
HAL Id: hal-04625023
https://hal.science/hal-04625023

Preprint submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supplementary file for the article ”Trade-off between
predictive performance and FDR control for
high-dimensional Gaussian model selection”

Perrine Lacroix, Marie-Laure Martin

To cite this version:
Perrine Lacroix, Marie-Laure Martin. Supplementary file for the article ”Trade-off between predictive
performance and FDR control for high-dimensional Gaussian model selection”. 2024. �hal-04625023�

https://hal.science/hal-04625023
https://hal.archives-ouvertes.fr


Electronic Journal of Statistics
ISSN: 1935-7524

Supplementary file for the article
“Trade-off between predictive performance
and FDR control for high-dimensional

Gaussian model selection”
Perrine Lacroix

Laboratoire de Mathématiques d’Orsay, CNRS, Université Paris-Saclay, Orsay, France
Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences

Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur

Yvette, France
e-mail: perrine.lacroix@universite-paris-saclay.fr

and

Marie-Laure Martin
Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120,

Palaiseau, France
Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences

Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur

Yvette, France
e-mail: marie-laure.martin@inrae.fr

Abstract: This supplementary file is an appendix of the article entitled
"Trade-off between predictive performance and FDR control for high-dimensional
Gaussian model selection" [3]. This file contains three sections. Section 1
contains theoretical and empirical justifications about the estimator choice
of unknown parameters β∗, D∗

m and σ2 involved in the theoretical FDR
bounds in Theorem 3.2. It is a complementary work to Subsection 4.1.
Section 2 contains plots as a complement to Section 1 for the bounds
B(K, β̂m̂(K̃), σ̂

2) for each of the four scenarios described in Table 4 of Sec-
tion 7. Section 3 contains studies and plots evaluating the robustness of
the model collections; studies and tables of results of the random model
collection constructions and results of the variable selection procedure ap-
plications for scenarios (ii), (iii) and (iv) described in Table 4 of Section 7.
This last section is a complementary work to Subsections 4.3 and 4.4 of [3].
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1. Estimation of the theoretical FDR

This section completes Subsection 4.1 of [3] and is devoted to the study of the
theoretical upper bound terms of the FDR in Theorem 3.2 for a practical point
of view.

The FDR bounds of Theorem 3.2 depend on the Pr, the fr(K,β
∗, σ2) and

the fr(K,β∗, σ2) quantities. Concerning the Pr quantities, they do not depend
on the data as soon as r is given. They can be estimated once and for all without
any dataset. For each 1 ≤ r ≤ q, Pr is estimated by generating 5000 independent
standard Gaussian vectors

(
Zk

)
k∈{r+1,··· ,q}

and by counting for each vector the

number of times that Z2
k < K(`− r) for each ` ∈ {r + 1, · · · , q}.

Concerning the f
r
(K,β∗, σ2) and fr(K,β∗, σ2) quantities, they depend on β∗

and σ2, both unknown.
We present the slope heuristic principle and an analyze of the σ̂2, obtained by

the slope heuristics, is processed. Then, a large simulation study is performed
to justify the choice of β̂m̂(4) to estimate β∗ in the upper bound of the FDR.
Both analyses are crucial since both estimators σ̂2 and β̂m̂(4) are proposed as
inputs to the algorithm.

The slope heuristic to estimate σ2. The slope heuristic principle, intro-
duced in [2], is that when Dm is large enough, the empirical values of least
squares 1

n ||Y −Xβ̂m||
2
2 are almost equal to − 1

2nKσ
2Dm plus an additive con-

stant independent of n and m. Hence, it is possible to estimate σ2 from the
dataset by the multiplicative coefficient of the affine behavior between the em-
pirical values of least squares and − K

2nDm for Dm large enough. We use the
function capushe of the R package capushe (version 1.1.1) [1] with parameters
set to the default values.

Some substitutes of β∗. According to [2], β̂m̂(K) is a good estimator of β∗
in a predictive point of view when K is equal or close to 2. We propose to test
the estimators β̂m̂(K̃) for K̃ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, log(n)} to replace β∗

in the lower and upper bounds b(K,β∗, σ2) and B(K,β∗, σ2).
To determine the best constant K̃ among {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, log(n)},
we evaluate all b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2) on the sets D from the

four scenarios described in Section 7 of [3]. To take into account the random-
ness of b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2), the model collection generation
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and model selection given by Equation (2.2) of [3] are processed on a new data
set independent of D for the four scenarios.
To evaluate the error by replacing b(K,β∗, σ2) and B(K,β∗, σ2) with their esti-
mation b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2), we propose to evaluate the relative

changes defined by : ∀K > 0,

b(K, β̂m̂(K̃), σ̂
2)− b(K,β∗, σ2)

b(K,β∗, σ2)

for the lower bound and by :

B(K, β̂m̂(K̃), σ̂
2)−B(K,β∗, σ2)

B(K,β∗, σ2)

for the upper bound. To ensure that B(K, β̂m̂(K̃), σ̂
2) values are larger than the

B(K,β∗, σ2) values and so larger than the FDR ones, positive relative change
values and as close to 0 as possible are expected. Concerning the lower bounds,
negative relative change values are expected to ensure that b(K, β̂m̂(K̃), σ̂

2) val-
ues are smaller than B(K,β∗, σ2) values and so smaller than the FDR ones.
To take into account randomness of the b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2)

terms, we evaluate for all K the relative standard deviation, defined by the
standard deviation divided by the mean, by calculated the variance of bounds
b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2) evaluated on 100 new data sets generated

independently of D. The relative standard deviation values are expected to be
as close to 0 as possible.
Figures S-1-S-3 are plotted from the toy data set. In Figure S-1, the empirical
estimation of the FDR

(
m̂(K)

)
and the quantities b(K,β∗, σ2), B(K,β∗, σ2),

b(K, β̂m̂(K̃), σ̂
2) andB(K, β̂m̂(K̃), σ̂

2) are plotted on a grid of positiveK. Relative
changes and relative standard deviations for the lower bounds b(K, β̂m̂(K̃), σ̂

2)

and upper bounds B(K, β̂m̂(K̃), σ̂
2) are plotted in Figure S-2 and S-3. The graphs

of all others D of the 4 scenarios described in Table 4 of [3] are provided in Sec-
tion 2.

The lower bounds : For K̃ > 1, the relative change values are positive until
achieving more than 2 for large K (Figure S-2 (top)) and the estimated lower
bounds curves can be larger than the theoretical one. The relative standard
deviation functions increase quickly whatever the value of K̃ suggesting that
fluctuations around the mean are not negligible (Figure S-3 (top)).

The upper bounds : For K̃ > 1, the relative change functions are always
positive and do not exceed 0.11 meaning that the B(K, β̂m̂(K̃), σ̂

2) curves are
close to B(K,β∗, σ2) for all K > 0 (Figure S-2 (bottom)). For data sets D other
than the toy data set (Figures S-4, S-7, S-10 and S-13), the relative change val-
ues are always small but can be negative. However, it happens very rarely for
K̃ ≥ 4 and in this case, values are low enough (smaller than −0.02%) to ensure
that the empirical FDR estimation curves do not exceed the B(K, β̂m̂(K̃), σ̂

2)
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terms. Concerning the relative standard deviation functions (Figures S-3 (bot-
tom), S-5, S-8, S-11 and S-14), the larger K̃, the smaller the values, except
for the scenario (ii) with the third configuration where values increase after
K̃ ≥ 4.5. For K̃ ≥ 3.5, the relative standard deviation values are around 0.2
for all the scenarios except for scenario (ii) with the second configuration (can
achieve 0.8) and with the third configuration (can achieve 1). Thus, for a value
of K̃ ∈ {3.5, log(n), 4, 4.5, 5} and eventually except for the two extreme sce-
narios, fluctuations around the mean are small, meaning that the upper bound
estimations are stable.

To conclude, we drop the lower bound to implement our data-driven algo-
rithm for hyperparameter calibration since b(K, β̂m̂(K̃), σ̂

2) functions can be
larger than the theoretical FDR one. To control the FDR, only an upper bound
control is sufficient. The best results for B(K, β̂m̂(K̃), σ̂

2) are obtained with the
hyperparameter K̃ = 4, where the relative change values are almost always
positive, small enough to guarantee that the B(K, β̂m̂(4), σ̂

2) are larger than the
theoretical FDR, and the relative standard deviation values are the smallest ones
whatever the scenarios. So, the estimator used in our algorithm to replace β∗ in
the upper bound of the FDR is β̂m̂(4). A natural estimator of Dm∗ is Dm̂(4). The
value of the hyperparameter K̃ = 4 is not surprising since the value of Dm̂ has to
be small enough in Equation (3.5) of [3] to get an upper bound B(K, β̂m̂(K̃), σ̂

2)
larger than the theoretical upper one. So, the penalization function has to be
large enough in Equation (2.2) of [3].
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Lower bound Upper bound

Figure S-1: Top : Comparison of the empirical values of FDR, the functions
b(K,β∗, σ2) (left) and B(K,β∗, σ2) (right) for the orthogonal design matrix
X and the functions b(K, β̂m̂(K̃), σ̂

2) (left) and B(K, β̂m̂(K̃), σ̂
2) (right) with re-

spectively β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and
β̂m̂(log(n)). The terms b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2) are calculating from

a single data set, independent of those used for the empirical estimations; for a
better readability, we plot curves only for K ≥ 2. Bottom : Same comparison
and estimation only with K̃ = 4.
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Lower bound

Upper bound

Figure S-2: Curves of the relative change values between the function
b(K,β∗, σ2) (top) and B(K,β∗, σ2) (bottom) and the functions b(K, β̂m̂(K̃), σ̂

2)

(top) and B(K, β̂m̂(K̃), σ̂
2) (bottom) with respectively β̂m̂(1), β̂m̂(1.5), β̂m̂(2),

β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)), where estimators
are calculated from a single data set.
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Lower bound

Upper bound

Figure S-3: Curves of the relative standard deviation (standard de-
viation normalized by the mean) of the functions b(K, β̂m̂(K̃), σ̂

2)

and B(K, β̂m̂(K̃), σ̂
2) obtained from 100 data sets. With each one,

β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n))

are calculated given b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2), variance of the 100

b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2) functions and then the relative standard
deviation with respect to K.
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2. Complementary graphs for ordered variable selection

This section completes Subsection 4.1 of [3].
In this section, graphs for scenarios (ii) to (iv) described in Table 4 of

[3] are provided. Relative changes and relative standard deviations for the
B(K, β̂m̂(K̃), σ̂

2) bounds when K̃ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, log(n)} are plot-
ted in Figures S-4 and S-5 for scenario (i), in Figures S-7 and S-8 for scenario (ii),
in Figures S-10 and S-11 for scenario (iii) and in Figures S-13 and S-14 for scenar-
ios (iv). The empirical difference in predictions and the empirical FDR

(
m̂(K)

)
functions, the estimated difference in predictions (Equation 4.2 of [3]) and the
B(K, β̂m̂(4), σ̂

2) functions for a grid of values of K > 0 are plotted on Figure S-6
for scenario (i), Figure S-9 for scenario (ii), Figure S-12 for scenario (iii) and
Figure S-15 for scenario (iv).

When we focus on the scenario (i), the higher the Dm∗ value is, the smaller
the empirical FDR is but the larger the empirical PR for large K is. More-
over, the relative change functions decreases when D∗m increases, as well as the
relative standard deviation ones which remain smaller than 0.5. This can be
explained since the higher Dm∗ , the smaller the number of non active variables,
so the smaller the number of the selected non active variables and the smaller
FDR value. In the opposite trend, the empirical PR increases with Dm∗ since
penalization tends to select too few variables, especially even K moves away
from 2.
As expected, concerning the scenario (ii), when coefficients are smaller than the
amplitude of the noise (the second configuration), values of the relative change
for the B(K, β̂m̂(K̃), σ̂

2) bounds explode (until 105) and the relative standard
deviation values increase until exceed 1. The best results are obtained for the
first β∗ configuration of the scenario (ii), but results still remain reasonable
with the third one. The relative standard deviation functions increase after
K̃ ≥ 4 whereas in all other scenarios, functions always decrease when K̃ in-
creases. When permutations of the ten first variables are processed from the
nested model collection (Equation 2.1 of [3]), B(K, β̂m̂(4), σ̂

2) values begin to
diverge from those of B(K,β∗, σ2) for the second and the third configurations
where the coefficients of β∗ are close to each other. Unlike the other scenarios,
B(K, β̂m̂(4), σ̂

2) and B(K,β∗, σ2) values are both larger than the empirical FDR
ones for the second configuration.
For configuration (iii) and when permutations of the first twelve and fifteen
variables are processed, FDR values are the highest all along the collections
compared to all other scenarios (similar to scenario (iv) and σ2 = 4) and so,
distinction between active and non active variables is more difficult. Proportions
of active variables in models of size 5, 10, 15 and 20 fall to 0.6 with the third
configuration and 0.8 with the second configuration for which the discrimination
between active and non active variables is naturally less obvious.
As for the scenario (iii), we observe unsurprisingly that the higher the value of
n, the smaller the relative change, the smaller the relative standard deviation,
and the tighter the confidence interval of PR (< 0.04 for n = 30). However,
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we note that the computational time to estimate the bounds was significantly
higher for n = 300.
Lastly, concerning the scenario (iv), as expected, the higher the noise amplitude,
the larger the confidence interval for the PR (< 0.45 for σ2 = 4), the higher
the relative change (which equals 0 when σ2 = 0.1 and around 2 when σ2 = 4)
and the higher the relative standard deviation. However, values remain reason-
able even for σ2 = 4 excepted for the empirical PR values which are always
larger than 5. For σ2 = 4 and when permutations of the first twelve and fifteen
variables are processed, FDR values are the highest all along the collections
compared to all other scenarios (similar to scenario (ii) configuration (iii)) and
so, distinction between active and non active variables is more difficult. Unlike
the other scenarios, the Bolasso provides the highest values of proportion of
active variables in models of size 5, 10, 15 and 20 when σ2 = 0.1. Proportions
fall to 0.8 when σ2 = 4.
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2.1. Scenario (i)

|β∗| = 1

|β∗| = 10

|β∗| = 20

Figure S-4: Curves of the relative change values between the functions
B(K,β∗, σ2) and the functions B(K, β̂m̂(K̃), σ̂

2) with respectively β̂m̂(1), β̂m̂(1.5),
β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)) where esti-
mators are calculating from a single data set. Top: for |β∗| = 1. Middle: for
|β∗| = 10. Bottom: for |β∗| = 20.
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|β∗| = 1

|β∗| = 10

|β∗| = 20

Figure S-5: Curves of the relative standard deviation (stan-
dard deviation normalized by the mean) of the functions
B(K, β̂m̂(K̃), σ̂

2) obtained from 100 data sets. With each one,
β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n))

are calculated given B(K, β̂m̂(K̃), σ̂
2), variance of the 100 B(K, β̂m̂(K̃), σ̂

2)
functions and then the relative standard deviation with respect to K. Top: for
|β∗| = 1. Middle: for |β∗| = 10. Bottom: for |β∗| = 20.
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FDR diff-PR

|β∗| = 1

FDR diff-PR

|β∗| = 10

FDR diff-PR

|β∗| = 20

Figure S-6: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-

PR
(
m̂(K)

)
(blue), of theB(K, β̂m̂(4), σ̂

2) functions (pink) and of d̂iff-PR
(
m̂(K)

)
(violet) for K ≥ 2 for the toy data set. Top: for Dm = 1. Middle: for Dm = 10.
Bottom: for Dm = 20.



Lacroix et al./Trade-off between prediction and FDR for variable selection 13

2.2. Scenario (ii)

β∗
10 = 2

10

β∗
10 = 2 and distant coefficients.

β∗
10 = 2 and close coefficients.

Figure S-7: Curves of the relative change values between the functions
B(K,β∗, σ2) and the functions B(K, β̂m̂(K̃), σ̂

2) with respectively β̂m̂(1), β̂m̂(1.5),
β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)) where estima-
tors are calculating from a single data set. Top: for β∗10 = 2

10 . Middle: for β∗10 = 2
and distant coefficients. Bottom: for β∗10 = 2 and close coefficients.
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β∗
10 = 2

10

β∗
10 = 2 and distant coefficients.

β∗
10 = 2 and close coefficients.

Figure S-8: Curves of the relative standard deviation (stan-
dard deviation normalized by the mean) of the functions
B(K, β̂m̂(K̃), σ̂

2) obtained from 100 data sets. With each one,
β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n))

are calculated given B(K, β̂m̂(K̃), σ̂
2), variance of the 100 B(K, β̂m̂(K̃), σ̂

2)
functions and then the relative standard deviation with respect to K. Top: for
β∗10 = 2

10 . Middle: for β∗10 = 2 and distant coefficients. Bottom: for β∗10 = 2 and
close coefficients.
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FDR diff-PR

β∗10 = 2
10

FDR diff-PR

β∗10 = 2 and distant coefficients

FDR diff-PR

β∗10 = 2 and close coefficients

Figure S-9: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-

PR
(
m̂(K)

)
(blue), of theB(K, β̂m̂(4), σ̂

2) functions (pink) and of d̂iff-PR
(
m̂(K)

)
(violet) for K ≥ 2 for the toy data set. Top: for β∗10 = 2

10 . Middle: for β∗10 = 2
and distant coefficients. Bottom: for β∗10 = 2 and close coefficients.
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2.3. Scenario (iii)

n = 30

n = 50

n = 300

Figure S-10: Curves of the relative change values between the functions
B(K,β∗, σ2) and the functions B(K, β̂m̂(K̃), σ̂

2) with respectively β̂m̂(1), β̂m̂(1.5),
β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)) where estima-
tors are calculating from a single data set. Top: for n = 30. Middle: for n = 50.
Bottom: for n = 300.
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n = 30

n = 50

n = 300

Figure S-11: Curves of the relative standard deviation (stan-
dard deviation normalized by the mean) of the functions
B(K, β̂m̂(K̃), σ̂

2) obtained from 100 data sets. With each one,
β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n))

are calculated given B(K, β̂m̂(K̃), σ̂
2), variance of the 100 B(K, β̂m̂(K̃), σ̂

2)
functions and then the relative standard deviation with respect to K. Top: for
n = 30. Middle: for n = 50. Bottom: for n = 300.
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FDR diff-PR

n = 30

FDR diff-PR

n = 50

FDR diff-PR

n = 300

Figure S-12: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-

PR
(
m̂(K)

)
(blue), of theB(K, β̂m̂(4), σ̂

2) functions (pink) and of d̂iff-PR
(
m̂(K)

)
(violet) for K ≥ 2 for the toy data set. Top: for n = 30. Middle: for n = 50.
Bottom: for n = 300.
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2.4. Scenario (iv)

σ2 = 0.1

σ2 = 1

σ2 = 4

Figure S-13: Curves of the relative change values between the functions
B(K,β∗, σ2) and the functions B(K, β̂m̂(K̃), σ̂

2) with respectively β̂m̂(1), β̂m̂(1.5),
β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)) where estima-
tors are calculating from a single data set. Top: for σ2 = 0.1. Middle: for σ2 = 1.
Bottom: for σ2 = 4.
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σ2 = 0.1

σ2 = 1

σ2 = 4

Figure S-14: Curves of the relative standard deviation (stan-
dard deviation normalized by the mean) of the functions
B(K, β̂m̂(K̃), σ̂

2) obtained from 100 data sets. With each one,
β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n))

are calculated given B(K, β̂m̂(K̃), σ̂
2), variance of the 100 B(K, β̂m̂(K̃), σ̂

2)
functions and then the relative standard deviation with respect to K. Top: for
σ2 = 0.1. Middle: for σ2 = 1. Bottom: for σ2 = 4.
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FDR diff-PR

σ2 = 0.1

FDR diff-PR

σ2 = 1

FDR diff-PR

σ2 = 4

Figure S-15: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-

PR
(
m̂(K)

)
(blue), of theB(K, β̂m̂(4), σ̂

2) functions (pink) and of d̂iff-PR
(
m̂(K)

)
(violet) for K ≥ 2 for the toy data set. Top: for σ2 = 0.1. Middle: for σ2 = 1.
Bottom: for σ2 = 4.
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3. Complementary studies and graphs for non-ordering variable
selection

This section completes Subsection 4.3 of [3] about the assessment of our ap-
proach to non-ordered variable selection by considering scenarios described in
Table 4 of [3].

In particular, graphs for scenarios (ii) to (iv) described in Table 4 are pro-
vided. The empirical FDR, the theoretical FDR, the B(K, β̂m̂(4), σ̂

2), the diff-
PR

(
m̂(K)

)
and the d̂iff-PR

(
m̂(K)

)
functions, calculated on the three perturbed

model collections described in Subsection 4.3.1 are plotted in Figures S-16- S-18.
They are devoted to study the robustness to variable ordering (Subsection 3.1).
Table S-1 contains the proportion of active variables in models of size 5, 10, 15
an 20 for random collections built with Bolasso, SLOPE, random forest and the
knockoff method. It is devoted to compare methods for the reconstruction of
variable ordering (Subsection 3.2). Lastly, Tables S-2- S-4 contain the dimen-
sion, PR and FDR of the selected models obtained by LinSelect, the 50-fold
CV, the knockoff method and our algorithm, respectively applied on the nested
model collection (Equation 2.1 of [3]), the random collection built with Bolasso
and the random collection built with the knockoff method. They are devoted
to compare our algorithm and the three considered variable selection methods
(Subsection 3.3).
All the R scripts are available at https://github.com/PerrineLacroix/Trade_
off_FDR_PR.

3.1. Robustness to variable ordering

Figures S-16 to S-18 show similar results to Subsection 4.3.1 of [3] about the
robustness to variable ordering. This confirms that being able to discriminate be-
tween active and non-active variables is crucial. For scenario (ii), B(K, β̂m̂(4), σ̂

2)
values begin to diverge from those of B(K,β∗, σ2) for the second and the third
configurations where the coefficients of β∗ are close to each other. Concern-
ing the second configuration, B(K, β̂m̂(4), σ̂

2) and B(K,β∗, σ2) values are both
larger than the empirical FDR ones which is expected. When permutations of
the first twelve and fifteen variables are processed, FDR values are, in most
cases, even higher along the collections than for the toy data set, especially for
scenario (ii) configuration (iii) and for scenario (iv) with σ2 = 4 for which dis-
tinction between variables is more difficult; the PR values increase faster than
for the toy data set. A meticulous study on the choice of the parameters γ and
α is required to get low values of both PR and FDR.

https://github.com/PerrineLacroix/Trade_off_FDR_PR
https://github.com/PerrineLacroix/Trade_off_FDR_PR
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FDR diff-PR

FDR diff-PR

FDR diff-PR

Figure S-16: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-

PR
(
m̂(K)

)
(blue), of the B(K,β∗, σ2) functions (blue), the B(K, β̂m̂(4), σ̂

2)

functions (pink) and d̂iff-PR
(
m̂(K)

)
(violet) for the toy data set and for the

three perturbed collections. Top: for β∗10 = 2
10 . Middle: for β∗10 = 2 and distant

coefficients. Bottom: for β∗10 = 2 and close coefficients.
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FDR diff-PR

FDR diff-PR

FDR diff-PR

Figure S-17: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-

PR
(
m̂(K)

)
(blue), of the B(K,β∗, σ2) functions (blue), the B(K, β̂m̂(4), σ̂

2)

functions (pink) and d̂iff-PR
(
m̂(K)

)
(violet) for the toy data set and for the

three perturbed collections. Top: for n = 30. Middle: for n = 50. Bottom: for
n = 300.
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FDR diff-PR

FDR diff-PR

FDR diff-PR

Figure S-18: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-

PR
(
m̂(K)

)
(blue), of the B(K,β∗, σ2) functions (blue), the B(K, β̂m̂(4), σ̂

2)

functions (pink) and d̂iff-PR
(
m̂(K)

)
(violet) for the toy data set and for the

three perturbed collections. Top: for σ2 = 0.1. Middle: for σ2 = 1. Bottom: for
σ2 = 4.
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3.2. Random variable order

This subsection completes Subsection 4.3.2 of [3] about the reconstruction of
variable ordering.

Table S-1 shows the proportion of active variables in models of size 5, 10,
15 and 20 for random collection built with Bolasso, SLOPE, random forest
and the knockoff method. Among the random model collections, the knockoff
method provides the highest values for all scenarios except scenario (iv) with
σ2 = 0.1 and some models of size 20 where Bolasso is the best method. Results
deteriorate for specific scenarios : around 0.8 for scenario (iv) with σ2 = 4, 0.6
for scenario (ii) with the third configuration and 0.8 for scenario (ii) with the
second configuration for which the discrimination between active and non-active
variables is naturally less obvious.

Bolasso SLOPE random forests the knockoff method
Scenario (ii) config. (ii)
Dm = 5 0.25 0.24 0.24 0.26
Dm = 10 0.23 0.23 0.23 0.24
Dm = 15 0.34 0.34 0.34 0.34
Dm = 20 0.44 0.44 0.44 0.43
Scenario (ii) config.
(iii)
Dm = 5 0.63 0.60 0.63 0.74
Dm = 10 0.54 0.52 0.53 0.58
Dm = 15 0.69 0.68 0.69 0.69
Dm = 20 0.79 0.78 0.79 0.75
Scenario (iii), n = 30
Dm = 5 0.96 0.95 0.95 the knockoff method
Dm = 10 1.00 1.00 1.00 is not adapted
Dm = 15 1.00 1.00 1.00 to the n < p case
Dm = 20 1.00 1.00 1.00
Scenario (iii), n = 300
Dm = 5 0.98 0.91 0.92 1.00
Dm = 10 0.83 0.73 0.78 0.92
Dm = 15 0.92 0.86 0.91 0.96
Dm = 20 0.96 0.92 0.96 0.97
Scenario (iv), σ2 = 0.1
Dm = 5 1.00 1.00 1.00 1.00
Dm = 10 0.99 0.99 0.94 0.98
Dm = 15 1.00 1.00 0.98 0.98
Dm = 20 1.00 1.00 0.99 0.98
Scenario (iv), σ2 = 4
Dm = 5 0.86 0.85 0.82 0.96
Dm = 10 0.66 0.66 0.65 0.70
Dm = 15 0.78 0.77 0.77 0.78
Dm = 20 0.85 0.84 0.84 0.82

Table S-1
Active variable proportions in models of size 5, 10, 15 and 20 for random collections built
with Bolasso, SLOPE, random forest and the knockoff method for scenarios (ii)-(iv) of

Table 4 of [3]. Values are the average over 100 iterations.
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3.3. Comparison with other variable selection methods

This subsection completes Subsection 4.2 and Subsection 4.4 of [3] by comparing
Algorithm 1 and the three variable selection methods (presented below) on sce-
narios described in Table 4 and from the different considered model collections.
With the nested model collection (Equation 2.1 of [3]) and with α = 0.05 and
γ = 0.1, algorithm 1 of [3] provides K = 2.8 for scenario (i) with D∗m = 20
and K = 3.3 for all others except for scenario (i) with D∗m = 1, for scenario (ii)
with the second and the third configurations and for scenario (iv) with σ2 = 4.
Concerning these last four scenarios, the intersection of I1 and I2 is empty. The
minimum of I1 equals 4.8 for scenario (i) with D∗m = 1 and for scenario (ii) with
the second configuration, and equals 3.3 for scenario (ii) with the third configu-
ration and for scenario (iv) with σ2 = 4. To get a non-empty intersection, γ or α
has to be higher. In all these examples, we observe that the value of K provided
by taking min(I1 ∩ I2) coincides with min(I1), so increasing the value of γ does
not change K. However, increasing the value of α provides smaller values for
K. When α = 0.1 and γ = 0.1, the intersection of I1 and I2 is empty and the
obtained values of K from min(I1) are 3.8 for scenario (i) with D∗m = 1 and
for scenario (ii) with the second configuration and 2.8 for scenario (ii) with the
third configuration and for scenario (iv) with σ2 = 4. Hence, these four cases are
typical examples where the choice of K depends strongly on the chosen balance
between PR and FDR. In all cases, we always notice that whatever the given
balance, the K provided from algorithm 1 coincides with the one given by the
trade-off between the two empirical quantities of PR and FDR.
When we compare our algorithm application with the three considered exist-
ing variable selection methods (Tables S-2-S-4), all observations mentioned in
Subsection 4.4 of [3] remain valid over the different scenarios
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Dm̂ PR(m̂) FDR(m̂)
Scenario (ii) config. (ii)
LinSelect 0.00 1.06 0.00
50-fold CV 23.15 1.47 0.45
Our algorithm 0.27 1.08 0.00
Scenario (ii) config. (iii)
LinSelect 0.03 2.21 0.00
50-fold CV 18.65 1.78 0.33
Our algorithm 7.55 1.39 0.00
Scenario (iii), n = 30
LinSelect 2.00 14.41 0.00
50-fold CV 12.00 3.57 0.20
Our algorithm 9.00 1.43 0.01
Scenario (iii), n = 300
LinSelect 2.07 14.41 0.00
50-fold CV 11.81 3.57 0.20
Our algorithm 9.38 1.43 0.01
Scenario (iv), σ2 = 0.1
LinSelect 10.27 0.12 0.02
50-fold CV 28.18 0.35 0.47
Our algorithm 10.07 0.12 0.00
Scenario (iv), σ2 = 4
LinSelect 3.37 10.94 0.00
50-fold CV 25.13 7.74 0.44
Our algorithm 7.85 5.12 0.00

Table S-2
Results of the dimension, PR and FDR of the selected models obtained by LinSelect, the

50-fold CV and our algorithm, applied on the nested model collection (Equation 2.1 of [3])
for the scenarios (ii), (ii) and (iv) described in Table 4 of [3]. Each value is the average
over 100 independent iterations. PR and FDR of each selected model are the empirical

quantities. Input parameters of our algorithm are fixed to γ = 0.1 and α = 0.05.
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Dm̂ PR(m̂) FDR(m̂)
Scenario (ii) config. (ii)
LinSelect 0.02 1.06 0.00
50-fold CV 23.51 1.71 0.44
Our algorithm 6.80 1.50 0.05
Scenario (ii) config. (iii)
LinSelect 0.06 2.22 0.00
50-fold CV 24.83 1.98 0.47
Our algorithm 13.86 1.85 0.25
Scenario (iii), n = 30
LinSelect 1.47 15.89 0.00
50-fold CV 14.66 3.66 0.28
Our algorithm 12.65 1.79 0.19
Scenario (iii), n = 300
LinSelect 11.58 1.17 0.13
50-fold CV 21.68 1.34 0.40
Our algorithm 15.20 1.11 0.30
Scenario (iv), σ2 = 0.1
LinSelect 11.24 0.14 0.08
50-fold CV 27.58 0.47 0.46
Our algorithm 13.60 0.15 0.24
Scenario (iv), σ2 = 4
LinSelect 3.44 12.91 0.01
50-fold CV 24.23 8.53 0.44
Our algorithm 13.93 6.73 0.25

Table S-3
Results of the dimension, PR and FDR of the selected models obtained by LinSelect, the

50-fold CV and our algorithm, applied on the random collections built with Bolasso for the
scenarios (ii), (ii) and (iv) described in Table 4 of [3]. Each value is the average over 100
independent iterations. PR and FDR of each selected model are the empirical quantities.

Input parameters of our algorithm are fixed to γ = 0.1 and α = 0.05.
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Dm̂ PR(m̂) FDR(m̂)
Scenario (ii) config. (ii)
LinSelect 0.04 1.07 0.00
50-fold CV 24.97 1.70 0.45
Knockoff 0.00 1.06 0.00
Our algorithm 4.31 1.43 0.00
Scenario (ii) config. (iii)
LinSelect 0.07 2.22 0.00
50-fold CV 24.25 1.99 0.43
Knockoff 0.00 2.22 0.00
Our algorithm 9.42 1.84 0.07
Scenario (iii) n = 30
LinSelect the knockoff method
50-fold CV is not adapted
Knockoff to the n < p case
Our algorithm
Scenario (iii), n = 300
LinSelect 9.84 1.07 0.03
50-fold CV 23.21 1.21 0.44
Knockoff 0.21 2.65 0.01
Our algorithm 13.39 1.10 0.23
Scenario (iv), σ2 = 0.1
LinSelect 10.07 0.31 0.04
50-fold CV 23.64 0.47 0.38
Knockoff 0.00 13.18 0.00
Our algorithm 21.02 0.16 0.32
Scenario (iv), σ2 = 4
LinSelect 4.44 10.17 0.00
50-fold CV 21.12 7.91 0.38
Knockoff 0.00 17.12 0.00
Our algorithm 10.58 6.62 0.10

Table S-4
Results of the dimension, PR and FDR of the selected models obtained by LinSelect, the

50-fold CV, the knockoff method and our algorithm, applied on the random collections built
with the knockoff method for the scenarios (ii), (ii) and (iv) described in Table 4 of [3].
Each value is the average over 100 independent iterations. PR and FDR of each selected
model are the empirical quantities. Input parameters of our algorithm are fixed to γ = 0.1

and α = 0.05.
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