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Abstract21

Marine geomorphological maps are useful to understand seafloor structure for22

example in the context of ecological studies, resources management or con-23

servation planning. Although techniques to build such maps are increasingly24

sophisticated, manual techniques are still largely used. Automated approaches25

are needed to get reproducible maps in a reasonable time. This work provides26

statistical learning approaches based framework to build automatically geomor-27

phological maps. We used bathymetric data to build Digital Bathymetric Model28

(DBM) and compute terrain attributes characteristic of seafloor geomorphol-29

ogy. Then, we used clustering based algorithms to select automatically ground30
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truth locations from a reference geomorphological map manually made. Finally31

a supervised classification model random forest based was used to build predic-32

tive models for seafloor geomorphology typologies. Subsequently we studied the33

effect of DBM resolution, sample size and sampling method of the ground truth34

locations, in the quality of map production via a series of simulations. Results35

showed that the proposed framework allowed to build efficiently relevant seafloor36

geomorphological maps. The best compromise between the sampling effort and37

the quality of the resulting maps was obtained with 100 m DBM resolution, 20038

data points sample size and using a complexity-dependent sampling method and39

led to a map matching at 90% the reference one.40

Keywords: geomorphological map, spatial modeling, random forest classification,41

digital bathymetric model, terrain attributes, lidar data42
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1 Introduction67

Geomorphological maps are georeferenced delineation of morphological structure and68

surface composition of a studied land and/or seafloor (Otto and Smith, 2013; Dramis69

et al, 2011; Pavlopoulos et al, 2009). Marine geomorphological maps are particularly70

crucial for resource management, conservation efforts, hazard assessment, protected71

area management, effective marine research campaign planning and various marine-72

related industrial works (Kienholz, 1978; Bishop et al, 2012; Fukunaga et al, 2019;73

Browne et al, 2010). Such maps provide valuable information on the composition and74

structure of the seabed which, among other usage, is needed to generate habitat maps75

through the identification and delineation of different benthic ecosystems like coral76

reefs, seagrass beds or various deep-sea communities (Pandian et al, 2009; Dramis77

et al, 2011; Wabnitz et al, 2008).78

To produce geomorphological maps, different approaches are used (Siart et al, 2009;79

Hugenholtz et al, 2013). Widely used imagery techniques involve studying the pat-80

terns, textures, shapes, and color variations present in the imagery. This can be done81

manually by digitizing or tracing the features on the imagery or through automated82

or semi-automated image segmentation and classification techniques in Geographical83

Information System (GIS) using available image analysis tools. While imagery can be84

a valuable tool, it has a limited use for mapping deeply submerged geomorphological85

features due to water opacity. In such conditions, only acoustic approaches can pro-86

vide usable data which are generally completed by punctual carefully located ground87

truthing observations using for example scuba-divers or submarine-divers observation,88

Remote Operated Vehicle (ROV) or Automatic Underwater Vehicle (AUV) picture89

or videos, drop cameras or seabed sampling (Wynn et al, 2014; Locker et al, 2010).90

Subsequent treatments, required to generate maps with such data, will be to first pro-91

pose a geomorphologic category for each ground truthing point (ie. Typology), then92

delineate surfaces of homogeneous typologies. Depending on whether ground truthing93

points are defined as categories or as quantitative data, interpolation methodologies94

within the surface to be mapped might take different forms.95

Many semi-automated or automated approaches have been also proposed in recent96

decades to achieve objective, automated and repeatable approach to extract mean-97

ingful information using vast quantities of data (Summers et al, 2021). Object-Based98

Image Analysis (OBIA) which use bathymetric derivatives or a combination of bathy-99

metric derivatives and backscatter to automatically segment the seafloor (Masetti et al,100

2018; Argyropoulou et al, 2016; Lacharité et al, 2018; Koop et al, 2021; Dekavalla101

and Argialas, 2017) are widely used. Bathymorphon / geomorphon-based classification102

(Jasiewicz and Stepinski, 2013; Sowers et al, 2020; Ahn et al, 2023; Novaczek et al,103

2019) and fuzzy logic scheme (Schmidt and Hewitt, 2004; Lucieer and Lucieer, 2009;104

Janowski et al, 2021) have been also investigated. The past 10 years, machine learning105

(Maschmeyer et al, 2019; Misiuk et al, 2021; Janowski et al, 2022; Sklar et al, 2024)106

and deep learning models (Behrens et al, 2018; Azarafza et al, 2023; Arhant et al,107

2023) has increasingly been used for geomorphological mapping. Furtherthemore, the108

performance of these statistical learning methods has also been investigated in com-109

parison with manually ones (Van der Meij et al, 2022; Diesing et al, 2014). In recent110

years, although these methods have proven their effectiveness, they are often combined111
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with underwater imagery which superseded expert manual interpretation and are par-112

ticularly costly for large scale mapping (Van der Meij et al, 2022; Cui et al, 2021;113

Galvez et al, 2022; Misiuk and Brown, 2023; Breyer et al, 2023). As alternative, this114

work provides a clustering based algorithm for an optimal ground truth sampling and115

a learning-based approach for automatic geomorphological mapping. It focuses on the116

classical situation where experts use morphological map to define surfaces and ground117

truth measure to define typologies. But to that respect, further considerations need to118

be addressed: (i) the quality of bathymetric data required, (ii) the typology definition,119

and (iii) the methodology to use for creating geomorphological maps with such data.120

(i) Bathymetry is recognized as essential when mapping geomorphology (Wilson et al,121

2007; Lecours et al, 2016; Fukunaga et al, 2019). It is particularly useful for identify-122

ing and delineating submerged landforms that are not visible in aerial images. Modern123

bathymetric systems can provide high-resolution data, capturing fine-scale details of124

the seafloor morphology. Their accuracy is often higher compared to aerial images, as125

it directly measures the water depth and seafloor elevation. However, the selection of126

the appropriate technology is crucial to ensure the acquisition of accurate and reliable127

data suited for an optimal geomorphological map production. More precisely equip-128

ment and material setup will depend on factors such as the scale and coverage needed,129

water depth, desired resolution, sampling effort and budgetary considerations. Com-130

promise between the sampling effort and the quality of the data have to be made but131

little tools are available to choose the most optimal setup. Indeed very high-resolution132

data may be necessary for detailed local studies, while coarser resolution data might133

suffice for larger-scale regional or global analyses. In the present research, some exam-134

ples to help on such decisions are proposed.135

(ii) A typology is a description of one geomorphological category of seabed (in our136

case). However, to make a geomorphological map usable, comparable and understand-137

able by a large international community, categories definition of typologies need to138

form a consensus. Our study is based on the Millennium Coral Reef Mapping Project139

(MCRMP) typologies. Initiated by the Institute for Marine Remote Sensing - Univer-140

sity of South Florida (IMaRS/USF) in 2001 and continued since 2003 by reasearchers141

of the Institut de Recherche pour le Développement (IRD), the MCRMP has proposed142

a multi-level hierarchical structure (Andréfouët et al, 2004). MCRMP typologies were143

widely used as they enable several sites around the world to be compared on a the-144

matically rich, homogeneous basis (Andréfouët and Dirberg, 2006). These typologies145

provide a description of coral reef geomorphology distinguishing reef units such as146

slopes, flats, passes, terraces, lagoons, channels, etc.147

(iii) Several approaches can be chosen to generate geomorphological maps from pre-148

viously described data. The most classical approach is to manually draw typologies149

envelopes using GIS softwares (Minár and Evans, 2008; Otto et al, 2018). However,150

it is tedious and poorly replicable if temporal changes need to be monitored. Auto-151

mated approaches are of several kind. This work focuses on statistical learning based152

approaches for their ability to efficiently process and analyze large volumes of spatial153

data, to learn complex relationships present in the data leading to improved accu-154

racy in produced maps (Stepinski et al, 2007; Siqueira et al, 2022; Van der Meij et al,155

2022). More precisely four steps are followed : 1) generate a Digital Bathymetric Model156
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(DBM) from bathymetric data, 2) compute terrain attributes from DBM on the entire157

surface studied, 3) train random forest based classification algorithm to match terrain158

attributes with ground truthing typologies and 4) predict typologies from the entire159

surface studied using the classification model generated.160

The chosen methodology to generate geomorphological map was tested on a classi-161

cal tropical reef feature: an atoll mapping from South Western Indian Ocean. Our162

approach is to propose a sensitivity analysis based on a comparison with an existing163

expert map while degrading DBM definition as proxy of data acquisition setup and164

varying the number of ground truth points as well as the methodology to select their165

locations as proxy of field effort. The ultimate goal is to supply tools to plan mapping166

field campaign using coverage sampling algorithms, codes to semi-automate geomor-167

phological mapping procedure using random forest algorithm and propose metrics to168

evaluate the quality of the map generated across different resolutions. Recommenda-169

tions to choose the DBM resolution, ground truth size and sites selection are also170

provided.171

2 Materials and methods172

2.1 Data173

For this work, bathymetric data (depth measurements) collected between 2009 and174

2010 on Geyser atoll with a surface area of approximately 268 km2 are used175

(Figure 1A). A set of 48.106 data points were collected by LIDAR 1 m resolution cali-176

brated. The depth range captured by this tool often reaches down to -30 m but due to177

exceptional very good water clarity conditions, bathymetric records on Geyser range178

between -50 and 4 meters (see their distribution in Figure S1). This data is available179

on the Hydrography and Oceanography Service of the Navy website 1.180

An expert geomorphological map of the Geyser atoll available here 2 is also used. This181

scale-free map was produced by manual contouring, resulting from expert interpreta-182

tion of hyperspectral images. 11 geomorphological typologies have been identified on183

Geyser (Roos et al, 2017).184

2.2 General methodology185

Here an automated scheme using bathymetry and some field typologies verifications186

also called ground truth to generate reproducible geomorphological maps is used (see187

Figure S2 in the supplemental materials). The methodology is the following: 1) Using188

bathymetric data, a Digital Bathymetric Model (DBM) is created at a given resolu-189

tion. 2) From the DBM, terrain attributes corresponding to raster layers which have190

the potential to influence seafloor geomorphology are computed. 3) Using a given191

coordinate sampling method, a given number of ground truth locations is drawn.192

By overlaying these locations with the expert map, geomorphological typologies are193

attributed to each ground truth points. 4) Using the training set of coupled terrain194

attributes and ground truth typologies, a recursive feature elimination algorithm based195

1https://data.shom.fr/donnees
2https://sextant.ifremer.fr/geonetwork/srv/api/records/21232c12-e409-4136-a24a-78c346518cfa
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Fig. 1 Geyser is an atoll in the Western Indian ocean, specifically located in the northern Mozam-
bique channel between Mayotte and the Gloriosos Islands and covering approximately 268 km2. A
Bathymetry data (in meters) collected by LIDAR technology and provided by Hydrography and
Oceanography Service of the Navy (SHOM). B Geomorphologic structure identified for the Geyser
atoll, as a part of the EPICURE project (Roos et al, 2017).

on a random forest classifier is used to select most relevant covariates. The latter are196

then used to train a random forest based predictive model for geomorphologic typolo-197

gies. This model is finally used to predict geomorphologic typologies on the whole198

study site. 5) The quality of the map production was then evaluated using two types199

of performance criteria: the model performance (Balanced accuracy) and the match-200

ing between the generated map and the expert map (Match and Balanced match).201

The robustness of our approach is also evaluated using a sentivity analysis through202

simulation by varying bathymetric data definition, numbers of ground truth points and203

methodology to select their locations. This involved in examining five DBM resolutions204

(5 m, 25 m, 50 m, 100 m and 500 m), six sample sizes (50, 100, 200, 500, 700, 1000)205

and three sampling methods (two spatial coverage sampling methods denoted SCS-206

KMEANS and SCS-CLARA, and a complexity-dependent sampling method denoted207

CDS). For each of these combinations (5 × 6 × 3), 30 replicates of geomorphological208

maps are generated by replicating the steps 3-5 described above.209
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2.2.1 Digital Bathymetric Model creation210

The raw bathymetric dataset contains approximately 48.106 data points giving lat-211

itude, longitude and depth values. To avoid numerical issues due to redundant212

observations, this dataset was spatially sub-sampled and data points are kept as homo-213

geneous as possible using the buffer.points function in the supplemental materials214

(Roberts, 2015). The sub-sampled data are such that each retained data point is at215

least at a distance of 5 m from one another. Following this procedure, the new dataset216

of approximately 8.106 data points obtained is used to generate the DBM which con-217

sists in the creation of a square grid of T 2 cells or rasters. The cell size define the DBM218

resolution. Different resolutions (5 m, 25 m, 50 m, 100 m, 500 m)3 are created using219

the dbm function proposed in the supplemental materials. The bathymetry or depth220

value of each cell is calculated by taking the average of all the depths inside the same221

cell.222

Furthermore, some deep areas are poorly sampled, due to the lack of signal return223

on the LIDAR sensor (see white zone in the middle of Figure 1A). To get a depth224

measure for each ground truth location selected using one of the automatic sampling225

methodology presented further, depth measure on each raster of the study area were226

required. Thus for each DBM resolution, missing depth of empty cells in this zone227

are interpolated using an ordinary kriging model via the ok.dbm function provided in228

the supplemental materials. The kriging method is not decribed in details since the229

problem of missing data is out of the scope of the paper (Cressie, 1988). In contrast,230

empirical results provided in the supplemental materials show that it performs better231

than five others spatial interpolation methods for our data Table S1. This imputation232

method allows to complete bathymetric data on these cells.233

2.2.2 Terrain attributes calculation234

It consists in quantifying predictors for seafloor geomorphology. For each DBM reso-235

lution, terrain attributes were calculated using a moving routine from the DBM. More236

precisely, let us denote the depthDi,j of a given cell with (i, j) ∈ [[1, T ]]×[[1, T ]] and con-237

sider the depth Di+k,j+l of the neighboring cells with (k, l) ∈ D3 = [[−1, 1]]× [[−1, 1]].238

These cells are defining the 3 × 3 window on which the terrain attributes are239

defined. Note that it is possible to generalize the study to square window with240

size greater than 3. Selected terrain attributes can be organised into three groups:241

Slope (Slope) and orientation (Aspect) measures, terrain variability measures such242

as Roughness (Roughness), Terrain ruggedness index (TRI) and Vector ruggedness243

measure (V RM) and curvature and relative position measures such as Profile convex-244

ity (profc), Planform convexity (planc) and Bathymetric position index (BPI).245

Slope has been widely recognized as an important factor for determining benthic habi-246

tat and colonization and has been used in many marine studies (Copeland et al, 2013;247

Fukunaga et al, 2019; Sterne et al, 2020). Like the magnitude of the steepest drop248

3The 5 m resolution is the one used by biologists during field verification campaigns. We then looked for
a very high resolution at which the geomorphological maps produced were degraded because they were too
pixelated. 500 m seemed to be a good choice. Between these two resolutions, we empirically searched for
intermediate resolutions enabling us to obtain ”significantly” different maps. Hence the 25 m, 50 m and 100
m resolutions were retained.
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in depth, Slope (in degrees) is derived from rates of change in x (longitude) and y249

(latitude) directions and is calculated as follows, for each cell (i, j) ∈ [[1, T ]]× [[1, T ]],250

Slopei,j =
180

π
arctan

√(
∂Di,j

∂x

)2

+

(
∂Di,j

∂y

)2
 . (1)

where
∂Di,j

∂x
=

[
(Di+1,j+1 + 2Di+1,j +Di+1,j−1)− (Di−1,j+1 + 2Di−1,j +Di−1,j−1)

]
/8∆.

∂Di,j

∂y
=

[
(Di+1,j+1 + 2Di,j+1 +Di−1,j+1)− (Di+1,j−1 + 2Di,j−1 +Di−1,j−1)

]
/8∆.

where the real number ∆ stands for the cell size of the grid.251

The orientation measure (Aspect) gives the exposure of a given area to such water252

waves and is often used in the calculation of others parameters that directly influ-253

ence habitat (Wilson et al, 2007). Aspect (in degrees) is the compass direction of the254

steepest drop in depth and is calculated as follows, for each cell (i, j) ∈ [[1, T ]]× [[1, T ]],255

Aspecti,j = 180 +
180

π
arctan

(
∂Di,j

∂x
+

∂Di,j

∂y

)
. (2)

The roughness measure (Roughness) is a critical factor affecting ecological and phys-256

ical processes on the reef (Leon et al, 2015; Dartnell, 2000). It corresponds to the257

difference between the maximum and minimum depth values over a 3× 3 window and258

is defined for each cell (i, j) ∈ [[1, T ]]× [[1, T ]] as follows:259

Roughnessi,j = max
k,l ∈ D3

(Di+k,j+l)− min
k,l ∈ D3

(Di+k,j+l). (3)

The Terrain Ruggedness Index (TRI), is a terrestrial ruggedness measure (Riley et al,260

1999) that was adapted to bathymetry data to highlight morphological heterogeneity261

(Valentine et al, 2004; Rozycka et al, 2017). It is defined as the mean of the absolute262

differences between the depth value of a cell and the one of its neighboring cells, for263

each cell (i, j) ∈ [[1, T ]]× [[1, T ]] as follows:264

TRIi,j =

∑
k,l ∈ D3

|Di+k,j+l −Di,j |

(32 − 1)
. (4)

The Vector Ruggedness Measure (V RM) quantifies terrain ruggedness : slope and265

aspect are decomposed into 3-dimensional vector components using standard vector266

analysis in a user-specified moving 3 × 3 window. The vector ruggedness measure is267

dimensionless because it involves sine and cosine of the slope and aspect measures268

and its values range from 0 to 1 corresponding to flat regions to rugged ones. Its269

mathematical definition is omitted to avoid technicalities and details can be found in270

9



(Sappington et al, 2007).271

The Curvature position may also be linked to the nature of the seabed. It helps to272

delimit regions of distinct habitat by identifying boundaries in the character of the273

terrain ((Wilson et al, 2007)). Bathymetric Position Index (BPI), the marine version274

of the topographic position index, quantifies where a location on a bathymetric surface275

is relative to the overall seascape (Mata et al, 2021). It provides an indication of276

whether any particular pixel forms part of a positive (e.g., crest) or negative (e.g.,277

trough) feature of the surrounding terrain (Lundblad et al, 2006; Wilson et al, 2007).278

It is calculated using the following formula, for each cell (i, j) ∈ [[1, T ]]× [[1, T ]]:279

BPIi,j = Di,j −

∑
k,l ∈ D3

|Di+k,j+l −Di,j |

(32 − 1)
. (5)

According to (Evans, 1980), Profile convexity (Profc) is the rate of change of Slope280

and Plan convexity (Planc) is the rate of change of Aspect. Negative values in the281

Profc indicate the surface is upwardly convex whereas, positive values indicate that282

the surface is upwardly concave. Positive values in the Planc means the surface is lat-283

erally convex and negative values indicate that the surface is laterally concave. Several284

methods exist for numerical approximations of these metrics, based on a quadratic285

form representation f of the surface (Florinsky, 1998; Horn, 1981; Evans, 1980; Zeven-286

bergen and Thorne, 1987). Numerical implementation of (Zevenbergen and Thorne,287

1987) method’s is used in this study ; details can be found in (Florinsky, 1998).288

All the computed terrain attributes, depth and geographic coordinates (longitude,289

latitude) are then stacked to form a multilayer grid of predictors called features or290

covariates in the sequel Table 1.

Table 1 Terrain attributes computed from the DBM and functions used to do such calculations in R
software

Terrain attributes Reference Function / R Package
Slope and Aspect
Slope (Horn, 1981) terrain / raster
Aspect (Horn, 1981) terrain / raster
Terrain Variability
Roughness (Dartnell, 2000) terrain / raster
Terrain Ruggedness Index (TRI) (Wilson et al, 2007) terrain / raster
Vector Ruggedness Measure (V RM) (Ilich et al, 2023) VRM / MultiscaleDTM
Curvature and relative position
Profile Curvature (Profc) (Zevenbergen and Thorne, 1987) Curvature / spatialEco
Planform Curvature (Planc) (Zevenbergen and Thorne, 1987) Curvature / spatialEco
Bathymetric Position Index (BPI) (Ilich et al, 2023) BPI / MultiscaleDTM

291
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2.2.3 Sampling292

To build predictive models for geomorphological typologies using a statistical learn-293

ing approach, a training dataset is required. This one must contain a finite number of294

ground truth locations and a set of predictive covariates for geomorphological typolo-295

gies at these locations. In this section, three alternative clustering based sampling296

methods are proposed to draw automatically these locations inside a given study area.297

All these methods use cell’s centers of a regular grid and choose among the covariates298

earlier mentioned depending on the choosen algorithm.299

Spatial Coverage Sampling using k-means clustering algorithm (SCS-300

KMEANS)301

The basic idea of Spatial Coverage Sampling (SCS) is to draw uniformly sampling loca-302

tions over the study area. It has been shown that SCS on a study area can be achieved303

by k-means clustering algorithm (Hartigan, 1975). This consists in grouping cell’s cen-304

ters of a regular grid on this area using their spatial coordinates as covariates. Note305

that this regular grid can be the DBM one as long as it does not lead to computional306

deadlock, otherwise it can be replaced by a raster grid with lower resolution. The final307

solution of this partition gives the sampling locations and is determined by minimizing308

a geometric criterion, the mean squared shortest distance between the clusters cen-309

troids and the grid cell’s centers (Royle and Nychka, 1998; Brus et al, 2006). For the310

implementation, a k-means algorithm for equal area partitioning is used (Brus, 2019).311

The scsKM function provided in the supplemental materials can be used to achieve312

this.313

Spatial Coverage Sampling using CLARA algorithm (SCS-CLARA)314

K-means clustering approach is time and storage consuming, especially for high DBM315

resolution. In such case, CLARA algorithm approach could be an alternative. The316

CLARA algorithm is an extension of the Partitioning Around Medoids (PAM) meth-317

ods (Kaufman and Rousseeuw, 1975) to deal with data containing a large number of318

objects (more than several thousand observations) in order to reduce computing time319

and storage problem. Medoids (Mi)
k
i=1 in a PAM, k being the desired number of clus-320

ters Ci, are cells that minimize their distance to other cell’s centers of the cluster. The321

CLARA algorithm generates j ∈ N∗ random samples of size n (n < T 2) on individu-322

als, applies a PAM on these samples one after the other, then evaluates the partition323

quality on each of them by calculating the average global dissimilarity on the complete324

dataset as follows:325

k∑
i=1

∑
xc∈Ci

d(xc,Mi)

T 2
(6)

If this dissimilarity is lower than the previous found one, it considers this solution and326

its k medoids as the best current solution. The scsCLARA function in the supple-327

mental materials can be used to choose ground truth locations.328

Complexity-Dependent Sampling using CLARA algorithm (CDS)329

Terrain morphology can sometime be marked by accidented region where many typolo-330

gies are observed closed to each other. This is particularly true with coral reef region331

where for example sand flat, reef slope, reef flat, etc typologies can be close to each332
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other. In such situations, homogeneous sampling would lead to miss many typolo-333

gies unless a lot of points are requested leading to other problems such as important334

unbalanced typologies distribution among locations (Brus, 2019). To account for such335

typologies distribution, ground truth locations are agglomerated around zone of higher336

ground complexity (i.e. complex terrain). Thus the CDS method is introduced in337

order to take advantage of these covariates available for each DBM resolution. CDS338

aims to distribute sampling locations around most heterogeneous or complex areas.339

It uses DBM’s cells as individuals and unlike the SCS which uses the spatial coordi-340

nates, CDS’s covariates are chosen among terrain attributes and depth. Depth and341

Roughness measures are considered in this study. CDS cannot be computed using the342

k-means clustering algorithm for high DBM resolutions because DBM cells are manda-343

tory to get covariates. This is why the CLARA algorithm is only used. The cdCLARA344

function in the supplemental materials can be used to this end (Figure 2).

A B C

Fig. 2 Example of 100 ground truth locations drawn with the different methods: A Spatial Coverage
Sampling using K-means clustering algorithm (SCS-KMEANS), B Spatial Coverage Sampling using
CLARA algorithm (SCS-CLARA) C and Complexity-dependant sampling using a CLARA algorithm
(CDS). Roughness and Depth are used to guide the complexity-dependant sampling.

345

2.2.4 Geomorphology mapping using Random Forest algorithm346

To map geomorphological typologies over a whole study area, a supervised classifica-347

tion approach is considered. This work was divided in two steps: a first step to train348

algorithm and a second step to predict typologies based on trained algorithm. For349

the training part, each location is generated by one of the previously described sam-350

pling methods and typologies were attributed using the expert map Figure 1B. These351

located typologies were the target variable, locations coordinates and the correspond-352

ing depth and terrain attributes were used as covariates and both formed the training353

dataset. In this process, a feature selection scheme random forest based is used to sub-354

set the most relevant covariates of the training set. Then a final model is fitted using355

the selected covariates. After this first step completed, the second step consisted in356

using the fitted model to predict the most suitable typology over the whole study area.357

The generic principle of Random Forest358

The tree based Random Forest (RF) algorithm can be used for a classification task359
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(Breiman, 2001; Biau and Scornet, 2016). Using the Bootstrap AGGregatING (bag-360

ging) principle, RF increases the diversity of the trees by making them grow from361

different randomly drawn (with replacement) training datasets from the original362

dataset (Breiman, 1996). At each node of each tree, Rf selects a random subset of fea-363

tures and search for the best split for the node. To classify a new case once the forest364

is completed, the typology having the most votes over all the trees is retained.365

Model training366

Using a cross-validation scheme with 3 repeats, the training samples are split into 3367

folds. To train a RF model, three hyperparameters were tuned: the number of trees368

(Ntrees) of the forest, the number of features used at each node (Mtry) and the min-369

imum number of data points at the terminal node of each tree (nodesize). Indeed,370

the Ntrees hyperparameter is not tunable in the classical sense but should be set suf-371

ficiently high (Dı́az-Uriarte and Alvarez de Andrés, 2006; Oshiro et al, 2012; Probst372

et al, 2019). The default value of 500 trees is used. The nodesize hyperparameter has373

been set to 1 for classification task because it generally provides good results (Dı́az-374

Uriarte and Alvarez de Andrés, 2006). The Mtry hyperparameter was tuned among375

fifteen values of hyperparameters chosen automatically by the function tuneLength.376

A random search optimization strategy which defines a search space as a bounded377

domain of parameter values and randomly sample points in that domain were used to378

find the optimal Mtry considering the the resulting Accuracy (Grandini et al, 2020).379

Models are fitted by repeatedly leaving out one of the folds and performance are deter-380

mined by predicting on the fold left out. The train function of tthe caret R package381

were used to this end.382

Terrain attributes selection383

By selecting the most relevant terrain attributes as covariates, the risk of over fitting384

can be reduced and the model’s generalization ability improved. Variable or feature385

importance measures are usually used to rank or select variables. Mean Decrease Impu-386

rity (MDI) and Mean Decrease Accuracy (MDA) are two well-known random forest387

variable importance measures (Guyon and Elisseeff, 2020; Breiman, 2001; Biau and388

Scornet, 2016). In this study, the MDA measure also called permutation importance389

in Breiman’s original random forest is chosen since it seems to exhibit less bias than390

MDI in presence of correlated features (Strobl et al, 2008; Breiman, 2001). Roughly391

speaking, the MDA measure consists in shuffling values of a given covariate j in the392

test data or out-of-bag data (that is data excluded from the boostrap sample used to393

construct the tree) and then computes the difference between the error on the per-394

muted test set and the original test set. More precisely, for each tree t among the ntree395

trees of the RF, MDA uses the out-of-bag data to compute a prediction error OOBt.396

Then, permuting the values of the jth feature in the out-of-bag data, a prediction error397

OOBj
t is computed by using the permuted out-of-bag data. The permutation impor-398

tance of the feature j is thus defined by MDAj =
1

ntree

∑ntree
t=1 (OOBt −OOBj

t ).399

To achieve feature selection via the MDA measure, the backward Recursive Feature400

Elimination (RFE) algorithm (Guyon et al, 2002) implemented in the rfe4 function401

of the caret R package is used. This algorithm is based on assessing MDA’s impor-402

tance. MDA is computed by iteratively permuting the values of each input covariate403

4https://topepo.github.io/caret/recursive-feature-elimination.html
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and measuring the resulting drop in prediction accuracy. The feature with the mini-404

mum MDA value, representing the least important feature, is systematically removed405

from the input set. Subsequently, a new RF model is trained using this reduced set of406

features. This process is continued until the minimal set of input features that yielded407

optimal Accuracy (Grandini et al, 2020) is obtained. To improve the performance of408

feature selection with RFE, a repeated 3-fold cross-validation with 3 repeats is used.409

The createFolds function of the caret package allowed to split data into training and410

test sets. This function carries a random sampling within geomorphological typologies411

in order to balance the classes distributions within the split.412

Once the model is trained, typologies can be predicted across the entire study area.413

Typologies predictions are made using the predict.train function of the caret R414

package (Kuhn, 2019).415

2.2.5 Performance criteria416

To assess model’s performance, a Balanced Accuracy (BA) metric were calculated417

using the confusion matrix obtained from each model (Grandini et al, 2020). It consists418

for each typology (class) k, to calculate a Recall score measuring the ability of a model419

to find all the positive units for this class as follows:420

Recallk =
TPk

TPk + FNk
(7)

True Positives (TP) are observations predicted to belong to the reference class when421

they really do, and False Negatives (FN) are observations predicted to not belong to422

the reference class when they really do. BA gives an average measure of this concept423

using the arithmetic mean of Recall across all classes :424

BA =

∑K
k=1 Recallk

K
(8)

where K is the total number of class k.425

The number of unsampled typologies is used as an indicator of the efficiency of the426

sampling method to visit all geomorphologic typologies present in the study area.427

To assess the consistency of predictions, the map produced at the different DBM428

resolution are compared to Expert map. For this purpose, the expert map is first429

dicretized into ”pixels” size of 5 m resolution (ie. the smallest resolution used in430

this study). Then the predicted map grid is disaggregated to match the expert map431

resolution using disagRast function in the supplemental materials. To compare two432

maps, two metrics are calculated using the confusion matrix between the two: Match433

and Balanced Match.434

The Match metric is a simple comparison between the two maps. The Match metric435

corresponding to the proportion of cells identically labelled is calculated as follows:436

Match =
N+

N+ +N−
(9)
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Where N+ is the total number of cells where typologies match between the two maps,437

and N− is the total number of cells that do not match. The matchRast function is438

proposed for the calculation of this metric. However such comparison might hide pre-439

diction problems on some small surface typologies, totally dominated by high surface440

coverage of some typologies. To take account of such fact, the Balance Match is a441

sort of ponderated Match removing the surface dominant effect that some typologies442

might have on others. A second metric denoted Balanced Match (BM) inspired by443

the BA defined in Eq. 8 and using the confusion matrix between a predicted map and444

the expert map is also calculated. Note that after disaggregating a predicted map,445

some cells centers around the study site borders may be located outside. These border446

effects are handled by proportioning BA to the proportion of cells L labelled after the447

disaggregation of a predicted map. BM is calculated as follows:448

BM = L ·
∑K

k=1 Recallk
K

(10)

The balmatchRast function provided in the supplemental materials is used for the449

BM calculation.450

3 Results451

3.1 Effect of ground truth sampling methodologies on452

typologies sampled453

Our first methodological assessment was to evaluate the number of missed typologies454

on the expert map depending on ground truth sampling techniques. Unsurprisingly,455

the more data points sampled, the greater the chance of sampling all typologies present456

in the study site, regardless of the sampling method and the resolution of the DBM457

(Figure 3). Whatever the sampling method and the DBM resolution, small sample458

size (50 and 100 data points) do not allow to sample all typologies. For these sample459

sizes, between 1 and 4 typologies are never sampled. It can also be noticed that for460

500 data points sampled and more, all typologies are sampled no matter the sampling461

method and the resolution of the DBM.462

3.2 Assessment of model performance based on input data463

The Balanced Accuracy criteria helps assessing model performance. The larger the464

sample size, the more precise these measures (ie. smaller standard errors; Figure 4).465

For small sample sizes (50 and 100 data points), sampling methods give comparable466

results or even slighty better results for SCS-KMEANS than others sampling methods.467

In constrast, from 200 points upwards, complexity-dependent sampling tends to give468

better results than SCS-CLARA and SCS-KMEANS which give comparable results.469

This result is confirmed as the sample size increases, with a widening gap among sam-470

pling methodology means and decreasing standard errors (see Figure S3 and Table S3471

for further details).472
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Fig. 3 Boxplot representing the Number of missing typologies metric (y-axis) for different sam-
ple size (x-axis), different sampling methods (CDS, SCS-CLARA and SCS-KMEANS) and different
bathymetric model resolutions (5 m, 25 m, 50 m, 100 m, 500 m). Each sampling conditions were
replicated 30 times and represented as default R boxplot settings

3.3 Assessment of selected terrain attributes473

A set of features is selected during the feature selection step of the modeling process474

and general outputs are summarized. Only results for 100, 200, 500 data points sample475

sizes generated at 100 m DBM resolution using SCS-CLARA method and CDS method476

are shown her because they are representative of all results (Figure 5). Geographic477

coordinates (Latitude and Longitude) andDepth are almost always selected regardless478

the DBM resolution and the sampling method. Terrain variability attributes groups479

(Roughness, V RM and TRI) that are selected a little more than half of the time.480

3.4 Evaluation of the quality of produced maps481

The Match criteria evaluates the consistency of predictions according to the expert482

map. As previously seen with the Balanced Accuracy standard errors values, Match483

errors are non negligible for small sample sizes and decrease when DBM resolutions484

increase (Figure 6; Figure S3 and Table S4 for further details). In addition, lower485

Match values are recorded at 5 m and 500 m DBM resolutions and higher Match486

values were seen for intermediate DBM resolutions (25 m, 50 m, 100 m) regardless the487

sample size.488

When the sample size and the DBM resolution increase, Balanced Match val-489

ues become more accurate as shown by a decrease of standard errors (Figure 7;490

Figure S3 and Table S5 for further details). CDS method gives better results than491
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Fig. 4 Mean (+/- standard error) over 30 draws of the Balanced Accuracy metric (y-axis) at
different DBM resolutions (x-axis) for different sample size and different sampling methods (CDS,
SCS-CLARA and SCS-KMEANS)

others spatial coverage sampling methods for any sample size and any DBM resolu-492

tion. SCS-CLARA and SCS-KMEANS give comparable results according this criteria.493

Comparing results among DBM resolutions, best results are achieved with 50 m and494

100 m DBM resolutions.495

In Figure 8 two maps generated with data points sampled using CDS methodology496

are restituted: (A) 50 m DBM resolution using 1000 data points and (B) 100 m DBM497

resolution using 200 data points. All typologies are sampled and predicted in both498

cases. Results show that performance criteria measured are better for the (A’) case499

than the (B’) case (see (C)). Indeed, some small surface typologies like Drowned sub-500

tidal reef flat and inner slope are better predicted and predictions errors on typologies501

transition areas less important for (A) than for (B).502

4 Discussion503

This methodology enabled us to sucessfully reconstruct an expert geomorphological504

map. According to the Number of missing typologies metric, 200 data points are505

enough to sample almost all the typologies. These locations can be choosen using506

CDS which performs slightly better than spatial coverage sampling methods (SCS-507

KMEANS and SCS-CLARA). Results between the different DBM resolutions are508

comparable for small sample sizes considering the Balanced Accuracy metric. But, for509

200 data points and more, 100 m DBM resolution gives clearly better results than oth-510

ers resolutions. The Match metric supports this finding where 50 m and 100 m DBM511
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Fig. 5 Ordered occurence over 30 draws of the selected terrain attributes by the RFE algorithm.
Here an example with 100, 200, 500 data points sample sizes (from left to right) generated at 100 m
DBM resolution using SCS-CLARA method (top) and CDS method (bottom). The average number
of attributes selected is noted above each graph (cf. Terrain attribute section for their definition)

resolutions gives much better results than others DBM resolutions whatever the num-512

ber of data points. Considering the Balanced Match criteria which was introduced513

to contrast the Match criteria taking into account typologies surface imbalances, 50514

m DBM resolution gives a slight better performance than the 100 m DBM resolution,515

but considering the sampling effort, it would be preferable to use the 100 m DBM.516

Indeed, while the sampling effort is multiplied by 5 from (B) to (A), the performance517

recorded is just a little bit better. We have also seen that the precision of the maps518

produced is sensitive to the resolution of the DBM, the number and locations of the519

ground truth selection. Thus, reproductible methodologies with associated codes to520

evaluate their qualities are proposed. In this section, choices on data sampling to gen-521

erate such maps are discussed. Then strong and weak points of the modeling approach522

and alternative to enhance such work are addressed.523

4.1 Optimal data acquisition parameters524

Creation of a submarine geomorphological map appears, among other consideration,525

to be constrained between quantity and quality of initial data and cost to acquire526

and process them. In the present work two kind of data fall in such compromise: the527

bathymetric data and the ground truth data points.528

For the bathymetric data acquisition, high resolution data require advanced tech-529

nologies, longer survey durations, important storage and sophisticated tools for530

manipulation which all contribute to higher costs. The results of this study show that531

a lower DBM resolution do not necessarily lead to the best geomorphological map.532

18



0.70

0.80

0.90

1.00

5m 25m 50m 100m 500m
 

 

CDS
SCS−CLARA
SCS−KMEANS

Sample Size: 50

0.70

0.80

0.90

1.00

5m 25m 50m 100m 500m
 

 

Sample Size: 100

0.70

0.80

0.90

1.00

5m 25m 50m 100m 500m
 

 

Sample Size: 200

0.70

0.80

0.90

1.00

5m 25m 50m 100m 500m
 

 

Sample Size: 500

0.70

0.80

0.90

1.00

5m 25m 50m 100m 500m
 

 

Sample Size: 700

0.70

0.80

0.90

1.00

5m 25m 50m 100m 500m
 

 

Sample Size: 1000

Fig. 6 Mean (+/- standard error) over 30 draws of the Match metric (y-axis) at different DBM
resolutions (x-axis) for different sample size and different sampling methods (CDS, SCS-CLARA and
SCS-KMEANS)

The 100 m DBM resolution considered in this study appears to strike a good balance533

between detailed geomorphological maps obtained (Figures 4, 6, 7) with low DBM534

resolutions (5 and 25 m) and large scale geomorphological maps considering (500 m535

DBM resolution). Indeed, maps at 5 m, 25 m and 50 m DBM resolutions provide a536

reasonably detailed view of the seafloor and allow the identification of important fea-537

tures but contain a significant amount of noise or small-scale variability that may not538

be relevant in constructing a geomorphological map. On the other hand, maps of 500539

m resolution provide very generalized view of the seafloor representing a significantly540

coarser scale focusing on major landforms and regional-scale geomorphological pat-541

terns but missing important features requiered to build such maps (eg. reef patches,542

pass or canyons ...). The 100 m resolution was also considered suitable in previous543

studies for various applications, such as regional planning, environmental assessments,544

and natural hazard evaluations (Curie et al, 2007; Dong et al, 2019).545

Ground truth data acquisition is often acquired by specialists through scubadiving or546

snorkling (shallow) or using submarine, ROV or drop camera systems allowing to view547

and characterise seafloor typologies on specific location. In that respect, the number548

of location is directly correlated to cost of data gathering and therefore need to be549

balanced. Furthermore, if the number of data point is directly linked to survey cost,550

the location of sampling on an heterogeneous seafloor structure could be related to551

data quality (ie. enhanced typology sampling diversity above oversampling of common552

typologies). To test such compromises, effects number of data points and methodolo-553

gies to locate them (SCS vs CDS approach) on overall map quality production are554
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Fig. 7 Mean (+/- standard error) over 30 draws of the Balanced Match metric (y-axis) at different
DBM resolutions (x-axis) for different sample size and different sampling methods (CDS, SCS-CLARA
and SCS-KMEANS).

studied. The choice between homogeneous distribution vs seafloor complexity depen-555

dent approach came from the fact that various typologies might agglomerate around556

location of complex structures (e.g. barrier reef, patch reef, ...). Figure 2 illustrates this557

point and show that CDS method amplify sampling in area of important typologies558

diversity. This explains why Number of missing typologies criteria results obtained559

with CDS are better than homogeneous sampling methods (Figure 3). However, such560

approach has the inconvenient that a bathymetric dataset is required prior planning561

ground truth sampling campaign. Another point of attention is that attributes used562

as covariates for CDS algorithms should be carefully selected. This study according to563

the context of used data (coral reef habitats) focuses on metrics promoted in literature564

(Adey, 1966; Adey and Macintyre, 1973; Battistini, 1975; Minnery et al, 1985) and565

on empirical results from this work in the supplemental materials with a supervised566

classification of geomorphologic typologies based on the terrain attributes presented567

in Table 1. Seafloor depth and roughness were retained as the most relevant.568

Evaluating effect of bathymetric data points density and number and location of569

ground truth points was done by comparing produced map to an existing expert570

manually made map. The Match criteria were introduced to see how realistic are pre-571

dictions, regardless the number of sampled typologies. Thus the large geomorphologic572

units like lagoons (deep, intermediate and shallow), subtidal and deep subtidal reef573

flats are generally better predicted than the small surface typologies like Pass, Inner574

slope, Outer slope and Drowned subtidal reef flat typologies. Indeed, such typologies575

are under-represented in the study area and represent together no more than 10% of576

the surface. Even evaluating the predictability of such typologies was difficult using577
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Fig. 8 A Predicted map with a 50 m DBM and 1000 sampled locations using CDS methodology. B
Predicted map with a 100 m DBM and 200 sampled locations using CDS methodology. Correspond-
ing match / mismatch maps (A’ and B’) in comparison to the expert one. C Performance criteria
measured.

the Match metric, hence the use of Balanced Match metric pondering typologies by578

their surface. Using both these metrics, optimal map construction was obtained for579

200 ground truth data points obtained using CDS methodology and 100 m DBM res-580

olution (Figure 8).581

However, some limitation of the methodology used is to be noted. SCS-CLARA and582

CDS sampling methods are particularly useful for high dimensional data. The CLARA583

clustering algorithm can be used on large DBM grid cells data to generate ground truth584

locations. However, SCS-KMEANS although suitable for spatial coverage sampling,585

lead to computational deadlock for high DBM resolutions. Furthermore, it can not586

be used when there is missing data areas in the studied surface. Bathymetric imputa-587

tion of poorly sampled zones was done using ordinary kriging method that performed588

much better than others spatial interpolation methods (cf. Table S1, an example on589

the supplemental materials).590

4.2 Modeling choices591

Traditional approaches to build geomorphologic maps are often time-consuming, labor-592

intensive and has a limited coverage and scale. Remote Sensing techniques although593

allowing wide coverage and high-resolution, require expertise in image interpretation594

(Gao, 2009; Gilvear and Bryant, 2016). GIS approaches allow for the integration and595

analysis of diverse data types support data visualization and complex spatial anal-596

ysis. But they also require specialized software and expertise (Guzzetti et al, 1999;597

Napieralski and Li, 2007). In addition, interpretation and analysis heavily rely on data598
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quality. Besides these techniques, semi-automated and automated approaches through599

machine learning and deep learning are increasingly used to identify complex pat-600

terns and features for landform classification, feature detection, or segmentation. Deep601

learning models require large amounts of labeled training data (e.g., images, point602

clouds) to effectively learn complex patterns and relationships. Training such models603

involves adjusting millions of parameters through backpropagation and optimization604

algorithms (e.g., stochastic gradient descent) and their tuning involves finding the right605

network architecture and hyperparameters. They are often considered black boxes due606

to their complex architectures, making it challenging to interpret the features that607

influence predictions (Li et al, 2020). The statistical learning approach used in this608

study can handle large volumes of data, automate analysis processes and discover com-609

plex patterns and relationships in the data. Interpretability of used models may also610

be a challenge but less than deep learning ones. In addition, it can work effectively611

with smaller datasets which was crucial in our objectives.612

RF model for geomorphologic units clustering is chosen because RF exhibits com-613

plex and non-linear relationships between the features and the dependent variable but614

also on features among themselves, handling effectively these relationships by using615

an ensemble of decision trees. It also provide valuable information as feature impor-616

tance measure helping identify the most informative feature which made it preferable617

to others clustering techniques in many cases. RF was used for supervised classifi-618

cation problems in many recent studies, compared different algorithms has shown619

effectiveness of RF based algorithms (Zeraatpisheh et al, 2017; Giaccone et al, 2022).620

It has shown its robustness specifically when data contain uncertainties and handles621

high-dimensional data efficiently avoiding overfitting and reducing computational com-622

plexity.623

The variable selection step in the modeling procedure is crucial in the proposed624

methodology. Terrain attributes calculation is not specifically time-consuming but the625

relevance of each of them depends on the data and the geomorphological features that626

are mapped. This study demonstrated that the terrain attributes, although literature627

based choosen intially, have not all, a great explanatory power on geomorphologic fea-628

ture. For each generated sample, the number of features selected is also counted and629

6 terrain attributes are generally retained.630

5 Conclusion631

A statistical learning based approach is proposed to automatically map the geomor-632

phology of a study site using bathymetric data and some ground truth data points.633

On the one hand, tools to help geomorphologists to plan field campaigns in advance634

through an optimal DBM resolution and an automated sampling methodology to635

achieve field verifications are provided. On the other hand, a flexibility in the proposed636

methodology allowing the usage of terrain attributes as much as desired since the fea-637

ture selection will help to keep only the most relevant ones is preferred. In addition,638

statistical and computational tools to compare geomorphological maps produced at639

different resolutions are provided. The methodology reproducibility is made possible640

by a set of reusable R scripts.641

22



In the future, an application of the methodology using others data available in oth-642

ers sites is planned. An investigation on others sampling methodology for e.g. which643

would take into account the presence of non sampling sites inside a study area is also644

being considered.645

6 Supplement information646

Additional figures and tables supporting this manuscript can be found after the647

Reference section.648
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Wabnitz C, Andréfouët S, Torres-Pulliza D, et al (2008) Regional-scale seagrass habi-919

tat mapping in the wider caribbean region using landsat sensors: Applications to920

conservation and ecology. Remote Sensing of Environment 112(8):3455–3467. URL921

https://doi.org/10.1016/j.rse.2008.01.020922

Wilson M, O’CONNELL B, Brown C, et al (2007) Multiscale terrain analysis of923

multibeam bathymetry data for habitat mapping on the continental slope. Marine924

Geodesy 30:3–35. https://doi.org/10.1080/01490410701295962, URL https://doi.925

org/10.1080/01490410701295962926

30

https://doi.org/10.1016/j.geomorph.2009.05.010
https://doi.org/10.1016/j.geomorph.2009.05.010
https://doi.org/10.1016/j.geomorph.2009.05.010
https://doi.org/10.1002/esp.5253
https://doi.org/10.3389/fmars.2024.1306396
https://doi.org/10.3389/fmars.2020.00009
http://dx.doi.org/10.13140/2.1.1518.9445
https://doi.org/10.1002/aqc.3281
https://doi.org/10.1002/aqc.3281
https://doi.org/10.3390/rs13122317
https://doi.org/10.1016/j.rse.2008.01.020
https://doi.org/10.1080/01490410701295962
https://doi.org/ 10.1080/01490410701295962
https://doi.org/ 10.1080/01490410701295962
https://doi.org/ 10.1080/01490410701295962


Wynn R, Huvenne V, Le Bas T, et al (2014) Autonomous underwater vehicles (auvs):927

Their past, present and future contributions to the advancement of marine geo-928

science. Marine geology 352:451–468. URL https://doi.org/10.1016/j.margeo.2014.929

03.012930

Zeraatpisheh M, Ayoubi S, Jafari A, et al (2017) Comparing the efficiency of dig-931

ital and conventional soil mapping to predict soil types in a semi-arid region in932

iran. Geomorphology 285:186–204. URL https://doi.org/10.1016/j.geomorph.2017.933

02.015934

Zevenbergen L, Thorne C (1987) Quantitative analysis of land surface topography.935

Earth Surface Processes and Landforms 12:47–56. URL https://doi.org/10.1002/936

esp.3290120107937

31

https://doi.org/10.1016/j.margeo.2014.03.012
https://doi.org/10.1016/j.margeo.2014.03.012
https://doi.org/10.1016/j.margeo.2014.03.012
https://doi.org/10.1016/j.geomorph.2017.02.015
https://doi.org/10.1016/j.geomorph.2017.02.015
https://doi.org/10.1016/j.geomorph.2017.02.015
https://doi.org/10.1002/esp.3290120107
https://doi.org/10.1002/esp.3290120107
https://doi.org/10.1002/esp.3290120107


0.00

0.05

0.10

0.15

−40 −20 0
Depth (in meters)

R
el

at
iv

e 
F

re
qu

en
cy

−50 −40 −30 −20 −10 0
Depth (in meters)

Fig. S1 Distribution of the raw bathymetric data collected on Geyser.
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Table S1 Bathymetry imputation of empty grid cells of a 50 m DBM resolution. The Root Mean Squared
Error (RMSE) and its Standard Deviation (SD) were calculated using 5-folds cross-validation scheme for five
(05) spatial interpolation models : Inverse Distance Weighted (IDW), Nearest Neighboor (NN), Ordinary
Kriging (OK), Universal Kriging (UK), Spatial GAM (GAM)

Method RMSE SD (RMSE)
IDW 0.80 0.02
NN 0.82 0.02
OK 0.69 0.01
UK 0.71 0.01

GAM 1.34 0.01
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3. Terrain attributes calculation

Functions : see Table 1.

Output : Multiple layers raster class.

8. Map evaluation

A. Without an expert map

Function : confusionMatrix

(caret)

Output: Prediction scores

(Accuracy, Balanced accuracy)

B. Using an expert map

Functions : match, balanced 

match

Output: Prediction scores

(e.g. Match, Balanced match)

Geomorphology mapping using R

1.1. Subsampling

Function : buffer.point

Output : Smaller size XYZ dataframe

class.

2.1. Bathymetry imputation

Function : ok.dbm

Output : Full DBM raster class.

5.1. Terrain attributes selection

Function : rfe (caret)

Output : Selected terrain attributes.

5. Ground truth

Output : X (Longitude) , Y (Latitude), T (Typology) dataframe

Class.

A. Terrain campaign B. Expert map verification

Function : extract (raster)

4. Ground truth locations sampling

Functions :
- scs.KM or scs.CLARA for a spatial coverage sampling,

- cd.CLARA for a complexity dependent sampling.

Output : X (Longitude) , Y (Latitude) dataframe class.

6. Model training

Function : train (caret)

Output : a list of class train (see CRAN)

7. Typology prediction on the whole surface

Function : predict.train (caret)

Output : Grid cells of predicted typologies.

2. Digital Bathymetric Model (DBM) generation

Function : dbm

Output : Grid cells with bathymetric data raster class.

7.1. Map disaggregation

Function : disagRast

Output : Smaller resolution grid cell of 

predicted typologies.

Main steps Optional steps

1. Bathymetric data acquisition

Source : Lidar, Sonar systems, etc.

Format : X (Longitude), Y (Latitude), Z (Depth) dataframe class.

Fig. S2 Statistical learning approach to build geomorphological maps using bathymetric data and
typology field verification samples.

34



50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 
 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 5 mA

50 100 200 500 700 1000
0.65

0.70

0.75

0.80

0.85

0.90

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 5 mB

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 5 mC

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 25 m

50 100 200 500 700 1000
0.65

0.70

0.75

0.80

0.85

0.90

 

 
 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 25 m

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 25 m

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 50 m

50 100 200 500 700 1000
0.65

0.70

0.75

0.80

0.85

0.90

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 50 m

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 50 m

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 100 m

50 100 200 500 700 1000
0.65

0.70

0.75

0.80

0.85

0.90

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 100 m

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 100 m

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 500 m

50 100 200 500 700 1000
0.65

0.70

0.75

0.80

0.85

0.90

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 500 m

50 100 200 500 700 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

 

SCS−KMEANS
SCS−CLARA
CDS

DBM: 500 m

Fig. S3 Boxplot of Balanced Accuracy (A), Match (B) and Balanced Match (C) metrics (y-
axis) for different sample size (x-axis), different sampling methods (CDS, SCS-CLARA and SCS-
KMEANS) and different bathymetric model resolutions (5 m, 25 m, 50 m, 100 m, 500 m). Each
sampling conditions were replicated 30 times and represented as default R boxplot settings.
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Table S2 Mean (standard deviation) over 30 draws of the Number of missing typologies
metric (y-axis) at different DBM resolutions (x-axis) for different sample size and different
sampling methods (CDS, SCS-CLARA and SCS-KMEANS)

DBM: 5 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 3.867 (0.681) 0.967 (0.718) 0 (0) 0 (0) 0 (0) 0 (0)
SCS-CLARA 5.033 (0.964) 2.133 (0.937) 0.633 (0.615) 0 (0) 0 (0) 0 (0)
CDS 3.067 (0.944) 0.967 (0.964) 0.167 (0.379) 0 (0) 0 (0) 0 (0)

DBM: 25 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 6 (0.643) 3.1 (0.885) 0.533 (0.629) 0 (0) 0 (0) 0 (0)
SCS-CLARA 5.233 (0.898) 2.367 (0.964) 0.567 (0.626) 0 (0) 0 (0) 0 (0)
CDS 3.3 (1.179) 1.467 (0.9) 0.3 (0.466) 0 (0) 0 (0) 0 (0)

DBM: 50 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 5.933 (0.74) 3.167 (0.791) 0.6 (0.724) 0 (0) 0 (0) 0 (0)
SCS-CLARA 5.067 (0.868) 2.1 (1.125) 0.567 (0.679) 0 (0) 0 (0) 0 (0)
CDS 2.833 (1.053) 0.933 (0.828) 0.233 (0.43) 0 (0) 0 (0) 0 (0)

DBM: 100 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 5.867 (0.681) 3.033 (0.85) 0.567 (0.728) 0 (0) 0 (0) 0 (0)
SCS-CLARA 5 (0.947) 2.2 (0.805) 0.7 (0.702) 0.033 (0.183) 0 (0) 0 (0)
CDS 2.867 (1.252) 0.2 (0.407) 0.133 (0.346) 0 (0) 0 (0) 0 (0)

DBM: 500 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 5.467 (0.73) 2.733 (0.785) 0.467 (0.507) 0 (0) 0 (0) 0 (0)
SCS-CLARA 4.8 (1.031) 2.367 (1.129) 0.4 (0.563) 0 (0) 0 (0) 0 (0)
CDS 3.133 (1.042) 1.433 (0.817) 0.233 (0.43) 0 (0) 0 (0) 0 (0)
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Table S3 Mean (standard deviation) over 30 draws of the Balanced Accuracy metric (y-axis) at different DBM
resolutions (x-axis) for different sample size and different sampling methods (CDS, SCS-CLARA and SCS-KMEANS)

DBM: 5 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.58 (0.147) 0.534 (0.132) 0.541 (0.076) 0.605 (0.037) 0.64 (0.033) 0.659 (0.025)
SCS-CLARA 0.482 (0.156) 0.44 (0.105) 0.547 (0.06) 0.582 (0.044) 0.621 (0.027) 0.657 (0.035)
CDS 0.467 (0.11) 0.5 (0.072) 0.559 (0.064) 0.654 (0.047) 0.693 (0.03) 0.722 (0.023)

DBM: 25 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.606 (0.133) 0.567 (0.111) 0.578 (0.081) 0.666 (0.034) 0.694 (0.033) 0.714 (0.023)
SCS-CLARA 0.58 (0.166) 0.553 (0.118) 0.571 (0.051) 0.653 (0.043) 0.691 (0.034) 0.71 (0.032)
CDS 0.467 (0.122) 0.525 (0.095) 0.589 (0.06) 0.684 (0.041) 0.71 (0.032) 0.753 (0.034)

DBM: 50 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.644 (0.154) 0.57 (0.109) 0.571 (0.062) 0.657 (0.034) 0.697 (0.029) 0.725 (0.026)
SCS-CLARA 0.56 (0.165) 0.513 (0.095) 0.583 (0.063) 0.659 (0.036) 0.695 (0.025) 0.724 (0.035)
CDS 0.443 (0.123) 0.518 (0.079) 0.595 (0.059) 0.697 (0.033) 0.735 (0.025) 0.775 (0.028)

DBM: 100 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.608 (0.167) 0.543 (0.097) 0.594 (0.081) 0.663 (0.034) 0.703 (0.027) 0.723 (0.022)
SCS-CLARA 0.54 (0.11) 0.498 (0.099) 0.566 (0.084) 0.667 (0.038) 0.688 (0.027) 0.713 (0.025)
CDS 0.511 (0.133) 0.535 (0.076) 0.617 (0.046) 0.718 (0.035) 0.756 (0.027) 0.781 (0.026)

DBM: 500 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.576 (0.153) 0.535 (0.096) 0.555 (0.064) 0.66 (0.04) 0.705 (0.034) 0.784 (0.029)
SCS-CLARA 0.549 (0.146) 0.505 (0.127) 0.547 (0.082) 0.664 (0.02) 0.65 (0) 0.71 (0)
CDS 0.505 (0.082) 0.542 (0.071) 0.604 (0.059) 0.659 (0.016) 0.69 (0) 0.69 (0)
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Table S4 Mean (standard deviation) over 30 draws of the Match metric (y-axis) at different DBM resolutions
(x-axis) for different sample size and different sampling methods (CDS, SCS-CLARA and SCS-KMEANS)

DBM: 5 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.74 (0.026) 0.793 (0.03) 0.837 (0.009) 0.865 (0.006) 0.874 (0.006) 0.886 (0.006)
SCS-CLARA 0.734 (0.037) 0.805 (0.019) 0.839 (0.008) 0.865 (0.007) 0.876 (0.008) 0.884 (0.006)
CDS 0.766 (0.031) 0.818 (0.014) 0.846 (0.01) 0.878 (0.008) 0.888 (0.007) 0.9 (0.005)

DBM: 25 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.753 (0.022) 0.812 (0.02) 0.857 (0.009) 0.888 (0.007) 0.898 (0.005) 0.909 (0.006)
SCS-CLARA 0.758 (0.031) 0.815 (0.027) 0.863 (0.008) 0.891 (0.006) 0.902 (0.006) 0.91 (0.008)
CDS 0.771 (0.033) 0.832 (0.027) 0.869 (0.011) 0.902 (0.01) 0.915 (0.006) 0.923 (0.006)

DBM: 50 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.755 (0.023) 0.801 (0.025) 0.858 (0.009) 0.891 (0.008) 0.902 (0.005) 0.912 (0.005)
SCS-CLARA 0.76 (0.023) 0.815 (0.03) 0.863 (0.013) 0.896 (0.005) 0.905 (0.006) 0.912 (0.005)
CDS 0.794 (0.029) 0.852 (0.015) 0.88 (0.01) 0.91 (0.005) 0.917 (0.004) 0.927 (0.005)

DBM: 100 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.753 (0.024) 0.801 (0.026) 0.857 (0.008) 0.89 (0.005) 0.9 (0.003) 0.91 (0.003)
SCS-CLARA 0.744 (0.031) 0.813 (0.023) 0.861 (0.012) 0.893 (0.005) 0.902 (0.007) 0.909 (0.004)
CDS 0.788 (0.028) 0.845 (0.017) 0.875 (0.01) 0.91 (0.004) 0.918 (0.004) 0.926 (0.005)

DBM: 500 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.758 (0.021) 0.793 (0.019) 0.832 (0.008) 0.862 (0.004) 0.87 (0.002) 0.88 (0)
SCS-CLARA 0.746 (0.023) 0.802 (0.016) 0.836 (0.01) 0.869 (0.005) 0.87 (0) 0.88 (0)
CDS 0.785 (0.018) 0.817 (0.014) 0.851 (0.007) 0.88 (0.002) 0.88 (0) 0.89 (0)
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Table S5 Mean (standard deviation) over 30 draws of the Balanced Match metric (y-axis) at different DBM
resolutions (x-axis) for different sample size and different sampling methods (CDS, SCS-CLARA and
SCS-KMEANS)

DBM: 5 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.292 (0.035) 0.445 (0.062) 0.576 (0.027) 0.662 (0.019) 0.686 (0.026) 0.723 (0.021)
SCS-CLARA 0.306 (0.051) 0.482 (0.048) 0.581 (0.027) 0.649 (0.026) 0.674 (0.024) 0.708 (0.025)
CDS 0.412 (0.071) 0.521 (0.056) 0.607 (0.029) 0.686 (0.024) 0.723 (0.023) 0.755 (0.02)

DBM: 25 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.306 (0.036) 0.47 (0.055) 0.611 (0.027) 0.699 (0.024) 0.732 (0.027) 0.758 (0.028)
SCS-CLARA 0.338 (0.06) 0.479 (0.08) 0.623 (0.032) 0.701 (0.025) 0.73 (0.021) 0.759 (0.03)
CDS 0.413 (0.057) 0.553 (0.054) 0.64 (0.032) 0.726 (0.02) 0.76 (0.016) 0.787 (0.015)

DBM: 50 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.316 (0.037) 0.444 (0.055) 0.603 (0.031) 0.705 (0.025) 0.736 (0.02) 0.767 (0.031)
SCS-CLARA 0.335 (0.053) 0.485 (0.074) 0.615 (0.048) 0.711 (0.019) 0.736 (0.024) 0.761 (0.024)
CDS 0.443 (0.046) 0.577 (0.053) 0.669 (0.031) 0.745 (0.019) 0.772 (0.017) 0.797 (0.017)

DBM: 100 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.309 (0.032) 0.446 (0.063) 0.611 (0.026) 0.707 (0.018) 0.731 (0.022) 0.767 (0.019)
SCS-CLARA 0.324 (0.049) 0.474 (0.064) 0.607 (0.04) 0.709 (0.025) 0.731 (0.025) 0.756 (0.021)
CDS 0.426 (0.071) 0.581 (0.041) 0.66 (0.036) 0.756 (0.015) 0.779 (0.016) 0.805 (0.022)

DBM: 500 m

Sample Size

Method 50 100 200 500 700 1000

SCS-KMEANS 0.335 (0.041) 0.432 (0.046) 0.566 (0.031) 0.679 (0.018) 0.707 (0.016) 0.737 (0.012)
SCS-CLARA 0.32 (0.043) 0.458 (0.057) 0.569 (0.034) 0.701 (0.015) 0.72 (0) 0.75 (0)
CDS 0.428 (0.044) 0.521 (0.046) 0.615 (0.029) 0.726 (0.009) 0.75 (0) 0.76 (0)
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