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The polarization states of terahertz (THz) radiation generated in a photo-ionized gas driven by
strong two- or multi-frequency fields with locally controlled polarization are studied. We reveal a
universal property of the resulting THz waveforms: the ellipticity of their polarization state increases
linearly with the frequency. This “linear chirp of ellipticity” makes plasma-based THz generation
unique among other THz sources. However, it also puts some constraints on the polarization prop-
erties of the generated THz radiation. We derive a general expression for the THz ellipticity and
demonstrate how the polarization states of the generated THz waveforms can be manipulated and
controlled by the polarization of the pump pulses.

I. INTRODUCTION

Terahertz (THz) radiation has various applications,
such as characterization, spectroscopy and imaging of
materials, nanostructures and plasmas [1–9], remote
sensing [10–12], biomedical applications [1–4, 13], to
name a few. Generation of strong broadband THz fields
by two-color laser-induced plasmas has attracted signif-
icant attention because of the high field strength and
broad spectral bandwidth of the emitted radiation. [14–
18]. In this method, THz radiation is generated by pho-
tocurrents produced by ionization in an asymmetric driv-
ing field consisting of the fundamental pulse (FH) and
its second harmonic (SH). Recently, considerable efforts
have been devoted to optimizing and controlling various
characteristics of THz radiation produced by two-color
laser plasmas. In particular, the efficiency of THz gener-
ation was shown to be influenced by the relative phases
between laser harmonics [16, 19, 20]. Other important
factors affecting the efficiency of the produced THz radi-
ation are pump wavelengths [21–24], polarization of the
pulses [25–36], their durations [20, 37, 38] and, more gen-
erally, their waveshapes [20, 26, 39–42]. In addition to the
conventional two-color pump configuration, multi-color
pump fields have attracted considerable interest in recent
years [20, 34, 40–49].

Many THz applications require polarization control
[6, 7, 50–52]. The most common techniques for control-
ling THz polarization are based on wire-grid polarizers
[50, 53]. However, even if they might work in the whole
THz region, they accept only narrowband THz pulses. So
far, most studies on THz radiation in two-color schemes
have been done by considering linear polarization of the
pump. Apart from specific dedicated works [25–36] lit-
tle attention has been paid to pump pulses with elliptical
and circular polarizations. In filaments or other extended
propagation geometries of the laser driver, local THz

fields, produced at different points in space with different
polarization and phases, are superimposed, resulting in
complex THz waveshapes [26, 27, 54, 55]. In these prop-
agation scenarios, the THz field generated downstream
is also influenced by the previously generated THz com-
ponents [55].

In this paper, we consider the most important build-
ing block of ionization-based THz generation – the locally
generated THz waveforms in small spatial volumes. We
address a rich variety of possible THz waveforms, which
can appear in two- or multi-color schemes with arbitrary
polarization of the pump pulses, and particularly focus
on the polarization state of such THz radiation. Starting
from general principles, we show how the elliptically po-
larized THz radiation arises, what states of polarization
are possible, and to what extent these can be controlled
by the pump configuration. We illustrate our findings by
systematically studying the dependence of the THz wave-
shape on the pump configuration for a two-color scheme
with controlled polarization and phase difference between
the two pump components.

II. SYSTEM AND MODEL

A. Vectorial formulation of local current model

The scheme of our setup is illustrated in Fig. 1a. A
laser pulse with two and more frequency components is
focused into a gas, producing plasma and thereby low-
frequency THz radiation via the so-called Brunel mech-
anism [8, 24, 43, 56] (see also below). Although in gen-
eral incommensurate combinations of frequencies can be
used here we assume that all frequencies are harmon-
ics of the fundamental carrier frequency ω0. Whereas
evolution of the resulting polarization can be very com-
plex due to propagation effects [26, 27, 32, 54, 55], here
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FIG. 1. (a) General setting. An intense complex pump field, characterized by multiple harmonics of some fundamental frequency
ω0 together with their initial polarization states (visualized as ellipses) and amplitudes, is focused into a gas, producing plasma
and thereby generating THz radiation with its own polarization state. In this article, we assume that the polarization ellipses
and relative phases of harmonics remain constant throughout the pump pulse. (b) Schematic spectrum showing polarization
angle, ellipticity, and intensity of the resulting THz radiation, which exhibits an intrinstic “ellipticity chirp”.

we focus on the response of an infinitely small emitting
volume of plasma. This corresponds to analyzing the el-
ementary source term one would have to introduce into,
e.g., Maxwell equations to address later a more complex
propagation geometry.

The electric field of the pump pulse in the multi-
color case, consisting of the fundamental harmonic at
frequency ω0 and their harmonics mω0, m = 2, 3, . . . is
given by:

E(t) =
∑
m≥1

fmω0(t)emω0

[
cos (mω0t+ ϕx,mω0)x

+ϵmω0
sin (mω0t+ ϕy,mω0

)y
]
.

(1)

Here we assume laser field components polarized in x and
y directions, x and y being the corresponding unit vec-
tors, emω0

define the amplitudes of the mth harmonics,
fmω0

(t) define the slow envelopes of the pulses, ϵmω0
de-

termine their relative amplitudes and ϕx,mω0
ϕy,mω0

the
carrier envelope phases of x and y components.
The generation of the free electron density is described

by the rate equation

∂tρe (t) = W (t) [ρat − ρe (t)] , (2)

with ρat being the neutral density. For simplicity, the
ionization rate W (t) can be evaluated from the quasi-
static tunneling model [57],

W (t) =
α

|E(t)|
e−

β
|E(t)| , (3)

with constants α and β characterizing the ionization po-
tential. In the numerical simulations below we assume
argon (ionization energy of 15.6 eV).

The electrons released acquire a drift velocity v(t, t′) =

(q/me)
∫ t

t′
E⃗(t′′)dt′′, where t′ denotes the time when they

were born and q denotes the electron charge. For sim-
plicity, we assume that electrons are born with zero drift
velocity, and collisions are neglected in our analytical ap-
proach. The macroscopic current density J is then given

by

J(t) = q

∫ t

−∞
v(t, t′) [∂t′ρe(t

′)] dt′. (4)

This net current density is responsible for the emission
of the so-called Brunel radiation EBr, which can be esti-
mated as

EBr(t) ∝ ∂tJ =
q2

me
ρeE. (5)

This key equation is often referred to as the local cur-
rent (LC) approximation. Note that this model does not
take into account any propagation effects of the pump.
However, it allows for a simple and vivid analysis of the
locally generated THz waveforms. Propagation effects in
more complex geometries can then be explained by su-
perimposing these local contributions [26, 27, 32, 54, 55],
provided that charge separation effects in the plasma can
be neglected [58]. We mention that the LC model does
not take into account any effects related to the electron
deflection by the tail of the atomic Coulomb potential [8].

B. Polarization analysis

As we shall see later, the polarization states of the
emitted THz pulses are quite unusual, since they ex-
hibit an “ellipticity chirp” (see Fig. 1b). To describe
this property, instead of considering the pump field E(t)
and the Brunel radiation EBr in time, we operate with
their Fourier components Ê(ω) ∝

∫
E(t) exp−iωt)dt,

and analogous to this ÊBr(ω).
Furthermore, we shall use the Jones formalism to

describe our THz waveforms. To any (real-valued)
monochromatic field E(t) oscillating at frequency ω,
we assign a complex vector j, describing its polar-
ization state. For example, for the field E(t) =
(cosωt, ϵ sinωt) we consider its complex representation
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FIG. 2. Polarization ellipse in the laboratory coordinate sys-
tem (x, y) and the principal axes coordinate system (ξ, η).
The angle between x-axis of the laboratory corrdinate sys-
tem and the major axis of the ellipse is denoted by Ψ. The
ellipticity of the polarization state ϵ is defined as the ratio
between the lengths of the minor and major axes. The sign
of ϵ specifies the direction of rotation of the electric field (see
text for details).

∝ (1e−iωt, iϵe−iωt), and j can be defined as the pre-
factors before the oscillating term, that is, for this ex-
ample, j = (1, iϵ). This complex vector is commonly
represented as an “oriented ellipse” [see Fig. 2 and also
Fig. 1(a)] whose principal axis is generally rotated with
respect to the x-axis of the laboratory coordinate system
by some angle Ψ. The ellipticity of the polarization state
ϵ is defined as the ratio between the lengths of the mi-
nor and major axes, that is, |ϵ| = β/α for β ≤ α. The
sign of ϵ specifies the direction of rotation of the elec-
tric field. This direction is given by assigning a positive
(clockwise) or negative (anti-clockwise) sign to ϵ. In the
example above, we chose anti-clockwise polarization. In
this way, we can assign a polarization state to Ê(ω) and

ÊBr(ω) for each frequency ω, thus obtaining a frequency-
dependent ellipticity ϵ(ω) and polarization angle Ψ(ω).
To assign some well-defined ellipticity to a THz pulse

as a whole, we will also use the frequency-averaged ellip-
ticity

⟨ϵ(ω)⟩ =

ωco∫
0

ϵ(ω)I(ω)dω

ωco∫
0

I(ω)dω

, (6)

where ϵ(ω) denotes the frequency-dependent ellipticity

and I(ω) ∝ |ÊBr(ω)|2 is the THz spectral intensity, later
extracted from the LC model. The cutoff frequency ωco

(in the upcoming simulations we took ωco = ω0/4) selects
the frequency range of interest and thus gives a physi-
cal meaning to the above quantity, assuming that ϵ(ω)
does not change sign. The frequency-averaged ellipticity
is what one would expect from a typical measurement
setup, for instance, a conventional scheme employing a
linear rotating polarizer and frequency-nonresolving THz
detection.

FIG. 3. A typical scheme of THz generation using a two-color
pump, consisting of funamental harmonic (FH) and second
harmonic (SH) pump pulses. The ellipticities of the initially
linearly polarized FH and SH pulses are tunable by rotating
the quarter wave plates (QWP) by the angles θ1 and θ2, re-
spectively. The angle ϕ denotes the phase difference between
FH and SH.

III. TWO-COLOR CASE: EXEMPLARY
WAVESHAPES

In the following, we will frequently refer to the conven-
tional two-color pump, that is, when m = 1, 2 in Eq. (1).
In this case, when assuming two Gaussian components
with identical duration τ and neglecting carrier-envelope-
phase (CEP) effects, Eq. (1) reduces to

E = Eω0 +E2ω0 , (7)

Eω0
= eω0

e−t2/τ2
[
cos (ω0t)x+ ϵω0

sin (ω0t)y
]
, (8)

E2ω0
= e2ω0

e−t2/τ2
[
cos (2ω0t+ ϕ)x

+ ϵ2ω0
sin (2ω0t+ ϕ)y

]
. (9)

Here Eω0
and E2ω0

are electric fields of fundamental har-
monic (FH) and second harmonic (SH) pulses, respec-
tively, with ϕ being their relative phase. A typical setup
is shown in Fig. 3. Before the pump is focused, the ellip-
ticities of FH and SH can be controlled by rotating the
quarter wave plates (QWP) by angles θ1 and θ2, respec-
tively. This affects the Ex and Ey components of each
pump harmonic by cos θj and sin θj (i.e., ϵjω0 = tan θj ,
j = 1, 2). The relative phase ϕ is typically controlled by
changing the delays of FH relative to SH. By superimpos-
ing FH and SH fields, we obtain a large diversity of possi-
ble pump waveshapes. Our baseline pump configurations
when θ1 is fixed to 0 (x-linearly polarized FH pulse) or
π/4 (circularly polarized FH pulse) are displayed in Fig. 4
with blue lines for zero relative phase ϕ. For the sake of
clarity, in all cases the same field amplitudes for FH and
SH are taken, so that their extrema coincide. These Lis-
sajou figures describe the electric field vector in time for
different values of θ2 over one oscillation period and for
equal amplitudes of FH and SH.
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FIG. 4. Pump waveshapes over one optical cycle for different configurations of QWPs, indicated by numbers in Fig. 5 for (a)
circular polarization with clockwise rotation (θ1 = π/4) and (b) linear polarization in x direction (θ1 = 0) of the FH, assuming
ϕ = 0. FH and SH components have equal amplitudes. The red dots represent instants tn of the maxima of |E(t)| (irrelevant tn
are omitted), and the arrows indicate the direction of the product A(tn)δρn, involving the number of generated free electrons
(δρn) and the vector potential (A(tn)) at these instants. See text in Section IV.

Using these baseline pump fields, we numerically inte-
grated the LC model Eq. (5) recalled in Section IIA for
a number of cases labeled 1-5 in Fig. 4.These cases refer
to different polarization states of the SH, namely

1. linear polarization in x direction (θ2 = 0),

2. circular polarization (clockwise, θ2 = π/4),

3. linear polarization in y direction (θ2 = π/2),

4. circular polarization (anti-clockwise, θ2 = 3π/4),

5. linear polarization in x direction (θ2 = π).

The resulting properties of the generated THz radiation
are summarized in Fig. 5. In Figs. 5(a,b) the THz pulse
energies defined by the integral of I(ω) over frequen-
cies below the cutoff value ωco = ω0/4 are shown. The
frequency-averaged ellipticities defined by Eq. (6) in the
same frequency range are detailed in Figs. 5(c,d). The
corresponding pump polarization is illustrated in Fig. 5
by red ellipses (for FH) and blue ellipses (for SH), indi-
cating polarization states of SH and FH. The THz energy
is maximal when SH and FH are circularly polarized and
co-rotating (in the following we will reffer to such configu-
ration as ”CP-S”), in agreement with recent experimental
and theoretical investigations [30, 33, 35]. Although the
frequency-averaged ellipticity is generally not very large,
it seems to behave inversely to the THz energy, i.e. the
ellipticity is maximum when the THz energy is low, and
vice versa.

Furthermore, typical THz waveshapes obtained for
50 fs long pump pulses, also calculated using the LC
model, are shown in Fig. 6 for different valued of θ2,

FIG. 5. THz energy (a,b) and frequency-averaged ellipticity
(c,d) as a function of the rotation angle θ2 for SH considering
(a,c) circular polarization and (b,d) linear polarization for FH.
The vertical lines indicate selected values of θ1, θ2, [marked by
numbers in (c,d)] for which the respective pump waveshapes
are shown in Fig. 4. Ellipses illustrate the polarization states
of FH and SH.

assuming equal amplitudes of FH and SH, ϕ = 0, and
θ1 to be either 0 or π/4. We can observe that the THz
waveshapes for these parameters develop within a single,
nearly half-cycle spike, which is a typical signature for
this photoionization-induced generation mechanism. For
longer pump pulse durations, the ellipticity of the THz
radiation decreases, as can be observed from Fig. 7.

To explain these observations and gain a general un-
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derstanding of how THz waveshapes are formed, we ap-
proach the problem analytically in the following and
initially focus on the limit ω → 0. Furthermore, we
mainly discuss the ellipticity of the emitted THz radi-
ation (rather than particular waveshapes).

IV. THZ WAVESHAPES IN THE ZERO
FREQUENCY LIMIT

Assuming ionization far below saturation (that is,
ρe ≪ ρat), and neglecting the effects of the field envelope,
we can expand the pump electric field into harmonics of
the fundamental frequency ω0:

E(t) =
∑
m

Eme−imω0t, (10)

where we assume E0 = 0 in what follows (no DC compo-
nent in the pump). Note that because E(t) is real-valued,
Em = E∗

−m holds, where ∗ denotes the complex conju-
gate. Similarly, the ionization rate W (t) can be written
as a sum over harmonics lω0,

W (t) =
∑
l

Wle
−ilω0t. (11)

Then, according to Eq. (2), which simplifies to

∂tρe ≈ ρatW, (12)

the time derivative of the electron density ∂tρe is periodic
and can also be written as a Fourier series. Thus, the
electron density ρe(t) reads

ρe(t) ≈
∑
l

ρle
−ilω0t + ρatW0t, (13)

and the coefficients ρl are given by

ρl = i
ρat
ω0l

Wl, l ̸= 0. (14)

The coefficient ρ0 can be formally computed as ρ0 =
ρe(t = 0)−

∑
l ̸=0 ρl. We note that the non-periodic term

in Eq. (13) conflicts with our initial assumption ρe ≪ ρat.
This inconsistency comes from neglecting the finite pulse
duration and using Fourier series expansion. However,
the non-periodic term and the coefficient ρ0 do not play
any role in the following considerations.

With Eqs. (5), (10) and (13) we have

EBr ∝ ρeE =
∑
m,l

ρle
−ilω0tEme−imω0t + ρatW0tE. (15)

In this section, we are interested in the zero frequency
limit. Therefore, only summands with m = −l con-
tribute:

EBr,0 ∝
∑
m̸=0

Emρ−m. (16)

Here, we can exclude m = 0 from the summation because
E0 = 0, and therefore the coefficient ρ0 does not con-
tribute to EBr,0. Only the harmonics of the fundamental
frequency ω0 contribute to EBr,0, which is why we call
Eq. (16) ”frequency representation” in what follows.
Since ionization takes place on the subcycle scale of the

optical driver near the maxima of the pump electric field,
the free electron density growths in the form of ”sharp
steps,” [20]:

ρe(t) ≈
∑
n

δρnΘ(t− tn), (17)

where Θ(t) is the Heaviside step-function, tn are the po-
sitions of the ionization events, and δρn are the step sizes.
The time derivative of the electron density then reads

∂tρe(t) ≈
∑
n

δρnδ(t− tn), (18)

where δ(t) denotes the Dirac δ function. For the assumed
pump electric field configuration, the sequence of ioniza-
tion steps tn is periodic with period 2π/ω0. Assuming
Nc ionization events per optical cycle, we can write

∂tρe(t) ≈
Nc∑
n=1

δρn
∑
j

δ(t− tn + 2πj/ω0) (19)

as a sum of Nc Dirac combs with period 2π/ω0. The
Fourier representation of one Dirac comb reads∑

j

δ(t− tn + 2πj/ω0) =
ω0

2π

∑
l

e−ilω0(t−tn) . (20)

Therefore, we find the Fourier series representation for
the time derivative of the electron density as

∂tρe(t) =
∑
l

(
ω0

2π

Nc∑
n=1

δρne
ilω0tn

)
e−ilω0t . (21)

With Eq. (11) and Eq. (12) we can conclude that

Wl =
ω0

2πρat

Nc∑
n=1

δρne
ilω0tn , (22)

and Eq. (14) yields

ρl =
i

2πl

Nc∑
n=1

δρne
ilω0tn , l ̸= 0. (23)

Thus, with Eq. (16) we arrive to:

EBr,0 ∝
∑
m̸=0

Nc∑
n=1

δρnEm

m
e−imω0tn . (24)

This expression can be simplified using the vector poten-
tial ∂tA(t) = −E(t). With

A(t) =
∑
m

Ame−imω0t (25)
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FIG. 6. Selected THz waveshapes for circular (a,b) and linear (c,d) polarization of FH for different values of θ2 ≡ θ.

we find

Am = − i

mω0
Em, m ̸= 0 (26)

for the mth harmonic. If we further set A0 = 0, we get

A(t) = −
∫ t

−∞
E(t′)dt′, (27)

and Eq. (24) can be expressed as

EBr,0 ∝
∑
m

Nc∑
n=1

δρnAme−imω0tn . (28)

Eq. (28) as well as Eq. (24) represent the ”mixed repre-
sentation”: they contain the harmonics of the pump, Em

or Am, respectively, and, at the same time, the step sizes
of ionization δρn in time; see Fig. 8.
To further understand the physical meaning of EBr,0,

we use Eq. (25) to obtain from Eq. (28) the ”time repre-
sentation”, cf. Ref [59],

EBr,0 ∝
Nc∑
n=1

δρnA(tn). (29)

This equation allows to predict which pump waveshapes
generate THz radiation effectively [20]: for each ioniza-
tion event, one must optimize δρn and A(tn) simultane-
ously, which is not trivial: Since the tn are located at

the extrema of E(t), for simple (e.g., single-color) pump
waveshapes, |A(tn)| ≈ 0, rendering δρnA(tn) negligible.
Examples of two-color pump waveshapes with δρnA(tn)
for each ionization event (red arrows) are shown in
Fig. 4. Comparing, for instance, the cases Fig. 4(a).2 and
Fig. 4(b).2, one can see that even though the amplitude
of E(tn) is the same and thus δρn is similar, δρnA(tn) is
larger in case (a).2 due to the larger amplitude of A(tn).
For certain pump configurations, there is more than one
significant ionization event per cycle, e.g., for case 4 in
Fig. 4(a). In general, if several ionization events with
comparable amplitudes are present, they tend to cancel
each other out, at least partially, since A(tn) are point-
ing in different directions. As a result, the maximum
THz yield is achieved when one ionization event domi-
nates. For a circularly polarized two-color pump pulse
with corotating SH and FH [see Fig. 4(a).2], this prop-
erty clearly appears and the large THz yield is confirmed
in Fig. 5(a) [30, 33, 35].

The physics behind Eq. (29) is easy to understand, as
depicted in Fig. 8: The electron, leaving the atom with
negligible initial velocity, experiences acceleration in the
field dv/dt ∝ E. Integrating this expression from the
electron birth time tn to t = ∞, we obtain the electron
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FIG. 7. Frequency-averaged THz ellipticities ⟨ϵ⟩ according
to Eq. (6) as a function of the pump pulse duration τ [see
Eqs. (7)-(9)] for ϕ = 0: (a) co-rotating circularly polarized
FH and SH with equal amplitudes (CP-S), and (b) linearly
polarized FH and circularly polarized SH.

velocity after the pulse,

v(t → ∞, tn) ∝
∫ ∞

tn

E(t′)dt′. (30)

Because

0 = E0 =

∫ ∞

−∞
E(t′)dt′ =

∫ tn

−∞
E(t′)dt′ +

∫ ∞

tn

E(t′)dt′

we find with Eq. (27) that

v(t → ∞, tn) ∝ A(tn). (31)

The fact that the electron velocity is proportional to
the vector potential at the time of ionization is well
known [60]. It is the heart of the so-called atto-streaking
technique [61, 62], which allows one to measure the wave-
form of a strong pulse in a rather direct way – in contrast
to other pulse-characterization techniques.

The net current density produced by the pulse reads

∆J =

Nc∑
n=1

δρnv(t → ∞, tn) ∝
Nc∑
n=1

δρnA(tn), (32)

which was already exploited in the context of THz gen-
eration [20, 40, 63, 64]1. Since we assume that there is
no net current density before the pulse arrives, J(t →
−∞) = 0, we find

EBr,0 ∝ ∆J = J(t → ∞)− J(t → −∞) = J(t → ∞).

Because the current density J is a real-valued vector,
the 0th harmonic EBr,0 must be linearly polarized. This
follows directly from the Jones formalism, in which
any elliptically (or circularly) polarized field requires a
complex-valued description. Thus, the 0th Brunel har-
monic is linearly polarized in the direction in which the
electrons fly after the pulse has passed. This property is
valid for arbitrary pump shapes.
For the particular case of a two-color pump, the polar-

ization of the THz field is determined by the harmonics
m = 1, 2. In the ”mixed representation” of Eq. (24) we
find

EBr,0 ∝
Nc∑
n=1

δρn

(
E1e

−iω0tn −E−1e
iω0tn

+
E2

2
e−2iω0tn − E−2

2
e2iω0tn

)
.

(33)

To see how this ”mixed representation” can be used, let
us consider the particular waveshape Eqs. (7)-(9) with
ϵω0 = ϵ2ω0 = 1 and ϕ = 0. This is the well-known CP-S
waveshape, with both FH and SH being circularly polar-
ized and co-rotating [8, 33, 35, 36]. Here, we consider
this pump waveshape through our analytical approach.
In Fig. 9, where FH and SH have identical amplitudes,
there is only one ”main” maximum per optical cycle [cf.
Fig. 4(a).2], which appears at t1 = 0 for our choice of
ϕ = 0. As before, we neglect the effects of the field enve-
lope in the analytical treatment and consider plane waves
by taking the limit τ → +∞. Then, the pump harmonics
amplitudes read

E1 =
eω0

2
(1,+i) , E−1 =

eω0

2
(1,−i) , (34)

E2 =
e2ω0

2
(1,+i) , E−2 =

e2ω0

2
(1,−i) , (35)

where (a, b) on the right-hand side represents a Jones
vector with the corresponding x and y components. Sub-
stituting Eqs. (34) and (35) into Eq. (24) gives

EBr,0 ∝ (0, 1). (36)

Thus, the 0th harmonic for this pump configuration is
linearly polarized in the y-direction. More generally, for
an arbitrary phase ϕ between the co-rotating circularly

1 The relevant quantity in [20] is vf (t) =
∫ t
−∞ E(t′)eγ(t−t′)dt′,

where γ describes collision-induced decay of the current. Ne-
glecting γ restores the vector potential A(t) on the right side of
this expression.
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FIG. 8. Different representations of the zero frequency component EBr,0. (a) Time representation – corresponds to Eq. (29):
EBr,0 can be determined using the information on the vector potential A(tn) in the vicinity of the ionization events tn and
the corresponding ionization steps δρn. Note that A(tn) represents the velocity v(t = ∞) that the electrons born at tn
have acquired after the pulse has passed. (b) Frequency representation – corresponds to Eqs. (16) and (26) and utilizes the
polarization states Am and the electron density Fourier coefficients ρm of the mth harmonic. (c) Mixed representation –
corresponds to Eq. (28), using Am in frequency space and δρn in the time domain, together with the phase information on the
ionization event exp(imtnω0).

polarized FH and SH pump fields, the ”main” maximum
of the electric field shifts from t1 = 0 to t1 = −ϕ/ω0, and
Eq. (35) has to be modified into

E2 =
e2ω0

2
(1,+i) e−iϕ, E−2 =

e2ω0

2
(1,−i) eiϕ. (37)

Then, using common trigonometric transformations, it is
easy to see that the entire waveshape is rotated by −ϕ,
giving the polarization of the THz field as

Ebr,0 ∝ (sinϕ, cosϕ) . (38)

This well-known property [28, 33, 35, 36] is illustrated in
Fig. 9(a-c). In the next section, more general examples
are addressed.

V. THZ WAVESHAPES AT NON-ZERO
FREQUENCIES

As shown in the previous section, the THz polariza-
tion at ω → 0 is always linear. This is of course not sur-
prising, since no temporal dynamics is possible at zero
frequency. The orientation of the polarization depends
on the final direction of the net current density, which
in turn depends on the pump waveshape. For non-zero

frequencies, the situation is more involved. In Fig. 10, we
present the spectrum, ellipticity, and polarization angle
of the THz radiation computed for an exemplary pump
pulse of finite duration using the LC model Eq. (5). The
remarkable feature is that, while the polarization angle
remains constant with frequency in first-order approx-
imation (ω/ω0 < 0.2), the THz ellipticity increases lin-
early, revealing a “linear chirp of ellipticity”. As we show
later, this is a generic feature of ionization-based THz
generation.

In the next subsections, we derive the general expres-
sions for the polarization state for arbitrary pump wave-
shape for (low) non-zero frequencies, and present closed
analytical expressions for the linear ellipticity chirp for
some selected pump waveshapes.

A. THz polarization state for generic multi-color
pump pulses

For simplicity, we assume ρe ≪ ρat as in the previous
section, but now we have to consider the finite duration of
the pump pulse. In this situation, the pump waveshape is
no longer periodic. Therefore, in this section, N denotes
the (finite) total number of ionization events in the pulse
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FIG. 9. (a,b,d-f) Pump waveshapes (black lines) for the CP-S configuration (a,b) and linearly polarized FH + circularly
polarized SH (d-f) for an exemplary pulse duration of 50 fs and different phases ϕ between FH and SH. The associated THz
waveshapes are shown by red lines (their amplitudes are rescaled to make them comparable to the pump fields). (c) Numerically-
computed THz waveshapes for the CP-S case for various values of ϕ (solid lines) compared to their corresponding analytical
solution of Eq. (38) (dashed lines).

and must not be confused with the number of ionization
events per optical cycle Nc used before. Since EBr(t) ∝
ρe(t)E(t), we find a convolution integral in the Fourier
domain,

ÊBr(ω) ∝
∫ ∞

−∞
ρ̂e(ω − Ω)Ê(Ω)dΩ, (39)

where ̂ symbol refers to the Fourier transform in time.
From Eq. (18) we immediately get

−iωρ̂e(ω) ≈
N∑

n=1

δρne
iωtn , (40)

which implies that ρ̂e(ω) is rather broad in frequency
space. In contrast, we assume that the multi-color pump
field Ê(ω) is given by narrow peaks at the harmonic fre-
quencies. These narrow peaks will be approximated by

Dirac δ functions in the following, and we write

Ê(ω) ≈
∑
m

Emδ(ω −mω0), (41)

setting E0 = 0. We note that the approximation Eq. (41)
renders the pump field similar to Eq. (10) used in the pre-
vious section. However, we must remember that Eq. (41)
is only an approximation to facilitate further computa-
tions. In this section, we will not use any discrete Fourier
series expansion of periodic waveforms but only continu-
ous Fourier transforms of finite pulses.

With Eqs. (39)-(41), the Brunel radiation in the THz
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FIG. 10. (a) Spectra of THz radiation, (b) THz spectral ellipticity, and (c) orientation of the THz polarization ellipse versus
frequency considering right-handed circular polarization for SH and linear or right-handed circular polarization for FH (see
legend), numerically computed from the LC model Eq. (5). The amplitudes of the two pump harmonics are equal, their
durations are 50 fs, and ϕ = 0.

range can be expressed as

ÊBr(ω) ∝
N∑

n=1

δρn

∫
Ê(Ω)

ei(ω−Ω)tn

ω − Ω
dΩ

=
∑
m

N∑
n=1

δρnEm
ei(ω−mω0)tn

ω −mω0
.

(42)

This is, in general, a complex function of ω. However,
for small ω one can approximate it as

ÊBr(ω) ∝ µ0 + µ1

ω

ω0
+ . . . , (43)

where the vector-valued coefficients µ0 and µ1 are

µ0 = −
∑
m

N∑
n=1

δρnEm
e−imω0tn

mω0
, (44)

µ1 = −
∑
m

N∑
n=1

δρnEm
e−imω0tn (1 + imω0tn)

m2ω0
. (45)

Alternatively, in terms of A we can write, cf. Eq. (26):

µ0 = −i
∑
m

N∑
n=1

δρnAme−imω0tn , (46)

µ1 = −i
∑
m

N∑
n=1

δρnAm
e−imω0tn (1 + imω0tn)

m
. (47)

With these expressions, it is possible to compute the el-
lipticity ϵ(ω) of the THz polarization ellipse at each fre-
quency. We note that the zero-order term Eq. (46) co-
incides with Eq. (28), except that here we sum over all
ionization events of the pulse. Thus, for ω = 0, we ob-
tain a linearly polarized THz field, consistent with the
previous section.

B. THz ellipticity ϵ(ω) for the multi-color case

When taking into account zero ellipticity at ω = 0 and
neglecting higher order terms in ω, Eq. (43) predicts a
linearly increasing ellipticity with ω:

ϵ(ω) ≈ B ω

ω0
, ω ≪ ω0, (48)

that is, the ellipticity is linearly chirped in frequency, and
we call B the “ellipticity chirp”. To obtain an analytical
expression for B, let us first recall that since the electric
field satisfies Em = E∗

−m and E0 = 0, we can rewrite
Eqs. (44) and (45) as

µ0 = −2i

N∑
n=1

δρn
∑
m>0

ℑ
[
Em

mω0
e−imω0tn

]
, (49)

µ1 = −2

N∑
n=1

δρn
∑
m>0

ℜ
[
Em(1 + imω0tn)e

−imω0tn

m2ω0

]
.

(50)

Therefore, µ0 is pure imaginary, while µ1 always takes
real values.
To compute the ellipticity ϵ(ω), we have to evaluate

the orthogonal component of µ1 with respect to µ0. This
amounts to computing the cross-product of both vectors
normalized to the reference vector µ0, namely,

B =
|µ0 × µ1|
|µ0|2

, (51)

or equivalently:

B =
|µ1yµ0x − µ1xµ0y|
|µ0x|2 + |µ0y|2

. (52)

For elliptically polarized multi-color pump fields, |B| >
0 and therefore non-zero frequency components of the
generated THz pulse are generally elliptically polarized.
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C. THz ellipticity ϵ(ω) for the two-color case

Here we consider a vectorial electric field for the in-
cident two-color pump pulse given by Eqs. (7)–(9). We
simplify the SH component to circular polarization by
setting ϵ2ω0 = 1. Still, the FH component may have an
arbitrary ellipticity ϵω0 , and we allow for an arbitrary
phase and ratio of amplitudes between SH and FH. Fur-
thermore, we ignore the contributions of the Gaussian
envelope. As illustrative examples, we will address two
polarization geometries: A CP-S polarization state (co-
rotating FH and SH) where ϵω0

= 1, and a x linearly
polarized FH coupled to a circularly polarized SH where
ϵω0

= 0. Examples of pump and numerically calculated
THz waveshapes for different values of the phase ϕ be-
tween FH and FH are shown in Fig. 9(a-c) for the former
(CP-S) and Fig. 9(d-f) for the latter case.

In the Jones representation, such an input field is ex-
pressed as

E1 =
eω0

2
(1,+iϵω0

) , E−1 =
eω0

2
(1,−iϵω0

) , (53)

E2 =
e2ω0

2
(1,+i) e−iϕ, E−2 =

e2ω0

2
(1,−i) e+iϕ. (54)

Evaluating Eqs. (44) and (45) yields

µ0 = −i

N∑
n=1

δρn
ω0

[
eω0

(
− sin (ω0tn)
ϵω0

cos (ω0tn)

)
+

e2ω0

2

(
− sin (2ω0tn + ϕ)
cos (2ω0tn + ϕ)

)]
, (55)

µ1 = −
N∑

n=1

δρn
ω0

[
eω0

(
cos (ω0tn) + ω0tn sin (ω0tn)

ϵω0
[sin (ω0tn)− ω0tn cos (ω0tn)]

)
+

e2ω0

4

(
cos (2ω0tn + ϕ) + 2ω0tn sin (2ω0tn + ϕ)
sin (2ω0tn + ϕ)− 2ω0tn cos (2ω0tn + ϕ)

)]
.

(56)

The instants of ionization tn depend on the polarization
geometry of the input field. They correspond to maxima
of the absolute value of the pump electric field |E|. For
our two-color pulse, one has

|E(t)|2 = e2ω0

(
1 + ϵ2ω0

2
+ r2 + r(1 + ϵω0) cos (ω0t+ ϕ)

+
1− ϵ2ω0

2
cos (2ω0t) + r(1− ϵω0) cos (3ω0t+ ϕ)

)
, (57)

where r ≡ e2ω0
/eω0

. The ionization instants tn are de-
termined by the roots of ∂t|E(t)|2 = 0, from which we
have to select those that satisfy ∂2

t |E(t)|2 < 0.
In CP-S geometry (ϵω0

= 1) one has to solve
sin (ω0t+ ϕ) = 0. The ionization instants are given by

ω0tn = 2nπ − ϕ. (58)

For a x linearly polarized FH (ϵω0
= 0), the ionization

instants proceed from the roots of

∂

∂t
{cos (ω0t)[cos (ω0t) + 2r cos (2ω0t+ ϕ)])} = 0. (59)

Solving this equation is difficult for an arbitrary ϕ, and in
this paper only the limit r → 1 is considered. Yet, there
exist exact solutions for particular values of ϕ, namely,

ϕ = 0 → ω0tn = 2nπ, (60)

ϕ =
π

4
→ ω0tn = arctan

(√
2−

√
6√

2 +
√
6

)
+ 2nπ, (61)

ϕ =
π

2
→ ω0tn = nπ − (−1)n

π

6
. (62)

Whereas for ϕ = 0 and ϕ = π/4 there are only one strong
ionization event over the cycle, for the case ϕ = π/2 there
are two events with equal amplitudes, given by n = 2πn
and n = (2n + 1)π (see insets in Fig. 11). We note that
the influence of the phase angle ϕ on the laser-to-THz
conversion efficiency was studied extensively in Refs. [16,
19, 20, 44, 65]. Here, we complement these findings by
its impact on the THz waveforms and ellipticities. In
the following, we consider two distinct situations: zero
or non-zero relative phase ϕ.

1. Zero relative phase

For ϕ = 0, Eqs. (58) and (60) show that ionization
events occur at tn = 0 modulo 2π/ω0. In the CP-S ge-
ometry (ϵω0

= 1), one finds from Eqs. (55) and (56):

µ0 = − 1

ω0

N∑
n=1

δρn

(
eω0 +

e2ω0

2

)(
0
i

)
,

µ1 = − 1

ω0

N∑
n=1

δρn

(
eω0 +

e2ω0

4
−2nπ

[
eω0 +

e2ω0

2

]) ,

(63)

and the slope B, cf. Eq. (52), is given by

B =

∣∣∣∣µ1x

µ0y

∣∣∣∣ = ∣∣∣∣eω0 + e2ω0/4

eω0
+ e2ω0

/2

∣∣∣∣ . (64)

For FH and SH with equal amplitudes this yields B =
5/6, that is,

ϵ(ω) =
5

6

ω

ω0
for eω0

= e2ω0
, (65)

which slightly corrects the result obtained in [8].
In the hybrid polarization geometry (FH is LP; SH is

CP – ϵω0 = 0), we find

µ0 = − 1

ω0

N∑
n=1

δρn
eω0

2

(
0
i

)
,

µ1 = − 1

ω0

N∑
n=1

δρn

(
eω0

+
e2ω0

4
−nπe2ω0

) (66)

and

B =

∣∣∣∣µ1x

µ0y

∣∣∣∣ = ∣∣∣∣eω0
+ e2ω0

/4

eω0/2

∣∣∣∣ . (67)
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For FH and SH with equal amplitudes, we easily obtain
B = 5/2, that is,

ϵ(ω) =
5

2

ω

ω0
for eω0

= e2ω0
. (68)

In Fig. 10, we compare the ellipticities given by
Eq. (65) and Eq. (68) with the numerical simulations
of the LC model Eq. (5). That is, the spectral inten-
sity of the THz radiation, together with the frequency-
dependent ellipticity and rotation angle, is shown for a
pulse with 50 fs duration and 100 TW/cm2 intensity and
circular polarization of SH, combined with linear or cir-
cular polarization of FH. As observed in Fig. 10(b), the
analytical solutions given by Eq. (65) and Eq. (68), which
are indicated in red and black lines for the cases of circu-
lar and linear polarization of FH, respectively, perfectly
match the simulation results represented by the circle and
square symbols. In contrast to ellipticity, which changes
with frequency, the polarization direction for small fre-
quencies is constant. This is supported by Fig. 10(c),
where the 90 degree polarization direction, given by the
direction of A(tn) [cf. also Fig. 8(a)], coincides with the
analytical predictions.

2. Non-zero relative phase

When ϕ is non-zero, Eq. (58) shows that for the CP-
S geometry (ϵω0 = 1) the maximum of the electric field
shifts from 0 to −ϕ/ω0 modulo 2π/ω0. Repeating the
previous calculations and applying Eq. (52) leads to the
ϕ-independent expression of the THz ellipticity:

B =
|µ1y(µ0x)− µ1x(µ0y)|

|µ0|2
=

∣∣∣∣eω0
+ e2ω0

/4

eω0
+ e2ω0

/2

∣∣∣∣ . (69)

Thus, the ellipticity does not change with varying ϕ,
which is in agreement with Fig. 9(a-c).

By contrast, for a linearly polarized FH and a circu-
larly polarized SH (ϵω0

= 0), the THz ellipticity becomes
dependent on ϕ. For certain configurations, cf. Eq. (61)
and Eq. (62), analytical results for FH and SH with equal
amplitudes (eω0

= e2ω0
) can be found and Eq. (52) yields

ϕ =
π

4
→ B = 1 +

3
√
3

4
, (70)

ϕ =
π

2
→ B =

π√
3
− 1

2
. (71)

Thus, from the slope 5/2 achieved when ϕ = 0, the THz
ellipticity decreases for non-zero ϕ, corresponding to a
flattening of the polarization ellipse. The minimum slope
is found for ϕ = π/2, where two ionization events per cy-
cle contribute. This behavior is shown in Fig. 11. We
note that the numerical solution of the LC model Eq. (5)
yields a significantly lower value for B for ϕ = π/2 than
our analytical model Eq. (52). This discrepancy can be
attributed to the finite duration of the ionization events

and their asymmetry with respect to the field maxima
(see the insets of Fig. 11), which are not taken into ac-
count in Eq. (52).
However, Eq. (52) predicts the right trend, namely a

decrease of B when ϕ → π/2. This trend can be un-
derstood by the appearance of a second ionization event
per cycle that renders |µ0| and thus the denominator in
Eq. (51) large. This decrease in B for pump configura-
tions with more than one ionization events per optical
cycle is, however, not generic because of the complex ex-
ponential factors in Eqs. (46)-(47). In particular, Eq. (43)
implies that

µ0 ∝ EBr,0, (72)

where EBr,0 is the THz field at ω → 0. Thus, contri-
butions to µ0 from different ionization events within the
optical cycle may cancel each other out, rendering |µ0|
very small [see previous discussion about possible van-
ishing of EBr,0 below Eq. (29)]. By contrast, µ1 is not
affected by this cancelation because with∫ t

−∞
A(t′)dt′ =

i

ω0

∑
m

Am

m
e−imω0t (73)

we find

µ1 = ω0

N∑
n=1

δρn

[
tnA(tn)−

∫ tn

−∞
A(t′)dt′

]
̸= 0. (74)

Therefore, we observe a significantly larger frequency-
averaged ellipticity for cases with small µ0 in the numer-
ical solutions of the LC model Eq. (5). That is, when
the THz energy is small, the ellipticity is large. This
behaviour can indeed be observe in Fig. 5.

D. Frequency-averaged THz ellipticity

The previous analysis suggests a straightforward phys-
ical explanation for the non-zero ellipticity of the THz
pulses produced by pump fields with finite duration. We
can expect that the larger the THz pulse bandwidth
∆, the larger the frequency-averaged ellipticity, provided
that ωco > ∆. The dependence of the ellipticity of THz
pulses on the duration of the pump pulse was already re-
ported in [20, 37, 66]. Using the equations derived above,
we can provide a rough estimate of this dependency. The
bandwidth ∆ can be estimated as ∆ ≈ 2/τ (which is
a suitable approximation for unchirped Gaussian pulses
[38]). We may also assume that the THz spectrum spans
from 0 to ∆ and has a roughly constant spectral intensity
in this range. Under these assumptions, we obtain

⟨ϵ(ω)⟩ ≈ 1

∆

∆∫
0

ϵ(ω)dω =
B
ω0τ

. (75)

This estimate is in good agreement with Fig. 7, where the
dependencies ⟨ϵ(ω)⟩ ∝ B/τ predicted by the analytics is
clearly visible.
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FIG. 11. Numerical results obtained from the LC model (lines
and circles): (a) Relative THz intensities, (b) values of el-
lipticity chirp factor B and (c) polarization angle, functions
of the relative phase ϕ between FH and SH, for FH being
linearly and SH circularly polarized. Stars show analytical
predictions. Insets show the pump waveshapes for the same
values of ϕ as in Fig. 9(d-f) [ϕ = 0 in (a), ϕ = π/4 in (b)
and ϕ = π/2 in (c)], with arrows indicating the electric field
vectors for the dominant ionization events tn; shaded region
shows the “extend” of the ionization events (full-width-half-
maximum of the ionization rate’s peaks are indicated). Note
the asymmetry of the field shape around the center of ioniza-
tion event in all cases except for ϕ = 0.

VI. CONCLUSIONS AND DISCUSSION

In conclusion, we analyzed the THz waveshapes gener-
ated via the ionization-based Brunel mechanism by two-
and multi-color pump pulses with nontrivial polarization.
By numerically solving the local current model and ana-
lytical evaluations, we have shown that photo-ionization-

driven THz waveshapes have in general a frequency-
dependent ellipticity. In the limit of zero frequency, the
generated radiation is linearly polarized, and the polar-
ization vector points in the direction of the free current
formed by the ionized electrons moving away from the
parent ions after the pump pulse has passed. The ellip-
ticity is generally linearly dependent on the frequency, i.e.
the THz waveshapes possess a “linear ellipticity chirp”,
whose magnitude B depends on the particular driving
pulse. This behavior sets ionization-based THz emission
appart from other schemes, which tend to produce, at
least in the first approximation, pulses with constant el-
lipticity across the frequency bandwidth.
The ellipticity chirp B tends to strongly peak for the

pump waveshapes, where free electron currents from sev-
eral ionization events cancel each other. Since the net
THz energy in such situations is low, as a rule of thumb,
the ellipticity chirp is high for low THz energy and vise
versa (for comparable free electron densities). Pulses
with non-zero ellipticity chirp B do not have a well-
defined polarization state. Yet, one can introduce a
frequency-averaged THz ellipticity ⟨ϵ⟩, which is propor-
tional to the spectral width of the pump pulse. Decreas-
ing, for instance, the pump pulse duration τ increases
the THz bandwidth, and thereby increases its average el-
lipticity, so in general we have ⟨ϵ⟩ ∼ 1/τ . In contrast,
the polarization direction is in first-order approximation
independent of the frequency and coincides with the net
free electron current which, in turn, is determined by the
values of the vector potential A(tn) at the ionization in-
stants tn (n = 1, 2, . . .).
Our results demonstrate the unique properties of THz

waveforms produced in gas plasmas by polarization con-
troled multi-color pulses. If the characteristics of the
pump (polarization states and relative phases of its com-
ponents) are similar in the whole plasma volume, these
properties should be directly observable in the generated
THz radiation. If the pump characteristics change over
the pump pulse duration, or in space, such as in the
case of filaments, our results can be considered as the
first building block for more complex THz waveshapes
by superimposing different locally generated waveforms
[26, 54], giving rise to a even larger diversity of THz wave-
shapes.

ACKNOWLEDGEMENT

I.B., A.D. and U.M. are thankful for funding by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strat-
egy within the Cluster of Excellence PhoenixD (EXC
2122, Project ID 390833453). V. V. acknowledges sup-
port from the “Universities’ Excellence Initiative” pro-
gramme. This project has received funding from the
European Union’s Horizon 2020 research and innova-
tion programme under Grant Agreement No. 871124
Laserlab-Europe.



14

[1] W. L. Chan, J. Deibel, and D. M. Mittleman, “Imag-
ing with terahertz radiation,” Rep. Prog. Phys. 70, 1325
(2007).

[2] M. Tonouchi, “Cutting-edge terahertz technology,” Nat.
Photonics 1, 97 (2007).

[3] B. Marx, “Terahertz technology detects counterfeit
drugs,” Laser Focus World 43, 44 (2007).

[4] S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies,
M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch,
P. Weightman, G. P. Williams, et al., “The 2017 tera-
hertz science and technology roadmap,” J. Phys. D: Appl.
Phys. 50, 043001 (2017).

[5] Zh. Ma, P. Li, S. Chen, and X. Wu, “Optical genera-
tion of strong-field terahertz radiation and its application
in nonlinear terahertz metasurfaces,” Nanophotonics 11,
1847 (2022).

[6] T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J.
Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R.
Freeman, and F. A. Hegmann, “An ultrafast terahertz
scanning tunnelling microscope,” Nat. Photonics 7, 620
(2013).

[7] S. Katletz, M. Pfleger, H. Pühringer, M. Mikulics,
N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch,
and K. Wiesauer, “Polarization sensitive terahertz imag-
ing: detection of birefringence and optical axis,” Opt.
Express 20, 23025 (2012).

[8] I. Babushkin, A. J. Galán, J. R. C. de Andrade,
A. Husakou, F. Morales, M. Kretschmar, T. Nagy,
V. Vaičaitis, L. Shi, D. Zuber, et al., “All-optical atto-
clock for imaging tunnelling wavepackets,” Nat. Physics
18, 417 (2022).
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