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A B S T R A C T

In this work we introduce ML-GLE, a machine learning framework to generate
long-term single-polymer dynamics by exploiting short-term trajectories from
molecular dynamics (MD) simulations of polymer melts. Even with current
advances in machine learning for MD, these polymeric materials remain diffi-
cult to simulate and characterize due to prohibitive computational costs when
long relaxation timescales are involved. Our method relies on a 3D neural
auto-regressive model for single polymer lower dimensional collective vari-
ables, called normal modes. This enhances the Generalized Langevin Equa-
tion (GLE) capabilities in modeling diffusion phenomena. We exploit a partic-
ular GLE solution which is known to reproduce the mean square displacement
curve relative to transient anomalous diffusion and connect it with the normal
modes collective variables. ML-GLE is capable of emulating the single poly-
mer statistical properties in the long-term, predicting the diffusion coefficient.
As a consequence, this results in an enormous acceleration in terms of simu-
lation time with respect to the full-size simulation. Moreover, this approach is
also scalable with system size.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Multiscale modeling has emerged as an invaluable approach for simulating systems with a great number of degrees
of freedom (d.o.fs) and whose components are organized in a hierarchical structure (e.g. proteins, polymers, fluids).
These systems display important properties at multiple time/space scales. Consequently, the phenomena of interest
are often out-of-reach because they are the result of collective dynamics and complex non-linear interactions that
require a considerable computational cost for a detailed fine-grained simulation (e.g. atomistic), resolving processes
at a short time-scale, for which the governing laws are well known.
Consequently, it becomes difficult to assess structural and dynamical properties of the system under study. Multiscale
techniques focus therefore on developing multiple models that can be used either concurrently to describe the system
at different scales, or sequentially, profiting from simulations at finer scales to inform a coarse-grained (CG) at larger
scales, with less d.o.fs.

In this respect, machine learning (ML) and neural networks (NNs) have proved useful in bridging the gap between
different spatial and temporal timescales. If the system can be described with Partial Differential Equations (PDEs),
physics informed neural networks (PINNs) can be employed [1, 2], by exploiting a priori knowledge about the
governing laws of the physical system together with physical principles in order to approximate the unknown solution
of a (possibly) high-dimensional PDE. The PDE solution is constructed by means of a NN, which is trained on data
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coming from either real world measurements or simulation data in combination with the boundary conditions (BCs).
The information about the governing laws is provided to the learning framework through a regularizer, guiding the NN
solution towards an optimal high fidelity approximation. Furthermore, the expressiveness of NNs favors the solution’s
generalization capability, allowing for the PINNs to be integrated at different spatial resolutions without retraining,
unlocking therefore longer timescales with useful applications in forecasting and control [3, 4]. PINNs can be also
combined with data-driven reduced-order models (ROMs) [5] in order to evaluate the PDE parametric dependence
efficiently using surrogates while at the same time surmounting data scarcity issues.

More often, the laws governing the dynamical system are unknown and the inverse problem, inferring the model
from observations or simulated time series is a much challenging one. Given the large number of d.o.fs involved,
dimensional reductions are often needed to make the system treatable.
The dynamic mode decomposition (DMD) technique [6] simultaneously extracts meaningful hierarchical dynamical
features from multidimensional time series data and approximates their time evolution through a linear operator, P. In
case of linear systems, these features reduce to the normal modes of fluctuation. More complicated methods are able
to identify the most parsimonious model governing the non-linear dynamics [7], and also approximate PDEs, from
Navier-Stokes to Brownian motion [8, 9].
In the context of molecular dynamics (MD), dimensional reduction techniques are based on the projection operator
[10], for a proper selection of relevant CG variables. Data-driven techniques exist for efficient and transferable
molecular CG variables, employing NNs [11, 12, 13, 14, 15], but they are limited to small molecular or condensed
matter systems, which in turn allow for the Markov approximation to be reasonable, disregarding in this way any
memory effect.
The latter can be included through the Mori-Zwanzig (MZ) formalism [16, 17, 18, 19], which takes advantage of the
projection operator to obtain dynamical equations for the non-Markovian dynamics of the CG variables. Thus, MZ
allows to derive closed form expressions for the CG variables by treating the irrelevant d.o.fs as stochastic noise while
the unresolved variables are accounted for with a time-dependent and in general unknown memory kernel function.
In practice, identifying meaningful lower dimensional collective variables (CVs) and ensuring CG dynamics to be
consistent at different thermodynamic conditions is an arduous task and system-dependent. With MZ as a starting
point, further ansatzes are then required, where the usual procedure consists in deriving the Generalized Langevin
Equation (GLE) [20], for some CVs.

For some systems, even good quality CG variables are not enough to observe and measure the quantities of in-
terest. In case of visco-elastic systems like polymer melts (Fig. 1.left), the strong non-linear interactions between
polymers and the topological constraints result in an extremely slow polymer dynamics.
Single polymers undergo Transient Anomalous Diffusion (TAD) [21, 22, 23, 24, 25], which can be identified by
computing the mean square displacement (MSD). Given a generic spatial variable x, one has, ⟨x2(t)⟩ ∝ tν at short
time-scales, while asymptotically ⟨x2(t)⟩ ∝ t, up to a proportionality constant D, called diffusion coefficient.
The two regimes describe the transient anomalous part, and the normal Brownian diffusive one. If ν ∈ (0, 1) and
ν ∈ (1,+∞), one has respectively sub-diffusive and super-diffusive behaviour. The transient period can be long before
observing normal diffusion. An example is shown in Fig 1.Right.
Resorting to the description of single polymer chains and their effective dynamics in the melt reduces dramatically the
number of d.o.fs, and the governing dynamics can be described by a GLE. However, the associated non-Markovian
character of GLEs makes memory effects difficult to model and reproduce faithfully. Parametric models of TAD
employing GLEs exist but they fail in the small data regime and consequently no information is available on the
transient and asymptotic regime [26, 27]. In these cases, data availability jeopardise any possibility of applying data-
driven techniques, because the underlying processes characterizing the long-term behaviour of the system cannot be
observed. Estimating diffusion-related properties seems therefore unfeasible. Several studies have proposed a data-
driven parametrization of GLEs [28, 29, 30, 31, 32, 33, 34, 35, 36, 37] but they typically directly deal with the memory
kernel additionally equipping the description with auxiliary variables characterizing an extended Markovian dynam-
ics. Nonetheless, applications are restricted to small molecules and are unable to reconstruct the original fine-grained
system. Another similar data-driven approach consists in modeling long-time non-Markovian dynamics through an
integrative generalized master equation (IGME) [38], utilizing directly the time integral of memory kernel through
Taylor series expansion to model conformational transitions in small complexed biological molecules.
Chorin and Lu’s seminal work [39] has outlined the connection between nonlinear auto-regressive models and the
governing equations related to the stochastic dynamics of a subset of variables of interest, connecting the latter de-
scription to the MZ formalism in statistical physics. In [40], a GLE description based on a nonlinear auto-regressive
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Fig. 1: (Left) Rendering of an homo-polymer melt Butadiene Rubber simulation snapshot, used as benchmark system for the ML-GLE. The
reference simulations are done using the monomers as CG variables integrated with a small timestep δt, as explained in sec. 4.1. In red, a generic
tagged polymer, whose dynamics is instead extrapolated with a bigger timestep ∆t ≫ δt. (Right) Example of an MSD curve relative to single
polymer Center of Mass, averaged over all polymer chains, in log-log scale. The long transient regime is clearly visible, before reaching a normal
diffusive dynamics in the long-time.

model for a 1D CV is proposed, with data coming from an ab initio MD simulation of a magnetic system.
Along these lines, this work proposes, to our knowledge, the first application of a data-driven GLEs employing

NNs, to a realistic 3D diffusion phenomena in soft matter. We present an hybrid ML-GLE framework for simulating
the effective dynamics of single polymer d.o.fs inside melt and a concrete case in which the GLE can be approximated
in a data-driven way. With minimal assumptions on the kernel memory function, the GLE solution can be used to
perform both long-term stable single polymer simulations and make predictions about the transient and asymptotic
diffusive regime without running full-size simulations, which would require several orders of magnitude more simu-
lation time-steps.
Our framework accelerates single polymer stochastic dynamics by decomposing its d.o.fs in a set of slow CVs: the
center of mass (C.o.M) diffusive dynamics is modeled with a parameterized solution of an ansatz GLE, which is
known for reproducing TAD [27], while faster physically motivated 3D CVs, called normal modes, are accounted
for by a neural auto-regressive (NAR) model, able to approximate the coarse-grained time integrator of downsam-
pled MD trajectories from an already CG polymer melt simulation. In addition, by exploiting the symmetries of the
physical system, the 3D CV stochastic dynamics is stable in the long term, since the NAR model implicitly endows
the rotational symmetries naturally present in the physical system. Training and generation are fast, allowing the
computational cost to estimate asymptotic relaxation properties (MSD) to be reduced dramatically.

Related work on extrapolating long term behaviour with NNs from MD trajectories has been done in the past; in
[41], the authors propose a Generative Adversarial Network (GAN) for sequence to sequence generation with data
coming from different MD simulations, including polymer melts. The method appears to be successful in reproducing
TAD in one system, but there is no net gain in terms of computational cost. In addition, GANs are notoriously difficult
to train and interpret. In our case, since the GLE description exploits normal modes of fluctuation, interpretability is
assured. In [42], the authors propose to learn non-Markovian stochastic processes with recurrent NNs by optimizing
on non-parametric statistical estimators, like the kernel density estimator (KDE) for the stationary PDFs. This method
is efficient in extrapolating long-term behaviour, but a priori bandwidth selection for KDE introduces additional free
parameters to be optimized, especially when dealing with multivariate data. By contrast, our approach attempts to
directly approximate the process conditional distribution by using a maximum-likelihood parametric approach based
on NNs, without any prior assumption on the long-term statistical properties.

The paper is organized in the following way. In section 2 we review the conditions under which the GLE is capable
of reproducing TAD, and provide an analytical solution, depending on some Markovian CVs. Inspired by the latter, in
section 3 we propose the ML-GLE framework for single polymer dynamics, which combines a parametric extended
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3D GLE solution with a set of independent NAR models for the non-Markovian CVs, which we identify with the
single polymer normal modes. In section 4 we validate the framework by training modes data on MD trajectories of
an homo-polymer melt at different temperatures. The validation of the GLE parametrization is shown in section 4.5.
We demonstrate the model’s predictive capabilities in section 4.4 when generating long-time mode dynamics while in
section 4.6 we prove the that ML-GLE reproduces correctly TAD from short-time MD data, with an effective gain in
computational time with respect to the reference full-size simulation.

2. Transient anomalous diffusion and the Generalized Langevin equation

The Generalized Langevin Equation (GLE) is a stochastic integral differential equation first derived in the context
of transport, as an extension of the more popular Langevin equation describing the Brownian motion of a particle
in an implicit fluid [10, 43]. The GLE became a popular framework for modeling diffusion through a viscoelastic
medium, where the dissipative term is not instantaneous but has a time-lagged effect, resulting in a non-Markovian
dynamics and where the environment is described implicitly with a memory term.
In [20, 16] the same equation was derived from an arbitrary Hamiltonian non-linear interacting system, exploiting the
Projection Operator formalism, prior developed by Mori [10]. The MZ formalism performs therefore a dimensional
reduction, projecting the dynamics of the original system onto a selection of CVs.
Starting usually from microscopic d.o.fs and defining the CVs of interest, their non-Markovian effective dynamics can
be expressed as a complicated stochastic differential equation, with a kernel function accounting for memory effects.
In this section, we show how, given some appropriate assumptions, the GLE can account for TAD and an analytical
solution can obtained in the zero-mass limit. The solution can be then fitted exploiting short time C.o.M trajectories
coming from a MD simulation.

Let X(t) be a generic 3D CV of a particle undergoing TAD (e.g. C.o.M ). The ansatz GLE reads as follows,

M
d2X(t)

dt2 = K(X(t), t) −
∫ t

0
Γ(t − s)

dX(s)
dt

ds + F(t) (1)

A few assumptions are necessary at this point:

1. Γ : R → R3×3
+ is an homogeneous and time independent kernel function. As the environment acts as a thermal

bath for the particle, we assume the fluctuation-dissipation theorem (FDT) holds, E[F(t)FT (s)] = kBTΓ(|t − s|),
for a fixed temperature T .

2. F(t) is a 3D colored noise such that E[F(t)] = 0 and E[F(t)
(
dX(0)/dt

)T ] = 0. The former implies an isotropic
environment while the latter expresses the absence of linear correlations with respect to the initial conditions.

3. K : R3 × [0,∞)→ R3×3 is an external driving force and/or a conservative force. For the purposes of this work,
since we are treating diffusion at equilibrium, this term is identically zero.

The information about the environment is implicitly contained in the memory kernel, the form of which is seldom
known and in general intractable. Nevertheless, the functional properties of the latter determine the behaviour of the
MSD in the integrated solution. This connection was initially studied by Morgado et al. [44] and further investigated in
detail by McKinley and Nguyen [45], where the authors prove an important implication between the kernel properties
and the asymptotic behaviour of the MSD.
Let {X(t)}t≥0 be the 1D GLE solution. The meta-theorem states that if the kernel function Γ(t) is integrable1, then
limt→∞⟨X2(t)⟩ = 2Dt, where D is the diffusion coefficient. This theorem characterizes the features a kernel function
must possess so that the GLE reproduces TAD. A detail proof can be found in [45]
Broadly speaking, if the kernel function is integrable one observes an asymptotic normal diffusive behaviour (Fig.
1.right). In practice, the transient regime can be very long before witnessing normal diffusion.
A process which is asymptotically diffusive can display one or more prior anomalous diffusion regimes: in case of
polymer melts for example, one can identify up to three sub-diffusive regimes in the monomer and C.o.M dynamics,
depending on different factors (for details see [46]).

1More details on kernel families and integrability conditions, as well as TAD can be found in [45]
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2.1. Solution in the zero-mass limit with an integrable memory kernel
In this section, for simplicity, we provide a solution for the 1D version of the ansatz GLE presented in Eq. (1), in

the absence of external forces (K(X, t) = 0). The first step consists in specifying the functional form of the memory
function.
Following the results of the meta-theorem, in order to reproduce TAD, Γ(t) must be an integrable function. As a result,
a good candidate for the kernel ansatz can be the popular Prony Series, as proposed in [27],

ΓN(t) = η
N∑

j=1

e−γ jt, (2)

where {γ j}
N
j=1 is the diffusive spectrum sequence and uniform weight η . As we will see in sec.3, this is well justified

for polymer systems, and has a clear physical interpretation when dealing with classical polymer models, like the
Rouse or Zimm model.
It is known that a sum of exponential functions can asymptotically approximate any power-law behaviour and a dif-
ferent one near the origin [27, 47], with sufficiently many terms. In addition, Eq. (2) belongs to the class of complete
monotone functions which are always integrable. As a consequence, it can be shown that the associated GLE solution
always displays asymptotic diffusive MSD [45]. Furthermore, kernel convexity Γ(t) ∈ C2(0,∞) and monotonicity for
Γ
′′

(t) near the origin are required in the zero-mass limit.
An analytic solution to the GLE can be obtained by specifying the noise term F(t) [27]. Decomposing the latter as
a sum of Ornstein-Uhlenbeck (OU) processes {F j}

N
j=1, one for each diffusive timescale of the Prony series, the FDT

takes the form, ∀(i, j) ∈ {1, ...,N}2,

E[Fi(t)F j(s)] = δi jkBTηe−γ j |t−s|, (3)

where δi j is the Kronecker delta. F j(t) can be expressed with its formal stochastic integral solution,

F j(t) =
√

2kBTηγ j

∫ t

0
e−γ j(t−s)dW j(s), (4)

where W j are independent Brownian motions.
Given a generic continuous function, g(t) : R+ → R3, we define its unilateral Laplace transform as,

L{g}(z) = g̃(z) =
∫ ∞

0
g(t)e−ztdt (5)

Applying the definition to Eq. (1) in 1D, one can solve for position in the Laplace domain, yielding,

X̃(z) = z−1(Mz + Γ̃(z))−1F̃(z) (6)

Denoting with χ(t) = L−1{(Mz + Γ̃(z))−1} and G(t) = L−1{z−1F̃(z)}, and assuming vanishing initial position and
velocity in time domain, the GLE solution reads,

X(t) =
∫ t

0
χ(t − s)G(s)ds (7)

It is important to highlight the importance of the uniform Prony series assumption from a modeling perspective. In
the zero-mass limit, this choice allows for the analytical inversion of the Laplace transform back to time domain. A
more detailed derivation is provided in Appendix A while we refer to [27] for additional information.
Further denoting with σ2 = 2η−1kBT and τ̄ = 1

N
∑N

j=1 γ
−1
j , the solution reads as follows,

XN(t) =
σ
√

Nτ̄
B(t) + σ

N−1∑
j=1

c jz j(t), (8)

where B(t) is a standard Brownian motion accounting for the slower translational diffusion through the pre-factor
1/
√
τ̄, while {z j}

N−1
j=1 and {c j}

N−1
j=1 are respectively a set of increasingly faster and independent OU processes and coef-

ficients both derived from the whole diffusive spectrum. These processes are very important as they implicitly carry
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information about the environment but may also describe collective dynamics pertaining to the system under study,
since they are obtained directly from {γ j}

N
j=1.

In generic complex systems, identifying these “hidden” d.o.fs and accessing their dynamics from simulations or ex-
periments is a challenging task; in the following we will see that for visco-elastic systems such as polymer melts,
these d.o.fs correspond to single polymer CVs and no additional environmental information is needed.

Parameter inference on Eq. (8) can be performed with only three parameters, by specifying the diffusive scaling
as a power-law, called the Generalized Rouse Kernel (GRK), and introduced in [48]. One has, ∀ j ∈ {1, ...,N},

γ j =

( j
N

)ρ
τ−1

1 , (9)

where τ1 is the shortest relaxation time-scale relative to and ρ ∈ (0,∞).
The MSD can be derived from Eq. (8), exploiting the Rouse kernel and the properties of the OU process, yielding,

E[X2
N(t)] =

σ2

Nτ̄
t + τ1

N∑
j=1

(N
j

)ρ(
1 − e−

(
j/N

)ρ
t/τ1

)
(10)

where we took expectations over the path space.
It can be shown that Eq. (10) is capable of reproducing any TAD exponent with a single anomalous regime, whose
characteristics are uniquely determined by the parameters ρ, τ̄ and τ1.
The power-law exponent ρ is related to the anomalous exponent ν by the following relation,

ν = 1 −
1
ρ

(11)

which can be derived from the sum on the right hand side of Eq. (10) for sufficiently large N (see [27]).
In practice, Eq. (8) displays a remarkable robustness to reproduce the same C.o.M scaling behaviour when random
perturbations are applied to the coefficients {c j}

N−1
j=1 . As demonstrated by McKinley et al. [27], denoting the coefficients

uniform second moment as σ2
c = E[c2

k], one has that,

Var(E[X2
N(t)]) ∼

σ2
c

N
+ o

( 1
N

)
(12)

It follows from this argument that, when conducting inference from real or simulated data, as long as the coefficients
are statistically independent and of the same magnitude, they do not impact the intermediate time-scale and its corre-
sponding anomalous exponent, which is only determined the modes correlation. This will also impact our modeling
choices as shown in the next section. However, inference with this model requires data at long timescales needed to
fit the solution in the anomalous and asymptotic regime. Nonetheless, even in the simple case of polymer dynamics
from which it is inspired, it possesses a few limitations.

1. It restricts the family of completely monotone functions to a particular functional form through the power-law
scaling; in reality, the memory kernel can have an arbitrary non-trivial expression, with both a weight profile
{η j}

N
j=1 and a diffusive spectrum {γ j}

N
j=1 depending on many factors, like temperature, density, chain length or

chemical species.
2. Application is limited to 1D data sources and prediction of transient and asymptotic properties on real 3D

physical systems, from experiments or simulations, remains unattainable without running full-size simulations
or having access to long-time trajectories.

In this work, we apply the GLE framework on CG MD simulation data, modeling single polymer C.o.M dynamics
inside the polymer melt, by extending Eq. (8) to the 3D case. We further employ a set of independent NAR models
for collective single polymer d.o.fs (normal modes), and show how they can both accelerate single polymer d.o.fs
simulation reproducing memory effects and estimate C.o.M diffusion properties by using only a fraction of simulation
time. As a result, no assumptions are made on the kernel function but the integrability condition, since the whole
procedure is data-driven. Nevertheless, the proposed method is able to reproduce the MSD curve from short MD
trajectories and simulate long-time dynamics.
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Fig. 2: Block diagram of the ML-GLE framework. Short MD trajectories are used both to train the NAR generative model and to fit the solution to
the GLE equation. This allows to simulate an effective single polymer dynamics as if it came from the polymer melt simulation, as well as assess
its long-term behaviour. The physics informed GLE solution connects different CVs, allowing the acceleration of single polymer dynamics.

3. ML-GLE Framework

The developed framework ML-GLE is shown in Fig. 2. It generates single polymers dynamics emulating its
behaviour inside a polymer melt. It is a data-driven hybrid method as it exploits the solution of an ansatz GLE, able
to reproduce TAD, to model the C.o.M. The “physics informed” GLE solution connects the C.o.M dynamics to a set
of faster single polymer CVs. Their conditional distribution is approximated with independent 3D NAR generative
models, trained on short-time MD trajectories, each of them accounting for a different 3D CV.
It is easy to extend Eq. (8) to the 3D case for the C.o.M dynamics. By assuming a uniform pre-factor c∀ j ∈
{1, ...,N − 1}, one can define β = σc, hence obtaining,

Xk(t) = αB(t) + β
k∑

j=1

z j(t), (13)

where α, β ∈ R+ are now two parameters, B(t) ∈ R3×1 is a 3D standard Brownian motion, and {z j(t)}kj=1 ∈ R
3×1 is the

set of 3D CVs stochastic processes (non-Markovian). As shown in the previous section, setting a uniform coefficient
β does not compromise the MSD scaling behaviour and also allows us to have a more parsimonious model instead of
fitting a set of heterogeneous coefficients.
In the prototypical case of polymer dynamics, one can notice there exists a similarity between the latter and single
polymer modes of fluctuation [46], called normal modes. In fact, in the classical theory of self-intersecting phantom
chains, the Rouse model describes chain dynamics by decomposing its configuration in a set of Markovian OU
processes {z j}

N−1
j=0 , called Rouse modes, exemplified in Fig. 3.

For every monomer variable {xn}
N
n=1, the Rouse model prescribes the following decomposition,

xn = z0 + 2
N−1∑
j=1

z j cos
[

jπ
N

(
n +

1
2

)]
, (14)

where z0 is the C.o.M variable. The structure of Eq. (14) is reminiscent of the same decomposition in Eq. (13).
Furthermore, in the Rouse model the OU processes model indeed the modes dynamics reproducing the monomer
anomalous exponent 1/2. The choice of uniform weights kernel function can also be understood in terms of Rouse
modes, whose correlations are exponential parameterized by the diffusive scaling γ j ∼ sin2 (

jπ/2N
)
,∀ j ∈ {1, ...,N−1}

(see [27, 46]). It seems natural therefore that the non-Markovian normal modes dynamics obtained from a chain
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Fig. 3: Depiction of a phantom chain configuration simulated with the Rouse model, and its respective reconstructed profile with k = 2, k = 4 and
k = 12 modes (from Left to Right). Notice how the interpolation becomes more accurate while increasing the number of slower modes k, used for
reconstruction. Their role pertains to collective polymer motion and their non-Markovian dynamics is essential to capture asymptotic behaviour.

configuration in a realistic simulation would be relevant for reproducing the C.o.M diffusive dynamics.
Thus, we assume that sufficient information about the long-term behaviour is contained in the short-term dynamics
of the slowest normal modes, which can be obtained from monomer coordinates {xn}

N
n=1 for every simulation frame,

through a Discrete Cosine Transform (DCT),

z j =

N∑
n=1

xn cos
[
π

N

(
j +

1
2

)
n
]
, (15)

obtaining a non-Markovian 3D discrete time stochastic process {z j,t}t>0, ∀ j ∈ {1, ..., k}.
In such manner, there is no need to specify an a priori diffusive spectrum and kernel function: it would be contained

in the normal modes dynamics, implicitly enclosing information about the diffusive scaling {γ j}
N
j=1 and other important

kernel features.
Normal modes role is thereupon, threefold:

1. Short-time CG MD trajectories pertaining to k modes are used to train a set of independent NAR generative
models with the objective of learning the conditional distribution p(z j,t |z j,t−∆t, z j,t−2∆t, ..., z j,t−m∆t), for a fixed
historical trajectory of size m, and fixed coarse-grained ∆t time-step. See section 4.2.

2. We assume that normal modes act as CVs and at the same time carry sufficient information about the environ-
ment to determine the long-time behaviour. Consequently, it is reasonable that their short-time trajectories can
be used to fit the resulting MSD equation derived from Eq. (13). See section 3.5.

3. Normal modes can be used to reconstruct approximate single polymer configurations with less d.o.fs, since
the mapping monomer-mode is bijective (see Fig. 3). This constitutes by all means another level of coarse-
graining.

Once the NARs are trained on short trajectories, they can auto-regressively generate the modes dynamics and if the
accumulation error (exposure bias) is small, extrapolate the auto-correlations effectively, therefore accelerating the
MD simulation. As a result, this leads to accurate estimation of statistical properties, such as diffusion coefficients
and at the same time it reproduces the transient MSD curve.
Albeit the MZ formalism and the GLE is derived from a generic Hamiltonian system, we assume the same can be done
with an already CG system which is inherently stochastic. This does not impact the applicability of the method, since
we could follow the same procedure with an All-Atom simulation by selecting the same CG variables (monomers).

3.1. Neural auto-regressive Generative Model for non-Markovian stochastic processes

Parameter inference on non-Markovian stochastic processes is in general a difficult task. It is challenging therefore
to reproduce and generate signals with the same statistical properties [49].
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Fig. 4: NAR Training scheme. Mode j (subscript dropped) is extracted from a sequential collection of polymer configurations of length m + 1
with a DCT. sub-trajectory of length m and target increment are rotated to a fixed reference frame, such that ê1

t is always aligned with ẑt−∆t , while
ẑt−2∆t , lies in the plane formed by ê1

t , ê2
t . Afterwards, the historical mode trajectory is fed to a NN, which outputs the parameters of a 3D Gaussian

distribution. The target increment vector ∆ẑt is used to compute the NLL.

NNs have demonstrated to be capable of modeling non-linear relationships, thanks to the universal approximation
theorem [50]. Our aim is therefore to generate 3D modes dynamics {z j,t}

k
j=1 only using short MD time-series sampled

each ∆t and coming from an equilibrium polymer melt simulation, and capable of reproducing both long-term auto-
correlations, and stationary empirical PDF.
Given historical information, we parameterized the conditional distribution with a NN, one for each mode process z j,t.
Since modes are generated independently, in the following, for notational simplicity, we drop the subscript j indexing
the mode number. We further discuss modes independence approximation in section 3.5.

We denote as ym
t = {zt−i∆t}

m
i=1 ∈ R3×m the 3D mode historical trajectory and as ∆zt ∈ R3×1 its successive time

increment vector. Since each polymer is at equilibrium in its environment which acts a bath, it is safe to assume that
the processes possess a finite size memory of order m, corresponding to a time lag tmax = m∆t, and that p(zt |ym

t ) is
stationary. We propose therefore to approximate the latter with a parameterized distribution pθ(∆zt |ym

t ) for the time
increment zt − zt−∆t, followed by an integration step. We observed better performances in optimizing on the discrete
differential ∆zt instead of the actual process value zt. We argue that differencing stabilizes the learning process and
is more suited in case of long memory processes, where convergence to the true stationary distribution may be very
slow. The Gaussian distribution constitutes a good ansatz, since chains are at equilibrium and modes follow the Gibbs
distribution, hence,

pθ(∆zt |ym
t ) ∼ N(∆zt |µθ(y

m
t ),Σθ(ym

t )) (16)

where µθ : R3×m → R3,Σθ : R3×m → R3×3 are two NNs parametrizing the conditional mean and the positive
semi-definite and symmetric conditional covariance matrix, both depending on instances of historical trajectories. We
prove the goodness of this choice in Appendix B, where we demonstrate the Gaussian nature of both the MD and
generated process.
Each ym

t feeds a parameterized network Fθ (MLP) which encodes input-output correlations and forecasts the two
distribution parameters. ∆zt is used as target of the supervised training scheme, which is illustrated in Fig. 4.

3.2. Symmetries

Symmetries can be implemented natively in different ways, from equivariant NNs [51] to graph NNs [52], the
latter suited for particle simulations because symmetries can be naturally embedded in the graph formalism. [53, 54].
Our solution is much easier and is exploits the fact that we are generating an effective dynamics irrespective of the
environment configuration, as we generate single polymer normal modes dynamics.
Polymer diffusion is in fact isotropic and in absence of external driving perturbations breaking spherical symmetry,
the normal modes conditional distribution should be invariant under any arbitrary global rotation, i.e.,

p(∆zt |ym
t ) = p(R∆zt |R ◦ ym

t ), (17)

where R ∈ SO(3), and is applied element-wise to ym
t .

This observation is crucial for generation stability because training in a fixed reference frame spares the network from
learning rotations in SO(3), and avoids the need for data augmentation, or more complicated architectures.
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The rotation matrix at each time-step, Rt = [ê1
t , ê

2
t , ê

3
t ] is defined from the last three elements of ym

t , following the
Gram-Schmidt orthonormalization. The result is a fixed orthonormal set spanning R3. In this way, optimization is
performed in the same reference frame because data instances are transformed accordingly prior to training ( Fig. 4).
Hence,

ŷm
t = Rt ◦ ym

t , (18)

∆ẑt = Rt∆zt. (19)

Rotations operations are invertible, allowing the auto-regressive process generation.

3.3. Loss function

Training is performed in a supervised manner, using the rotated historical trajectory as input and the consecutive
mode time increment as target and optimizing over the Negative Log-Likelihood (NLL) of a 3D Gaussian distribution,
which reads,

LNLL = − logN(∆zt |µθ,t(ŷ
m
t ),Σθ,t(ŷm

t ))

Up to a constant, the NLL can be expressed as,

LNLL = log detΣt + (∆ẑt − µt)
TΣ−1

t (∆ẑt − µt) (20)

where [µt,Σt] = Fθ(ŷm
t ).

It is straightforward to see that optimization leads to training instabilities. To demonstrate this fact, one can look at
the loss gradient,

∇θL(θ) ∝ ∇θ detΣ(θ)/ detΣ(θ).

This implies that the backpropagation signal would be sensitive to small entries in the covariance matrix, leading
to exploding loss values. By replacing the LDLT decomposition of the covariance matrix, instabilities in the loss
function gradient are greatly reduced, obtaining,

LNLL = Tr(log Dt) + (∆ẑt − µt)
TΣ−1

t (∆ẑt − µt) (21)

where Dt is the diagonal matrix of the decomposition of Σt = LtDtLT
t . Lt is instead a uni-triangular 3 × 3 matrix.

Its contribution to the loss function vanishes as the log-determinant is zero, leaving only the log-determinant of a
diagonal matrix, which is equivalent to the trace of the same matrix.
At the architectural level, let d be the process dimensionality. Instead of forecasting the d(d + 1)/2 elements of the
covariance matrix, Fθ also outputs a single vector [l,d] of the same size, which contains the elements constituting the
lower triangular part of Lt and the diagonal entries of Dt respectively. Hence,

[µt,Dt,Lt] = Fθ(ŷm
t ) (22)

Along these lines, one could employ a different distribution for approximating the process increments, provided one
is able to obtain an analytic maximum likelihood objective. Furthermore, since the only other assumption is that the
process is stationary, this neural auto-regressive technique could be used a broader class of bounded stochastic pro-
cesses coming from various physical systems. For example, this technique could be applied to a particle undergoing
an harmonic or double-well potential as long as the initial hypothesis are respected.

3.4. Auto-regressive Generation

After training, the NN block is used auto-regressively. The rotation matrix Rt is computed from the input historical
trajectory ym

t , to obtain the rotated trajectory ŷm
t . The latter is then fed to Fθ and the output is used to sample ∆ẑ j,t by

means of the reparametrization trick. The sampled time increment is then rotated back to the original reference frame
of the historical trajectory ym

t . Given ϵ ∼ N(0, I3) one has,

∆ẑt = µt + LtD1/2
t ϵ, (23)

∆zt = R−1
t ∆ẑt (24)
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Following an implicit Euler integration scheme, a new value of zt is therefore obtained,

zt = zt−∆t +
σ∆z

σz
∆zt∆t (25)

where σ∆z/σz are the empirical standard deviations and are needed for consistency, since ∆z, z are both standardized
in pre-processing. The new input trajectory is obtained with a sliding window on the new sampled value.
Starting from an MD initial condition, ŷm

0 and iterating the procedure, including the newly generated point in the new
input sub-trajectory, the process can be extrapolated at any simulation length, reproducing useful statistical properties
such as the auto-correlation function (ACF) at long times. It is important to point out that modeling the conditional
distribution as a multivariate Gaussian can be restricting when approximating the conditional distribution. The latter
being a skewness zero distribution, makes it difficult to reproduce the extreme regions of the PDFs.

3.5. Learning the GLE parameters

In order to model the C.o.M stochastic dynamics, we exploit the normal modes trajectories obtained from short
MD simulations, together with the GLE solution, as written in Eq. (13). We observe that since the system is at
equilibrium and diffusion is isotropic, the MSD can be fitted on 1D C.o.M and modes trajectories.
Rewriting therefore Eq. (13) as a 1D finite difference equation, squaring and taking expectations with respect to
stationary equilibrium distribution, we derive the following regression equation,

E[∆X2
k,t] = α

2t + β2
k∑

j=1

E[∆z2
j,t] (26)

where we imposed modes statistical independence, E[zi,tz j,t] = σ2
i jδi j. This is a good approximation as shown by the

empirical correlation matrix, displayed in Fig. 5.
We can recognize on the left hand side the C.o.M MSD, while on the right hand side the modes MSD, which are all
bounded being mean reverting processes; the Brownian motion MSD is instead well known for being linear in time.
Replacing the expectation operator E[...] with the empirical average ⟨...⟩ with respect to the equilibrium distribution,
we can find the best parameters in the least square sense,

α∗k, β
∗
k = arg min

α,β

{∑
t∈P

(
⟨∆X2

k,t⟩ − α
2t − β2

k∑
j=1

⟨∆z2
j,t⟩

)2}
, s.t. α, β ≥ 0 (27)

where P is the set of data-points indexes used for regression.
The parameter inference problem is reduced to a simple multivariate regression between the modes and C.o.M MSD,
with an arbitrary number of regression points to be decided. One can observe the best solution depends on how many
normal modes k are used. More details on the latter can be found in section 4.5.
By combining the solution of Eq. (27) with the NAR generative model for normal modes constitutes the ML-GLE, a
stochastic generator for the effective polymer dynamics whose generation protocol is summarized in Alg.1.

4. Numerical experiments

4.1. Homo-polymer melt CG simulations

We hereby describe how the reference polymer melt MD simulation was performed. Polymer melts are viscoelas-
tic materials notoriously difficult to simulate because their enchained structure makes the dynamics very slow. In this
case, initial equilibration can be quite expensive as well, increasing further with system size.
In order to test the ML-GLE framework robustness in reproducing single polymer dynamics, we performed CG MD
simulations of a 100 cis-Polybutadyene identical polymers of N = 100 monomers each, in a wide range of tempera-
tures. Polybutadyene, also called Butadiene Rubber is used ubiquitously in tire manufacturing, but also in combination
with other plastics, as it improves their mechanical properties. Moreover, it has recently been used as propellant in
solid rocket boosters.
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Fig. 5: Modes correlation matrices at T = 300 K (Left), T = 340 K (Center), T = 400 K (Right), for the slower 50 modes. The correlations are
computed from MD configurations and are averaged over all polymer configurations. Cross mode correlations are negligible and this justifies the
independence approximation, which allows to derive the regression Eq. (26). Correlations may still be present especially for faster modes, which
are related to the local polymer melt atomistic structure.

Algorithm 1 ML-GLE: Generation

Require: ym
j,tmax+∆t ∀ j ∈ {1, .., k}, X0, Ngen, α

∗
k, β

∗
k, ▷ Initial MD trajectory, Initial C.o.M position, fit parameters

for t ∈ {tmax + ∆t, ...,Tgen} do
for j ∈ {1, ..., k} do

ŷ j,t ← R j,t ◦ y j,t ▷ Sub-trajectory rotation
[µ j,t,D j,t,L j,t]← F j,θ(ŷm

j,t) ▷ Input encoding with MLP
Σ j,t ← L j,tD j,tLT

j,t ▷ Covariance matrix reconstruction
∆ẑ j,t ∼ N(µ j,t,Σ j,t) ▷ Sampling in the fix ref. frame
∆z j,t ← R−1

j,t ∆ẑ j,t ▷ Rotation back to the input ref. frame
z j,t ← z j,t−∆t + (σ∆z j/σz j )∆z j,t∆t ▷ Implicit Euler integration
y j,t+∆t ← (y j,t \ {z j,t−m∆t}) ∪ {z j,t} ▷ Sub-trajectory update

end for
ξ ∼ N(0,∆t)
Bt ← Bt−∆t + ξ ▷ 3D Brownian motion integration
Xt ← Xt−∆t + α

∗
kBt + β

∗
k
∑k

j=1 σz j z j,t ▷ 3D C.o.M dynamics integration
end for

The simulations are done using Dissipative Particle Dynamics (DPD). Upon selection of monomer CG variables, DPD
equations can be formally expressed as follows ∀n ∈ {1, ...,N},ẋn = vn = pn/m

ṗn = FC
n + FD

n + Rn
(28)

where FC
n ,FD

n ,Rn are respectively the conservative (bonded and non-bonded) forces acting on monomer n, the dissi-
pative forces and a Gaussian uncorrelated noise. Fixing a radial distance cutoff rd, the dissipative and random force
can be expressed as pairwise contributions from neighbouring CG particles.
Denoting as Sn(rd) and Bn, respectively, the set of non-bonded neighbours at distance rd and the set of bounded
neighbours for monomer n, one has

FC
n =

∑
m∈Bn

fC
m→n(rmn) +

∑
m∈Sn

fC
m→n(rmn), FD

n =
∑
m∈Sn

fD
m→n(rmn), Rn =

∑
m∈Sn

fR
m→n(rmn) (29)

Intra-molecular conservative forces, for bonds and angles, are derived from the following harmonic potentials,

Eb
mn = kmn(r − r0

mn)2, Ea
mnl = kmnl(θ − θ0mnl)

2, (30)



Gian-Michele Cherchi etal / Journal of Computational Physics (2024) 13

where r0
mn is the equilibrium distance of any monomer pair mn and θ0mnl is the equilibrium angle between any three

consecutive monomers mnl. kmn and kmnl are the respective elastic spring constants. The non-bonded conservative
interactions are instead tabulated pair potentials obtained from cubic spline interpolation using 10 sampling distances.

The non-conservative dissipative force is the classical DPD additive force,

fD
m→n = −γ

(
1 −

r
rd

)2

(vmn · emn)emn (31)

where γ is the friction coefficient, vmn = vm − vn, is the relative velocity and emn is the unit vector directing monomer
m and n. The parameters of the dissipative forces and bounded conservative forces are estimated with the statistical
trajectory matching (STM) [55], a Bayesian technique which exploits downsampled trajectories of an All-Atom (AA)
simulation of the same system at T = 300 K.
The STM technique allows therefore to estimate the equilibrium values r0

mn, θ
0
mn, the constants kmn, kmnl and the friction

coefficient γ, assumed identical for all monomers. Finally, the additive random force takes the form,

fR
m→n = σ

(
1 −

r
rd

)
u
√
δt

emn (32)

The fluctuation-dissipation theorem imposesσ =
√

2kBTγ, while u is a standard Gaussian random number. The forces
are integrated using the velocity Verlet algorithm with a simulation time-step of δt = 50 fs and periodic boundary
conditions (PBCs) for a cubic simulation box of length l = 10 Å. We performed 11 simulations using the software
LAMMPS and run on a CPU cluster, at different temperatures from 300 K to 400 K (snapshot in Fig. 1), at intervals
of 10 K for Tsim = 2 × 108δt.
These number of steps are sufficient to observe the normal diffusive regime and estimate the diffusion coefficient on
all simulated temperatures. However, even reducing the overall d.o.fs with the CG scheme, these simulations are very
expensive and ML-GLE speeds-up substantially single polymer effective dynamics by several orders of magnitude.

4.2. Dataset preparation
Simulated trajectories are downsampled on the fly with a time-step of ∆t = 2× 103δt = 100 ps. This is justified by

the fact that we are trying to learn a coarse-grained C.o.M integrator for the modes dynamics. ∆t is chosen such that
its resulting C.o.M MSD at short times is subdiffusive, meaning the ballistic regime is resolved and thereby ensuring
the validity of the zero-mass limit GLE description.. Full simulation length can be thus expressed in units of ∆t, hence
Tsim = 105∆t.

For all simulated temperatures, normal modes are obtained from CG monomer coordinates {xi}
N
i=1 for all polymers,

with a DCT, as described in section 3. Performing this for each sampled snapshot, we obtain a discrete 3D non-
Markovian stochastic process, one for each mode. Training is performed with only 1 % of the full trajectory length,
hence Ttrain = 103∆t. For validation, we used subsequent trajectories of length Tval = 6 × 102∆t, while the rest of the
dataset is used to compare the long-time behaviour of the generated trajectories (MSD, ACFs).

Sub-trajectory dataset is obtained as follows:

1. Modes data is properly standardized, (z j − ⟨z j⟩)/σz j , where ⟨z j⟩ = 0, ∀ j ∈ {1, ...,N − 1}, since every polymer is
supposed to be at equilibrium with its environment. σz j are pre-computed from data up to Ttrain. The dataset is
then splitted in train set and validation set.

2. Only the slowest k = 12 modes trajectories are retained from monomer coordinates. The rationale behind this
choice is elucidated in section 4.5.

3. Sub-trajectory training and validation datasets are obtained with a lag-1 sliding window of length m + 1 up to
Ttrain and Tval respectively and for each of the 100 polymer trajectories. We obtain the target time increment by
differentiation over the last sub-trajectory element.

Ultimately, we exploit the fact that the physical system is made of homo-polymers, meaning their marginal conditional
distributions are equal and obtaining consequently a larger pool of different sub-trajectories that are used for mini-
batch training, after random shuffling. Dataset pre-processing, post-processing, training and generation codes were all
implemented using PyTorch ML library and executed on a GPU server with two NVIDIA A100 accelerators. Train-
ing data up to Ttrain for all temperatures is available at https://huggingface.co/datasets/gian-michele/
meltBR.

https://huggingface.co/datasets/gian-michele/meltBR
https://huggingface.co/datasets/gian-michele/meltBR
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Fig. 6: Exponential (Top) and Stretched exponential (Bottom) curve fit of MD normal modes NACFs for T = 300 K (Left), T = 340 K (Center)
and T = 400 K (Right). The number of NACF data-points used for both fits are 103 for each mode (1st, 2nd, 5th, 10th), corresponding to Ttrain.

4.3. Normal modes dynamics beyond exponential relaxation

In this section we demonstrate the inadequacy of the Markovian approximation when dealing with single poly-
mer relaxation behaviour, thus justifying the need for data-driven techniques capable of reproducing memory effects,
without performing full-size MD simulations.
As stated in section 3, the GLE with integrable kernel is capable of reproducing any TAD curve with a power-law
diffusive spectrum, provided the long-time relaxation behaviour is known, by means of a set of OU processes. This
constitutes a real problem when dealing with realistic polymer materials simulations, because single polymer dynam-
ics is evidently non-Markovian and in addition the power-law kernel can be a restrictive choice with respect to the
space of integrable functions.
In the following, we demonstrate the deviations of MD single polymer normal modes from exponential relaxation
characterizing OU processes, which are present in the GLE solution, as shown in Eq. (10). In Fig. 6, we fit the MD
normal modes Normalized ACFs with an exponential function with the same amount of data used for training (i.e.
trajectory length, Ntrain). The latter is not able to reproduce the correct relaxation suggesting that OU processes are
not suitable to describe normal modes dynamics.
Relaxation in disordered media is often modeled with the Kohlrausch function, also known as the stretched exponen-
tial. This type of relaxation can describe different phenomena typical of complex systems, from polymer dielectric
spectra [56] to MRI signals in the brain [57], dynamical heterogeneities [58], long-term correlations in spin-glass
systems [59] and quantum diffusion [60]. Given a ∈ (0, 1) and τ > 0, the Kohlrausch function can be defined as
follows,

f (t) = Cae−(t/τ)a
(33)

where the pre-factor Ca depends in general on a. The case a = 2 yields the Normal distribution. In Fig. 6 we show
the ACF fit at different temperatures, exploiting the stretched exponential and obtaining an important improvement,
demonstrating the non trivial behaviour of modes dynamics. Even in this case, noticeable deviations are present
both at short times and in their tails behaviour, especially in the slower modes, suggesting that a more complex
description is needed. Furthermore, even assuming the Kohlrausch function as a good relaxation model, generating
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Fig. 7: NLL training and validation curves at T = 300 K for 1st (Left) and 2nd (Right) normal modes. Training was performed with a 128
batch-size for 100 epochs, while validation with 256. The best epoch is chosen as the validation loss minimum.

auto-regressively from the corresponding non-Markovian stochastic differential equation (SDE) is a difficult task.
Consequently, employing NNs seems a viable choice in order to estimate the coarse-grained integrator and to access
the modes relaxation times, approximating the ACFs and also allow their long-term extrapolation.
Furthermore, generating normal modes trajectories has several advantages: it allows for simulate an high fidelity
single polymer effective dynamics and has the potential to be used in combination with more advanced generative
methods in order to construct better CG schemes.

4.4. NAR training results for Normal modes
In order to harness the capabilities of the GLE to describe and reproduce the C.o.M TAD dynamics, we propose

to endow it with a NAR generative model for the modes dynamics, trained on short MD trajectories.
3D historical trajectories of length m = 128 are encoded, after flattening, with a Multi-Layer Perceptron (MLP)

made of 2 hidden layers with a total of 512 neurons, to a latent vector of size 12. This provides the input for two
separate dense layers outputting the conditional mean vector and elements of the LDLT decomposition. Training is
executed with Adam optimizer with learning rate η = 10−4. The target fluctuation ∆zt is then used to evaluate the
NLL.
The free parameter tmax can be empirically justified by looking at the 1st mode empirical ACF: we obtained best
results for a memory size corresponding to roughly 20 % ACF decrease. An additional heuristic on this is provided
in section 4.5. For each mode, the best epoch is chosen such that it minimizes the validation loss: in Fig. 7 one
can clearly see that over-fitting is already apparent after a few dozens epochs for the first mode and appearing earlier
for faster modes. It seems that faster decaying correlations are easier to learn, reaching therefore validation minima
sooner. More training loss analysis can be found in Appendix C.
Furthermore, exploiting modes independence and given the small NNs size, for each mode, training and generation

can potentially be performed in parallel. Parallelization over modes depends on specific use cases and hardware
availability, other than the number of modes one wishes to include in the model.
The auto-regressive generation results can be appreciated by comparing the normalized auto-correlations (NACFs)
between the synthetic generated trajectories and the MD ones. For each temperature, modes stochastic dynamics
are generated with Alg. 1 up to Tgen = Tsim, for approximately 105 steps, from an ensemble of 300 MD initial
historical trajectories. In Fig. 8, we show some preliminary examples trajectories coming from MD and NAR model
for different normal modes. Notice how higher modes are characterized by smaller fluctuations.

Given the length of the generated signals, brute force empirical auto-correlation computation is impractical, having
a O(n2) complexity. Exploiting the Khinchin–Kolmogorov theorem for stationary stochastic processes, one can com-
pute the same auto-correlation employing two Fast-Fourier Transforms (FFTs), and a computational cost ofO(n log n),
where n is the trajectory length. Confidence intervals (confidence intervals) for ACFs are instead computed following
Mélard and Roy [61], where the standard error (SE) at lag k relative to an underlying moving average stochastic
process is expressed as,

σ2
S E,k =

1
n

(
1 + 2

k−1∑
i=1

ρ2
i

)
(34)

where ρi = ⟨z0zi⟩/σz is the lag i normalized correlation estimator for the mode z.
Example NAR generated trajectories at T = 300 K are shown in Fig. 8, while Normalized ACFs for some modes
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at different temperatures are shown in Fig. 9, together with the empirical PDFs for the ∆z j, z j. The dynamical
model shows remarkable capabilities in extrapolating far beyond what has been trained on. The NACFs are correctly
reproduced, with a net gain in computational costs with respect to full-length MD simulations. The main statistical
features are therefore reproduced only training on sub-trajectories of length tmax, and despite not having enforced
any of those features directly in the loss function. Furthermore, the modes auto-correlation deviate from classical
exponential relaxation and the NNs are able to reproduce well the NACFs, outperforming the Kohlrausch function
ACF fit at short times.
Although with low probability, the slower normal modes PDFs tails exhibit small out-of-distribution sampling that
deviate from normality. This behaviour is less relevant at higher temperatures where memory decays faster. Some
examples are provided in Appendix D.
A probable diagnosis for this problem resides in the spatial symmetry of the Gaussian approximation when sampling
on extreme values. Limited observational data on low probability regions could also affect the result.
Architectural limitations of the MLP in handling sequences could also contribute, as well as to some other minor
flaws: one can notice that if the historical trajectory’s length is close to the mode relaxation time, finite size effects
produce artifacts in the NACFs.

Fig. 8: (Top) Example modes trajectories from the MD simulation at T = 300 K. 1st mode (green), 2nd (navy), 5th (purple) and 10th (red).
(Bottom) Example modes trajectories generated with the NAR model trained on trajectories until T f it = 102∆t at T = 300 K. One can observe how
slower modes exhibit larger fluctuations with longer time before reverting to their mean, which is identically zero. Faster modes fluctuate instead
rapidly around zero. In both examples, the first value was subtracted for all modes, so that they would be aligned to z0 = 0.
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Fig. 9: (Left) NACFs for T = 300 K (top), T = 340 K (middle) and T = 400 K (bottom) estimated from generated trajectories of length 105 steps
with the trained NAR model trained on short trajectories of length tmax = 128∆t, while the full amount of training data corresponds to a trajectory
length of Ttrain = 103∆t, 1 % of the simulated steps. The 99 % confidence intervals are computed using Eq. (34). Notice how for faster modes, the
confidence intervals become progressively narrower and comparable to the reference MD ones, converging to mean value. (Center) The target ∆z
PDFs are well reproduced as one can see from the empirical PDFs for the same temperatures. (Right) Empirical z PDFs are reproduced as well,
even if the information about the stationary distribution and ACFs was not directly embedded in the loss function.

4.5. GLE validation in reproducing TAD
To validate the GLE solution in reproducing the MSD curves relative to TAD, we first use the k slowest modes

and the C.o.M MD trajectories to fit the regression Eq. (27).
The data-points used for regression are obtained computing the empirical averages at different lag times t ∈ P,
⟨∆X2

k,t⟩, ⟨∆z2
j,t⟩, where Xk,t is the GLE solution with k modes processes.

In order to maintain a gain in computational costs, the parameter estimation should be successful when computing
the empirical averages with the same or less amount of data used to train the NAR, corresponding therefore to the
trajectory length, Ttrain = 103∆t. At the same time, the latter should be such that the transient behaviour is not yet
observed. We denote thus as T f it as the trajectory length over which ⟨∆X2

k,t⟩, ⟨∆z2
j,t⟩, ∀ j ∈ {1, ..., k} are computed.

Regarding the set of regression data-points we use only three, P = {1, tmax/2, tmax}, where tmax is the same sub-
trajectory length chosen as historical input in the NAR model. From the GLE regression point of view, the choice
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Fig. 10: Comparison between the diffusion coefficient as estimated from the reference MD trajectories, DMD and the ones obtained fitting the GLE
solution at an increasing number of modes, DGLE = (α∗k)2/2, shown by the colorbar on the right side, for all simulated temperatures. Results are
shown for 3 different increasing values of T f it , used to compute ⟨∆X2

k,t⟩, ⟨∆z2
j,t⟩. Error bars on DMD show the 95% confidence interval computed

over the 100 available polymer chains, while DMD is obtained following Eq. (35) with t1 = 3 · 104∆t, t2 = 6 · 104∆t for a total of 3 · 104 points.

of tmax can also be justified in an heuristic manner: we argue in fact that a small value would not capture properly
the overall dynamical evolution of the slowest modes, while a value close to the transition would bias the parameter
estimation.
Regression results are shown in Fig. 10, where we compare the C.o.M. diffusion coefficient obtained from the MD
simulation, DMD, and the one obtained from the best fit α∗k for an increased number of modes, for different values of
T f it.
For the former, estimation is done choosing a time interval [t1, t2] completely included in the diffusive regime. In
particular t1 is chosen sufficiently far from the transition so that estimation is not biased and t2 not excessively close to
the last points available in time so not be affected by sampling errors. The estimated diffusion coefficient is computed
thus as follows,

DMD =
1

t2 − t1

t2∑
t=t1

⟨∥Xk,t − Xk,0∥
2
2⟩

6t
(35)

The latter is straightforward from Eq. (26). Hence, DGLE = (α∗k)2/2.
Fig. 10 proves that only the slower modes are needed for the GLE equation to predict the diffusion coefficient. DGLE

converges in fact rapidly with k and settles close to DMD but with some consistent errors.
The source of these errors can be explained with the slow exploration of phase space: although polymer melt simula-
tions are ergodic in the long term, they are considerably sensible to initial conditions as well. Multiple independent
simulations or longer trajectories would entail a smaller error on the empirical averages about the true expectations as
wider phase space regions are explored.
In order to substantiate this claim, we set hereinafter k = 12, and evaluate the prediction error varying the trajectory

length T f it. In Fig. 11, the MSE between DMD and DGLE for different values of T f it is shown, averaged over all
available temperatures. The MSE decreases quickly as T f it increases, remaining substantially unaltered afterwards,
but the error dispersion over temperatures continues to decrease, increasing therefore the prediction consistency over
temperatures.
This is a significant result because it confirms the validity of the GLE solution in predicting the diffusion coefficient
and furthermore proves that only a few single polymer CVs are relevant for the long-term behaviour.

Finally, the MSD curves can be obtained by feeding the modes trajectories to Eq. (13), and we can evaluate if this
model yields consistent results and reproduces TAD.
The brute-force approach for the MSD computation is expensive for long trajectories. Exploiting the same theorem
used for ACFs calculation, one can compute the MSD more efficiently by using FFTs. To show this, given a trajectory
length T , we can express the squared displacement at lag m, ∆X2

m as,

∆X2
m =

1
T − m

T−m−1∑
i=0

(Xi+m − Xk)2 =
1

T − m

T−m−1∑
i=0

(X2
i+m + X2

k ) −
2

T − m

T−m−1∑
i=0

Xi+mXk (36)
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Fig. 11: Mean Square Error (MSE) between DMD and DGLE , for k = 12, over 11 temperatures. The 95% confidence intervals were estimated
using the t-student quantiles. This avoids underestimation of error bars when the number of samples is low. The plot demonstrates the increase in
prediction accuracy at increasing T f it with a simultaneous decrease in the uncertainty on the MSE.

The second term is the position auto-correlation and can be efficiently calculated (see section 4.4). The first term can
be instead computed recursively as shown in [62]. In Fig. 12, we can see that the fit GLE solution reproduces well
the MSD and the positional distribution. Overall, normal modes short term correlations can thus be simultaneously
exploited to integrate the C.o.M dynamical equation, gaining knowledge about the asymptotic diffusive behaviour and
simulate a CG single polymer effective dynamics, through the NAR generative model.
Although normal modes work well for the observed temperature regime, approaching the glass transition these CVs
may fail in describing the correct C.o.M scaling, as they are obtained with a simple linear mapping from monomer
coordinates. A meaningful GLE description could be obtained by employing non-linear CVs and relaxing the inde-
pendent modes assumption.

4.6. ML-GLE: Generation
Once the best NAR model is chosen for each mode, it can be used auto-regressively to generate modes dynamics

and together with the fit GLE solution, generate completely synthetic C.o.M data, extrapolating its long time behaviour
which is inaccessible form short time MD trajectories.
3D modes dynamics is generated starting from an initial MD historical trajectory of length m. After that, the predicted
parameters are used to sample a new time increment vector ∆ẑ j,t from a Gaussian distribution which is rotated back
to the original reference frame and integrated following the implicit Euler scheme as in Alg. 1.
One can appreciate the statistical relevance of our results in Fig. 13, where we show the MSD computed from
generated trajectories at different temperatures, observing a very good agreement between MD and ML-GLE MSD
curves. ML-GLE is able to extrapolate the dynamics up to 10 µs, sufficient to observe TAD, while only overall
trajectories used for training are of length 0.1 µs, corresponding to T f it.
In Fig. 14 we compare the estimated diffusion coefficients from MD simulations, the ones obtained from ML-GLE,
and the fitted parameter from short trajectories that we used to generate the C.o.M dynamics. One can clearly see how
the finite size trajectories affect their estimation. The ML-GLE diffusion coefficient should converge to DGLE over
long times but the degree of convergence is not the same for all temperatures.
As already discussed in section 4.5, sensitivity to initial conditions can impact the GLE predictive capabilities, and
longer trajectories or independent simulations could allow to improve the prediction error, although that would imply
a smaller gain in computational costs. Several other sources of errors could affect the final result. GLE fitting and
NAR training are both performed assuming independence and identical distributed processes.
De facto, polymer interactions in the simulation box make the independence assumption invalid: single polymers are
not necessarily independent, as they come from the same system. Small correlations may be present when training on
sub-trajectory batches, effectively reducing dataset diversity.
This issue tends to be less relevant for larger systems, as more statistics on distant less correlated single polymers
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Fig. 12: (Top) MSD curve comparison between the MD and the fit GLE solution for T = 300 K (Left), T = 340 K (Center) and T = 400 K
(Right). The GLE parameters are obtained from short trajectories of length T f it = 103∆t. Independent Brownian processes and mode trajectories
until Tsim = 105∆t are fed to the fit GLE solution in order to generate the C.o.M dynamics. (Bottom) Positional PDFs at Tsim = 105∆t are obtained
from the C.o.M diffusive dynamics with X0 = 0. This PDF is of course dependent on the trajectory length, as it will asymptotically explore the
whole position space.

are available. Consequently, ML-GLE is also scalable, as increasing system size would imply more trajectory data,
consequently requiring even shorter simulations.
For completeness, in Table 1 we show the numeric results of the diffusion coefficients estimation for all available
temperatures.

T (K)
D(Å

2
/∆t) 300 K 310 K 320 K 330 K 340 K 350 K 360 K 370 K 380 K 390 K 400 K

MD 0.104 0.114 0.109 0.127 0.120 0.143 0.140 0.170 0.181 0.183 0.194
Fit GLE 0.122 0.109 0.107 0.114 0.120 0.135 0.177 0.167 0.173 0.175 0.170
ML-GLE 0.141 0.116 0.116 0.113 0.113 0.140 0.163 0.164 0.155 0.194 0.161

Table 1: Diffusion Coefficients as estimated from full length MD simulation in comparison with the parameter estimated from the GLE model and
the ML-GLE generated modes dynamics with Neural Networks. The parameter fit and subsequent generation was performed with k = 12 normal
modes.

5. Conclusion

In this work we presented ML-GLE, a machine learning framework which demonstrates the predictive capabilities
of the Generalized Langevin Equation when modeling complex dynamics happening at different timescales, such as
transient anomalous diffusion. This was possible thanks to a relationship existing in the GLE framework, between
slow-varying d.o.fs and long-term dynamics, determined by the tail of the kernel function.
In the case of polymer melts, although the slow variables are assumed to be uncorrelated, they are non-Markovian
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Fig. 13: (Top) MSD curve comparison between the MD and the C.o.M dynamics generated with ML-GLE for T = 300 K (Left), T = 340 K
(Center) and T = 400 K (Right). Starting from 300 initial sub-trajectories of length tmax = 128∆t, the modes dynamics is generated with the NAR
which is trained on data equivalent 0.1 µs and generated trajectories are extrapolated therefore until 10 µs corresponding to Tsim. The MSD curves
show TAD and reproduce both the transient and asymptotic regime. (Bottom) Positional PDFs are computed from the C.o.M diffusive dynamics
with initial condition X0 = 0 for both ML-GLE and MD reference dynamics.

and their asymptotic behaviour computationally expensive, even with an already CG system.
The neural auto-regressive generative model we presented is capable of learning the coarse-grained time integrator
for slower normal modes by means of a maximum likelihood training. Thus, for each of these processes the long-term
behaviour can be extrapolated, providing a way to simulate single polymer degrees of freedom and implicitly learn
the tail of the kernel function, accelerating consequently the observation of the diffusive regime and estimation of the
diffusion coefficient with a remarkable gain in computational time, with respect to performing the full-size CG MD
simulation.

A few key points need to be addressed at this point. First, training data comes from a CG system, which implies
an upper bound on the method accuracy; this is determined by the quality of the CG approximation as compared
to the All-Atom simulation. Secondly, although the bijective mapping from monomer coordinates to normal modes
allows for configuration reconstruction, the statistical independence approximation could fail to reproduce topologi-
cally forbidden self-intersections in real space, implying that correlations may be indeed present especially for higher
frequency modes, corresponding to local configurations, and thus affected by volume exclusion effects.
In addition, as discussed above, the generative model for modes dynamics deviates from Gaussian behaviour in the
PDFs tails, making large fluctuations more likely but unrealistic. A possible improvement in this direction could
involve employing architecture that are natively able to capture correlations in 3D sequences, such as RNN or neural
networks with attention mechanisms, like Transformers [63], instead of a simple MLP. These more advanced architec-
tures could be further enhance the generalization capabilities over unobserved thermodynamic coordinates, chemical
space, or system size, when trained on a large dataset of trajectories coming from the same physical system, but
at different conditions. For example, training could be performed on simulation data at different temperatures, that
would act as conditioning static features.

Future research perspectives also include developing methods for generating larger systems reproducing simul-
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taneously structural and dynamical properties, using the dynamics generated by the ML-GLE to back-map to the
original coarse-grained description without loosing the dynamical correlations. The ML-GLE framework we pro-
pose could serve therefore as a starting point for more complicated machine learning methods, using the proposed
dynamics as a first approximation but aiming at the reconstruction of the full-size fine-grained system, therefore
accelerating the full-size collective polymer simulation.

Another important research direction revolves around how this framework could be adapted to different sys-
tems, from biological to artificial, including methods for extracting slow varying degrees of freedom from complex
molecules in order to describe its long term dynamics. In this respective, anomalous diffusion has been discovered in
numerous systems, mostly in disordered media [24].
Some interesting examples include external tracer particles in biological cells [64, 65], and in artificially crowded
systems [21, 66]. Protein simulations studies have reported anomalous sub-diffusive behaviour as well [67, 68, 69].
All these systems exhibit transient behaviour and therefore this approach could pave the way for data-driven modeling
of diffusing macro-molecules within the GLE framework, both from in vitro and in vivo data sources [70].
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Appendix A GLE solution with the Prony series OU processes

We report here the GLE solution steps as appear in [27]. Starting from a 1D GLE in the form,

MẌ(t) = −
∫ t

0
Γ(t − s)Ẋ(s)ds + F(t)

and having specified the noise term and the kernel function as a set of Ornstein-Uhlenbeck processes and Prony series
respectively, applying the Laplace transform to all terms.
The solution in Laplace domain reads,

X̃(z) =
z−1F̃(z)

Mz + Γ̃(z)
. (37)

where the noise’s transform can be written as,

F̃(z) =
N∑

j=1

F̃ j(z) =
N∑

j=1

√
2kBTηγ jL

{ ∫ t

0
e−γ j(t−s)dW j(s)

}
(z)

By computing the Laplace transform of the OU integral solution, the numerator becomes,

z−1F̃(z) =
√

2kBTη
N∑

k=1

√
γk

z + γk
L{Wk(t)}(z)

Denoting σ2 = 2kBTη−1, and W̃ j(z) = L{W j(t)}(z) as the Wiener process transform, the solution in zero-mass limit
becomes,

X̃(z) =
z−1F̃(z)
Γ̃(z)

= σ

∑N
j=1

√
γ j

z+γ j
W̃ j(t)(z)∑N

j=1
1

z+γ j

.

Further denoting as p(z) =
∏N

j=1(z + γ j) one can write the solution in a more compact form in the following way,

X̃(z) = σ
N∑

j=1

p(z)
p′ (z)(z + γ j)

√
γ jW̃ j(z).

The key point for solving the equation is recognizing that p(z)/p
′

(z + αk) is a rational function with a numerator and
denominator which have the same degree. The simple pole of this function are the zeros of p

′

(z), {−r j}
N
j=1.

Hence, the following decomposition holds,

p(z)
p′ (z)(z + γk)

=
1
N
+

N−1∑
k=1

p(−r j)
p′′ (−r j)(−r j + γk)

1
z + r j

In Laplace space, integration by part equals

1
z + r j

=
1
r j

(1 −
z

z + r j
),

and one has the following result,
X̃(z) = σ(S 1 − S 2)

where,

S 1 =

N∑
j=1

(
1
N
+

N−1∑
l=1

p(−rl)
p′′ (−rl)(γ j − rl)

1
rl

)
√
γ jW̃ j(z)

S 2 =

N∑
j=1

N−1∑
l=1

p(−rl)
p′′ (rl)(γ j − rl)rl

z
z + rl

√
γ jW̃ j(z)
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The solution can be decomposed in a frequency independent part and a frequency dependent part. As we will see,
these terms correspond in the time domain, to the a simple Brownian motion and a term involving sum of more
complicated processes, respectively.
To see this, one can simplify further S 1,

S 1 =
p(0)
p′ (0)

N∑
j=1

1
√
γ j

W̃ j(z)

Inverting back to time domain, we can use the properties of the Brownian motion,

N∑
j=1

1
√
γ j

W j(t) =
( N∑

j=1

1
√
γ j

)1/2

B(t) =
1
√

Nτ̄
B(t)

Concerning S 2, it can be written as,

S 2 =

N−1∑
l=1

p(−rl)
p′′ (−rl)rl

z
z + rl

N∑
k=1

√
γk

γk − rl
W̃ j(z) =

N−1∑
l=1

p(−rl)
p′′ (−rl)rl

z
z + rl

ξ̃l(z)

where ξ̃l(z) =
∑N

j=1

√
γ j

γ j−rl
W̃ j(z),∀l ∈ {1, ...,N} is set of statistically independent Brownian motion processes whose

scale parameter depends on the whole diffusive spectrum, providing collective information about the dynamics.

Inverting back in the time domain,

N−1∑
l=1

p(−rl)
p′′ (−rl)rl

∫ t

0
dz

z
z + rl

ξ̃l(z)ezt =

N−1∑
l=1

p(−rl)
p′′ (−rl)rl

( N∑
j=1

γ j

(γ j − rl)2

)1/2

Zl.

where {Zl}
N−1
l=1 is a set of independent OU processes with parameters corresponding to the roots of p

′

(z), {−rl}
N−1
l=1 .

Wrapping up the two inverted terms in time domain, one can write the final path solution,

X(t) =
σ
√

Nτ̄
B(t) + σ

N−1∑
l=1

c jZl.

The set of coefficients {cl}
N−1
l=1 are such that,

cl =
p(−rl)

p′′ (−rl)rl

( N∑
j=1

γ j

(γ j − rl)2

)1/2

.
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Appendix B Gaussian PDFs

Since the Neural Autoregressive (NAR) Model is optimized over a Multivariate Normal distribution modeling the
process Gaussian increments ∆z j, we demonstrate in Fig. 15 that this is a suitable choice as both the original and
generated process adhere to this hypothesis, as shown by the empirical and fit Normal PDFs.
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Fig. 15: PDFs of ∆z averaged over the 3 spatial dimensions for T = 300 K (Top), T = 340 K (Center), T = 400 K (Bottom). The fit Gaussian
PDFs are obtained with parameters computed from the CG-MD simulation (left-side) and the ML-GLE generated processes (right-side).
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The same goes for the Gaussian increments related the C.o.M fluctuations ∆X against the ML-GLE model ∆Xk.
In Fig. 16, we can see that both the MD and generated process follow the characteristic Normal PDF, even if small
deviations from Gaussianity are noticeable on the CG-MD simulation PDFs tails corresponding to regions covered
with small probability (< 10−3). Furthermore, the CG-MD and the ML-GLE increments mismatch in their PDFs tails,
which is a result of the GLE solution approximation with k modes.
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Fig. 16: PDFs of ∆z averaged over the 3 spatial dimensions for T = 300 K (Top), T = 340 K (Center), T = 400 K (Bottom). The comparison
between the CG-MD and ML-GLE process PDFs are shown on the right side.
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Appendix C Loss vs Batchsize

We show here training results in order to investigate its sensibility with respect to batchsize. We trained the same
NAR network with the same amount of data, hence using simulations up to Ttrain = 1000∆t and historical window
m = 128. Validation and training curves for 100 epochs are represented in Fig. 17. The different trainings were
executed with the same random seed which enforces the same initial weights on the network.
One can clearly notice that changing batchsize does not influence the validation minima in an appreciable way. How-
ever, at increasing batchsize, an observable tendency to reduce the validation train gap can be noticed. In terms of
generation quality, we chose the best batchsize at 128 by trial and error, since training with small batches did not
provide a satisfying result.
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Fig. 17: Training (solid) and validation (dashed) loss for 100 epochs at 8, 32, 64, 128 and 256 batchsize.
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Appendix D Normal modes probability plots

In Fig. 18 we show normal probability plots associated with the normal modes PDFs as generated form the NAR
generative model compared to the reference ones obtained from the CG system MD simulations.
We remark how the effect of temperature increase on deviations from normality is equivalent to considering faster
modes. In other words, the NN is more capable of reproducing accurately the normal modes PDFs when the input
trajectory is longer (i.e. higher order memory). When temperature decreases, the slowest mode becomes slower and
we can observe a small, but more pronounced non-Gaussian behaviour, as well as a higher discrepancy on the PDF
mean and scale parameters.

Fig. 18: Normal Probability plots for T = 300 K (Top), T = 340 K (Center), T = 400 K (Bottom). The normal modes PDFs unscaled quantiles are
shown against theoretical standard PDF quantiles for the 1st, 2nd, 5th and 10th mode. Slower modes (in magenta) tend to exhibit small departures
from normality on the extreme values, with respect to the MD ones (in gold). This effect tends instead to disappear for faster modes. In cyan and
blue are shown the NAR and MD PDF fit respectively, which depend on the estimated mean and scale parameters.
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