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Abstract
Background: Interpretability is a topical question in recommender systems,
especially in healthcare applications. An interpretable classifier quantifies the
importance of each input feature for the predicted item-user association in a
non-ambiguous fashion.
Results: We introduce the novel Joint Embedding Learning-classifier for improved
Interpretability (JELI). By combining the training of a structured collaborative-
filtering classifier and an embedding learning task, JELI predicts new user-item
associations based on jointly learned item and user embeddings while providing
feature-wise importance scores. Therefore, JELI flexibly allows the introduction of
priors on the connections between users, items, and features. In particular, JELI
simultaneously (a) learns feature, item, and user embeddings; (b) predicts new
item-user associations; (c) provides importance scores for each feature. Moreover,
JELI instantiates a generic approach to training recommender systems by encoding
generic graph-regularization constraints.
Conclusions: First, we show that the joint training approach yields a gain in the
predictive power of the downstream classifier. Second, JELI can recover feature-
association dependencies. Finally, JELI induces a restriction in the number of
parameters compared to baselines in synthetic and drug-repurposing data sets.
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1 Background
The Netflix Challenge [1] popularized collaborative filtering, where connections between
items and users are inferred based on the guilt-by-association principle and similarities.
This approach is particularly suitable for use cases where information about known user-
item associations is sparse –typically, close to 99% of all possible user-item associations
are not labelled, such as in the MovieLens movie recommendation data set [2]– and
when there is implicit feedback. For instance, in the case of movie recommendations on
streaming platforms or online advertising, the algorithm often gets only access to clicks,
that is, positive feedback. However, the reasons for ignoring an item can be numerous:
either the item would straightforwardly receive negative feedback, or the item is too
far from the user’s usual exploration zone but could still be enjoyed. In some rare
cases, true negative feedback might be accessible but in even smaller numbers than the
positive associations, for instance, for drug repurposing data sets, by reporting failed
Phase III clinical trials [3]. Collaborative filtering algorithms then enable the modeling
of the user’s behavior based on their similarity to other users and the similarity of the
potential recommended item to other items positively graded by this cluster of users.

Several types of algorithms implement collaborative filtering. For instance, matrix
factorizations [4, 5] such as Non-negative Matrix Factorization (NMF) [6] or Singular
Value Decomposition (SVD) [7], decompose the matrix of item-user associations
into a product of two low-rank tensors. Other types of algorithms are (deep) neural
networks [8–10], which build item and user embeddings with convolutional or graph
neural networks based on common associations and/or additional feature values. On
the one hand, among those last approaches, graph-based methods, which integrate and
infer edges between features, items, and users, seem promising in performance [11].
Predictions are supported by establishing complex connections between those entities.
Conversely, matrix factorizations incorporate explicit interpretability, as one can try to
connect the inferred latent factors to specific user and item features. One example is
the factorization machine (FM) [12], which combines a linear regression-like term and a
feature pairwise interaction term to output a score for binary classification. The learned
coefficients of the FM explicitly contribute to the score for each item and user feature set.
This type of interpretability, called feature attribution in the literature [13–16], allows
further downstream statistical analysis of the feature interactions. For instance, in our
motivating example of drug repurposing, the objective is to identify novel drug-disease
therapeutic associations. If features are genes mutated by the pathology or targeted by
the chemical compound, the overrepresented biological pathways among those that are
respectively affected or repaired can be retrieved based on the set of key repurposing
genes. This, in turn, offers important points to argue in favor of the therapeutic value
of a drug-disease indication and for further development towards marketing.

In this work, we aim to combine the performance and versatility (in terms of
embeddings) of graph-based collaborative filtering and the explicit interpretability of
factorization machines to derive a “best-of-both-worlds” approach for predicting user-
item associations. To achieve this, we introduce a special class of factorization machines
that leverages a strong hypothesis on the structure of item and user embeddings
depending on feature embeddings. This classifier is then jointly trained with a knowledge
graph completion task. This knowledge graph connects items, users, and features based
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on the similarity between them and users and potentially additional priors on their
relationships with features. The embeddings used to compute the edge probability
scores in the knowledge graph are shared with the factorization machine, which allows
the distillation of generic priors into the classifier.

Our paper is structured as follows. In Section 2, we introduce and give an overview
of the state-of-the-art on factorization machines and knowledge graphs and how their
combination might be able to overcome some topical questions in the field. Section 3
introduces the JELI algorithm, which features our novel class of structured factorization
machines and a joint training strategy with a knowledge graph. Eventually, Section 4
shows the performance and interpretability of the JELI approach on both synthetic
data sets and drug repurposing applications.

Notation
For any matrix M (in capital letters), we denote Mi,:, M:,j and Mi,j respectively its
ith row, jth column and coefficient at position (i,j). For any vector v (in bold type),
vi is its ith coefficient. Moreover, M† is the pseudo-inverse of matrix M .

2 Related work
Our approach, JELI, leverages a generic knowledge graph completion task and the
interpretability of factorization machines to derive a novel, explainable collaborative
filtering approach.

2.1 Knowledge graph embedding learning
A knowledge graph is a set of triplets of the form (h, r, t) such that the head entity
h is linked to the tail entity t by the relation r [17]. Entity and relation embeddings
learned on the graph allow us to capture the structure and connections in the graph in
a numerical form, as embeddings are parameters of a function predicting the presence
of a triplet in the graph. Those parameters are then learned based on the current
set of edges in the graph. This approach encodes the graph structure into numerical
representations, which can later be provided to a downstream regression model [18].
The edge prediction function is usually called the interaction model. Many exist [19–
22], among these, the Multi-Relational Euclidean (MuRE) model [23], defined for any
triplet (h, r, t) of respective embeddings eh, er, et of dimension d as

MuRE(eh, er, et) = −∥Rreh − (et + er)∥22 + bh + bt , (1)

where d × d matrix Rr, and scalars bh and bt are respectively relation-, head- and
tail-specific parameters. Notably, this interaction model has exhibited good embedding
engineering properties throughout the literature [24, 25].

Yet, many challenges are present in this field of research. Current representation
learning algorithms (no matter the selected interaction model between a triplet and
its embedding) infer representations directly on the nodes and relations of the graph.
However, this approach does not make it possible to establish a relationship between
the nodes other than a similarity at the level of the numerical representation for
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neighboring nodes for specific relations in the graph. That is, specific logical operations
depending on the relation are often ignored: for instance, for a relation r and its
opposite ¬r, we would like to ensure that the score p assigned to triplet (h, r, t) is
proportional to −p, where p is the score associated with triplet (h,¬r, t). Moreover,
knowledge graphs are currently more suited to categorical information, where entities
and relationships take discrete rather than numerical values. Numerical values could
describe a relation such as “users from this specific age group are twice more interested
in that movie genre”. Some recent works focus on integrating numerical values into
knowledge graph embeddings. In KEN embeddings [26], a single-layer neural network
is trained for each numeric relation, taking the attribute as input and returning an
embedding. Another approach, TransEA [27], aims to optimize a loss function that
linearly combines, with a hyperparameter, a loss value on the categorical variables
(the difference between the scores and the indicator of the presence of a triplet) and
another loss value on numerical variables, which seeks to minimize the gap between the
variable and a scalar product involving its embedding. However, these two approaches
add several additional hyperparameters and do not deal with interpretability.

Resorting to knowledge-graph-infused embeddings allows us to integrate prior
knowledge constraints generically into the representations of entities, both items and
users. We aim to enforce a structure on those embeddings to guarantee the good
prediction of user-item associations by incorporating those embeddings into a special
type of factorization machine.

2.2 Factorization machines
Factorization machines are a type of collaborative filtering algorithms introduced by [12].
Their most common expression, the second-order factorization machine of dimension d,
comprises a linear regression term of coefficient (with a possibly non-zero intercept) and
a term that combines interactions from all distinct pairs of features by featuring a scalar
product of their corresponding low-rank latent vectors of dimension d. This approach,
particularly in the presence of sparse feature vectors, is computationally efficient while
performant on a variety of recommendation tasks: for instance, knowledge tracing for
education [28], click-through rate prediction [29]. Computationally tractable evaluation
and training routines were first proposed by [30] for higher-order factorization machines
(HOFMs), which were introduced as well in [12] and include interactions from all
distinct K sets of features, where K ≥ 2, opening the way to even finer classification
models. The definition of HOFMs is recalled in Definition 1.

Definition 1 Higher–Order Factorization Machines (HOFMs). Let us denote the set of available
item and user features F ⊆ N∗. The general expression for HOFM [12, 30] of order m ≥ 2 and
dimensions d2, . . . ,dm that takes as input a single feature vector x ∈ R|F| is a model such that
θ = (ω0,ω1,ω2, . . . ,ωm) where (ω0,ω1) ∈ R×R|F| and for any i ∈ {2, . . . ,m}, ωi ∈ R|F|×di

HOFMθ(x) ≜ ω0 + (ω1)⊺x+
∑

2≤t≤m

∑
f1<···<ft
f1,...,ft∈F

⟨ωt
f1,:, . . . ,ω

t
ft,:⟩xf1 · xf2 · · · · · xft−1

· xft ,(2)
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where ⟨ωt
f1,:

, . . . ,ωt
ft,:

⟩ ≜
∑

d≤dt
ωt
f1,d

· ωt
f2,d

· · · · · ωt
ft−1,d

· ωt
ft,d

for any t and indices
f1, . . . ,ft. In particular, for m = 2

FMθ(x) ≜

linear regression term︷ ︸︸ ︷
ω0 + (ω1)⊺x +

pairwise interaction term︷ ︸︸ ︷∑
f<f ′,f,f ′∈F

⟨ω2
f,:,ω

2
f ′,:⟩xf · xf ′ . (3)

Besides their good predictive power, factorization machines involve explicit coef-
ficients that quantify the contribution of each K set of features to the final score
associated with the positive class of associations. These coefficients offer a straightfor-
ward insight into the discriminating features for the recommendation problem, and
this type of “white-box” explainability is related to a larger research field called feature
attribution-based interpretability.

2.3 Feature attribution-based interpretability
Given a binary classifier C and a feature vector x ∈ RF , a feature attribution function
ϕC : RF → RF returns importance scores for each feature contributing to the positive
class score for the input vector x. If the importance score associated with feature f is
largely positive (resp., negative), it means that feature f drives the membership of x to
the positive (resp., negative) class. In contrast, an importance score close to 0 indicates
that feature f has little influence on the classification of data point x. Albeit other types
of interpretability approaches exist (based on decision rules given by single classifier
trees or random forests [31, 32], counterfactual examples [33] or logic rules [34, 35])
the importance score-based methods allow going beyond single feature influence. In
particular, the importance scores can be integrated into downstream analyses to
statistically quantify the effect of specific groups of features on the classification. For
instance, when considering genes as features, an enrichment analysis [36] based on the
scores can uncover overrepresented functionally consistent cell pathways.

Some classifiers, as seen for factorization machines, readily include importance
scores, whereas several approaches compute post-hoc importance scores. Importance
scores are evaluated based on the outputs of an already trained “black-box” classifier,
such as a neural network. Such approaches include Shapley values [13], LIME [14],
DeepLIFT [37] (for image annotation) or sufficient explanations [38]. Yet, recent works
show their lack of robustness and consistency across post-hoc feature attribution
methods, both empirically [15] and theoretically [16, 39]. However, the advantage of
posthoc approaches is that they allow the explainability of any type of classifier and
combine the richness of the model (predictive performance) and interpretability.

The approach described in our paper then aims to encompass any generic embedding
model without losing the connection to the initial features of the input vectors to the
classifier.

3 Methods
In this section, we define the JELI algorithm, our main contribution. The full pipeline
of JELI is illustrated in Figure 1. Let us define in formal terms the inputs to the
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Fig. 1 Full pipeline of the JELI algorithm, from the initial inputs to the downstream tasks.

associated recommendation problem of ni items i1,i2, . . . ,ini to nu users u1,u2, . . . ,unu .
The minimal input to the recommendation problem is the user-item association matrix
A ∈ {−1,0, + 1}ni×nu which summarizes the known positive (+1) –and possibly
negative (−1)– associations and denotes unknown associations by zeroes. In simple
terms, the recommender systems aim to replace zeroes by ±1 while preserving the
label of nonzero-valued associations. Second, in some cases, we also have access to
the respective item and user feature matrices denoted S ∈ RF×ni and P ∈ RF×nu .
Without a loss of generality, we assume that the item and user feature matrices have
the same F features f1, f2, . . . , fF . 1 Finally, there might be a partial graph on some of
the items, users, features, and possibly other entities. For instance, such a graph might
connect movies, users, and human emotions for movie recommendation [40], or drugs,
diseases, pathways, and proteins or genes for drug repurposing [41, 42]. We denote this
graph G(VG , EG), where VG is the set of nodes in G and EG is its set of (undirected,
labeled) edges.

We first introduce the class of higher-order factorization machines, called redundant
structured HOFMs, which will classify user-item associations based on an assumption
on the structure of item/user and feature embeddings.

3.1 Redundant structured HOFM (RHOFM)
This subtype of higher-order factorization machines features shared higher-order
parameters across interaction orders, such that the corresponding dimensions of the
HOFM satisfy d2 = · · · = dm = d in Definition 1. As such, RHOFMs are related to
inhomogeneous ANOVA kernel HOFMs (iHOFMs) mentioned in [30]. This type of
factorization machine is such that the higher-order dimensions are all equal (that is,
d2 = · · · = dm = d) and the corresponding higher-order coefficients are all proportional
to one another: for any t,t′ ≥ 2 and f ≤ F . there exists c ∈ R such that ωt

f = c ·ωt′

f in
Definition 1. However, what distinguishes the RHOFM from an iHOFM is the follow-
ing hypothesis on structure: it is assumed that every entity d-dimensional embedding

1Otherwise, one can join the two feature matrices and replace missing feature values by zeroes.
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e ∈ Rd results from some function sW with parameter W ∈ RF×d applied to the
corresponding entity feature vector x ∈ RF . For instance, an embedding e associated
with feature vector x with a linear structure function of dimension d is defined as
e = sW (x) = xW . However, any, possibly non-linear, structure function sW can be
considered. Note that for completeness, we can define a feature vector for features,
which is simply the result of the indicator function on features in F : for feature f ∈ F ,
its corresponding feature vector is xf ≜ (δ(fj=f))j≤F where δ is the Kronecker symbol,
such that the structure function sW can be applied to any item, user or feature entity.
Definition 2 gives the formal expression of RHOFMs for any order, dimension, and
structure.

Definition 2 Redundant structured HOFMs (RHOFMs). The RHOFM of structure sW , order
m and dimension d, with parameters θ = (ω0,ω1,ω2:m,W ) ∈ R × Rd × Rm−1 × RF×d on
item and user of respective feature vectors xi,xu ∈ RF is defined as

RHOFMθ(x
i,xu) ≜ ω0 + (ω1)⊺(x′iu)⊺

[
W̃ iu

λ

W̃ iu
λ

]
(4)

+
∑

2≤t≤m

ω2:m
t−1

∑
f1<···<ft

f1,...,ft≤2F

〈[
W̃ iu

λ

W̃ iu
λ

]
f1,:

, ...,

[
W̃ iu

λ

W̃ iu
λ

]
ft,:

〉
x′iu
f1 x′iu

f2 ...x′iu
ft ,

where x′iu ≜ [(xi)⊺, (xu)⊺]⊺ ∈ R2F is the concatenation of feature vectors along the row
dimension, x̃iu ≜ [xi,xu]⊺ ∈ RF×2 the concatenation along the column dimension, W̃ iu

λ ≜
(x̃iu(x̃iu)⊺ + λIF )†(x̃iu)⊺[sW (xi)⊺, sW (xu)⊺] ∈ RF×d is the λ-regularized approximate least
squares estimator in the following equation in V : sW (x̃iu) = x̃iuV , with λ ≥ 0.

By reordering terms and by definition of W̃ iu
λ (full details in Appendix A), if we

denote f%F the remainder of the Euclidean division of f by F , we can notice that

RHOFMθ(x
i,xu) ≈ ω0 + (ω1)⊺(sW (xi) + sW (xu)) (5)

+
∑

2≤t≤m

ω2:m
t−1

∑
f1<···<ft

f1,...,ft≤2F

〈
x′iu
f1 sW (xf1%F ), ...,x′iu

ft sW (xft%F )
〉

.

In particular, for m = 2, RHOFMθ(x
i,xu) is roughly 2 equal to

ω0 + (ω1)⊺
(
sW (xi) + sW (xu)

)
+ ω2

∑
f1<f2

f1,f2≤2F

〈
x′iu
f1 sW (xf1%F ),x′iu

f2 sW (xf2%F )
〉

. (6)

Compared to the expression of a factorization machine for m = 2 in Equation (3), the
RHOFM includes a structure that can be non-linear (through the function sW ) and a
supplementary degree of freedom with parameters ω1 and ω2:m.

The RHOFM then comprises a term linear in the item/user embeddings and a
product of feature embeddings weighted by the corresponding values in the item and

2Up to the approximation made in sW (x̃iu) ≈ x̃iuW̃ iu
λ .
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user initial feature vectors. Moreover, if we assume a linear structure on the RHOFM,
the embedding vector for feature fj is exactly Wfj ,: and the embeddings for items and
users are the sum of feature embeddings weighted by their corresponding values in
the item and user vectors. The expression in Definition 2 is relatively computationally
efficient when combined with the dynamic programming routines described in [30].
Moreover, the redundancy in the RHOFM allows it to benefit from the same type of
computational speed-up as inhomogeneous ANOVA kernels or iHOFMs.

Knowing that HOFMs (in Definition 1) and iHOFMs would take as input the
concatenation along the row dimension of (xi,xu), assuming that the dimensions across
subsets are the same, i.e., d2 = · · · = dm = d, HOFMs comprise 1 + 2F + 2Fd(m− 1)
parameters, which can account for a prohibitive computation cost in practice. Similarly,
iHOFMs would require the training of 1 +m+ 2Fd parameters, whereas RHOFMs (in
Definition 2) only feature 1+m+(F +1)d, hence removing the multiplicative constant
on the number of features F , which has an impact for high-dimensional data sets such
as the TRANSCRIPT drug repurposing data set [43] which gathers values on 12,000
genes across the human genome.

Regarding interpretability, as evidenced by Equation (5), the coefficients involved in
the expression of the RHOFM are straightforwardly connected to the input embeddings.
In the case of the linear structure and when ω1 = 1d, ω2:m = 1m−1 (or any other
constant), the contributions from features on the one hand and the item/user values on
the other can easily be disentangled. In that case, W̃ iu

λ ≈ W and then for any feature
f , the intrinsic (i.e., independent of users or items) importance score is

∑
k≤d Wf,k.

When associated with an entity (item or user) of feature vector x ∈ RF , its importance
score is simply xf

∑
k≤d Wf,k. Using x̃iuW̃ iu

λ ≈ sW (x̃iu) in non-linear structures, we
can extrapolate this result to obtain the following intrinsic feature importance score

Result 1 Feature importance scores in a RHOFM. When ω1 = 1d, ω2:m = 1m−1 (or any
other constant), the intrinsic (entity-independent) feature importance score for feature f ≤ F

in an RHOFM (Definition 2) is
∑

k≤d (W̃ iu
λ )f,k . As a consequence, the feature attribution

function associated with feature vector x ∈ RF is ϕRHOFM(x) ≜ (xf
∑

k≤d(W̃
iu
λ )f,k)f≤F .

One could infer the RHOFM parameters by directly minimizing a loss function.
However, as mentioned in the introduction, we would like to distil some prior knowledge
information into the RHOFM, for instance, via a knowledge graph specific to the
recommendation use case. By seeing the feature embeddings in the RHOFM as node
embeddings in a knowledge graph, the next section describes how to jointly train the
RHOFM and the feature embeddings on a knowledge graph completion task.

3.2 Joint training of the RHOFM and the knowledge graph
embeddings

We will leverage the information from the partial graph G(VG , EG) to fit the RHOFM,
by reducing the problem of classification to the prediction of a subset of edges in
a knowledge graph completion problem. To do so, we first extend the partial graph
G based on the respective user-item association matrix A, and respective item and
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user feature matrices S and P to build a knowledge graph K(V, T ) with nine types of
relations. Note that the partial graph can possibly be empty or, to the contrary, can
include any edge between drugs and features, diseases and features, and between two
features.

Definition 3 Similarity-based knowledge graph augmented with prior edges. Considering a
similarity threshold τ ∈ [0,1] associated with a similarity function sim : RF × RF → [−1,1],
JELI builds a knowledge graph from the data set A, P and S and partial graph G(VG , EG) as
follows

V ≜ {i1,i2, . . . ,ini} ∪ {u1,u2, . . . ,unu} ∪ {f1,f2, . . . ,fF } , (7)
T ≜ {(s,prior, t) | (s,t) ∈ EG , s, t ∈ V} (8)

∪ {(ij ,−, uk) | Aij ,uk
= −1, j ≤ ni, k ≤ nu}

∪ {(ij ,+, uk) | Aij ,uk
= +1, j ≤ ni, k ≤ nu}

∪ {(uj ,user-sim, uk) | sim(P:,uj , P:,uk ) > τ, j,k ≤ nu}
∪ {(ij , item-sim, ik) | sim(S:,ij , S:,ik ) > τ, j,k ≤ ni}
∪ {(ij , item-feat-pos, fk) | Sfk,ij > 0, k ≤ F, j ≤ ni}
∪ {(ij , item-feat-neg, fk) | Sfk,ij < 0, k ≤ F, j ≤ ni}
∪ {(uj , user-feat-pos, fk) | Pfk,uj

> 0, k ≤ F, j ≤ nu}
∪ {(uj , user-feat-neg, fk) | Pfk,uj

< 0, k ≤ F, j ≤ nu} .

The objective of knowledge graph completion is to fit a model predictive of the
probability of the presence of a triplet in the knowledge graph. In particular, computing
the score associated with triplets of the form (h,+, t), for (h, t) a user-item pair, boils
down to fitting a classifier of user-item interactions. Conversely, a straightforward
assumption is that the score associated with triplets (h,+, t) should be opposite to
the score assigned to triplets (h,−, t). With that in mind, denoting the set of RHOFM
parameters θ and θJELI ≜ (θ, {Rr, r relation}, {er, r relation}, {bh, h ∈ V}) as the
total set of parameters to estimate, we define in Equation (9) the edge score to be
maximized for present triplets in the knowledge graph K

scoreθJELI(h, r, t) ≜


MuRE(sW (xh), er, sW (xt);Rr, bh, bt) if r ̸∈ {+,−}
RHOFMθ(x

h,xt) if r = +

−RHOFMθ(x
h,xt) if r = −

. (9)

Remember that the vector xh is well-defined for any item, user, or feature h. Then
we fit parameter θJELI by minimizing the soft margin ranking loss with margin λ0 = 1,
which expression is recalled below

∀θ′ , Lmargin(θ′) ≜
∑

(h,r,t)∈T

∑
(h,r,t)/∈T

log
(
1+exp

(
λ0+scoreθ′(h, r, t)−scoreθ′(h, r, t)

))
.

(10)
Further implementation details and numerical considerations for the training pipeline
are available in Appendix B.
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3.3 Downstream tasks with JELI
Interestingly, not only does JELI build embeddings for items and users available at
training time, but it can also be used to produce embeddings for new entities without
requiring any retraining step. Given a feature vector x ∈ RF , padding with zeroes
if needed on unavailable features, the corresponding embedding is sW (x). However,
the main objective of the trained JELI model is to predict new (positive) user-item
associations, possibly on items and users not observed at training time. In that case,
for any pair of item and user feature vectors (xi,xu) ∈ RF × RF , the label predicted
by JELI with RHOFM parameter θ is

ŷJELI(xi,xu) ≜

{
+1 if σ(RHOFMθ(x

i,xu)) > 0.5

−1 otherwise
, (11)

where σ is the standard sigmoid function. Note that the JELI approach could be
even more generic. Besides any knowledge graph, this joint training approach could
feature any classifier, and not necessarily an RHOFM, as long as the classifier remains
interpretable, and any knowledge graph completion loss function or any edge score
function.

4 Results
We first validate the performance, the interpretability, and the different components
of JELI on synthetic data sets, for which the ground truth on feature importance is
available. Then, we apply JELI to drug repurposing, our main motivating example for
interpretability in recommendation. Further information about the generation of the
synthetic data sets and numerical details is available in Appendix C. Unless otherwise
specified, the order of all factorization machine variants considered (including the
RHOFM classifier in JELI) satisfies m = 2.

In this section, we consider several evaluation metrics. First, Spearman’s rank corre-
lation [45] quantifies the quality of the importance scores. It is computed on ground truth
importance scores s⋆ ≜ (

∑
k≤d W

⋆
f,k)f≤F and predicted ones ŝ ≜ (

∑
k≤d Ŵf,k)f≤F

with Ŵ the inferred embedding parameter. Second, the Area Under the Curve (AUC)
is computed on all user-item pairs to measure classification performance between the
ground truth A ∈ {−1,0,+ 1}ni×nu and the classifier scores Â ∈ Rni×nu . We also con-
sider the Negative-Sampling AUC (NS-AUC) [44]. Contrary to AUC, the NS-AUC is a
ranking measure akin to an average of user-wise AUCs, giving a more refined quantifi-
cation of prediction quality across users. As a complementary measure of classification
quality, we also consider the Normalized Discounted Cumulative Gain (NDCG), which
is proportional to the quality of the ranking of recommended drugs across diseases.
Note that all those classification metrics depend solely on the classifier scores, and not
on the final class labels that can be inferred by applying a fixed threshold τ . The exact
definitions of each metric are reported in Table 1.
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Table 1 Description of the performance metrics in Section 4.
Spearman’s ρ: ∆f is the gap in rank (for the decreasing order) between the true and predicted
importance scores (s⋆)f and ŝf for feature f .
AUC: The true positive rate between ground truth A and predictions Â is defined as
TPR(τ ; Â, A) =

∑
(i,u),Ai,u=+1 δ(Âi,u > τ)/

∑
(i,u) δ(Âi,u > τ), the false positive rate is

FPR(τ ; Â, A) =
∑

(i,u),Ai,u=−1 δ(Âi,u > τ)/
∑

(i,u) δ(Âi,u ≤ τ), and δ is the Kronecker symbol.
NS-AUC: The set of true positive, respectively negative, drug-disease associations is
Ω± ≜ {(i,u), Ai,u = ±1 | i ≤ ni, u ≤ nu}, whereas the set of positive drugs to disease u is
Ω+

u ≜ {i | Ai,u = +1}. Finally, the set of correctly ranked drugs for disease u is
Ω̃u ≜ {(i,i′) | Ai,u > Ai′,u}.
NDCG: σu is the permutation that sorts all coefficients of the recommendations Âi,u, i ≤ ni for
disease u in the decreasing order. That is, Âσu(1),u ≥ Âσu(2),u ≥ · · · ≥ Âσu(ni),u

. Finally, N+
u is

defined as min(ni,|Ω+
u |).

Notation Performance metric Definition

Spearman’s ρ Spearman’s correlation 1− 6
∑

f≤F (∆f )
2/(F (F 2 − 1))

AUC Area Under the Curve
∫ 1
0 TPR(FPR−1(τ ; Â, A); Â, A)dτ

NS-AUC Average NS-AUC [44] |nu|−1
∑

u≤nu
|Ω̃u|−1

∑
(i,i′)∈Ω̃u

δ(Âi,u > Âi′,u)

NDCG Average NDCG@ni n−1
u

∑
u≤nu

(∑N+
u

i=1

Aσu(i),u

log2(i+1)

)
/

(∑N+
u

i=1
1

log2(i+1)

)

4.1 Synthetic data sets
We consider two types of “interpretable” synthetic recommendation data, called “linear
first-order” and “linear second-order”, for which the ground truth feature importance
scores are known. At fixed values of dimension d, feature number F , and numbers of
items and users ni and nu, both item and user feature vectors are drawn at random
from a standard Gaussian distribution, along with a matrix W ⋆ ∈ RF×d. The algorithm
cannot access the full feature values in most practical cases in recommendation tasks.
Reasons for missing values can be diverse [46], but most likely follow a not missing
at random mechanism, meaning that the probability of a missing value depends on
the features. To implement such a mechanism, we applied a slightly adapted Gaussian
self-masking [47] to the corresponding item and user feature matrices, such that we
expect around 10% of missing feature values.

The complete set of user-item scores is obtained by a generating model g0 :
RF × RF → [0,1]. For “first-order” synthetic data sets, g0 is defined as (xi,xu) 7→
σ(
∑

k≤d(x
i+xu)W ⋆

:,k) = σ(RHOFM(0,1d,0m−1,W⋆)(x
i,xu)) where xi and xu are respec-

tively the item and user feature vectors. For the “second-order” type, g0 is simply
(xi,xu) 7→ σ(RHOFM(1,1d,1m−1,W⋆)(x

i,xu)) where the order is m = 2. In both cases,
the corresponding structure function sW⋆ is linear, that is, sW⋆(x) = xW ⋆ and λ = 0.

Finally, since in practice, most of the user-item associations are inaccessible at
training time, we label user-item pairs with −1, 0, and +1 depending on their score,
such that the sparsity number –that is, the percentage of unknown values in the
association matrix– is equal to a prespecified value greater than 50%.
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Table 2 Average validation metrics with standard deviations
across 100 iterations and 10 synthetic data sets of each type
(total number of values: 1,000). Average (respectively, standard
deviation) values are rounded to the closest second (resp., third)
decimal place. AUC: Area Under the Curve. NS-AUC: Negative-
Sampling AUC [44]. Spearman’s ρ: Spearman’s rank correlation.

Data set type AUC NS-AUC Spearman’s ρ

First-order 0.99± 0.013 0.89± 0.124 0.83± 0.279
Second-order 0.98± 0.019 0.86± 0.167 0.75± 0.363

4.1.1 JELI is performant for various validation metrics and reliably
retrieves ground truth importance scores

We generate 10 synthetic datasets of each type (F = 10, d = 2, ni = nu = 173) and run
JELI 100 times with different random seeds corresponding to different training/testing
splits. Table 2 shows the numerical results across those 10 × 100 runs for several
validation metrics on the predicted item-user associations and feature importance
scores.

Albeit there is a large variation in the quality of the prediction due to the random
training/testing split when considering the average best value across 100 iterations,
the metrics in Table 2 show a high predictive power for JELI, along with a consistently
high correlation between true and predicted feature importance scores: the average
Spearman’s rank correlation for the best-trained models across all 10 data sets is 0.932
for “first-order” sets and 0.932 for “second-order” ones. The bar plots representing the
ground truth and predicted importance scores for each of these 10 sets and each type of
synthetic data in Figure 2 show that JELI can preserve the global trend in importance
scores across data sets. We also tested the impact of the dimension parameter d and
of the order m of the RHOFM on the accuracy metrics. In the previous experiments,
we used d = 2, which is the true dimensionality of the underlying generating model.
However, it appears that JELI is also robust to the choice of the dimension parameter
if it is large enough for all metrics. Moreover, similarly to higher-order factorization
machines, higher-order interactions (m > 2) allow us to get a more expressive classifier
model and, thus, better classification performance. However, this improvement comes
at a heavy computational price, even with the dynamic programming routines in [30],
where the time complexity is linear in m. The experiments and results on parameter
impact can be found in Appendix D.

4.1.2 JELI is robust in synthetic data sets across sparsity numbers

We also compare the predictive performance of JELI compared to embedding-based
recommender systems from the state-of-the-art, namely Fast.ai collaborative learner [8],
the heterogeneous attention network (HAN) algorithm [48] and the neural inductive
matrix completion with graph convolutional network (NIMCGCN) [10]. We set, when-
ever appropriate, the same hyperparameter values for all algorithms (with d = 2). We
run each algorithm on 100 different random seeds on 5 “first-order” synthetic data
sets generated with sparsity numbers in {50%, 65%, 80%}, for 500 tests. Figure 3 and
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Fig. 2 Barplots of the true and predicted feature importance scores for F = 10 features in each
synthetic data set for the best-performing model across 100 iterations. Top-2 lines: on “first-order”
synthetic data. Bottom-2 lines: on “second-order” synthetic data.

Fig. 3 NS-AUC values across “first-order” synthetic data sets for sparsity numbers and 500 iterations
for JELI and state-of-the-art embedding-based recommender systems.

Table 3 report the boxplots and the confidence intervals on corresponding validation
metrics. In addition to the AUC and NS-AUC, we include the Non-Discounted Cumula-
tive Gain (NDCG) computed for each user at rank ni (number of items) and averaged
across users as a counterpart to the NS-AUC measure.

As illustrated by Figure 3, JELI consistently outperforms the state-of-the-art on
all metrics and remains robust to the sparsity number.
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Table 3 Average metrics with standard deviations across
100 iterations and 5 “first-order” sets. The NDCG at rank
ni is averaged across users. NIM is NIMCGCN.

AUC NS-AUC NDCG

50% Fast.ai 0.99± 0.0 0.52± 0.3 0.85± 0.1
HAN 0.93± 0.0 0.62± 0.1 0.18± 0.1
NIM 0.93± 0.0 0.63± 0.1 0.39± 0.1
JELI 0.99± 0.0 0.92± 0.1 0.96± 0.1

65% Fast.ai 0.99± 0.0 0.64± 0.4 0.78± 0.3
HAN 0.93± 0.0 0.67± 0.0 0.12± 0.1
NIM 0.94± 0.0 0.67± 0.1 0.42± 0.1
JELI 0.99± 0.0 0.94± 0.0 0.94± 0.1

80% Fast.ai 0.99± 0.0 0.91± 0.1 0.77± 0.2
HAN 0.96± 0.0 0.72± 0.0 0.20± 0.1
NIM 0.93± 0.0 0.61± 0.1 0.19± 0.0
JELI 0.99± 0.0 0.94± 0.0 0.85± 0.2

4.1.3 Ablation study: both the structure and the joint learning are
crucial to the performance

We perform the same type of experiments as in Section 4.1.2 on several ablated versions
of JELI to estimate the contribution of each part to the predictive performance. We
introduce several JELI variants. First, we remove the structured and embedding part
of the RHOFM classifier. FM is the regular second-order factorization machine of
dimension d on 2F -dimensional input vectors, without structure on the coefficients
(see Definition 1), whereas CrossFM2 is a more refined non-structured second-order
factorization machine, where the feature pairwise interaction terms only comprise pairs
of features on both the item and user vectors, that is, with notation from Definition 1

CrossFM(ω0,ω1,ω2)(x
i,xu) ≜ ω0 + (ω1)⊺

[
xi

xu

]
+

∑
f≤F,f ′>F

⟨ω2
f ,ω

2
f ′⟩xi

fx
u
f ′−F . (12)

Next, we also study methods featuring separate learning of the embeddings and the
RHOFM classifier, named Separate Embedding Learning and Training algorithms
(SELT). We consider different feature embedding types. SELT-PCAf uses the d principal
component analysis (PCA) run on the concatenation of the item and user matrices
along the column dimension, resulting in a F × (ni + nu) matrix. SELT-PCAf then
infers feature embeddings based on each feature’s d first principal components. Another
PCA-based baseline, SELT-PCAiu, applies the learned PCA transformation directly
on item and user feature vectors to obtain item and user embeddings. Finally, the
SELT-KGE approach completes the knowledge graph task to obtain item and user
embeddings –without enforcing the feature-dependent structure– on the knowledge
graph described in Definition 3 with an empty partial graph. Then, SELT-KGE uses
those item and user embeddings to train the RHOFM classifier.

The final results in Figure 4 and Table 4 show that the most crucial part for
predictive performance across sparsity numbers is the factorization machine, which is
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Fig. 4 NS-AUC values across “first-order” synthetic data sets for sparsity numbers and 500 iterations
for JELI and ablated variants. This shows that the most crucial part for a good predictive performance
across sparsity numbers is the factorization machine

Table 4 Average metrics with standard deviations across 100
iterations and 5 “first-order” sets. The NDCG at rank ni is
averaged across users. S indicates an instance of SELT.

AUC NS-AUC NDCG

50% FM2 0.99± 0.0 0.92± 0.0 0.97± 0.0
CrossFM2 0.99± 0.0 0.93± 0.0 1.00± 0.0
S-PCAf 0.95± 0.0 0.70± 0.1 0.58± 0.2
S-PCAiu 0.95± 0.0 0.61± 0.2 0.45± 0.2
S-KGE 0.91± 0.0 0.43± 0.2 0.25± 0.2
JELI 0.99± 0.0 0.92± 0.1 0.96± 0.0

65% FM2 0.98± 0.0 0.91± 0.0 0.87± 0.1
CrossFM2 0.99± 0.0 0.91± 0.0 0.95± 0.0
S-PCAf 0.95± 0.0 0.73± 0.1 0.54± 0.2
S-PCAiu 0.94± 0.0 0.62± 0.0 0.34± 0.1
S-KGE 0.90± 0.0 0.43± 0.0 0.06± 0.0
JELI 0.99± 0.0 0.94± 0.0 0.94± 0.1

80% FM2 0.97± 0.0 0.84± 0.1 0.56± 0.1
CrossFM2 0.98± 0.0 0.87± 0.0 0.74± 0.0
S-PCAf 0.95± 0.0 0.73± 0.1 0.38± 0.1
S-PCAiu 0.93± 0.0 0.62± 0.1 0.20± 0.0
S-KGE 0.91± 0.0 0.55± 0.1 0.12± 0.1
JELI 0.99± 0.0 0.94± 0.0 0.85± 0.2

unsurprising given the literature on factorization machines applied to sparse data. One
can observe that separate embedding learning and factorization machine training leads
to mediocre performance. The combination of a structured factorization machine and
jointly learned embeddings, that is, JELI, gives the best performance and is even more
significant as the set of known associations gets smaller (and the sparsity number is
larger).

4.2 Application to drug repurposing
We aim to predict new therapeutic indications, that is, novel associations between
chemical compounds and diseases. The interpretability of the model for predicting
associations between molecules and pathologies is crucial to encourage its use for
health. In that case, higher-order factorization machines are very interesting models
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Fig. 5 AUC values across drug repurposing data sets for 100 iterations for JELI and state-of-the-art
embedding-based approaches.

due to their inherent interpretability. However, particularly for the most recent drug
repurposing datasets (e.g., TRANSCRIPT [43] and PREDICT [49]), the number of
features (F ≈ 12,000 and F ≈ 6,000, respectively) is too large to effectively train
a factorization machine due to the curse of dimensionality. Resorting to knowledge
graphs then enables the construction of low-dimensional vector representations of
these associations. Then, these representations are fed as input to the classifier during
training instead of the initial feature vectors.

4.2.1 JELI is on par with state-of-the-art approaches on drug
repurposing data sets

We now run JELI and the baseline algorithms tested in Section 4.1.2 on Gottlieb [50]
(named Fdataset in the paper), LRSSL [51], PREDICT-Gottlieb [52] and TRAN-
SCRIPT [43] drug repurposing data sets which feature a variety of data types and
sizes. Please refer to Appendix C for more information. Figure 5 and Table 5 report the
validation metrics for each method’s 100 different training/testing splits with d = 15.
From those results, we can see that the performance of JELI is on par with the top
algorithm, HAN, and sometimes outperforms it while providing interpretability.

For the sake of completeness, we also considered one of the most popular data sets
for recommendation, called MovieLens [2], to better assess the performance of JELI for
the general purpose of collaborative filtering. The goal is to predict if a movie should be
recommended to a user, that is, if the user would rate this movie with more than 3 stars.
The movie features are the year and the one-hot encodings of the movie genres, whereas
the user features are the counts of each movie tag that this user has previously assigned.
This experiment confirms that the performance of JELI is on par with the baselines,
even in a non-biological setting. Please refer to Appendix D for more information.

4.2.2 JELI can integrate any graph prior on the TRANSCRIPT
data set

We now focus on the TRANSCRIPT data set, which involves gene activity measure-
ments across F = 12,096 genes for ni = 204 drugs and nu = 116 diseases. We compare
the predictive power of JELI on the TRANSCRIPT data set with the default knowledge
graph created by JELI (named “None” network, as we don’t rely on external sources of
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Table 5 Average metrics with standard deviations across 100
iterations for each drug repurposing data set. The NDCG at
rank ni is averaged across users. NIM is the algorithm
NIMCGCN, TRANSC refers to the data set TRANSCRIPT,
and PRED-G to the data set PREDICT-Gottlieb.

AUC NS-AUC NDCG

Gottlieb Fast.ai 0.90± 0.0 0.50± 0.1 0.01± 0.0
HAN 0.93± 0.0 0.67± 0.0 0.02± 0.0
NIM 0.90± 0.0 0.51± 0.0 0.01± 0.0
JELI 0.90± 0.0 0.52± 0.0 0.02± 0.0

LRSSL Fast.ai 0.90± 0.0 0.49± 0.1 0.01± 0.0
HAN 0.95± 0.0 0.69± 0.0 0.10± 0.0
NIM 0.91± 0.0 0.53± 0.0 0.01± 0.0
JELI 0.92± 0.0 0.51± 0.0 0.02± 0.0

PRED-G Fast.ai 0.90± 0.0 0.50± 0.1 0.01± 0.0
HAN 0.93± 0.0 0.68± 0.0 0.01± 0.0
NIM 0.91± 0.0 0.49± 0.0 0.01± 0.0
JELI 0.90± 0.0 0.47± 0.0 0.02± 0.0

TRANSC Fast.ai 0.61± 0.1 0.57± 0.1 0.04± 0.0
HAN 0.93± 0.0 0.61± 0.0 0.08± 0.0
NIM 0.92± 0.0 0.57± 0.0 0.04± 0.0
JELI 0.92± 0.0 0.56± 0.0 0.02± 0.0

knowledge) and the default graph augmented with an external knowledge graph. The
“None” network corresponds to the knowledge graph in Definition 3 with an empty
partial graph. We considered as external knowledge graphs DRKG [53], Hetionet [54],
PharmKG and PharmK8k (a subset of 8,000 triplets) [41] and PrimeKG [42] as pro-
vided by the Python library PyKeen [55]. In addition, we also built a partial graph
listing protein-protein interactions (where proteins are matched one-to-one to their cor-
responding coding genes) based on the STRING database [56]. The resulting accuracies
in classification are shown on Figure 6 and Table 6. Most of the external graph priors
significantly improve the classification accuracy, particularly the specific information
about gene regulation (prior STRING). In Appendix D, we also show that the graph
priors’ performance correlates with a more frequent grouping of genes that belong to
the same functional pathways. In Appendix E, we perform a more thorough analysis of
the specific case of melanoma and show that the predicted drug-disease associations and
perturbed pathways allow us to recover some elements of the literature on melanoma.

5 Discussion
This work proposes the JELI approach for integrating knowledge graph-based reg-
ularization into an interpretable recommender system. The structure incorporated
into user and item embeddings considers numerical feature values in a generic fash-
ion, which allows one to go beyond the categorical relations encoded in knowledge
graphs without adding many parameters. This method allows us to derive item and
user representations of fixed dimensions and score a user-item association, even on
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Fig. 6 Predictive performance of JELI with different graph priors on different validation metrics.

Table 6 Average metrics with standard deviations across
10 iterations on the TRANSCRIPT data set for different
graph priors.

Graph prior AUC NS-AUC NDCG

None 0.90± 0.01 0.48± 0.02 0.02± 0.01

DRKG 0.90± 0.00 0.48± 0.02 0.00± 0.00
Hetionet 0.89± 0.00 0.43± 0.02 0.01± 0.01
PharmKG 0.88± 0.01 0.43± 0.03 0.01± 0.01
PharmKG8k 0.91± 0.01 0.53± 0.03 0.03± 0.01
PrimeKG 0.89± 0.01 0.48± 0.03 0.02± 0.01
STRING 0.91± 0.00 0.55± 0.03 0.02± 0.01

previously unseen items and users. We have shown the performance and the explain-
ability power of JELI on synthetic and real-life data sets. The Python package that
implements the JELI approach is available at the following open-source repository:
github.com/RECeSS-EU-Project/JELI. Experimental results can be reproduced using
code uploaded at github.com/RECeSS-EU-Project/JELI-experiments.

6 Conclusions
This paper introduces and empirically validates our algorithmic contribution, JELI, for
drug repurposing. JELI aims to provide straightforward interpretability in recommen-
dations while integrating any graph information on items and users. However, there
are a few limitations to the JELI approach. The first one is that JELI performs best
on sparse user and item feature matrices, to exploit to the fullest the expressiveness of
factorization machines. Moreover, this approach is quite slow compared to state-of-
the-art algorithms since it simultaneously solves two tasks: the recommendation one
on user-item pairs and the knowledge graph completion. We discuss the scalability
of JELI with respect to various parameters in Appendix F. However, this slowness
is mitigated by the superior interpretability of JELI compared to the baselines. Fur-
thermore, an interesting subsequent work would focus on integrating missing values
into the recommendation problem. As it is, JELI ignores the missing features and
potentially recovers qualitative item-feature –respectively, user-feature– links during
the knowledge graph completion tasks. That is, provided an approach to quantify the
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strength of the link between an item and a feature, JELI might also be extended to
perform an imputation of this item’s corresponding missing feature value.
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Appendix A Explicit structure-dependent
approximation of a RHOFM

Starting from the notation and the expression of an RHOFM introduced by Definition 2

RHOFMθ(x
i,xu) ≜ ω0 + (ω1)⊺(x′iu)⊺

[
W̃ iu

λ

W̃ iu
λ

]
(A1)

+
∑

2≤t≤m

ω2:m
t−1

∑
f1<···<ft

f1,...,ft≤2F

〈[
W̃ iu

λ

W̃ iu
λ

]
f1,:

, ...,

[
W̃ iu

λ

W̃ iu
λ

]
ft,:

〉
x′iu
f1 x

′iu
f2 ...x

′iu
ft .

Given the definition of W̃ iu
λ , it is easy to see that

(x′iu)⊺

[
W̃ iu

λ

W̃ iu
λ

]
= (xi)⊺W̃ iu

λ + (xu)⊺W̃ iu
λ ≈ sW (xi) + sW (xu) . (A2)
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Let us consider now the t-interaction term, for t ≥ 2. For any set of t features
f1, f2, . . . , ft, using the notation xf ≜ (δfj=f )j≤|F | and f%F as the remainder of the
Euclidean division of f by F〈[

W̃ iu
λ

W̃ iu
λ

]
f1,:

, ...,

[
W̃ iu

λ

W̃ iu
λ

]
ft,:

〉
x′iu
f1 x

′iu
f2 ...x

′iu
ft =

∑
k≤d

(
Πl≤t (W̃

iu
λ )fl%F,k

)(
Πj≤t x

′iu
fj

)
(A3)

=
∑
k≤d

(
Πl≤t x

fl%F (W̃ iu
λ ):,k

)(
Πj≤t x

′iu
fj

)
≈
∑
k≤d

(
Πl≤t sW (xfl%F )k

)(
Πj≤t x

′iu
fj

)
=
∑
k≤d

Πj≤t x
′iu
fj sW (xfj%F )k

=
〈
x′iu
f1 sW (xf1%F ), ...,x′iu

ft sW (xft%F )
〉

.

This leads to Equation (5) in the main text.

Appendix B Implementation of the joint training
procedure in JELI

The training procedure iteratively updates across epochs and batches of triplets the
feature embeddings W ∈ RF×d, the MuRE-specific hyperparameters Rr ∈ Rd×d for
each relation r (9 in total by Definition 3), the biases b ∈ R|V|, and the hyperparameters
of the RHOFM (ω0,ω1,ω2:m) ∈ R × Rd × Rm−1, for a total of (9d2 + |V|) + (1 +
m+ 2Fd) = d(9d+ 2F ) + |V|+m+ 1 parameter values. In practice, we implement
this procedure using the PyKeen Python package [55], an Adam optimizer, and the
PseudoTypedNegativeSampler class in PyKeen for the negative sampling to switch
the head of triplets and then compute the soft margin ranking loss Lmargin. The
MuRE interaction class in PyKeen is modified to allow the computation of structured
embeddings for items and users in the score.

Before training, we normalize the item and user feature matrices to cope with
heterogeneous feature values. We replace missing values with zeroes, quantile normalize
each feature and then normalize to [−1,1] (with the function normalize(·, norm = ℓ1)
from the Python package scikit-learn [57]).

We also force sparsity in feature values by adding a supplementary preprocessing
layer which removes all “weak-signal” normalized values v such that |v| < t ∈ (0,1)
(thresholding with value t = 0.001) or such that

inf
v′

{
freq(v′) ≤ q

2

}
< v < inf

v′

{
freq(v′) ≥ 1− q

2

}
, q ∈ (0,1) . (B4)

We use the latter method throughout the experimental study, with q = 0.9. Note that
those two approaches are equivalent for normally distributed frequencies of values.
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Appendix C Experimental details

Table C1 Overview of the drug repurposing data sets in the experimental study in Section 4,
with the number of items (drugs), item features, users (diseases), user features, positive and
negative associations along with the corresponding sparsity number.

Data set ni |Fi| nu |Fu| Nb. positive Nb. negative sparsity (%)

Gottlieb 593 593 313 313 1,933 0 99.0

PREDICT-G 593 1,779 313 313 1,933 0 99.0
LRSSL 763 2,049 681 681 3,051 0 99.4
TRANSCRIPT 204 12,096 116 12,096 401 11 98.3

C.1 Data preprocessing
All the data sets, including the synthetic ones, do not have any missing values. Before
being fed to any classifier, the drug, and disease features are standard-normalized using
class StandardScaler in scikit-learn [57].

C.2 Drug repurposing data sets
The drug repurposing data sets were retrieved using the stanscofi Python package [3].
Table C1 shows their size and an overview of their contents. When items and users did
not use the same set of features Fi and Fu, we considered the disjoint union of the item
and user feature sets Fi ∪ Fu by padding with zeroes whenever a feature was missing.

C.3 Composition of the training sets in classification
The training and testing sets are split from the corresponding data set using function
random_simple_split from package stanscofi [3] which splits the data into 80%
and 20% blocks and prevents data leakage by carefully keeping separate folds (sets of
triplets (drug, disease, annotation)) to construct the sets. Please refer to the related
reference for more details.

C.4 Synthetic dataset
In both considered types of synthetic data sets, as described in the main text at Section 4,
we first draw at random the item and user feature matrices S̃ and P̃ and feature
embeddings W ⋆ from a standard Gaussian distribution and set a fixed generating
model g0 for computing ground truth association scores based on item and user feature
vectors. We now lay out how the sparsity in feature values (Subsection C.4.1) and in
associations (Subsection C.4.2) is implemented.

C.4.1 Adapted Gaussian self-masking procedure

As mentioned in the main text, we implemented a slightly modified version of the
Gaussian self-masking procedure introduced in [47, Assumption 4] to generate not
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missing at random values. For each entity (item or user) j ≤ n, where n ∈ {ni, nu}
the number of entities, we denote Mj,f the binary value which indicates whether the
feature value xj

f is missing. For fixed feature-specific coefficients Kf ∈ (0,1) for any
feature f ≤ F , we then recall that the Gaussian self-masking mechanism is defined as

P(Mj,1, ...,Mj,F | (xj)j≤n) = ΠF
f=1Kf exp

(
−1

2

(xj
f − µ̃f )

2

σ̃2
f

)
, (C5)

where µ̃f ≜ 1
n

∑
l≤n x

l
f and σ̃2

f ≜ 1
n−1

∑
l≤n(x

l
f − µ̃f )

2. We want to ensure that the
sparsity (i.e., the percentage of feature values set to zero) is at most at 10%. We then
modify the Gaussian self-masking procedure as follows: after drawing at random the
coefficients (Kf )f≤F and min-max normalizing them, we define the probability of the
feature value associated with feature f of being missing as

P(Mj,f | (xj
f )j≤n) = 0.2Kf exp

(
−1

2

(xj
f − µ̃f )

2

σ̃2
f

)
. (C6)

We define then the final item and user feature matrices asS ≜ M i ⊗ S̃ and P ≜
Mu ⊗ P̃ , where M i and Mu are drawn from a Gaussian self-masking procedure with
respective input matrices S and P , and ⊗ is the element-wise matrix multiplication.

C.4.2 Enforcing the sparsity in associations

Given the final item and user feature matrices as defined in the last paragraph, we set
the association score matrix Ã such that for each item i and user u, Ãi,u ≜ g0(S:,i,P:,u).
Then, we would like to ensure that the sparsity number –that is, the percentage of
unknown user-item associations– is equal to s ∈ (0.5, 1). If t(s) and t′(s) are respectively

the 100(1+s)
2

th
and 100(1−s)

2

th
quantiles of values in Ã, then we define the final association

matrix A ∈ {−1,0,+ 1}ni×nu as

∀i ≤ ni, ∀u ≤ nu, Ai,u =


+1 if Ãi,u ≥ t(s)

−1 if Ãi,u ≤ t′(s)

0 otherwise
. (C7)

C.5 Training in separate embedding/RHOFM learning
approaches (SELT or factorization machines)

To train the corresponding baseline models, we reimplement a training procedure with
Python package PyTorch [58] equivalent to the PyKeen fit function (that is, using the
margin ranking loss, the same parameters to the Adam optimizer, and a negative sampler
which associates 3 negative samples to each positive sample in a batch. The negative
sampler uses negative_sampling from the Python package PyTorch-Geometric [59].
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Fig. D1 Validation metrics for JELI with different embedding dimension values d on a “first-order”
synthetic data set with true dimension d⋆ = 2, across 100 iterations (random seeds for splitting
between training and testing data sets).

In SELT-KGE –learning embeddings based on a knowledge graph completion task
and then feeding them to the RHOFM solo training procedure– we use the same
parameters as in JELI to a PyKeen training procedure to learn the embeddings.

Appendix D Supplementary experiments
All experiments, including those shown in the main text, were run on remote cluster
servers from Inria Saclay (processor QEMU Virtual v2.5+, 48 cores @2.20GHz, RAM
500GB).

D.1 Parameter impact of the embedding dimension d

We performed two different tests on synthetic data sets. Considering the “first-order”
type of synthetic data sets, we applied JELI with different embedding dimension
parameters d ∈ {1,2,3,4,5,6,7,8,9} and measured the corresponding AUC, NDCG and
NS-AUC values on a synthetic data set with true dimension d⋆ = 2 (Figure D1) and
d⋆ = 5 (Figure D2). It can be noticed that JELI remains robust to the value of d if we
select a value of d larger than the true value d⋆.

D.2 Parameter impact of the order m of the RHOFM
With varying m in {2,3,4,5}, we report the classification performance across 100
randomly generated synthetic data sets (F = 10, nu = ni = 32, d = 2). The synthetic
data sets correspond to the “second-order” data generation procedure, where considering
higher-order interactions makes the most sense. Figure D3 shows the classification
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Fig. D2 Validation metrics for JELI with different embedding dimension values d on a “first-order”
synthetic data set with true dimension d⋆ = 5, across 100 iterations (random seeds for splitting
between training and testing data sets).

performance (AUC, NDCG, and NS-AUC) across orders, whereas Figure D4 displays
the training and inference runtime (in seconds) across orders.

As expected, the classification performance is noticeably better as the order increases
(see Figure D3). However, JELI pays a steep price for the training cost. The expression
of a RHOFM for m = 2 can be transformed into a quickly evaluated vectorized
expression. However, we use the dynamic programming algorithms from [30] for m > 2,
where the time complexity is visibly linear in the order m (see Figure D4). Linearity
in m is already a good result. However, it accounts for a significant difference in
computational cost compared to the case m = 2, even for a few features and samples.

D.3 Classification performance in the MovieLens data set [2]
The recommendation problem in MovieLens [2] is to predict whether a movie should
be recommended to a user, that is, if the user would rate this movie with more than 3
stars. The movie features are the year and the one-hot encodings of the movie genres,
whereas the user features are the counts of each movie tag that this user has previously
assigned. We iterate this experiment for each algorithm (JELI and baselines) 100 times,
and report the corresponding results in Figure D5 and Table D2.

This experiment confirms that the performance of JELI is on par with the baselines,
even in a non-biological setting.

D.4 Comparing gene embeddings and functional pathways
We want to measure how meaningful the gene embeddings are compared to existing
annotated functional pathways. The way we approached this was to show that the gene
embeddings successfully grouped genes that are known to belong to the same functional
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Fig. D3 Validation metrics for JELI with different order m of the underlying RHOFM on a “second-
order” synthetic data set across 100 iterations (random seeds for splitting between training and testing
data sets).

Fig. D4 Training and inference (prediction across all pairs in the testing set) runtimes in seconds for
JELI with different order m of the underlying RHOFM on a “second-order” synthetic data set across
100 iterations (random seeds for splitting between training and testing data sets).

group. We focused on the well-known 50 Hallmark functional families [60] (also called
gene sets), which documents 50 biological pathways regrouping several human genes.
The main issue is that a gene can appear in several families simultaneously, preventing
classical clustering validation measures such as Adjusted Rand Index (ARI) [61]. 49 of
these groups feature at least one gene in the TRANSCRIPT data set, and 3,497 genes
out of the F = 12,096 genes are present in at least one gene set in Hallmark.

First, we checked that the gene embeddings obtained for each graph prior had
low variance, that is, the average variance of the value for a gene (F = 12,096 in the
TRANSCRIPT data set) and dimension (d = 50) across iterations of JELI is low. See
Table D3. Then, we considered the “average” embedding for each gene, obtained by
averaging values per gene and per embedding dimension across iterations of JELI.
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Fig. D5 AUC values in the MovieLens data set and 100 iterations for JELI and state-of-the-art
embedding-based approaches.

Table D2 Average metrics with standard deviations across 100
iterations for the MovieLens data set [2]. The NDCG at rank
ni is averaged across users. NIM is the algorithm NIMCGCN.

AUC NS-AUC NDCG

MovieLens Fast.ai 0.82± 0.0 0.52± 0.0 0.15± 0.0
HAN 0.94± 0.0 0.51± 0.1 0.11± 0.1
NIM 0.91± 0.0 0.54± 0.0 0.12± 0.0
JELI 0.90± 0.0 0.42± 0.0 0.09± 0.0

Table D3 Average minimum, mean, maximum, and variance, rounded to the third decimal place,
of the embedding value per feature/gene (F = 12,096) and per embedding dimension (d = 50) across
10 iterations of JELI.

None DRKG Hetionet PharmKG8k PharmKG PrimeKG STRING

Minimum -0.022 -0.462 -0.455 -0.457 -0.453 0.022 -0.531
Mean -0.004 0.001 0.006 0.125 -0.003 0.004 -0.017

Maximum 0.014 0.464 0.462 0.453 0.457 0.022 0.512
Variance 0.0 0.129 0.126 0.125 0.218 0.0 0.109

Second, we defined a measure similar to ARI, which considers that the functional
gene sets are not distinct. Given the gene sets G = {G1, G2, . . . , G49} and the clus-
tering C = {Cp

1 , C
p
2 , . . . , C

p
K} obtained by running a clustering algorithm on the gene

embeddings for each graph prior p, the two sources of agreement between G and C are
(a) when two genes that belong to a same functional group Gl are clustered together
in cluster Cp

k ; (b) when two genes which never belong to the same functional set are
not clustered together. Then, we denote ai,j ∈ {0,1} the variable which only takes the
value 1 if and only if gene i and gene j match case (a); we similarly define bi,j ∈ {0,1}.
Then, we define a fuzzy Rand index (that allows overlaps) as

RI(G, C) ≜ 2

∑
i,j≤F ai,j + bi,j

F (F − 1)
. (D8)
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Table D4 Fuzzy ARI value, rounded to the third decimal place, computed between the 49
functional gene sets from Hallmark [60] and the clustering of gene embeddings for each graph prior
and type of clustering.

ARI None DRKG Hetionet PharmKG8k PharmKG PrimeKG STRING

K-means -0.048 -0.049 -0.051 -0.047 -0.049 -0.048 -0.050
HDBSCAN -0.015 0.000 -0.087 0.032 0.015 0.013 0.041

We add the correction for chance to obtain the “fuzzy” ARI. We define gl,k =∑
g≤F δ(g ∈ Gl∩Ck), where δ(c) ∈ {0,1} is positive if and only if condition c is satisfied.

Then, using al ≜
∑

k≤K gl,k and bk ≜
∑

l≤49 gl,k

ARI(G, C) ≜
N − 2 Na×Nb

F (F−1)

1
2 (Na +Nb)− 2 Na×Nb

F (F−1)

, (D9)

where Na ≜ 1
2

∑
l≤49 al(al − 1), Nb ≜ 1

2

∑
k≤K bk(bk − 1) and N ≜

1
2

∑
l≤49,k≤K gl,k(gl,k − 1).

We tested two clustering algorithms: the (greedy) K-means++, for which we provide
the number of functional groups (K = 49) as the number of expected clusters. This
allows us to compare the “ARI” values across graph priors. However, this choice
prevents us from forming natural embedding clusters, as the constraint on the number
of clusters might lead to low clustering quality. Then we consider as second choice the
density-based clustering algorithm HDBSCAN [62], which is adapted to cases where
the number of clusters is not provided, for which we set the minimal distance between
two points as the 25th percentile of pairwise distances between gene embeddings. The
resulting ARI values are displayed in Table D4.

Then, we can compute Spearman’s ρ correlation values with the average accuracy val-
ues for each graph prior in Table 6. For the K-means clusterings, we got ρAUC,ARI = 0.18,
ρNDCG,ARI = 0.29 and ρNS-AUC,ARI = 0.32, whereas, for the HDBSCAN clusterings,
we obtained ρAUC,ARI = 0.50, ρNDCG,ARI = 0.50 and ρNS-AUC,ARI = 0.64. Most likely,
there is a positive correlation between grouping genes by their functional pathways
and classification accuracy for the drug repurposing task on the TRANSCRIPT data
set. The smaller correlation values for K-means clusterings might stem from the ARI
values being typically lower because we forced the creation of K = 49 clusters instead
of going for more naturally shaped clusters.

Appendix E Drug repurposing and pathway
enrichment for melanoma

We focus on melanoma (MedGen Concept ID C0025202), a type of skin cancer stemming
from the overproliferation of melanocytes. Melanoma is a disease for which prior
literature is abundant and for which resistance to standard-of-care chemotherapies
(cell checkpoint inhibitors) is documented. This makes melanoma a good target for
drug repurposing, as an illustration.
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Table E5 Drug recommendations in decreasing order of recommendation score (rounded to the
closest third decimal place) for melanoma after running JELI on the TRANSCRIPT data set. The
identifiers and drug families come from DrugBank [63], whereas the Anatomical Therapeutic Code
(ATC) is extracted from PubChem [64]. The ATC classifies drugs into hierarchical classes
depending on their mechanisms of action. The label (0: unknown, 1: positive) in the TRANSCRIPT
data set corresponds to the initial drug-disease class for melanoma used for the training of JELI.

DrugBank ID Drug name Score Label Drug family ATC

DB00928 Azacitidine 0.927 0 Pyrimidine nucleoside analogue L01BC07
DB00331 Metformin 0.926 0 Biguanide antihyperglycemic A10BA02
DB01067 Glipizide 0.924 0 Sulfonylurea medication A10BB07
DB00685 Trovafloxacin 0.924 0 Broad spectrum antibiotic unknown
DB01197 Captopril 0.924 0 ACE inhibitor C09AA01
DB00983 Formoterol 0.924 0 Long-acting beta2-adrenergic R03CC15

receptor agonist
DB00526 Oxaliplatin 0.921 0 Platinum-based chemotherapy L01XA03

agent
DB01064 Isoprenaline 0.920 0 Catecholamine non-selective C01CA02

beta-adrenergic agonist

DB00281 Lidocaine 0.704 1 Tertiary amine class Ib C05AD01
antiarrhythmic agent

Without access to a wet lab, we proceed with statistical analyses and a literature
review. To do so, we run JELI on the TRANSCRIPT data set (that contains melanoma)
with the STRING prior, order m = 2, and coefficients ω0 = 1, ω1 = 1d, and ω2:m = 1.

E.1 Exploration of novel drug recommendations for melanoma
First, we explore novel treatment recommendations for melanoma. In Table E5, we
report all the drug recommendations with predicted recommendation scores higher
than 0.920 for melanoma and the recommendation score for the only drug annotated
positive for melanoma in the TRANSCRIPT data set (Lidocaine). No drug is negatively
annotated for melanoma in the data set. The minimum recommendation score across
drugs and diseases is 0.217. Scores are rounded to the closest third decimal place. We
performed a literature search on each of these non-annotated chemical compounds
concerning melanoma (the full table of information about those drugs is added to the
appendix of the manuscript).

A literature search run on the top 0-labeled drugs in the 2019-2024 period showed
that the top two drugs could have a therapeutic impact on melanoma patients,
alone or in combination, as illustrated by several published studies. For further
details, see the supplementary Melanoma.csv uploaded on the GitHub repository
github.com/RECeSS-EU-Project/JELI-experiments. Too few studies were published
to make conclusive comments on the remainder of the drugs. However, some of those
compounds have a mechanism of action related to the top two drugs (DNA damage or
insulin release), as demonstrated by their Anatomical Therapeutic Chemical (ATC)
code.
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Table E6 Enrichments from the Gene Set Enrichment Analysis (GSEA) run on the melanoma-related
importance scores. Values are rounded to the closest third decimal place.

Enriched KEGG category Enrichment score Normalized enrichment False discovery rate
score

Phenylalanine, tyrosine -0.996 -7.661 1,6%
and tryptophan biosynthesis

E.2 Pathway enrichment analysis for melanoma
Second, we use the importance scores to run a pathway enrichment analysis to deter-
mine which functional pathways are the most discriminative for melanoma treatment
recommendations. We retrieved the feature embeddings computed by JELI and the
feature vector associated with melanoma in the TRANSCRIPT data set. The resulting
disease-specific importance scores are the element-wise product (across features) and
then sum (across embedding dimensions) of the feature embeddings learned by JELI
and the feature vector associated with the disease, as in Result 1. We obtained a list
of 12,096 feature/gene scores for melanoma, among which 593 are non-zero, comprised
in the interval [-2.550, 3.014].

Then, we run a Gene Set Enrichment Analysis (GSEA) [36], one of the most
commonly used pathway enrichment methods, on this list of scores. We use the following
parameters: size of enrichment sets: [5; 2,000], 10,000 permutations, maximum false
discovery rate on enrichment sets: 20%. We used the web application WebGestalt [65],
accessed on October 30th, 2024. This analysis returns Table E6 against annotation
sets from KEGG gene sets (as available on the WebGestalt app).

The “Phenylalanine, tyrosine and tryptophan biosynthesis” pathway seems closely
associated with melanoma. Tyrosine, phenylalanine (a precursor for tyrosine), and
tryptophan are aromatic α-amino acids [66]. This pathway is negatively enriched in
melanoma, as shown by the (normalized) enrichment score. That is, the pathway’s
activity should be decreased in melanoma patients. Some prior works favor this
hypothesis for the metabolism of tryptophan [67, 68]. Moreover, [69, 70] also reported
the effect of low phenylalanine and tyrosine intake on melanoma patients.

For the TRANSCRIPT data set, note that only gene expression level activity is
considered to predict drug-disease associations, ignoring all post-transcriptional and
epigenomic mechanisms, which often also control the therapeutic efficacy of a drug. As
such, the recommended drugs and enriched categories might only hold at the level of
transcriptional activity.

Appendix F Scalability of the JELI algorithm
The complexity of the JELI algorithm is mainly driven by the computational time
needed to evaluate the RHOFM and the size of the knowledge graph. Remember that
we denote ni the number of items, nu the number of users, F the number of disjoint
item and user features, d the embedding dimension and m the order of the RHOFM.
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Fig. F6 Training and inference (prediction across all pairs in the testing set) runtimes in seconds
for JELI with different numbers of items and users ni = nu ∈ {5, 10, 15, 20, 25}, on a “second-order”
synthetic data set across several iterations (random seeds for splitting between training and testing
data sets).

About the evaluation of the RHOFM on all possible associations.
The dynamic programming algorithms in [30] for m > 2 and the fast, vectorized, formula
for m = 2, the time complexity for the evaluation of the RHOFM is of O(ninuFdm).
The number of parameter values in the RHOFM is 1 +m+ (F + 1)d (see Definition 2).

About the knowledge graph.
In the absence of an initial partial graph, the number of nodes is ni + nu + F , and the
number of edges is at most ni × nu + nu(nu − 1)/2 + ni(ni − 1)/2 + F (ni + nu) (see
Definition 3). In practice, those costs are much smaller, as the data sets are often very
sparse, meaning that the number of known positive or negative associations is lesser
than ninu, and the number of non-zero features is smaller than F (ni+nu). Finally, the
hyperparameter τ for the similarity threshold on edges allows us to restrict the number
of user-user and item-item similarities, lesser than nu(nu − 1)/2 and ni(ni − 1)/2,
respectively.

About the empirical performance.
We have performed scalability experiments, considering a “second-order” synthetic data
set (as described in Section 4) with the following default values: ni = 32, nu = 32,
F = 100, and running JELI with default parameters d = 2, τ = 0.75, m = 2. We vary
one data or algorithm-related parameter at a time. Below, we display the boxplots of
training and inference times in seconds across several iterations (random seeds) for all
parameter values.

First, from Figure F6, we observe that the training time is roughly polynomial in
ni × nu, as we have to run one evaluation of the RHOFM for drug-disease associations
and compute the MuRE score for drug-drug and disease-disease similarities. The
inference/prediction time on drug-disease associations is also increasing in ni ×nu, but
JELI only enumerates over drug-disease associations from the much smaller testing set.

As for the number of users/items, Figure F7 shows that the training time is also
polynomial in the number of features, as JELI computes the MuRE score for feature-
feature, drug-feature and disease-feature potential edges in the knowledge graph. Note
that if the feature matrices are sparse (meaning that they comprise numerous zeroes,
which is not the case in these synthetic data sets), JELI might be faster even though
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Fig. F7 Training and inference (prediction across all pairs in the testing set) runtimes in seconds for
JELI with different numbers of features F ∈ {5, 10, 20, 50, 100}, on a “second-order” synthetic data set
across several iterations (random seeds for splitting between training and testing data sets).

Fig. F8 Training and inference (prediction across all pairs in the testing set) runtimes in seconds for
JELI with different embedding dimensions d ∈ {2, 4, 6, 8, 10, 12}, on a “second-order” synthetic data
set across several iterations (random seeds for splitting between training and testing data sets).

Fig. F9 Training and inference (prediction across all pairs in the testing set) runtimes in seconds
for JELI with different similarity thresholds τ ∈ {0, 0.50, 0.7}, on a “second-order” synthetic data set
across several iterations (random seeds for splitting between training and testing data sets).

the number of features is more significant. Similarly, the computational runtime at
inference time is increasing as F increases, but less dramatically.

Regarding the embedding dimension, for small values of d, the training and inference
times are roughly constant as shown by Figure F8. The reason might be linked to
embeddings only appearing in the efficient computations related to the RHOFM (that
is, the drug-disease edges).

Moreover, in Figure F9, the training and inference times are shown to be slightly
greater as the threshold τ increases. This is consistent with the fact that the number of
present edges in the knowledge graph decreases with τ increasing, which leads JELI to
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Fig. G10 Validation metrics for JELI with different similarity thresholds τ on a “second-order”
synthetic data set across several iterations (random seeds for splitting between training and testing
data sets).

compute more MuRE scores related to those “missing” drug-drug and disease-disease
edges. However, the meaning of those edges controlled by τ is that two drugs or two
diseases are similar, so τ should not be too low to provide JELI with meaningful
information.

Finally, in Figure D4, we observed that the computational complexity of JELI is
roughly linear in the order of the RHOFM m > 2. For m = 2, a vectorized, faster
formula for the expression of the RHOFM is available.

Appendix G Selection of hyperparameters
This section focuses on the choice of important hyperparameters in the JELI algorithm:
the embedding dimension d, the similarity threshold τ and the order of the RHOFM m.

First, as shown in Figures D1 and D2, the classification performance reaches a
plateau when the embedding dimension d is large enough. In those synthetic experi-
ments, the plateau starts at d = d⋆, where d⋆ is the dimension used to generate the
synthetic observations. The classification performance might decrease linearly when
d is smaller than that critical value. This applies to any classification metric we use
(AUC, NS-AUC, NDCG). Then, in those synthetic experiments, d⋆ achieves the best
performance-efficiency tradeoff on the synthetic data set. For data not generated by a
RHOFM or any linear model, this critical value corresponds to a dimension 1 < d < F ,
which can capture all relevant information from the set of features. A grid search on a
subset of data can find such a value.

Second, in Definition 3, as the similarity threshold τ decreases, the number of edges in
the knowledge graph increases by an additive factor from 0 to nu(nu−1)/2+ni(ni−1)/2,
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where nu is the number of users and ni the number of items. However, we expect that
adding stronger similarity and higher-quality information (that is, a high value of τ) will
generally lead to better performance (which seems to be confirmed by Figure G10). A
reasonable threshold for significant positive similarity between two elements is τ = 0.75
in the cosine score between two drug or disease feature vectors. This value can be a
good tradeoff between adding enough user and item similarity information and the
size of the knowledge graph.

Finally, as shown by Figure D3, a higher order m of the RHOFM generally leads
to better classification performance, but the computational cost when m > 2 might
be prohibitive (see Figure D4). m = 2 is recommended in practice, as the gain in
performance is lower than the computation cost for higher-order RHOFMs
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