periodic structure from the macroscopic
model, the general procedure proposed is as follows:

1. Reduce the continuous structure studied to an equivalent discrete model. This is done
by condensing the forces at the period nodes.

2. Derive the exact finite difference equation for the equilibrium between adjacent nodes
in the discrete system.

3. Define the small scale parameter ε, which is used (i) to define the orders of magnitude
of the spring stiffnesses as a function of the bending stiffness of the beams and (ii) to
develop the kinematic variables asymptotically.

4. Solve the problems in increasing order of ε until you get a macroscopic model where
the order of the differential operator allows all physical boundary conditions to be
considered.

5. A boundary condition relating to a kinematic variable is applied directly to the
corresponding macroscopic variable. A force boundary condition, on the other hand,
is applied by re-expressing the local equilibrium at the node under consideration
using the macroscopic kinematic variables.

Note that the Floquet-Bloch theory provides the dispersion relation for a periodic
material at any wavelength. However, knowledge of these properties is not sufficient
to carry out a modal analysis of a domain of finite size, which requires the boundary
conditions to be taken into account.
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2.1. Euler Beam Dynamics

Let us consider a Euler beam (width a, length ℓ, depth h, inertia I = a3h/12, cross-
section A = ah, Young modulus E, volumic mass ρ) in a harmonic regime at angular
frequency ω that denotes (v(s), θ(s)) the transversal displacement and rotation field, where
s is the abscissa along the beam (the time dependency eiωt is omitted) and linked by
the relationship:

θ(s) =
dv(s)

ds
(1)

The shear force Tbeam(s) and the momentum Mbeam(s) follow the local balances:

dTbeam(s)
ds

= ρAω2v(s) (2a)

dMbeam(s)
ds

+ Tbeam(s) = 0 (2b)

The bending behaviour law for small deformations reads:

Mbeam(s) = −EI
dθ(s)

ds
(3)

Introducing (1)–(3) in the derivative of (2b) yields:

d4v(s)
ds4 −

(γ

ℓ

)4
v(s) = 0 with γ =

4

√
ρAω2

EI
ℓ =

2πℓ

λb
(4)

where γ and λb are, respectively, the dimensionless bending wavenumber and the bending
wavelength. Denoting by m and Kf the mass and bending stiffness of the beam of length ℓ,
respectively, we define the reference angular frequency ωb as

m = ρAℓ ; Kf =
12EI
ℓ3 ; ωb =

√
EI

ρAℓ4 =

√
Kf

12m
; γ4 =

(
ω

ωb

)2
(5)

Integrating (4) with the displacement/rotations conditions (vB, θB) and (vE, θE) at the
extremities B and E of the beam (see Figure 2) provides:

v(s) = C1 cos(γ
s
ℓ
) +C2 sin(γ

s
ℓ
) +C3 cosh(γ

s
ℓ
) +C4 sinh(γ

s
ℓ
) (6)

with 

2C1 =

(
1 +

6
γ2 f3(γ)

)
vB − 6

γ2 f6(γ)vE +
4ℓ
γ2 f2(γ)θ

B +
2ℓ
γ2 f5(γ)θ

E

2C2 = − 12
γ3 f1(γ)vB +

12
γ3 f4(γ)vE +

ℓ

γ

(
1 − 6

γ2 f3(γ)

)
θB − 6ℓ

γ3 f6(γ)θ
E

2C3 =

(
1 − 6

γ2 f3(γ)

)
vB +

6
γ2 f6(γ)vE − 4ℓ

γ2 f2(γ)θ
B − 2ℓ

γ2 f5(γ)θ
E

2C4 =
12
γ3 f1(γ)vB − 12

γ3 f4(γ)vE +
ℓ

γ

(
1 +

6
γ2 f3(γ)

)
θB +

6ℓ
γ3 f6(γ)θ

E
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and:

f1(γ) =
sin(γ) cosh(γ) + cos(γ) sinh(γ)

1 − cos(γ) cosh(γ)
γ3

12

f2(γ) =
sin(γ) cosh(γ)− cos(γ) sinh(γ)

1 − cos(γ) cosh(γ)
γ

4

f3(γ) =
sinh(γ) sin(γ)

1 − cos(γ) cosh(γ)
γ2

6

f4(γ) =
sinh(γ) + sin(γ)

1 − cos(γ) cosh(γ)
γ3

12

f5(γ) =
sinh(γ)− sin(γ)

1 − cos(γ) cosh(γ)
γ

2

f6(γ) =
cosh(γ)− cos(γ)

1 − cos(γ) cosh(γ)
γ2

6

(7)

The functions the functions { fi(γ)}, i = 1, . . . , 6 have the following properties:

lim
γ→0

fi(γ) = 1 ; ∀γ, ∀i ∈ J4; 6K, fi(γ) ̸= 0 (8)

Introducing (6) into (3) provides the expressions of the forces F =

(
Tbeam

Mbeam/ℓ

)
exerted

by the beam at its extremities (FB at the beginning; FE at the end) as a function of the

displacement U =

(
v
ℓθ

)
at its extremities (UB at the beginning; UEat the end). They are

written in matrix form as:

FB(UB, UE) = Kf

(
HBB.UB + HBE.UE

)
FE(UB, UE) = Kf

(
HEB.UB + HEE.UE

) (9)

where the following elasto-inertial matrices have been introduced:

HBB =

[
f1(γ)

1
2 f3(γ)

1
2 f3(γ)

1
3 f2(γ)

]
HEE =

[
− f1(γ)

1
2 f3(γ)

1
2 f3(γ) − 1

3 f2(γ)

]
HBE =

[
− f4(γ)

1
2 f6(γ)

− 1
2 f6(γ)

1
6 f5(γ)

]
HEB = −THBE =

[
f4(γ)

1
2 f6(γ)

− 1
2 f6(γ) − 1

6 f5(γ)

]

Figure 2. Kinematic variables and forces at the nodes defined in the local frame of each beam element.

2.2. Dynamics of Multi-Supported Beam—Finite Difference Formulation

The period Ω of the system is composed by a beam of size ℓ and a system of springs
(K, C) of positive stiffnesses. At each node xn = nℓ of the system, the springs exert a
restoring force FK

n = −Kvn and a restoring moment MC
n = −Cθn. Hence, we define the

stiffness matrix R and the restoring forces fn as:

fn = −KfR.Un ; KfR =

[
K 0
0 C/ℓ2

]
= Kf

[
β 0
0 δ

]
Expressing, at each node n the balance Tn of the transverse force, and the balance Mn/ℓ of
the ℓ-reduced momentum yields(

Tn
Mn/ℓ

)
= FE(Un−1, Un)− FB(Un, Un+1) + fn = 0 (10)
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which can be rewritten:

HEB.Un−1 +
(

HEE − HBB − R
)

.Un +
T HEB.Un+1 = 0 (11)

It is convenient to introduce the diagonal matrices F(ω) = HBB − HEE and D(ω) =
1
2

(
HEB +T HEB

)
then the antisymmetric matrix C(ω) = 1

2

(
HEB −T HEB

)
, i.e., explicitly:

D(ω) =

[
f4(γ) 0

0 − 1
6 f5(γ)

]
; C(ω) =

[
0 1

2 f6(γ)

− 1
2 f6(γ) 0

]
; F(ω) =

[
f1(γ) 0

0 1
3 f2(γ)

]
to rearrange (10) in a finite difference set. The two balance equations are coupled through
the antisymmetric matrix C(ω):

1
Kf

(
Tn

Mn/ℓ

)
= D(ω).(Un−1 − 2Un + Un+1)

+C(ω).(Un−1 − Un+1) +
(
2D(ω)− 2F(ω)− R

)
Un = 0 (12)

2.3. Asymptotic Method

The switch from the finite difference description to a continuous description is made
using the homogenization method for discrete media. This requires a net scale separation
between the characteristic vibration length L and the period length ℓ, i.e., ℓ = εL, with ε ≪ 1.
Consequently, each local beam undergoes a quasi-static regime with a small dimensionless
bending number γ ≪ 1.

Notation: In the following, comparisons of orders of magnitude are made. The
following notations are used:

• If an adimensional variable (e.g., γ) is of order εm, we note that

γ = γ⋆εm = O(εm) with γ⋆ = O(1)

• an expression A = O(ε) ⇔ A(1 + O(ε1)) = 0 means that all terms smaller than ε
with respect to A are neglected. With this notation, it is not necessary to specify the
dimensions of the terms to be compared.

The steps of the method are as follows:

Continuation of discrete variables: introduction of a continuous displacement U(x) =(
v(x)
ℓθ(x)

)
as in the nodes of the system:

U(xn = nℓ) = Un =

(
vn
ℓθn

)
(13)

Expansion of kinematic variables: Under the assumption of scale separation, the varia-
tion in displacements between two consecutive nodes is small. It is then possible
to expand the displacements at the neighbouring nodes of the nth node into Taylor
series, giving rise to macroscopic derivatives denoted by ∂x:

Un±1 = U(xn ± εL) = U(xn)± εL∂xU(xn) +
(εL)2

2
∂2

xU(xn)±
(εL)3

6
∂3

xU(xn) +
(εL)4

24
∂4

xU(xn) + O(ε5)

Thus, the two finite difference terms of (12) become in the continuous representation:

Un−1 − 2Un + Un+1 = (εL)2∂2
xU(xn) +

(εL)4

12
∂4

xU(xn) + O(ε6)

Un−1 − Un+1 = −2εL∂xU(xn)−
(εL)3

3
∂3

xU(xn) + O(ε5)
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Moreover, the continuous kinematic variables are also asymptotically expanded into
powers of ε:

U(x) = ∑
j≥0

εjU(j)(x) with U(j)(x) = O(ε0U(0)(x))

Expansion of frequencies: as γ ≪ 1, functions { fi}1≤i≤6 (see (7)) are expanded in a Taylor
series:

fi(γ) = 1 + ∑
j≥1

γj∂
j
γ fi(0) (14)

Finally, the angular frequency is small compared to the reference frequency ωb
(see (5)), thus is expanded asymptotically around the zero pulsation:

ω = γ2ωb = 0 + ∑
j≥1

εjω(j) with ω(j) = O(ε0ωb) (15)

By introducing (15) into (14), the matrices D, C and F can be asymptotically expanded
into powers of ε.

Normalization: In this step, the geometric and mechanical contrasts are defined in order
of magnitude of ε. In accordance with the Euler-Bernoulli beam hypothesis, each
beam element must be sufficiently slender (width a ≪ ℓ). This geometric contrast is
expressed by considering (without loss of generality) that:

a/ℓ = e0ε = O(ε)

In addition, the order of magnitude of the spring stiffnesses in translation and rotation
is weighed in power of ε compared to the bending stiffness of a local beam:

β =
K
Kf

= O(εp) ; δ =
C

Kfℓ2 = O(εq)

Playing with these two orders of magnitude can generate different behaviours in the
medium on a macroscopic scale. This will be the subject of Section 3.

Resolution: All the previous expansions are introduced in (12), so that:

1
Kf

(
Tn

Mn/ℓ

)
= − ∑

j≥0
εj

(
T(j)

M(j)/ℓ

)
= 0 ; ∀ε → 0 (16)

Considering the equilibria for each order separately, the following successive equa-
tions arise for the first four orders:

(
T(−1)

M(−1)

)
= −R(−1).U(0)(x) = 0(

T(0)

M(0)

)
= −R(−1).U(1)(x) +

(
2
(

D(0) − F(0)
)
− R(0)

)
.U(0)(x) = 0(

T(1)

M(1)

)
= −R(−1).U(2)(x) +

1

∑
i=0

(
2
(

D(i) − F(i)
)
− R(i)

)
.U(1−i)(x)− 2LC(0).∂xU(0)(x) = 0(

T(2)

M(2)

)
= −R(−1).U(3)(x) +

2

∑
i=0

(
2
(

D(i) − F(i)
)
− R(i)

)
.U(2−i)(x)− 2L

1

∑
i=0

C(i).∂xU(1−i)(x) + L2D(0).∂2
xU(0)(x) = 0

. . .

The explicit formulation of these equations can be found in Appendix A. In order to
encompass in a single framework the different possible levels of stiffness contrast expressed
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by β and δ, these parameters are also developed in the form of β = ∑4
j=−1 εjβ(j) and

δ = ∑4
j=−1 εjδ(j). Thus, a εp contrast for β will result in β(p) ̸= 0 and β(j ̸=p) = 0 (and

similarly for a εq contrast for δ)

3. Multi-Supported Beam Models

The aim of this section is to establish the equivalent macroscopic models for multi-
supported beams corresponding to different pairs of spring stiffnesses. First, two basic
models are presented that show the crucial influence of stiffness contrasts. It is then shown
that by combining the characteristics of these two models, it is possible to build a generic
model that covers all possible contrast situations. Finally, the validity of these macroscopic
descriptions is analysed by comparing the dispersion curves obtained for these models
with those obtained using the classical Floquet-Bloch approach.

3.1. On the Level of Beam/Support Contrasts

Obviously, the stiffness contrast between the beam and the supports plays a crucial
role. Indeed, in the case of vanishing support stiffness, the multi-beam system tends to
behave as a single long beam, while at very high support stiffness, the multi-beam system
tends to behave like a chain of clamped (and therefore independent) beams. The situations
of interest lie between these two extreme cases.

In order for the supports to play an effective role, it is necessary for the restoring forces
to act as a source in the force and moment balance. With a view to an assessment, the
localised restoring forces can be redistributed along the length ℓ of the beam. This gives the
following relationships:

O(
dTbeam

ds
) ≤ O(

Kv
ℓ

) ; O(
dMbeam

ds
) ≤ O(

Cθ
ℓ
)

In the scale separation assumption, assuming that both v and θ vary with the macroscopic

length, one derives from the beam constitutive laws that O( dTbeam
ds ) = O(EI v

L4 ) = O(Kfℓ
3

L4 v)

and O( dMbeam
ds ) = O(EI θ

L2 ) = O(Kfℓ
3

L2 θ). These assessments reported in the previous rela-
tions provide the lower bound of the contrasts below that support the effect vanishes, i.e.,

O(Kf
ℓ3

L4 ) ≤ O(
K
ℓ
) =⇒ O(β) ≥ ε4 ; O(Kf

ℓ3

L2 ) ≤ O(
C
ℓ
) =⇒ O(δ) ≥ ε2

On the other hand, the contrast β is also limited by an upper bound. In fact, a
strong support imposes that the rotation and the curvatures vary at the local scale so that
O(θ) = O(v/ℓ) and O( dθ

ds ) = O(v/ℓ2), while, according to the scale separation assumption,
the transverse force and moment vary at the large scale. This gives the following maximum
estimate of dTbeam

ds that the restoring force can balance

O(
dTbeam

ds
) = O(EI

v
ℓ2L2 ) = O(

Kfℓ

L2 v)

Hence
O(Kf

ℓ

L2 ) ≥ O(
K
ℓ
) =⇒ O(β) ≤ ε2

Thus, the contrasts of interest are in the ranges ε4 ≤ O(β) ≤ ε2 and ε2 ≤ O(δ).

3.2. Basic Models

The two basic models are established by considering the cases where the compressional
supports are as stiff as possible, i.e., O(β) = ε2 and the rotational supports are either stiff
or soft.
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3.2.1. Multi-Supported Beam with Stiff Rotational Support

Let us consider multi-beam supported by stiff supports such that

β =
K
Kf

= β(2)ε2 ; δ =
C

Kfℓ2 = δ(0)ε0

The macroscopic description at leading order is obtained by solving problems (A2) to
(A4) in the Appendix A) in the growing order of powers of ε. Problems (A1) and (A2) are
trivially verified with θ(−1) = 0. At the order ε1, (A3) gives: T(1) =0

M(1) =
(

δ(0) + 1
)

Lθ(0) − L∂xv(0) = 0

from which we can deduce the kinematic relationship to the dominant order:

θ(0) =
1(

δ(0) + 1
)∂xv(0) (17)

The equilibrium equation for the shear force at order 2 (A4) gives:

T(2) = L2∂xθ(0) +

[
β(2) − ρL2

Ee2
0
(ω(1))2

]
v(0) − L2∂2

xv(0) = 0

By introducing (17) into T(2), we obtain the macroscopic description at leading order, with
ω = εω(1) + o(ε): (

K− mω2
)

v(x)− Ceq∂2
xv(x) = O(ε) (18a)

θ(x) =
Ceq

C ∂xv(x) +O(ε) (18b)

where Ceq represents the effective rotational stiffness, which combines in series the stiffness
C and stiffness Kfℓ

2 of the beam, i.e.,

1
Ceq

=
1
C +

1
Kfℓ2 (19)

The rotational spring C plays an essential role in the macroscopic balance equation (18a),
which differs fundamentally from that of a bending beam. C also affects the kinematic rela-
tionship (18b) between the rotation θ and the displacement v. In addition, the compression
spring imposes a cut-off pulsation ωc defined by:

ωc =

√
K
m

(20)

below which the differential operator (18a) driving v is not propagative.

The macroscopic description (18a) can be interpreted in terms of the balance of a
macroscopic transverse force −T (x) linked to the displacement gradient by an apparent
modulus µ =

Ceq
ℓ .

∂xT (x) = ρAω2v(x)− K
ℓ

v(x) (21a)

T (x) = −
Ceq

ℓ
∂xv(x) (21b)

Hence this model, denoted MSB-Stiff in the sequel behaves macroscopically as a kind
of shear-beam for which (i) the effects of the local bending and of the rotational spring
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are encapsulated in the effective shear modulus µ and (ii) the effect of the compressional
spring results in an effective lineic force −K

ℓ v(x).

3.2.2. Multi-Supported Beam with Soft Rotational Support

This model is obtained by reducing the stiffness of the rotational spring (compared to
the previous case), so that:

β =
K
Kf

= β(2)ε2 ; δ =
C

Kfℓ2 = δ(2)ε2

As before, the problems (A1) to (A2) are trivially verified with θ(−1) = 0. For the next order,
(A3) gives: {

T(1) =0

M(1) =Lθ(0) − L∂xv(0) = 0

which leads to the classical kinematic relationship of a Euler beam:

θ(0) = ∂xv(0)

At order ε2, the equilibrium equations (A4) are:
T(2) =

[
β(2) − ρL2

Ee2
0
(ω(1))2

]
v(0) = 0

M(2) =Lθ(1) − L∂xv(1) = 0

T(2) gives the expression for the first angular frequency term ω(1), and M(2) gives the same
kinematic relationship as in the previous order. Thus:

ω(1) =
√

β(2)ωb > 0 ; θ(1) = ∂xv(1)

At the order ε3, (A5) gives:
T(3) =− ρL2

Ee2
0

2ω(1)ω(2)v(0) = 0

M(3) =Lθ(2) +

[
δ(2) − ρL2

210Ee2
0
(ω(1))2

]
Lθ(0) − L∂xv(2) − 13ρL2

210Ee2
0
(ω(1))2L∂xv(0) = 0

As ω(1) ̸= 0, T(3) imposes ω(2) = 0, and M(3) provides a second-order correction to the
kinematic relationship:

θ(2) = ∂xv(2) +

(
β(2)

15
− δ(2)

)
θ(0)

Finally, the equilibrium (A6) in shear force at order ε4 is written:

T(4) =− L2δ(2)∂2
xv(0) +

L4

12
∂4

xv(0) −
[
(β(2))2

60
+

ρL2

Ee2
0

2ω(1)ω(3)

]
v(0) = 0

Since ω(2) = 0, the angular frequency expands to: ω = εω(1) + ε3ω(3) + o(ε3) and con-
sequently ε42ω(1)ω(3) = ω2 − (εω(1))2 + o(ε4). By introducing this expression into T(4),
as well as all those resulting from the solutions to the previous problems, we obtain the
following macroscopic description:(

−mω2 +Keq

)
v(x)− C∂2

xv(x) + EIℓ∂4
xv(x) = O(ε) (22a)
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θ(x) = ∂xv(x) +O(ε) (22b)

Keq is an effective stiffness that takes into account the stiffness 60Kf due to the beam in
bending and K of the support in compression. Note that as K = βKf = O(ε2Kf), Keq
corresponds at this order to a series association between these two elements.

Keq = K(1 − K
60Kf

) =
1

1
K + 1

60Kf

+ o(ε2) (23)

As before, the presence of Keq introduces a cutoff angular frequency below which the
differential operator (22a) is not propagative.

ωc,eq =

√
Keq

m
< ωc (24)

We note that in the model described by (22a) and (22b), the kinematic relationship of the
elementary beam is transferred to the macroscopic scale as well as the bending term, which
is translated by the same fourth-order differential operator. This leads to the introduction
of the macroscopic transverse force T (x) and moment M(x), which allow the model to be
rewritten in terms of the transverse force and moment balances as shown below.

∂xT (x) = ρAω2v(x)−
Keq

ℓ
v(x) (25a)

∂xM(x) + T (x) = −C
ℓ

θ(x) (25b)

M(x) = −EI∂2
xv(x) (25c)

θ(x) = ∂xv(x) (25d)

This formulation emphasises that the presence of the springs (K, C) simply results in forces
of volume −Keqv(x) and a moment of volume −C∂xv(x), without modifying the inherent
behaviour of the beams.

3.3. Multi-Supported Generic Beam Model

The basic models make it possible to build a single generic model that incorporates the
characteristics of each. To do this, we keep the equilibrium Equations (25a) and (25b), and
we replace the kinematic relationship between the macroscopic variables (25d) by (18b).
This leads to the following set, where (Keq, Ceq) are the equivalent stiffnesses (19) and (23):

∂xT (x) = ρAω2v(x)−
Keq

ℓ
v(x)

∂xM(x) + T (x) = −C
ℓ

θ(x)

M(x) = −EI∂2
xv(x)

θ(x) =
Ceq

C ∂xv(x)

Combining these equations leads to the leading-order macroscopic behaviour equation,
where the ωc,eq cut-off angular frequency is defined as (24):

m
(

ω2 − ω2
c,eq

)
v(x) + Ceq∂2

xv(x)− EIℓ∂4
xv(x) = 0 (26)
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3.4. Dimensional Analysis

A dimensional analysis of (26) divided by mω2
b = Kf/12 highlights the dominant

effects according to the order of magnitude of the stiffnesses (K = βKf and C = δKfℓ
2). To

do this, the displacement is rewritten in the form

v = vrV⋆ (27)

where vr is the reference displacement and V⋆ the adimensional displacement, V⋆ = O(ε0).
In addition, we perform the change of variables x̂ = x/L (where L = ℓ/ε ≫ ℓ is related to
the wavelength λ by the relation L = λ/2π). By defining the contrasts (β = β⋆εp, δ = δ⋆εq)
(26) becomes: (

ω

ωb

)2
V⋆︸ ︷︷ ︸

Tω

−12
β⋆εp

1 + β⋆

60 εp
V⋆

︸ ︷︷ ︸
Tβ

+12
δ⋆εq+2

1 + δ⋆εq ∂2
x̂V⋆︸ ︷︷ ︸

Tδ

− ε4∂4
x̂V⋆︸ ︷︷ ︸
Tb

= 0 (28)

The terms Tβ,Tδ,Tb represent respectively the effect of the elastic restoring of the compres-
sion springs, the rotation springs, and the bending of the beam elements. The term Tω rep-
resents the force of inertia of the system represented adimensionally by (ω/ωb)

2 = γ4 ≪ 1.
The dynamic balance (28) requires the Tω − Tβ term linked to V⋆ to be balanced by the
elastic terms Tδ and/or Tb. This makes it possible to determine, according to the order
of magnitude (K, C), the associated model, which retains only the dominant terms of the
same order and the order of magnitude of the angular frequency.

3.4.1. Family of Models

The generic model (26) degenerates into less rich models depending on the order of
magnitude of the different terms. Three main types of degenerate models (29)–(31) occur
in the case of strong compression springs (β = O(ε2)). These expressions are general and,
depending on the contrast, the (Ceq,Keq) parameters themselves may degenerate and the
cut-off angular frequency ωc,eq may disappear.

Multi-supported beam with stiff rotational support (MSB-Stiff) (q ≤ 1):
In that case Tβ = O(Tδ) = O(Tω) ≫ Tb, thus the action of the rotational springs and
internal bending, included in Ceq, balances the inertia and elastic restoring forces of
the compression springs.

m
(

ω2 − ω2
c,eq

)
v(x) + Ceq∂2

xv(x) = O(ε) (29)

Multi-supported beam with medium rotational support (MSB-Medium) (q = 2):
In that case, all the terms are of the same order of magnitude. The action of the
rotational springs and the bending of the beam elements are differentiated and
balance the inertia and elastic restoring forces of the compression springs.

m
(

ω2 − ω2
c,eq

)
v(x) + C∂2

xv(x)− EIℓ∂4
xv(x) = O(ε) (30)

Multi-supported beam with soft rotational support (MSB-Soft) (q ≥ 3):
In that case, Tω − Tβ = O(Tb) ≫ O(Tδ) This means that the action of the rotational
springs disappears at the dominant order, and only the global bending balances the
inertia forces of the restoring elastic forces of the compression springs.

m
(

ω2 − ω2
c,eq

)
v(x)− EIℓ∂4

xv(x) = O(ε) (31)

Table 1 shows all macroscopic descriptions depending on stiffness contrasts.
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Table 1. Set of macroscopic descriptions of multi-supported beams as a function of the order of
magnitude of the stiffness constraints (β, δ). The first column shows the three models (i) MSB-Stiff (in
blue), (ii) MSB-Medium (in orange), and (iii) MSB-Soft (in green).

β(p≤1) β(2) β(3) β(4) β(p≥5)

δ(q≤−1) m
(
ω2−ω2

c
)
v(x) + Kfℓ

2∂2
xv(x) = 0 mω2v(x) + Kfℓ

2∂2
xv(x) = 0

δ(0) m
(
ω2−ω2

c
)
v(x) + Ceq∂2

xv(x) = 0 mω2v(x) + Ceq∂2
xv(x) = 0

δ(1) m
(
ω2−ω2

c
)
v(x) + C∂2

xv(x) = 0 mω2v(x) + C∂2
xv(x) = 0

δ(2) m
(

ω2−ω2
c,eq

)
v(x) + C∂2

xv(x) + EIℓ∂4
xv(x) = 0 m

(
ω2−ω2

c
)
v(x) + C∂2

xv(x) + EIℓ∂4
xv(x) = 0 mω2v(x) + C∂2

xv(x) + EIℓ∂4
xv(x) = 0

δ(q≥3)

N
o

sc
al

e
se

pa
ra

ti
on

m
(

ω2−ω2
c,eq

)
v(x)− EIℓ∂4

xv(x) = 0 m
(
ω2−ω2

c
)
v(x)− EIℓ∂4

xv(x) = 0 mω2v(x)− EIℓ∂4
xv(x) = 0

Some of the results presented in [14] are recovered, in particular the role of compression
springs, which reveal a cut-off frequency. Our study emphasises the essential role of rotation
springs, which was not considered in [14].

3.4.2. Order of Magnitude of Frequencies

Denoting max(Tδ,Tb) = O(εm), (with m ≥ 2 by construction) there are three distinct
situations for the order of magnitude of the frequency:

1 If Tβ ≪ max(Tδ,Tb), then Tω = O(max(Tδ,Tb)). In these cases, the macroscopic
descriptions are always propagative, and the angular frequency expands as follows:

ω2 = O(ω2
bεm) (32)

2 If Tβ = O(max(Tδ,Tb)), then Tω = O(εm) and the macroscopic behaviour equations
are propagative only for angular frequencies (32) greater than ωc.

3 If Tβ ≫ max(Tδ,Tb), then it is necessary that the difference is Tω − Tβ = O(εm). In
other words, the expansion of the angular frequency is of the form:

ω2 − ω2
c = O(εmω2

b) where
(

ωc

ωb

)2
= O(εp) (33)

Macroscopic descriptions are only propagative for angular frequencies greater than a
cut-off frequency ωc,eq.

3.5. Dispersion Relationships at Long Wavelengths

Macroscopic models assume that ε → 0. To determine the extent of the validity domain
of these models for finite values of ε, the dispersion relations of the various degenerate
homogenised models (cf. Section 3.5.1) and of the generic model are compared with those
obtained by the exact Floquet-Bloch analysis (cf. Section 3.5.2), which is not restricted by
the scale separation condition.

3.5.1. Dispersion Relationships for the Different Models

By inserting v of the form v(x) = V⋆eikω x in each of the three models (29)–(31) and (26),
the following dispersion relationships are obtained:

MSB-Stiff (q ≤ 1): (
ω

ωb

)2
=

(
ωc,eq

ωb

)2
+

12δ

1 + δ
(kωℓ)

2 (34)

MSB-Medium (q = 2): (
ω

ωb

)2
=

(
ωc,eq

ωb

)2
+ 12δ(kωℓ)

2 + (kωℓ)
4 (35)
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MSB-Soft (q ≥ 3): (
ω

ωb

)2
=

(
ωc,eq

ωb

)2
+ (kωℓ)

4 (36)

MSB-Generic (∀q): (
ω

ωb

)2
=

(
ωc,eq

ωb

)2
+

12δ

1 + δ
(kωℓ)

2 + (kωℓ)
4 (37)

The wavenumber kω is real only above the cut-off angular frequency ωc,eq; otherwise, it is
purely imaginary. These relationships are presented in Figure 3 for three multi-supported
systems with β and δ stiffness contrasts corresponding to each of the models, which
correspond to a typical value of ε = 0.1:

Case (β = 10−2, δ = 1) (in blue): model MSB-Stiff (34);

Case (β = 10−2, δ = 10−2) (in orange): model MSB-Medium (35);

Case (β = 10−5, δ = 10−3) (in green): model MSB-Stiff (36) in which ωc,eq = 0.

Floquet-BlochMSB dominant order

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Figure 3. Dispersion relationships ω/ωb versus the adimensional wavenumber kωℓ/π, kω ∈ [0, π
ℓ [.

For the three types of contrast, the dispersion relationships derived from the models are plotted as
solid lines. The relationships calculated by Floquet-Bloch for the same contrasts are in dots.

Figure 3 also shows the dispersion curves obtained by the Floquet-Bloch analysis
described below for the same contrast values.

3.5.2. Dispersion Relations by Floquet-Bloch

The exact dispersion relation for the system described by (12) is obtained by searching
for Un in the form:

Un = U0e−ikωnℓ kω ∈ [0,
π

ℓ
[ (38)

By introducing (38) into (12), we get:

D.U0 =
[
2 cos(kℓ)D(ω) + 2I sin(kℓ)C(ω)− 2F(ω)− R

]
.U0 = 0
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The determinant of D must vanish so that U0 is not identically zero. The dispersion relation
is then written as det(D) = 0, i.e.,:

E(ω, kω) = 0 =
1
3
(β + 2 f1(γ)− 2 f4(γ) cos(kωℓ))(3δ + 2 f2(γ) + f5(γ) cos(kωℓ))

− f6(γ)
2 sin2(kωℓ)

(39)

This non-linear relationship is solved numerically for the contrasting stiffnesses (β, δ)
indicated in Section 3.5.1. The results reported in Figure 3 show that the models MSB-Soft
and MSB-Medium coincide with the exact calculations for wavenumbers kω ∈ [0, π

ℓ [. The
MSB-Stiff model is tangent to the exact solution and is a good approximation of the latter
up to kωℓ = ε ≈ 0.3π, i.e., wavelengths greater than three periods. These homogenised
models at the dominant order are therefore valid well beyond the scale separation condition
ε ≪ 1.

This conclusion is supported by the use of the dispersion relation of the generic model.
This is shown in Figure 4, where the dispersion from the generic model and that from the
exact calculation are compared for the three types of contrast. For kω ∈ [0, π

ℓ [ the dispersion
of the generic model coincides with that given by the exact calculations for the models
MSB-Soft and MSB-Medium. Dispersion relationships are therefore not affected by model
enrichment. Applying the generic model to the MSB-Stiff case makes it possible to follow
not only the tangency but also the curvature of the exact solution, which leads to a good
approximation up to ε ≈ 0.5π.

In conclusion, the macroscopic models make it possible not only to recover (well
beyond the limit of the scale separation hypothesis) the dispersion curves derived from the
Floquet-Bloch approach but also to access the macroscopic forces (in a generalized sense),
which are not accessible by Floquet-Bloch.

Floquet-BlochGeneric MSB dominant order

Figure 4. Dispersion relationships for kω ∈ [0, π
ℓ [ from the generic model (dashed line) for the three

types of contrast, compared with the dispersions from the Floquet-Bloch calculation (in dots).

4. Boundary Conditions

The macroscopic dynamic models established in the previous section have shown
their validity in infinite media within the limit of wavelengths greater than three periods.

The modal analysis of such finite-length systems requires the specification of the
boundary conditions. This question involves two difficulties:
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• Is it possible (and if so, how?) to use the macroscopic force and/or displacement
variables to express the boundary conditions actually imposed on the real system that
condition the microscopic force and/or displacement variables? This is the subject of
Section 4.1;

• If the order of the differential operator of the macroscopic model is less than that of the
4th order operator of the bending beams (4), the number of macroscopic conditions is
less than that required to express the real local conditions. A higher-order model is
constructed in Section 4.4 in order to obtain a well-posed problem that is compatible
with the real boundary conditions.

4.1. Energy Approach

Let us consider a multi-supported beam consisting of N periods Ω (see Figure 1)
with a total length of H = Nℓ. The energy balance of the generic beam is established
by multiplying (26) by 1

2 v(x) and integrating over [0, H]. After two integrations by parts,
we obtain:

1
2

∫ H

0
mω2v(x)2 dx =

1
2

∫ H

0

(
ℓ
M(x)2

EI
+

(
Keqv(x)

)2

Keq
+

(Cθ(x))2

Ceq

)
dx +WBC +O(ε)

where WBC =
ℓ

2

[
T (x)v(x) +M(x)θ(x)

C
Ceq

]H

0
and θ(x) =

Ceq

C ∂xv(x)

(40)

Equation (40) gives, at the leading order, the kinetic energy, the deformation energy, and
the work WBC of the boundary conditions expressed in macroscopic variables.

4.2. Effective Boundary Conditions
4.2.1. Displacement/Rotation Boundary Conditions

By construction in Section 2.3, the kinematic variables at the nodes are the macroscopic
kinematic variables, see (13). Consequently, the kinematic boundary conditions imposed
locally on the real system are directly related to the macroscopic kinematic variables. If at
x = 0 (node 1) or x = H (node N + 1), the imposed kinematic (denoted Uimp) conditions
give the following macroscopic boundary conditions:

U(0) = Uimp
1 =

(
vimp

ℓθimp

)
|x=0

; U(H) = Uimp
N+1 =

(
vimp

ℓθimp

)
|x=H

(41)

4.2.2. Force/Moment Boundary Conditions

These forces, which are correctly described within the structure, are disturbed at the
ends due to the absence of the adjacent node. In fact, at the extreme nodes, the equilibrium
is no longer governed by (11) but by an expression that can be derived by (i) removing the
contributions of elements outside the domain and adding the imposed forces; (ii) replacing
the discrete variables at the nodes by continuous variables at these points according to (13).
We therefore write at the extremities x = 0 and x = H:

− HBB.U(0) +T HEB.U(ℓ) = FB
((

v(0)
ℓθ(0)

)
,
(

v(ℓ)
ℓθ(ℓ)

))
=

(
Timp

Mimp/ℓ

)
|x=0

HEB.U(H − ℓ) +
(

HEE − R
)

.U(H) = FE
((

v(H − ℓ)
ℓθ(H − ℓ)

)
,
(

v(H)
ℓθ(H)

))
− R.

(
v(H)
ℓθ(H)

)
=

(
Timp

Mimp/ℓ

)
|x=H

(42)

whose explicit formulation in terms of macroscopic kinematic variables is as follows at
x = 0:

v(0) f1(γ)− v(ℓ) f4(γ) +
ℓ

2
[θ(0) f3(γ) + θ(ℓ) f6(γ)] =

(
Timp

)
1
/Kf (43a)

1
2
[v(0) f3(γ)− v(ℓ) f6(γ)] +

ℓ

3

[
f2(γ)θ(0) +

1
2

θ(ℓ) f5(γ)

]
=
(

Mimp
)

1
/(ℓKf) (43b)
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and at x = H

−v(H)( f1(γ) + β) + v(H − ℓ) f4(γ) +
ℓ

2
[θ(H) f3(γ) + θ(H − ℓ) f6(γ)] =

(
Timp

)
N+1

/Kf (44a)

1
2
[v(H) f3(γ)− v(H − ℓ) f6(γ)]−

ℓ

3

[
θ(H)( f2(γ) + δ) +

1
2

θ(H − ℓ) f5(γ)

]
=
(

Mimp
)

N+1
/(Kfℓ) (44b)

Note that this type of condition is similar to the Robin conditions coupled in v and θ. In
particular, note that the nullity of the macroscopic forces T (H) and M(x) or of WBC does
not reflect the free end condition. To put it in a nutshell:

1. A real condition on a kinematic variable is directly transposed into the homogenised
model for the corresponding macroscopic kinematic variable.

2. A real condition on force or moment does not apply to the corresponding macro-
scopic effort of the homogenized model. In this case, it is necessary to express the
force/moment equilibrium at the node using the macroscopic kinematic variables of
this node and the adjacent internal node.

In all cases, this approach gives four boundary conditions expressed in macroscopic vari-
ables, which, for models of differential order four, make it possible to respect the conditions
actually applied to a multi-supported beam of finite length. However, for models of differ-
ential order two, these four conditions are overabundant. This question is addressed in the
next section.

4.3. Modal Analysis of a Differential Model of the Second Order

In this section, we focus on structures with stiff rotational springs that behave at the
leading order as the model MSB-Stiff described by (29) (see Section 3.2.1). This situation
needs to address the discrepancy between the number of boundary conditions required (two
conditions at each edge beam) and the order of the differential operator in the macroscopic
description (one condition at each extremity). In this view, three strategies are studied:

• Use the macroscopic model (29) whose differential operator is of order two and
where only two boundary conditions can be expressed. The driving variable is the
displacement, while the rotation is merely a hidden variable derived from it. This
forces us to consider the boundary condition in displacement vimp and forces Timp

(and disregard rotations θimp and moments Mimp) in (41) and (42).
• Use the extension of the model by the generic model (26) with a differential operator of

the fourth order. In this case, four conditions (41) and (42) can be effectively applied.
• Use the model (55) developed in Section 4.4.2, which is enriched at higher orders

and results in a fourth-order differential operator that allows the application of four
boundary conditions (41) and (42).

These options have been explored in the context of the modal analysis of a multi-
supported beam of kind MSB-Stiff (β = 10−2; δ = 1) with fixed-fixed and fixed-free
boundary conditions.

4.3.1. “Reduced” Macroscopic Modal Analysis

As an example, let us consider a fixed-fixed MSB-Stiff beam consisting of N = 10
periods. The “reduced” macroscopic modal analysis is based on (i) the MSB-Stiff model
and (ii) the two zero displacement conditions imposed at the edges (and therefore ignores
the zero rotation conditions imposed). This situation leads directly to the macroscopic
modal deformation of the jth mode:

v(x) = A sin
(
(kω)jx

)
; θ(x) =

Ceq

C ∂xv(x) = A(kω)j cos
(
(kω)jx

)
, with (kω)j =

jπ
H

, j ∈ N⋆ (45)

where the angular frequency ωj, which is associated with (kω)j is defined by the dispersion
relation (34). Figure 5 shows the modal deformations of the first three modes thus obtained.
For comparison, the numerical results from a finite element calculation (taking into account
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the zero rotation conditions) of the real fixed-fixed structure are also shown (after mesh
study, eight bending beam elements are considered per beam).

In the model MSB-Stiff, the stiffness of the rotation springs is of the same order of
magnitude as the bending stiffness of each beam element. The modal deformation of
the system can be decomposed into (i) the amplitude of the displacements at the nodes
and (ii) the deformation of the beams between the nodes. It can be seen that in the case
of MSB-Stiff beams, the displacements (and rotations) of the nodes are fixed by the total
length of the system, regardless of the stiffness of the supports and beams. On the other
hand, the rotational supports play a significant role in the inter-node deformation of the
beams. This effect is clearly visible both for rotational deformations (angular points at
the nodes of the system caused by the discontinuity of moments between two elements)
and for displacement deformations (curvature of each beam element linked to the rotation
differential between two nodes). The compression springs do not influence the modal
deformation, but they do influence the modal frequency; see (34).

There is good general agreement between the macroscopic model and the numerical
model. The omission of the zero rotation condition in the model MSB-Stiff is clearly visible
near the edges, mainly in the first period on each side. It should be noted that the differences
between the homogenised model and the calculation increase from the fundamental mode
to the third mode. In the latter case, however, they remain relatively limited due to the
small-scale separation.

Remark 1. The choice of zero rotation would have led to θ(x) = A sin
(
(kω)jx

)
and therefore

a deformation v(x) = B1 cos
(
(kω)jx

)
+ B2. This expression is not admissible because it does

not respect the fixed-fixed conditions on the driving variable. This is confirmed by the modal
deformations obtained from the numerical simulations (see Figure 5), which show that v is indeed of
the form (45).

- 0.06

- 0.04

- 0.02

0.02

- 15

- 10

- 5

5

10

15

(a) (b) (c) (d)

Figure 5. First three modal deformations of a 10−period fixed−fixed structure (β = 10−2; δ = 1)
of the MSB-Stiff model (in blue) compared with the finite element model (in black). From left to
right: (a) modal deformation in displacement v(x), (b) difference between homogenised model and
finite element model vMacro(x)− vFE, (c) modal deformation in rotation θ(x), (d) difference between
homogenised model, and finite element model θMacro(x)− θFE(x). The dots represent the nodes
between the beams where the springs are located.
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4.3.2. “Full” Macroscopic Modal Analysis

The full macroscopic modal analysis was carried out on a structure consisting of
N = 30 periods. The two models used are that of the generic beam and that of the beam
MSB-Stiff enriched with the higher orders; see Section 4.4. In each case, the four boundary
conditions are those indicated in Section 4.2.

Figure 6 shows the fundamental modes determined by these two models with bound-
ary conditions either fixed-fixed (Figure 6-top) or fixed-free (Figure 6-bottom). For compar-
ison, the results obtained using finite elements and those obtained using “reduced” modal
analysis are also shown.

Compared to the 10-period fixed-fixed structure, we can see that tripling the number
of periods, as assumed, results in better scale separation and a gain in accuracy of the
reduced modal analysis approach. Moreover, the concentration of the error for rotations on
the periods at the edges is even more obvious.

For both types of boundary conditions, it can be seen that “full” modal analyses
performed with four boundary conditions significantly improve the results. Furthermore,
it appears that the higher-order model leads to a better approximation than the generic
model. This is explained by the fact that the additional term in the higher-order model is
inherited from effects specific to the contrast under study. This improves the description
as it provides a model of an accuracy up to O(ε3). In contrast, the generic model is built
up in such a way that it gives an accuracy up to O(ε) regardless of the contrasts. It is
always valid at the dominant order in the sense that the terms naturally vanish when
they are not relevant. Nevertheless, even if the differential operator of the generic model
is of fourth order, one cannot expect that it will reach the same level of accuracy as the
higher-order model.

(a) (b) (c) (d)

Figure 6. First modal deformation of periodic structures (N = 30 periods, (β = 10−2; δ = 1)) with
fixed-fixed (top) and fixed-free (bottom) boundary conditions. The homogenised models of order
O(ε) are shown in blue (MSB-Stiff) and green (MSB-Generic); the homogenised model of order
O(ε3) in red (MSB-Stiff higher-order) and the finite element model in black. From left to right:
(a) modal deformation in displacement v(x), (b) difference between homogenised model and finite
element model vMacro(x)− vFE, (c) modal deformation in rotation θ(x), and (d) difference between
homogenised model and finite element model θMacro(x) − θFE(x). The dots represent the nodes
between the beams where the springs are located.

4.3.3. Synthesis

In order to quantify the differences between the modes calculated according to a
homogenised model and those calculated according to a finite element analysis, two
indicators have been defined: (i) following (46), the modal deformations in displacement

or in rotation are compared only at the nodes, such as the more M̃ACX=v or θ is weak and
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the more the compared modal shapes are close; (ii) the modal angular frequencies are
compared according to (47), where γ represents the local bending wavenumber; see (5).

M̃ACX = 1 − MACX = 1 −
(

Xhomo.XFE

∥Xhomo∥ ∥XFE∥

)2

X ∈ {v, θ} (46)

%γ = 100
|γhomo − γFE|

γFE ; γ4 =

(
ω

ωb

)2
(47)

Figure 7 shows the three indicators
(

M̃ACv, M̃ACθ , %γ
)

for the three first modes of the
structure constituted by N = 30 periods. Systematically, it can be noted that (i) the “full”
boundary conditions lead to more accurate descriptions, the best being obtained for the
higher-order model, and (ii) the higher modes are described with less precision due to the
smaller scale separation. It should be noted, however, that the dynamics of the system are
relatively undisturbed by the “reduced” boundary conditions, as indicated by the good
estimation of the eigenfrequencies (%γ ≤ 0.8% for the third mode); see Figure 7-right.

Fixed-fixed

Fixed-Free

Figure 7. Comparisons of the modes of the structures with N = 30 periods according to the indicators

(from left to right)
(

M̃ACv, M̃ACθ , %γ
)

for two types of boundary conditions: fixed-fixed (top),

fixed-free (bottom). The homogenised models of order O(ε) are shown in blue (MSB-Stiff) and green
(MSB-Generic); the homogenised model of order O(ε3) in red (MSB-Stiff higher-order).

4.4. Higher-Order Macroscopic Model

The aim is to enrich the MSB-Stiff model with higher order terms so that the order
of the macroscopic differential operator corresponds to the order of the differential op-
erator of the local problem (4) and allows all local conditions to be translated. In the
enriched representation of discrete media, e.g., [39,41], and in higher-order continuous
media, e.g., [25,26,31,42], it is necessary to construct generalised boundary conditions that
are consistent with the order of the differential operator. On the other hand, for MSB-
Stiff beams, the macroscopic model must be enriched to take into account all the real
boundary conditions.

Returning to the asymptotic expansion of Section 3.2.1, solving it to second-order leads
to the macroscopic kinematic relation (18b). Moreover, the transverse force equilibrium at
order 2 gave the macroscopic balance at the dominant order. This equilibrium is rewritten
in the form (48), which is systematically used in higher-order expressions.

ρL2

Ee2
0
(ω(1))2v(0) = β(2)v(0) − L2 δ(0)

δ(0) + 1
∂2

xv(0) (48)
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4.4.1. First-Order Macroscopic Model

The second-order moment (A4) gives a kinematic relation at the first order identical to
that of the dominant order:

θ(1) =
1

δ(0) + 1
∂xv(1) (49)

The third-order shear equilibrium (A5), in which the relation (49) has been introduced,
provides the first-order macroscopic equation:

−L2 δ(0)

δ(0) + 1
∂2

xv(1) +

[
β(2) − ρL2

Ee2
0
(ω(1))2

]
v(1) − ρL2

Ee2
0

2ω(1)ω(2)v(0) = 0 (50)

Denoting Θ(1) = θ(0) + εθ(1) and V(1) = v(0) + εv(1) the first-order approximations of θ
and v, respectively, the kinematic relation is written as (17) + ε(49):

Θ(1) =
1

δ + 1
∂xV(1)

The asymptotic expansion of the angular frequency is ω = εω(1) + ε2ω(2) + o(ε2). This in-
volves that ω2 = ε2(ω(1))2 + 2ε3ω(1)ω(2)+ o(ε3). Consequently, the first-order macroscopic
equation is written as:

m
(

ω2 − ω2
c

)
V(1) + Ceq∂2

xV(1) = O(ε2) (51)

The Equation (51) is identical to (18a); only the precision of the expansion differs. Since
the derivation order (two) of the operator is unchanged, it is not possible to apply all the
boundary conditions. It is therefore necessary to expand asymptotically to the next order.

4.4.2. Second-Order Macroscopic Model

The second-order moment (A5) gives the second-order kinematic relation, rewritten
using (48):

θ(2) =
1

δ(0) + 1

(
∂xv(2) +

β(2)

210

(
13 +

1
1 + δ(0)

)
∂xv(0) +

L2

210
δ(0)

δ(0) + 1

(
22 − δ(0)

δ(0) + 1

)
∂3

xv(0)
)

(52)

The second-order approximations of θ and v are denoted by

Θ(2) = θ(0) + εθ(1) + ε2θ(2) ; V(2) = v(0) + εv(1) + ε2v(2)

By summing (17) + ε(49) + ε2(52), the kinematic relation enriched to the second order is:

Θ(2) =
Ceq

C

(
∂xV(2)

[
1 +

β

210

(
13 +

1
1 + δ

)]
+

ℓ2

210
δ

δ + 1

(
22 − δ

δ + 1

)
∂3

xV(2)
)
+ O(ε3) (53)

The fourth-order shear equilibrium (A6) provides the following second-order equilibrium
equation, in which (48) has been used to swap the time and space derivatives:

β(2)v(2) − 1
60

(β(2))2v(0) − ρL2

Ee2
0

(
(ω(1))2v(2) + 2ω(1)ω(2)v(1) +

(
(ω(2))2 + 2ω(1)ω(3)

)
v(0)

)
− L2 δ(0)

δ(0) + 1

(
∂2

xv(2) +
β(2)

210

(
20 +

1
δ(0) + 1

)
∂2

xv(0)
)
+

L4

12

1 − 2
35

(
δ(0)

δ(0) + 1

)2(
23
2

− δ(0)

δ(0) + 1

)∂4
xv(0) = 0

(54)
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The sum of the three Equations (18a)+ ε(50)+ ε2(54) provides the second-order macroscopic
behaviour equation in ε called MSB-Stiff higher-order:

m
(

ω2 − ω2
c,eq

)
V(2)(x) + C(2)∂2

xV(2)(x)− E(2) Iℓ∂4
xV(2)(x) = O(ε3) (55)

with (C(2), E(2)) the elastic coefficients (C, E) enriched by taking into account the stiffnesses
(β, δ).

C(2) = Ceq

[
1 +

β

210

(
20 +

1
1 + δ

)]
; E(2) = E

[
1 − 1

35

(
δ

1 + δ

)2(
23 − 2

δ

1 + δ

)]
(56)

The model (55) is enriched by two orders compared to MSB-Stiff (18a). This can be inter-
preted mechanically in terms of transverse forces and moments. This leads to the definition
of beam model forces, generalised to the second order T (2)(x), M(2)(x), which satisfy the
following system of equations:

∂xT (2)(x) = ρAω2V(2)(x)−
Keq

ℓ
V(2)(x) (57a)

∂xM(2)(x) + T (2)(x) = −C(2)

ℓ
∂xV(2)(x) (57b)

M(2)(x) = −E(2) I∂xV(2)(x) (57c)

C(2)

ℓ
∂xV(2)(x) =

Ceq

ℓ

1 + β
210

(
20 + 1

1+δ

)
1 + β

210

(
13 + 1

1+δ

)( C
Ceq

Θ(2)(x)− ℓ2

210
δ

δ + 1

(
22 − δ

δ + 1

)
∂3

xV(2)
)

(57d)

Indeed, it takes into account a bending moment M(2)(x), which raises the order of
the differential operator to the fourth order. Note that the effective elastic modulus E(2)

is modified by the presence of the rotation springs. The force balance (57a) involves a dis-
tributed force source whose elastic parameter Keq takes into account both the compression
spring support and the bending stiffness of the beam. Finally, the momentum balance
(57b) is subjected to a source of distributed momentum associated with the gradient of the
deflection. The elastic parameter C(2) involves both the compression and rotation spring
support as well as the bending stiffness of the beam. The enriched kinematic relation shows
that the deflection depends on the rotation Θ(2) and on the variation of curvature ∂3

xV(2).

4.4.3. Dispersion Curve Based on the Model MSB-Stiff Higher-Order

The dispersion equation of the model MSB-Stiff higher-order is obtained by inserting
V(2) in the form V(2) = V⋆eikω x into (55).(

ω

ωb

)2
=

(
ωc,eq

ωb

)2
+

12δ

1 + δ

C(2)

Ceq
(kωℓ)

2 +
E(2)

E
(kωℓ)

4 (58)

Figure 8 compares the dispersion relationships corresponding to the following models:
(i) MSB-Stiff (34), (ii) MSB-Generic (37), (iii) MSB-Stiff higher-order (58), and (iv) Floquet-
Bloch (39).

The MSB-Stiff higher-order model, like MSB-Generic, takes into account the bending
moment and therefore the (kωℓ)

4 term, which makes it possible to follow the variation
in the dispersion branch more precisely than MSB-Stiff. For MSB-Stiff higher-order, the
improvement over MSB-Generic lies in the introduction of correctors (C(2), E(2)), which
are specific to the magnitudes of the contrasts (β(2), δ(0)). Improving the dispersion by
integrating higher orders in the homogenised description is a well-known method; see, for
example, [31] for composite elastic media, [43] for mass/spring networks, and [39] for 1D
stratified media.
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Floquet-BlochMSB higher order

MSB dominant order Generic MSB dominant order

Figure 8. Dispersion relationships (large wavelength) for the system of contrasts (p = 2, q = 0)
with ε = 0.1 according to four models: MSB-Stiff (solid line), MSB-Generic (dotted line), MSB-Stiff
higher-order (dashed line), and Floquet-Bloch (dots).

5. Conclusions

The discrete medium homogenization method (HPDM) applied to multi-supported
beams yields three distinct models (29)–(31), which correspond to stiff, medium, and soft
rotation supports, respectively. Independently of the rotation springs, the stiffness of the
compression springs gives rise to the emergence of a cut-off angular frequency below which
the macroscopic dynamics is not propagative. The different models are synthesised into a
single generic model that fits the Floquet-Bloch dispersion curve up to wavelengths of the
order of three periods. Furthermore, the homogenization also provides an interpretation in
terms of macroscopic forces/moments.

A mixed “discrete/continuous” approach to the boundary conditions is proposed,
which allows the boundary conditions (natural or essential) actually applied at the local
scale to be expressed in terms of Robin-type boundary conditions on macroscopic variables.
The modal analysis performed with these boundary conditions and the generic model
gives results in good agreement with a full finite element calculation, with great economy
of numerical resources. Note that this condition can be used to define interface conditions
that allow different models to be connected.

Nevertheless, for sufficiently rigid supports whose homogenised model at the domi-
nant order is of differential order two, it is shown that the results provided by the generic
model and the “discrete/continuous” type boundary conditions can be further improved
by the dedicated homogenised model of higher order.

This work will be expanded in several directions. The findings of this study can
be extended to Timoshenko beams. The developments will be of a similar nature but
will require the introduction of another dimensionless parameter concerning the relative
effects of shear versus bending in the beams. This additional parameter will influence
the macroscopic model without modifying the general framework of the models or the
treatment of the boundary conditions.

Furthermore, it is straightforward to integrate a linear dissipative contribution to
the purely conservative supports in order to address, for instance, visco-elastic polymer
fixation systems or to deal with support foundations on soils expressed by impedance
conditions. In order to consider such supports, it is sufficient to consider springs with
complex frequency-dependent values. In this case, the dissipation introduced is transferred
to the macroscopic model, whose apparent dissipation and its frequency dependence will
depend on the beam/support system.
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It is also worth noting the possibility of dealing with high frequencies, which results
in the modulation of local beam modes following the approach implemented in [44,45].
The transposition of the mixed “discrete/continuous” boundary conditions to these high-
frequency dynamic regimes makes it possible to envisage a better consideration of real
boundary conditions.

The same method could also be used to analyse the instability of multi-supported
beams by considering the static equilibrium of bended beams in their deformed state
under the action of the normal force instead of the dynamic equilibrium expressed on the
undeformed state as assumed in this study.

Finally, these diverse perspectives also extend to the analysis of the mechanical be-
haviour of multi-supported plates or two-dimensional networks of multi-supported beams
at their nodes.
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Appendix A. Expansion of Equations of Equilibrium by Order of ε

In this appendix are presented the full expansions of the transverse and momentum
equilibria (16) to successive first orders of ε:

Order -1: {
T(−1) =0

M(−1) =δ(−1)Lθ(−1) = 0
(A1)

Order 0:  T(0) =0

M(0) =δ(−1)Lθ(0) +
(

δ(0) + 1
)

Lθ(−1) = 0
(A2)

Order 1:  T(1) =L2∂xθ(−1) = 0

M(1) =δ(−1)Lθ(1) +
(

δ(0) + 1
)

Lθ(0) + δ(1)Lθ(−1) − L∂xv(0) = 0
(A3)

Order 2:
T(2) =L2∂xθ(0) +

[
β(2) − ρL2

Ee2
0
(ω(1))2

]
v(0) − L2∂2

xv(0) = 0

M(2) =δ(−1)Lθ(2) +
(

δ(0) + 1
)

Lθ(1) + δ(1)Lθ(0) +

[
δ(2) − ρL2

210Ee2
0
(ω(1))2

]
Lθ(−1) − L∂xv(1) +

L3

6
∂2

xθ(−1)

(A4)

Order 3:
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

T(3) =L2∂xθ(1) +

[
β(2) − ρL2

Ee2
0
(ω(1))2

]
v(1) − L2∂2

xv(1)

+

[
β(3) − ρL2

Ee2
0

2ω(1)ω(2)

]
v(0) +

13ρL2

210Ee2
0
(ω(1))2L2∂xθ(−1) +

L4

6
∂3

xθ(−1) = 0

M(3) =δ(−1)Lθ(3) +
(

δ(0) + 1
)

Lθ(2) + δ(1)Lθ(1) +

[
δ(2) − ρL2

210Ee2
0
(ω(1))2

]
Lθ(0) − L∂xv(2) +

L3

6
∂2

xθ(0)

+

[
δ(3) − ρL2

210Ee2
0

2ω(1)ω(2)

]
Lθ(−1) − 13ρL2

210Ee2
0
(ω(1))2L∂xv(0) − L3

6
∂3

xv(0)

(A5)

Order 4:



T(4) =L2∂xθ(2) +

[
β(2) − ρL2

Ee2
0
(ω(1))2

]
v(2) − L2∂2

xv(2) +

[
β(3) − ρL2

Ee2
0

2ω(1)ω(2)

]
v(1)

+
13ρL2

210Ee2
0
(ω(1))2L2∂xθ(0) +

L4

6
∂3

xθ(0) +

β(4) − ρL2

Ee2
0
(ω(2))2 − ρL2

Ee2
0

2ω(1)ω(3) −
(

ρL2

Ee2
0

)2
(

ω(1)
)4

60

v(0)

− 9ρL2

70Ee2
0
(ω(1))2L2∂2

xv(0) − L4

12
∂4

xv(0) +
13ρL2

210Ee2
0

2ω(1)ω(2)L2∂2
xθ(−1) = 0

M(4) =δ(−1)Lθ(4) +
(

δ(0) + 1
)

Lθ(3) + δ(1)Lθ(2) +

[
δ(2) − ρL2

210Ee2
0
(ω(1))2

]
Lθ(1) − L∂xv(3) +

L3

6
∂2

xθ(1)

+

[
δ(3) − ρL2

210Ee2
0

2ω(1)ω(2)

]
Lθ(0) − 13ρL2

210Ee2
0
(ω(1))2L∂xv(1) − L3

6
∂3

xv(1)

+

δ(4) − ρL2

210Ee2
0
(ω(2))2 − ρL2

210Ee2
0

2ω(1)ω(3) − 13
970200

(
ρL2

Ee2
0

)2(
ω(1)

)4
Lθ(−1)

+
ρL2

140Ee2
0
(ω(1))2L3∂2

xθ(−1) − 13ρL2

210Ee2
0

2ω(1)ω(2)L∂xv(0) +
L5

72
∂4

xθ(−1) = 0

(A6)
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