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Abstract

Interpretability is a topical question in recommender systems, especially in healthcare applications. An
interpretable classifier quantifies the importance of each input feature for the predicted item-user association
in a non-ambiguous fashion. We introduce the novel Joint Embedding Learning-classifier for improved
Interpretability (JELI). By combining the training of a structured collaborative-filtering classifier and an
embedding learning task, JELI predicts new user-item associations based on jointly learned item and user
embeddings while providing feature-wise importance scores. Therefore, JELI flexibly allows the introduction
of priors on the connections between users, items, and features. In particular, JELI simultaneously (a) learns
feature, item, and user embeddings; (b) predicts new item-user associations; (c) provides importance scores for
each feature. Moreover, JELI instantiates a generic approach to training recommender systems by encoding
generic graph-regularization constraints. We show that the joint training approach yields a gain in the predictive
power of the downstream classifier, that JELI can recover feature-association dependencies, and induces a
restriction in the number of parameters compared to baselines in synthetic and drug-repurposing data sets.

1 Introduction

The Netflix Challenge [6] popularized collaborative filtering, where connections between items and users are inferred based on
the guilt-by-association principle and similarities. This approach is particularly suitable for use cases where information about
known user-item associations is sparse –typically, close to 99% of all possible user-item associations are not labeled, such as in
the MovieLens movie recommendation data set [22]– and when there is implicit feedback. For instance, in the case of movie
recommendations on streaming platforms or online advertising, the algorithm often gets only access to clicks, that is, positive
feedback. However, the reasons for ignoring an item can be numerous: either the item would straightforwardly receive negative
feedback, or the item is too far from the user’s usual exploration zone but could still be enjoyed. In some rare cases, true negative
feedback might be accessible but in even smaller numbers than the positive associations, for instance, for drug repurposing data
sets, by reporting failed Phase III clinical trials [41]. Collaborative filtering algorithms then enable the modeling of the user’s
behavior based on their similarity to other users and the similarity of the potential recommended item to other items positively
graded by this cluster of users.

Several types of algorithms implement collaborative filtering. For instance, matrix factorizations [37, 13] such as Non-negative
Matrix Factorization (NMF) [44] or Singular Value Decomposition (SVD) [20], decompose the matrix of item-user associations
into a product of two low-rank tensors. Other types of algorithms are (deep) neural networks [23, 5, 26], which build item
and user embeddings with convolutional or graph neural networks based on common associations and/or additional feature
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values. On the one hand, among those last approaches, graph-based methods, which integrate and infer edges between features,
items, and users, seem promising in performance [34], supported by establishing complex connections between those entities.
Conversely, matrix factorizations incorporate explicit interpretability, as one can try to connect the inferred latent factors to
specific user and item features. One example is the factorization machine (FM) [36], which combines a linear regression-like
term and a feature pairwise interaction term to output a score for binary classification. The learned coefficients of the FM
explicitly contribute to the score for each item and user feature set. This type of interpretability, called feature attribution in
the literature [29, 38, 47, 18], allows further downstream statistical analysis of the feature interactions. For instance, in our
motivating example of drug repurposing, where the objective is to identify novel drug-disease therapeutic associations, if features
are genes mutated by the pathology or targeted by the chemical compound, the overrepresented biological pathways among
those that are respectively affected or repaired can be retrieved based on the set of key repurposing genes. This, in turn, offers
important points to argue in favor of the therapeutic value of a drug-disease indication and for further development towards
marketing.

In this work, we aim to combine the performance and versatility (in terms of embeddings) of graph-based collaborative filtering
and the explicit interpretability of factorization machines to derive a “best-of-both-worlds” approach for predicting user-item
associations. To achieve this, we introduce a special class of factorization machines that leverages a strong hypothesis on the
structure of item and user embeddings depending on feature embeddings. This classifier is then jointly trained with a knowledge
graph completion task. This knowledge graph connects items, users, and features based on the similarity between them and
users and potentially additional priors on their relationships with features. The embeddings used to compute the edge probability
scores in the knowledge graph are shared with the factorization machine, which allows the distillation of generic priors into the
classifier.

Our paper is structured as follows. In Section 2, we introduce and give an overview of the state-of-the-art on factorization
machines and knowledge graphs and how their combination might be able to overcome some topical questions in the field.
Section 3 introduces the JELI algorithm, which features our novel class of structured factorization machines and a joint training
strategy with a knowledge graph. Eventually, Section 4 shows the performance and interpretability of the JELI approach on both
synthetic data sets and drug repurposing applications.

Notation For any matrix M (in capital letters), we denote Mi,:, M:,j and Mi,j respectively its ith line, jth column and
coefficient at position (i,j). For any vector v (in bold type), vi is its ith coefficient. Moreover, M† is the pseudo-inverse of
matrix M .

2 Related work

As previously mentioned, our proposed approach, JELI, leverages a generic knowledge graph completion task and the inter-
pretability of factorization machines to derive a novel, explainable collaborative filtering approach.

2.1 Knowledge graph embedding learning

A knowledge graph is a set of triplets of the form (h, r, t) such that the head entity h is linked to the tail entity t by the relation
r [32]. Entity and relation embeddings learned on the graph allow us to capture the structure and connections in the graph in a
numerical form, as embeddings are parameters of a function predicting the presence of a triplet in the graph. Those parameters
are then learned based on the current set of edges in the graph. This approach encodes the graph structure into numerical
representations, which can later be provided to a downstream regression model [50]. The edge prediction function is usually
called the interaction model. Many exist [9, 54, 16, 46], among these, the Multi-Relational Euclidean (MuRE) model [4], defined
for any triplet (h, r, t) of respective embeddings eh, er, et of dimension d as

MuRE(eh, er, et) = −∥Rreh − (et + er)∥22 + bh + bt ,

where d × d matrix Rr, and scalars bh and bt are respectively relation-, head- and tail-specific parameters. Notably, this
interaction model has exhibited good embedding engineering properties throughout the literature [1, 52].

Yet, many challenges are present in this field of research. Current representation learning algorithms (no matter the selected
interaction model between a triplet and its embedding) infer representations directly on the nodes and relations of the graph.
However, this approach does not make it possible to establish a relationship between the nodes other than a similarity at the level
of the numerical representation for neighboring nodes for specific relations in the graph. That is, specific logical operations
depending on the relation are often ignored: for instance, for a relation r and its opposite ¬r, we would like to ensure that
the score p assigned to triplet (h, r, t) is proportional to −p, where p is the score associated with triplet (h,¬r, t). Moreover,
knowledge graphs are currently more suited to categorical information, where entities and relationships take discrete values rather
than numerical values. Numerical values could describe a relation such as “users from this specific age group are twice more
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interested in that movie genre”. Some recent works focus on integrating numerical values into knowledge graph embeddings.
In KEN embeddings [14], a single-layer neural network is trained for each numeric relation, taking the attribute as input and
returning an embedding. Another approach, TransEA [53], aims to optimize a loss function that linearly combines, with a
hyperparameter, a loss value on the categorical variables (the difference between the scores and the indicator of the presence
of a triplet) and another loss value on numerical variables, which seeks to minimize the gap between the variable and a scalar
product involving its embedding. However, these two approaches add several additional hyperparameters and do not deal with
interpretability.

Resorting to knowledge-graph-infused embeddings allows us to integrate prior knowledge constraints generically into the
representations of entities, both items and users. We aim to enforce a structure on those embeddings to guarantee the good
prediction of user-item associations by incorporating those embeddings into a special type of factorization machine.

2.2 Factorization machines

Factorization machines are a type of collaborative filtering algorithms introduced by [36]. Their most common expression,
the second-order factorization machine of dimension d, comprises a linear regression term of coefficient (with a possibly
nonzero intercept) and a term that combines interactions from all distinct pairs of features by featuring a scalar product of
their corresponding low-rank latent vectors of dimension d. This approach, particularly in the presence of sparse feature
vectors, is computationally efficient while performant on a variety of recommendation tasks: for instance, knowledge tracing for
education [48], click-through rate prediction [21]. Computationally tractable evaluation and training routines were first proposed
by [8] for higher-order factorization machines (HOFMs), which were introduced as well in [36] and include interactions from
all distinct K sets of features, where K ≥ 2, opening the way to even finer classification models. The definition of HOFMs is
recalled in Definition 1.

Definition 1 Higher–Order Factorization Machines (HOFMs). Let us denote the set of available item and user features F ⊆ N∗.
The general expression for HOFM [36, 8] of order m ≥ 2 and dimensions d2, . . . ,dm that takes as input a single feature vector
x ∈ R|F| is a model such that θ = (ω0,ω1,ω2, . . . ,ωm) where ω0,ω1 ∈ R× R|F| and for any i ∈ {2, . . . ,m}, ωi ∈ R|F|×di

HOFMθ(x) ≜ ω0 + (ω1)⊺x+
∑

2≤t≤m

∑
f1<···<ft
f1,...,ft∈F

⟨ωt
f1,:, . . . ,ω

t
ft,:⟩xf1 · xf2 · · · · · xft−1

· xft ,

where ⟨ωt
f1,:

, . . . ,ωt
ft,:
⟩ ≜

∑
d≤dt

ωt
f1,d
· ωt

f2,d
· · · · · ωt

ft−1,d
· ωt

ft,d
for any t and indices f1, . . . ,ft. In particular, for m = 2

FMθ(x) ≜

linear regression term︷ ︸︸ ︷
ω0 + (ω1)⊺x +

pairwise interaction term︷ ︸︸ ︷∑
f<f ′,f,f ′∈F

⟨ω2
f,:,ω

2
f ′,:⟩xf · xf ′ .

Besides their good predictive power, factorization machines involve explicit coefficients that quantify the contribution of each
K set of features to the final score associated with the positive class of associations. These coefficients offer a straightforward
insight into the discriminating features for the recommendation problem, and this type of “white-box” explainability is related to
a larger research field, feature attribution-based interpretability.

2.3 Feature attribution-based interpretability

Given a binary classifier C and a feature vector x ∈ RF , a feature attribution function ϕC : RF → RF returns importance scores
for each feature contributing to the positive class score for the input vector x. If the importance score associated with feature f is
largely positive (resp., negative), it means that feature f drives the membership of x to the positive (resp., negative) class. In
contrast, an importance score close to 0 indicates that feature f has little influence on the classification of data point x. Albeit
other types of interpretability approaches exist –based on decision rules given by single classifier trees or random forests [10, 31],
counterfactual examples [49] or logic rules [42, 15]) – the importance score-based methods allow going beyond single feature
influence, and to quantify the effect on classification of specific mechanisms, for instance by evaluating the overrepresentation of
some ontologies among the most strongly-influencing features: for instance, functionally-consistent cell pathways based on the
most discriminating biological features.

Some classifiers, as seen for factorization machines, readily include importance scores, whereas several approaches compute
post-hoc importance scores. Importance scores are evaluated based on the outputs of an already trained “black-box” classifier,
such as a neural network. Such approaches include Shapley values [29], LIME [38], DeepLIFT [27] (for image annotation) or
sufficient explanations [3]. Yet, recent works show their lack of robustness and consistency across post-hoc feature attribution
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methods, both empirically [47] and theoretically [18, 7]. However, the advantage of posthoc approaches is that they allow the
explainability of any type of classifier and combine the richness of the model (predictive performance) and interpretability.

The approach described in our paper then aims to encompass any generic embedding model without losing the connection to the
initial features of the input vectors to the classifier.

3 Joint Embedding–classifier Learning for improved Interpretability (JELI)

Let us define in formal terms the inputs to the associated recommendation problem of ni items i1,i2, . . . ,ini to nu users
u1,u2, . . . ,unu . The minimal input to the recommendation problem is the user-item association matrix A ∈ {−1,0,+ 1}ni×nu

which summarizes the known positive (+1) –and possibly negative (−1)– associations and denotes unknown associations by
zeroes. In simple terms, the recommender systems aim to replace zeroes by ±1 while preserving the label of nonzero-valued
associations. Second, in some cases, we also have access to the respective item and user feature matrices denoted S ∈ RF×ni

and P ∈ RF×nu . Without a loss of generality, we assume that the item and user feature matrices have the same F features
f1, f2, . . . , fF . 1 Finally, there might be a partial graph on some of the items, users, features, and possibly other entities. For
instance, such a graph might connect movies, users, and human emotions for movie recommendation [11], or drugs, diseases,
pathways, and proteins or genes for drug repurposing [56, 12]. We denote this graph G(VG , EG), where VG is the set of nodes in
G and EG is its set of (undirected, labeled) edges.

We first introduce the class of higher-order factorization machines, called redundant structured HOFMs, which will classify
user-item associations based on an assumption on the structure of item/user and feature embeddings.

3.1 Redundant structured HOFM (RHOFM)

This subtype of higher-order factorization machines features shared higher-order parameters across interaction orders, such
that the corresponding dimensions of the HOFM satisfy d2 = · · · = dm = d in Definition 1. As such, RHOFMs are related
to inhomogeneous ANOVA kernel HOFMs (iHOFMs) mentioned in [8]. This type of factorization machine is such that the
higher-order dimensions are all equal (that is, d2 = · · · = dm = d) and the corresponding higher-order coefficients are all
proportionals to one another: for any t,t′ ≥ 2 and f ≤ F . there exists c ∈ R such that ωt

f = c·ωt′

f in Definition 1. However, what
distinguishes the RHOFM from a iHOFM is the following hypothesis on structure: it is assumed that every entity d-dimensional
embedding e ∈ Rd results from some function sW with parameter W ∈ RF×d applied to the corresponding entity feature vector
x ∈ RF . For instance, an embedding e associated with feature vector x with a linear structure function of dimension d is defined
as e = sW (x) = xW . Note that for completeness, we can define a feature vector for features, which is simply the result of the
indicator function on features in F : for feature f ∈ F , its corresponding feature vector is xf ≜ (δ(fj=f))j≤F where δ is the
Kronecker symbol, such that the structure function sW can be applied to any item, user or feature entity. Definition 2 gives the
formal expression of RHOFMs for any order, dimension, and structure.

Definition 2 Redundant structured HOFMs (RHOFMs). The RHOFM of structure sW , order m and dimension d, with
parameters θ = (ω0,ω1,ω2:m,W ) ∈ R× Rd × Rm−1 × RF×d on item and user of respective feature vectors xi,xu ∈ RF is
defined as

RHOFMθ(x
i,xu) ≜ ω0 + (ω1)⊺(x′iu)⊺

[
W̃ iu

λ

W̃ iu
λ

]
+

∑
2≤t≤m

ω2:m
t−1

∑
f1<···<ft

f1,...,ft≤2F

〈[
W̃ iu

λ

W̃ iu
λ

]
f1,:

, ...,

[
W̃ iu

λ

W̃ iu
λ

]
ft,:

〉
x′iu
f1 x

′iu
f2 ...x

′iu
ft ,

where x′iu ≜ [(xi)⊺, (xu)⊺]⊺ ∈ R2F is the concatenation of feature vectors along the row dimension, x̃iu ≜ [xi,xu]⊺ ∈ RF×2

the concatenation along the column dimension, W̃ iu
λ ≜ (x̃iu(x̃iu)⊺ + λIF )

†(x̃iu)⊺[sW (xi)⊺, sW (xu)⊺] ∈ RF×d is the
λ-regularized approximate least squares estimator in the following equation in V : sW (x̃iu) = x̃iuV , with λ ≥ 0.

By reordering terms and by definition of W̃ iu
λ (full details in Appendix A), if we denote f%F the remainder of the Euclidean

division of f by F , we can notice that

RHOFMθ(x
i,xu) ≈ ω0 + (ω1)⊺(sW (xi) + sW (xu)) +

∑
2≤t≤m

ω2:m
t−1

∑
f1<···<ft

f1,...,ft≤2F

〈
x′iu
f1 sW (xf1%F ), ...,x′iu

ft sW (xft%F )
〉

(1)

The RHOFM then comprises a term linear in the item/user embeddings and a product of feature embeddings weighted by the
corresponding values in the item and user initial feature vectors. Moreover, if we assume a linear structure on the RHOFM, the

1Otherwise, one can join the two feature matrices and replace missing feature values by zeroes.
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embedding vector for feature fj is exactly Wfj ,: and the embeddings for items and users are the sum of feature embeddings
weighted by their corresponding values in the item and user vectors. The expression in Definition 2 is computationally efficient
when combined with the routines described in [8], and the redundancy in the RHOFM allows it to benefit from the same type of
computational speedup as inhomogeneous ANOVA kernels or iHOFMs.

Knowing that HOFMs (in Definition 1) and iHOFMs would take as input the concatenation along the row dimension of (xi,xu),
assuming that the dimensions across subsets are the same, i.e., d2 = · · · = dm = d, HOFMs comprise 1 + 2F + 2Fd(m− 1)
parameters, which can account for a prohibitive computation cost in practice. Similarly, iHOFMs would require the training of
1+m+2Fd parameters, whereas RHOFMs (in Definition 2) only feature 1+m+(F +1)d, hence removing the multiplicative
constant on the number of features F , which has an impact for highly-dimensional data sets such as the TRANSCRIPT drug
repurposing data set [40] which gathers values on 12,000 genes across the human genome.

Regarding interpretability, as evidenced by Equation (1), the coefficients involved in the expression of the RHOFM are
straightforwardly connected to the input embeddings. In the case of the linear structure and when ω1 = 1d, ω2:m = 1m−1

(or any other constant), the contributions from features on the one hand and the item/user values on the other can easily be
disentangled. In that case, W̃ iu

λ ≈W and then for any feature f , the intrinsic (i.e., independent from users or items) importance
score is

∑
k≤d Wf,k. When associated with an entity (item or user) of feature vector x ∈ RF , its importance score is simply

xf

∑
k≤d Wf,k. Using x̃iuW̃ iu

λ ≈ sW (x̃iu) in non-linear structures, we can extrapolate this result to obtain the following
intrinsic feature importance score

Result 1 Feature importance scores in a RHOFM. When ω1 = 1d, ω2:m = 1m−1 (or any other constant), the intrinsic (entity-
independent) feature importance score for feature f ≤ F in a RHOFM (Definition 2) is

∑
k≤d (W̃ iu

λ )f,k . As a consequence,

the feature attribution function associated with feature vector x ∈ RF is ϕRHOFM(x) ≜ (xf

∑
k≤d(W̃

iu
λ )f,k)f≤F .

One could infer the RHOFM parameters by directly minimizing a loss function. However, as mentioned in the introduction, we
would like to distill some prior knowledge information into the RHOFM, for instance, via a knowledge graph specific to the
recommendation use case. By seeing the feature embeddings in the RHOFM as node embeddings in a knowledge graph, the next
section describes how to jointly train the RHOFM and the feature embeddings on a knowledge graph completion task.

3.2 Joint training of the RHOFM and the knowledge graph embeddings

We will leverage the information from the partial graph G(VG , EG) to fit the RHOFM, by reducing the problem of classification
to the prediction of a subset of edges in a knowledge graph completion problem. To do so, we first extend the partial graph G
based on the respective user-item association, item feature and user feature matrices A, S and P to build a knowledge graph
K(V, T ) with nine types of relations.

Definition 3 Similarity-based knowledge graph augmented with prior edges. Considering a similarity threshold τ ∈ [0,1]
associated with a similarity function sim : RF × RF → [−1,1], JELI builds a knowledge graph from the data set A, P and S
and partial graph G(VG , EG) as follows

V ≜ {i1,i2, . . . ,ini
} ∪ {u1,u2, . . . ,unu

} ∪ {f1,f2, . . . ,fF } ,
T ≜ {(s, prior, t) | (s,t) ∈ EG , s, t ∈ V}
∪ {(ij ,−, uk) | Aij ,uk

= −1, j ≤ ni, k ≤ nu} ∪ {(ij ,+, uk) | Aij ,uk
= +1, j ≤ ni, k ≤ nu}

∪ {(uj , user-sim, uk) | sim(P:,uj
, P:,uk

) > τ, j,k ≤ nu} ∪ {(ij , item-sim, ik) | sim(S:,ij , S:,ik) > τ, j,k ≤ ni}
∪ {(ij , item-feat-pos, fk) | Sfk,ij > 0, k ≤ F, j ≤ ni} ∪ {(ij , item-feat-neg, fk) | Sfk,ij < 0, k ≤ F, j ≤ ni}
∪ {(uj , user-feat-pos, fk) | Pfk,uj

> 0, k ≤ F, j ≤ nu} ∪ {(uj , user-feat-neg, fk) | Pfk,uj
< 0, k ≤ F, j ≤ nu} .

The objective of knowledge graph completion is to fit a model predictive of the probability of the presence of a triplets in the
knowledge graph. In particular, computing the score associated with triplets of the form (h,+, t), for (h, t) a user-item pair, boils
down to fitting a classifier of user-item interactions. Conversely, a straightforward assumption is that the score associated with
triplets (h,+, t) should be opposite to the score assigned to triplets (h,−, t). With that in mind, denoting the set of RHOFM
parameters θ and θJELI ≜ (θ, {Rr, r relation}, {er, r relation}, {bh, h ∈ V}) as the total set of parameters to estimate, we
define in Equation (2) the edge score to be maximized for present tripletss in the knowledge graph K

scoreθJELI(h, r, t) ≜


MuRE(sW (xh), er, sW (xt);Rr, bh, bt) if r ̸∈ {+,−}
RHOFMθ(x

h,xt) if r = +

−RHOFMθ(x
h,xt) if r = −

. (2)
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Remember that the vector xh is well-defined for any item, user, or feature h. Then we fit parameter θJELI by minimizing the soft
margin ranking loss with margin λ0 = 1, which expression is recalled below

∀θ′ , Lmargin(θ′) ≜
∑

(h,r,t)∈T

∑
(h,r,t)/∈T

log
(
1 + exp

(
λ0 + scoreθ′(h, r, t)− scoreθ′(h, r, t)

))
.

Further implementation details and numerical considerations for the training pipeline are available in Appendix B.

3.3 Downstream tasks with JELI

Interestingly, not only does JELI build embeddings for items and users available at training time, but it can also be used to
produce embeddings for new entities without requiring any retraining step. Given a feature vector x ∈ RF –padding with zeroes
if needed on unavailable features– the corresponding embedding is sW (x). However, the main objective of the trained JELI
model is to predict new (positive) user-item associations, possibly on items and users not observed at training time. In that case,
for any pair of item and user feature vectors (xi,xu) ∈ RF × RF , the label predicted by JELI with RHOFM parameter θ is

ŷJELI(xi,xu) ≜

{
+1 if σ(RHOFMθ(x

i,xu)) > 0.5

−1 otherwise
,

where σ is the standard sigmoid function.

Note that the JELI approach could be even more generic. Besides any knowledge graph, this joint training approach could feature
any classifier – not necessarily an RHOFM, as long as the classifier remains interpretable– any knowledge graph completion loss
function or any edge score function.

4 Experimental results

We first validate the performance, the interpretability, and the different components of JELI on synthetic data sets, for which the
ground truth on feature importance is available. Then, we apply JELI to drug repurposing, our main motivating example for
interpretability in recommendation. Further information about the generation of the synthetic data sets and numerical details is
available in Appendix C.

4.1 Synthetic data sets

We consider two types of “interpretable” synthetic recommendation data, called “linear first-order” and “linear second-order”,
for which the ground truth feature importance scores are known. At fixed values of dimension d, feature number F , and numbers
of items and users ni and nu, both item and user feature vectors are drawn at random from a standard Gaussian distribution,
along with a matrix W ⋆ ∈ RF×d. The algorithm cannot access the full feature values in most practical cases in recommendation
tasks. Reasons for missing values can be diverse [45], but most likely follow a not missing at random mechanism, meaning
that the probability of a missing value depends on the features. To implement such a mechanism, we applied a slightly adapted
Gaussian self-masking [25] to the corresponding item and user feature matrices, such that we expect around 10% of missing
feature values.

The complete set of user-item scores is obtained by a generating model g0 : RF×RF → [0,1]. For “first-order” synthetic data sets,
g0 is defined as (xi,xu) 7→ σ(

∑
k≤d(x

i + xu)W ⋆
:,k) = σ(RHOFM(0,1d,0m−1,W⋆)(x

i,xu)) where xi and xu are respectively
the item and user feature vectors. For the “second-order” type, g0 is simply (xi,xu) 7→ σ(RHOFM(1,1d,1m−1,W⋆)(x

i,xu))
where the order is m = 2. In both cases, the corresponding structure function sW⋆ is linear, that is, sW⋆(x) = xW ⋆ and λ = 0.

Finally, since in practice, most of the user-item associations are inaccessible at training time, we label user-item pairs with −1, 0,
and +1 depending on their score, such that the sparsity number –that is, the percentage of unknown values in the association
matrix– is equal to a prespecified value greater than 50%.

4.1.1 JELI is performant for various validation metrics and reliably retrieves ground truth importance scores

We generate 10 synthetic datasets of each type (F = 10, d = 2, ni = nu = 173) and run JELI 100 times with different random
seeds corresponding to different training/testing splits. Table 1 shows the numerical results across those 10 × 100 runs for
several validation metrics on the predicted item-user associations and feature importance scores. The Area Under the Curve
(AUC) is computed on all user-item pairs. In contrast, the Negative-Sampling AUC (NS-AUC) [55] is a ranking measure akin to
an average of user-wise AUCs, giving a more refined quantification of prediction quality across users. The Spearman’s rank
correlation [43] is computed on ground truth importance scores (

∑
k≤d W

⋆
f,k)f≤F and predicted ones (

∑
k≤d Ŵf,k)f≤F with

Ŵ the inferred embedding parameter.
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Data set type AUC NS-AUC Spearman’s ρ

First-order 0.99± 0.013 0.89± 0.124 0.83± 0.279
Second-order 0.98± 0.019 0.86± 0.167 0.75± 0.363

Table 1: Average validation metrics with standard deviations across 100 iterations and 10 synthetic data sets of each type
(total number of values: 1,000). Average (respectively, standard deviation) values are rounded to the closest second (resp.,
third) decimal place. AUC: Area Under the Curve. NS-AUC: Negative-Sampling AUC [55]. Spearman’s ρ: Spearman’s rank
correlation.

Figure 1: Barplots of the true and predicted feature importance scores for F = 10 features in each synthetic data set for the
best-performing model across 100 iterations. Top-2 lines: on “first-order” synthetic data. Bottom-2 lines: on “second-order”
synthetic data.

Albeit there is a large variation in the quality of the prediction due to the random training/testing split when considering the
average best value across 100 iterations, the metrics in Table 1 show a high predictive power for JELI, along with a consistently
high correlation between true and predicted feature importance scores: the average Spearman’s rank correlation for the best-
trained models across all 10 data sets is 0.932 for “first-order” sets and 0.932 for “second-order” ones. The bar plots representing
the ground truth and predicted importance scores for each of these 10 sets and each type of synthetic data in Figure 1 show that
JELI can preserve the global trend in importance scores across data sets.

4.1.2 JELI is robust in synthetic data sets across sparsity numbers

We also compare the predictive performance of JELI compared to embedding-based recommender systems from the state-of-
the-art, namely Fast.ai collaborative learner [23], the heterogeneous attention network (HAN) algorithm [51] and the neural
inductive matrix completion with graph convolutional network (NIMCGCN) [26]. We set, whenever appropriate, the same
hyperparameter values for all algorithms (with d = 2). We run each algorithm on 100 different random seeds on 5 “first-order”
synthetic data sets generated with sparsity numbers in {50%, 65%, 80%}, for 500 tests. Figure 2 reports the boxplots and the

7



Figure 2: NS-AUC values across “first-order” synthetic data
sets for sparsity numbers and 500 iterations for JELI and state-
of-the-art embedding-based recommender systems.

AUC NS-AUC NDCG

50% Fast.ai 0.99± 0.0 0.52± 0.3 0.85± 0.1
HAN 0.93± 0.0 0.62± 0.1 0.18± 0.1
NIM 0.93± 0.0 0.63± 0.1 0.39± 0.1
JELI 0.99± 0.0 0.92± 0.1 0.96± 0.1

65% Fast.ai 0.99± 0.0 0.64± 0.4 0.78± 0.3
HAN 0.93± 0.0 0.67± 0.0 0.12± 0.1
NIM 0.94± 0.0 0.67± 0.1 0.42± 0.1
JELI 0.99± 0.0 0.94± 0.0 0.94± 0.1

80% Fast.ai 0.99± 0.0 0.91± 0.1 0.77± 0.2
HAN 0.96± 0.0 0.72± 0.0 0.20± 0.1
NIM 0.93± 0.0 0.61± 0.1 0.19± 0.0
JELI 0.99± 0.0 0.94± 0.0 0.85± 0.2

Table 2: Average metrics with standard deviations across
100 iterations and 5 “first-order” sets. The NDCG at rank
ni is averaged across users. NIM is NIMCGCN.

confidence intervals on corresponding validation metrics. In addition to the AUC and NS-AUC, we include the Non-Discounted
Cumulative Gain (NDCG) computed for each user at rank ni (number of items) and averaged across users as a counterpart to the
NS-AUC measure.

As illustrated by Figure 2, JELI consistently outperforms the state-of-the-art on all metrics and remains robust to the sparsity
number.

4.1.3 Ablation study: both the structure and the joint learning are crucial to the performance

We perform the same type of experiments as in Section 4.1.2 on several ablated versions of JELI to estimate the contribution of
each part to the predictive performance. We introduce several JELI variants. First, we remove the structured and embedding
part of the RHOFM classifier. FM is the regular second-order factorization machine of dimension d on 2F -dimensional input
vectors, without structure on the coefficients (see Definition 1), whereas CrossFM2 is a more refined non-structured second-order
factorization machine, where the feature pairwise interaction terms only comprise pairs of features on both the item and user
vectors, that is, with notation from Definition 1

CrossFM(ω0,ω1,ω2)(x
i,xu) ≜ ω0 + (ω1)⊺

[
xi

xu

]
+

∑
f≤F,f ′>F

⟨ω2
f ,ω

2
f ′⟩xi

fx
u
f ′−F .

Next, we also study methods featuring separate learning of the embeddings and the RHOFM classifier, named Separate
Embedding Learning and Training algorithms (SELT). We consider different feature embedding types. SELT-PCAf uses the
d principal component analysis (PCA) run on the concatenation of the item and user matrices along the column dimension,
resulting in a F × (ni + nu) matrix. SELT-PCAf then infers feature embeddings based on each feature’s d first principal
components. Another PCA-based baseline, SELT-PCAiu, applies the learned PCA transformation directly on item and user
feature vectors to obtain item and user embeddings. Finally, the SELT-KGE approach completes the knowledge graph task to
obtain item and user embeddings –without enforcing the feature-dependent structure– on the knowledge graph described in
Definition 3 with an empty partial graph. Then, SELT-KGE uses those item and user embeddings to train the RHOFM classifier.

The final results in Figure 3 show that the most crucial part for predictive performance across sparsity numbers is the factorization
machine, which is unsurprising given the literature on factorization machines applied to sparse data. One can observe that
separate embedding learning and factorization machine training leads to mediocre performance. The combination of a structured
factorization machine and jointly learned embeddings, that is, JELI, gives the best performance and is even more significant as
the set of known associations gets smaller (and the sparsity number is larger).

4.2 Application to drug repurposing

We aim to predict new therapeutic indications, that is, novel associations between chemical compounds and diseases. The
interpretability of the model for predicting associations between molecules and pathologies is crucial to encourage its use
for health. In that case, higher-order factorization machines are very interesting models due to their inherent interpretability.
However, particularly for the most recent drug repurposing datasets (e.g., TRANSCRIPT [40] and PREDICT [39]), the number

8



Figure 3: NS-AUC values across “first-order” synthetic data
sets for sparsity numbers and 500 iterations for JELI and ablated
variants.

AUC NS-AUC NDCG

50% FM2 0.99± 0.0 0.92± 0.0 0.97± 0.0
CrossFM2 0.99± 0.0 0.93± 0.0 1.00± 0.0
S-PCAf 0.95± 0.0 0.70± 0.1 0.58± 0.2
S-PCAiu 0.95± 0.0 0.61± 0.2 0.45± 0.2
S-KGE 0.91± 0.0 0.43± 0.2 0.25± 0.2
JELI 0.99± 0.0 0.92± 0.1 0.96± 0.0

65% FM2 0.98± 0.0 0.91± 0.0 0.87± 0.1
CrossFM2 0.99± 0.0 0.91± 0.0 0.95± 0.0
S-PCAf 0.95± 0.0 0.73± 0.1 0.54± 0.2
S-PCAiu 0.94± 0.0 0.62± 0.0 0.34± 0.1
S-KGE 0.90± 0.0 0.43± 0.0 0.06± 0.0
JELI 0.99± 0.0 0.94± 0.0 0.94± 0.1

80% FM2 0.97± 0.0 0.84± 0.1 0.56± 0.1
CrossFM2 0.98± 0.0 0.87± 0.0 0.74± 0.0
S-PCAf 0.95± 0.0 0.73± 0.1 0.38± 0.1
S-PCAiu 0.93± 0.0 0.62± 0.1 0.20± 0.0
S-KGE 0.91± 0.0 0.55± 0.1 0.12± 0.1
JELI 0.99± 0.0 0.94± 0.0 0.85± 0.2

Table 3: Average metrics with standard deviations across 100
iterations and 5 “first-order” sets. The NDCG at rank ni is
averaged across users. S indicates an instance of SELT.

of features (F ≈ 12,000 and F ≈ 6,000, respectively) is too large to effectively train a factorization machine due to the curse of
dimensionality. Resorting to knowledge graphs then enables the construction of low-dimensional vector representations of these
associations. Then, these representations are fed as input to the classifier during training instead of the initial feature vectors.

4.2.1 JELI is on par with state-of-the-art approaches on drug repurposing data sets

We now run JELI and the baseline algorithms tested in Section 4.1.2 on Gottlieb [30] (named Fdataset in the paper), LRSSL [28],
PREDICT-Gottlieb [19] and TRANSCRIPT [40] drug repurposing data sets which feature a variety of data types and sizes.
Please refer to Appendix C for more information. Figure 4 reports the validation metrics for each method’s 100 different
training/testing splits with d = 15. From those results, we can see that the performance of JELI is on par with the top algorithm,
HAN, and sometimes outperforms it, while providing interpretability.

4.2.2 JELI can integrate any graph prior on the TRANSCRIPT data set

We now focus on the TRANSCRIPT data set, which involves gene activity measurements across F = 12,096 genes for ni = 204
drugs and nu = 116 diseases. We compare the predictive power of JELI on the TRANSCRIPT data set with the default
knowledge graph created by JELI (named “Sim” network) and the knowledge graph augmented with a protein-protein interaction
network, that we call “Sim+PPI” network. The “Sim” network corresponds to the knowledge graph in Definition 3 with an empty
partial graph, whereas the “Sim+PPI” graph is built based on the partial graph listing protein-protein interactions (where proteins
are matched one-to-one to their corresponding coding genes). The resulting performance for the AUC, average NDGC@ni

and NS-AUC metrics is shown on Figure 5. Adding biologically meaningful prior information to JELI yields a statistically
significant improvement in all validation metrics except the NDCG.

5 Discussion

We propose in this work the JELI approach for integrating knowledge graph-based regularization into an interpretable rec-
ommender system. The structure incorporated into user and item embeddings take into account numerical feature values in
a generic fashion, which allows to go beyond the categorical relations encoded in knowledge graphs without adding a large
number of parameters. This method allows us to derive item and user representations of fixed dimensions and score a user-item
association, even on previously unseen items and users. We have shown the performance and the explainability power of JELI on
synthetic and real-life data sets. The Python package that implements the JELI approach is available at the following open-source
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Figure 4: AUC values across drug repurposing data sets for
sparsity numbers and 100 iterations for JELI and state-of-the-
art embedding-based approaches.

AUC NS-AUC NDCG

Gottlieb Fast.ai 0.90± 0.0 0.50± 0.1 0.01± 0.0
HAN 0.93± 0.0 0.67± 0.0 0.02± 0.0
NIM 0.90± 0.0 0.51± 0.0 0.01± 0.0
JELI 0.90± 0.0 0.52± 0.0 0.02± 0.0

LRSSL Fast.ai 0.90± 0.0 0.49± 0.1 0.01± 0.0
HAN 0.95± 0.0 0.69± 0.0 0.10± 0.0
NIM 0.91± 0.0 0.53± 0.0 0.01± 0.0
JELI 0.92± 0.0 0.51± 0.0 0.02± 0.0

PRED-G Fast.ai 0.90± 0.0 0.50± 0.1 0.01± 0.0
HAN 0.93± 0.0 0.68± 0.0 0.01± 0.0
NIM 0.91± 0.0 0.49± 0.0 0.01± 0.0
JELI 0.90± 0.0 0.47± 0.0 0.02± 0.0

TRANSC Fast.ai 0.61± 0.1 0.57± 0.1 0.04± 0.0
HAN 0.93± 0.0 0.61± 0.0 0.08± 0.0
NIM 0.92± 0.0 0.57± 0.0 0.04± 0.0
JELI 0.92± 0.0 0.56± 0.0 0.02± 0.0

Table 4: Average metrics with standard deviations across 100
iterations for each drug repurposing data set. The NDCG at rank
ni is averaged across users. NIM is the algorithm NIMCGCN,
TRANSC refers to the data set TRANSCRIPT, and PRED-G to
the data set PREDICT-Gottlieb.

Figure 5: Predictive performance of JELI with different graph priors (the default knowledge graph “Sim” and the protein-protein
interaction augmented network “Sim+PPI”). Statistical tests are one-way ANOVA tests with significance level α = 1%.

repository: github.com/RECeSS-EU-Project/JELI/. Experimental results can be reproduced using code which will be
made available soon in a future repository.

There are a few limitations to the JELI approach, however. The first one is that JELI performs best on sparse user and item
feature matrices and requires the input of the dimension value, which can tremendously impact the algorithm’s performance.
Moreover, this approach is quite slow compared to state-of-the-art algorithms since it simultaneously solves two tasks: the
recommendation one on user-item pairs and the knowledge graph completion. However, this slowness is mitigated by the superior
interpretability of JELI compared to the baselines. Furthermore, an interesting subsequent work would focus on integrating
missing values into the recommendation problem. As it is, JELI ignores the missing features and potentially recovers qualitative
item-feature –respectively, user-feature– links during the knowledge graph completion tasks. That is, provided an approach to
quantify the strength of the link between an item and a feature, JELI might also be extended to perform an imputation of this
item’s corresponding missing feature value.
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A Explicit structure-dependent approximation of a RHOFM

Starting from the notation and the expression of an RHOFM introduced by Definition 2

RHOFMθ(x
i,xu) ≜ ω0 + (ω1)⊺(x′iu)⊺

[
W̃ iu

λ

W̃ iu
λ

]
+
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Given the definition of W̃ iu
λ , it is easy to see that
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Let us consider now the t-interaction term, for t ≥ 2. For any set of t features f1, f2, . . . , ft, using the notation xf ≜
(δfj=f )j≤|F | and f%F as the remainder of the Euclidean division of f by F〈[
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This leads to Equation (1) in the main text.

B Implementation of the joint training procedure in JELI

The training procedure iteratively updates across epochs and batches of triplets the feature embeddings W ∈ RF×d, the MuRE-
specific hyperparameters Rr ∈ Rd×d for each relation r (9 in total by Definition 3), the biases b ∈ R|V|, and the hyperparameters
of the RHOFM (ω0,ω1,ω2:m) ∈ R×Rd ×Rm−1, for a total of (9d2 + |V|) + (1 +m+ 2Fd) = d(9d+ 2F ) + |V|+m+ 1
parameter values. In practice, we implement this procedure using the PyKeen Python package [2], an Adam optimizer and the
PseudoTypedNegativeSampler class in PyKeen for the negative sampling to switch the head of triplets and then compute the
soft margin ranking loss Lmargin. The MuRE interaction class in PyKeen is modified to allow the computation of structured
embeddings for items and users in the score.

Before the training phase, we normalize the item and user feature matrices to cope with heterogeneous feature values. We replace
missing values with zeroes, quantile normalize each feature and then normalize to [−1,1] (with the function normalize(·, norm =
ℓ1) from the Python package scikit-learn [33]).

We also force sparsity in feature values by adding a supplementary preprocessing layer which removes all “weak-signal”
normalized values v such that |v| < t ∈ (0,1) (thresholding with value t = 0.001) or such that

inf
v′

{
freq(v′) ≤ q

2

}
< v < inf

v′

{
freq(v′) ≥ 1− q

2

}
, q ∈ (0,1) .

We use the latter method throughout the experimental study, with q = 0.9. Note that those two approaches are equivalent for
normally distributed frequencies of values.
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Feature type Data set Source ni |Fi| nu |Fu| Nb. positive Nb. negative sparsity (%)

Text-mining Gottlieb [30] 593 593 313 313 1,933 0 99.0

Biological PREDICT-Gottlieb [19] 593 1,779 313 313 1,933 0 99.0
LRSSL [28] 763 2,049 681 681 3,051 0 99.4
TRANSCRIPT [40] 204 12,096 116 12,096 401 11 98.3

Table 5: Overview of the drug repurposing data sets in the experimental study in Section 4, with the number of items (drugs),
item features, users (diseases), user features, positive and negative associations along with the corresponding sparsity number.
Text-mining data sets involve similarity scores on chemical structures (for drugs) and on medical descriptions (diseases) as
features. In contrast, biological data sets incorporate similarity scores on drug and disease annotations (PREDICT-Gottlieb,
LRSSL) and gene activity data (TRANSCRIPT).

C Experimental details

C.1 Drug repurposing data sets

The drug repurposing data sets were retrieved using the stanscofi Python package [35]. Table 5 shows their size and an overview
of their contents. When items and users did not use the same set of features Fi and Fu, we considered the disjoint union of the
item and user feature sets Fi ∪ Fu by padding with zeroes whenever a feature was missing.

C.2 Synthetic dataset

In both considered types of synthetic data sets, as described in the main text at Section 4, we first draw at random the item and
user feature matrices S̃ and P̃ and feature embeddings W ⋆ from a standard Gaussian distribution and set a fixed generating
model g0 for computing ground truth association scores based on item and user feature vectors. We now lay out how the sparsity
in feature values (Subsection C.2.1) and in associations (Subsection C.2.2) is implemented.

C.2.1 Adapted Gaussian self-masking procedure

As mentioned in the main text, we implemented a slightly modified version of the Gaussian self-masking procedure introduced
in [25, Assumption 4] to generate not missing at random values. For each entity (item or user) j ≤ n, where n ∈ {ni, nu}
the number of entities, we denote Mj,f the binary value which indicates whether the feature value xj

f is missing. For fixed
feature-specific coefficients Kf ∈ (0,1) for any feature f ≤ F , we then recall that that the Gaussian self-masking mechanism is
defined as

P(Mj,1, ...,Mj,F | (xj)j≤n) = ΠF
f=1Kf exp

(
−1

2

(xj
f − µ̃f )

2

σ̃2
f

)
where µ̃f ≜

1

n

∑
l≤n

xl
f and σ̃2

f ≜
1

n− 1

∑
l≤n

(xl
f − µ̃f )

2 .

We want to ensure that the sparsity (i.e., the percentage of feature values set to zero) is at most at 10%. We then modify the
Gaussian self-masking procedure as follows: after drawing at random the coefficients (Kf )f≤F and min-max normalizing them,
we define the probability of the feature value associated with feature f of being missing as

P(Mj,f | (xj
f )j≤n) = 0.2Kf exp

(
−1

2

(xj
f − µ̃f )

2

σ̃2
f

)
.

We define then the final item and user feature matrices asS ≜ M i ⊗ S̃ and P ≜ Mu ⊗ P̃ , where M i and Mu are drawn from a
Gaussian self-masking procedure with respective input matrices S and P , and ⊗ is the element-wise matrix multiplication.

C.2.2 Enforcing the sparsity in associations

Given the final item and user feature matrices as defined in the last paragraph, we set association score matrix Ã such that for
each item i and user u, Ãi,u ≜ g0(S:,i,P:,u). Then, we would like to ensure that the sparsity number –that is, the percentage

of unknown user-item associations– is equal to s ∈ (0.5, 1). If t(s) and t′(s) are respectively the 100(1+s)
2

th
and 100(1−s)

2

th
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quantiles of values in Ã, then we define the final association matrix A ∈ {−1,0,+ 1}ni×nu as

∀i ≤ ni, ∀u ≤ nu, Ai,u ←


+1 if Ãi,u ≥ t(s)

−1 if Ãi,u ≤ t′(s)

0 otherwise
.

C.3 Training in separate embedding/RHOFM learning approaches (SELT or factorization machines)

To train the corresponding baseline models, we reimplement a training procedure with Python package PyTorch [24] equivalent
to the PyKeen fit function (that is, using the margin ranking loss, the same parameters to the Adam optimizer, and a negative
sampler which associates 3 negative samples to each positive sample in a batch. The negative sampler uses negative_sampling
from the Python package PyTorch-Geometric [17].

In SELT-KGE –that is, learning embeddings based on a knowledge graph completion task and then feed them to the RHOFM
solo training procedure– we use the same parameters as in JELI to a PyKeen training procedure to learn the embeddings.
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