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Abstract—This paper introduces SmartSimVR, a ground-
breaking research initiative focused on the development of a
user-specific intelligent architecture for immersive virtual envi-
ronments. The primary objective of this architecture is to address
real-time artificial intelligence training and adapt the virtual
environment based on the user’s state or external parameters.
In a case study centered around the detection of cybersickness,
an undesirable side effect in immersive virtual environments, we
employed this architecture in a driving simulator application.
Leveraging the capabilities of this architecture enables the
optimization of virtual reality experiences for individual users,
resulting in increased comfort.

Index Terms—Auto-Adaptation, Machine Learning, Simula-
tion, Virtual Systems

I. INTRODUCTION

Virtual reality (VR) is a transformative technology that
offers immersive experiences by simulating realistic envi-
ronments. Its applications span various domains, including
gaming, training simulations, virtual tourism, and telepresence.
In these immersive virtual environments, adaptation is indis-
pensable for meeting the diverse needs of users, enhancing
user experience, and optimizing immersion and satisfaction.

However, real-time data processing and auto-adaptation
capabilities pose significant challenges for some of the virtual
applications like driving simulators. These simulators require
the ability to render detailed environments, simulate accurate
vehicle dynamics, and process user inputs in real-time. Such
computational tasks can strain the CPU. While hardware
advancements have partially addressed high CPU usage by
introducing more powerful CPUs and GPUs tailored for sim-
ulation and gaming, these resources may not be accessible to
everyone. Therefore, the development of optimized software
and platforms becomes crucial in maximizing the utilization
of available equipment, ensuring efficient performance even
with less powerful hardware configurations.

The advent of Artificial Intelligence (AI) in recent years
and its integration into VR applications has opened up new
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possibilities and enhanced the overall experience for users. By
leveraging AI algorithms and techniques [1], VR applications
can intelligently analyze and interpret user inputs, enabling
more advanced and dynamic interactions within virtual envi-
ronments.

Based on this analysis, the VR application can dynamically
adapt various aspects of the virtual environment to match the
user’s preferences and state continually refining and enhancing
the personalized experience [2] [3] [4] [5] [6].

However, AI training for personalizing the VR experience
typically occurs offline, before the deployment of the VR
application. The training phase involves feeding the model
with historical user data to learn patterns and relationships.
Once the trained model is integrated into the VR application,
the adaptation and feedback process can happen in real-time
within a closed-loop system.

An important drawback of offline training is the inability
to learn and adapt in real-time based on immediate user inter-
actions. This limitation hinders the model’s ability to capture
dynamic changes and evolving user preferences, leading to
suboptimal and generalized recommendations. Additionally,
offline-trained models may struggle with novel data patterns or
user behaviors not present in the training dataset, potentially
resulting in inaccurate or inappropriate adaptations.

A. Contribution

Our research introduces an innovative intelligent auto-
adapted VR architecture that seamlessly integrates multiple
concurrent processes with AI technology as demonstrated in
Figure 1. It analyzes real-time data and enables continuous
self-training of the AI system. By minimizing data collection
and utilizing personalized training, the architecture enhances
efficiency and addresses specific challenges in VR applica-
tions. Overall, our architecture contributes to concurrent data
processing, AI integration, and auto-adaptation in VR without
imposing heavy computational resource requirements.
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Fig. 1. Overview of the intelligent auto-adaptive VR application. Integrating
three distinct stages into a real-time closed loop.

II. RELATED WORKS

The majority of studies on adaptive VR applications have
commonly utilized supervised learning algorithms, such as
deep neural network (DNN) [4] or random forest [3], as
the adaptive logic. In supervised learning creating a suitable
training dataset can be costly or unfeasible in certain domains,
such as rehabilitation. To address this challenge, reinforcement
learning (RL) and deep reinforcement learning (DRL) have
been employed. For instance, Tsiakas et al. [5] utilized RL
for adaptive VR training in rehabilitation scenarios. Mao et
al. [6] used DRL to plan and execute disassembly sequences
for the VR maintenance training system. Nevertheless, RL and
DRL training can be computationally demanding and time-
consuming, particularly when dealing with complex environ-
ments and large state or action spaces. Real-time training
may require substantial computational resources to process and
learn from interactions with the environment.

III. KEY FEATURES OF SMARTSIMVR
SmartSimVR bridges the existing gap in the development

of such a closed-loop architecture as showcased in Figure 2.
This architecture is built upon four key components:

• Distribution: The integration of the architecture involves
distributing its modules across multiple systems, with the
VR application on one system and the AI module on
another. This distribution can be achieved through various
methods like TCP/IP, HTTP requests, message queues,
or distributed computing architectures such as Apache
Kafka or RabbitMQ. These protocols and technologies
facilitate smooth data and message transfer between the
VR application and the AI module, ensuring efficient and
reliable information exchange.

• Concurrent Processes Given that the auto-adaptation
system operates in real-time, it necessitates a multi-
threaded architecture to effectively process data. This
architecture incorporates multiple independent processes
that work concurrently.

• Shared Virtual Memory System: To ensure smooth
transitions and seamless data transfer among all concur-
rent processes, including the AI module, we have used the
shared virtual memory system. This mechanism enables

efficient and synchronized data sharing and collaboration
between independent processes.

• Stream Learning as the Adaptive Logic: Our archi-
tecture incorporates a Stream learning approach, also
referred to as Online learning or Incremental learning [7].
Instead of other supervised learning methods that rely on
training general datasets and substantial computational re-
sources, our system leverages the benefits of stream learn-
ing. Unlike traditional batch learning techniques, which
process the entire dataset at once, stream learning trains
the model incrementally on a continuous data stream.
This methodology enables the model to learn from in-
dividual observations or small groups of observations
sequentially. The use of stream learning is particularly
advantageous for real-time applications that encounter
rapid changes and have limited computing resources. By
adapting to new data as it arrives, our architecture ensures
the model can continuously update its knowledge and
make timely decisions in dynamic environments. This
approach proves highly effective for scenarios where
real-time adaptation and efficient resource utilization are
essential.

IV. APPLICATION OF SMARTSIMVR: A CASE STUDY

To investigate the intelligent auto-adaptation of VR, a
driving simulator was developed as the application of interest.
The integration of AI and the VR application is depicted in
Figure 3, outlining the general concept. The virtual driving
simulation was meticulously crafted within a city scene, as
illustrated in Figure 4. Participants actively engaged in driving
through the streets of this virtual environment, which was
thoughtfully designed to form a continuous loop. We used this
system to adapt the virtual environment based on the user state
to solve the cybersickness problem, also referred to as visually
induced motion sickness (VIMS) [8] or simulation sickness.
Cybersickness is akin to motion sickness and characterized by
symptoms such as nausea, discomfort in eye movements, and
a sense of disorientation [9].

To mitigate the problem of cybersickness, we employed
SmartSimVR for real-time adaptation of the virtual envi-
ronment, utilizing user state as a determining factor. The
evaluation of cybersickness involves both subjective and ob-
jective measures employed by researchers [10]. Subjective
evaluation includes participants completing questionnaires like
the motion sickness questionnaire (MSQ) [11], Simulator Sick-
ness Questionnaire (SSQ) [12], Fast Motion Sickness Scale
(FMS) [13], and VR Sickness Questionnaire (VRSQ) [14] to
capture their subjective impressions. On the other hand, objec-
tive evaluation entails monitoring participants’ physiological
responses during their engagement in virtual environments.
Measurements such as postural sway [15], electrodermal ac-
tivity (EDA) [16] [17], electroencephalogram (EEG) [18], and
electrocardiogram (ECG) [19] are recorded in real-time to
analyze the occurrence and severity of cybersickness.

In our experiment, we used objective measures including
physiological indicators and behavioral measurements. For be-



Fig. 2. Overview of SmartSimVR architecture.

Fig. 3. Overview of the driving simulation experiment based on auto-
adaptation.

Fig. 4. Sample frame from the driving simulation along with the city scene
(top right corner).

havioral measurements, we recorded participants’ head move-
ments and collected eye tracker data using a Meta Quest Pro
head-mounted display (HMD) equipped with an eye tracker.

To expand the range of physiological indicators, we utilized
an Empatica E4 wristband worn by participants. This wrist-
band has sensors that capture various physiological parame-
ters, with a focus on electrodermal activity (EDA). The data
was transmitted to a server computer via Bluetooth during the
navigation experiment. The sensors included Galvanic Skin
Response (GSR), blood volume pressure (BVP), heart rate
(HR), temperature (TEM), and 3-axis accelerometer sensors.

These sensors recorded participants’ physiological responses
while they performed the navigation task. Participants were
prompted with an audio cue, ”What is your score?”, at
one-minute intervals. They verbally expressed their level of
sickness based on predefined definitions: 0 for no sickness,
1 for initial symptoms, 2 for moderate symptoms, and 3 for
severe symptoms. Before the experiment, participants received
training on the predefined symptom-based score range.

V. IMPLEMENTATION DETAILS

Figure 5 provides a comprehensive overview of the cus-
tomized SmartSimVR, illustrating its components and func-
tionalities. As discussed in the previous section, this architec-
ture enables simultaneous data recording and processing by
incorporating multiple independent processes that operate con-
currently. Each process is designed to fulfill specific purposes
at pre-configured intervals, such as every minute.

A. Client Side

The client side of the system comprises two crucial com-
ponents.

• VR Application: The VR Application is the driving
simulation application at the core of the system. It pro-
vides an immersive virtual reality experience and collects
important data, including eye tracker and head movement
data. These captured data points offer valuable insights
into users’ visual behavior and physical responses in the
virtual environment.

• E4 Streaming Server: The E4 Streaming Server is used
to work in conjunction with the Emaptica E4. This server
component establishes a Bluetooth connection with the
E4 wristband worn by participants. Its real-time streaming
capability enables continuous monitoring and analysis of
participants’ physiological responses throughout the VR
experiment.

Together, these client-side components synergistically con-
tribute to the effective operation and comprehensive data
collection within the system.



Fig. 5. Architecture design and data flow diagram of the implemented architecture, a distributed system implemented across Client and Server.

B. Server Side

The server side of this implementation of SmartSimVR
incorporates multiple essential components.

• Automatic Speech Recognition (ASR): The ASR com-
ponent plays a vital role in facilitating voice-based in-
teractions and inputs within the system [20] [21]. By
activating the microphone, it receives the user’s voice and
converts speech into text, enabling seamless communica-
tion.

• Data TCP Client: This component is responsible for re-
ceiving crucial eye tracker data and head movement data
from the VR application. It establishes a TCP connection
and ensures the seamless transmission of these important
eye movement data and behavioral measurements to the
Brain module for further analysis.

• E4 TCP Client: The E4 TCP Client component, on the
other hand, focuses on receiving E4 data from the E4
Streaming Server. It establishes a TCP connection and
efficiently retrieves the physiological data captured by the
E4 wristband. This acquired data is then made available
for processing and integration into the system’s analysis
pipeline.

• Brain Module The Brain Module serves as the central
component on the server side, encompassing three sub-
modules:
◦ Pre-Processing Module: This module plays a crucial

role in fusing and synchronizing the time series data
collected from various sensors as is shown in Figure
5. The Empatica E4 wristband incorporates sensors
with different sampling frequencies, including a 4 Hz
EDA sensor, a 64 Hz PPG sensor for blood volume
pressure (BVP), a 4 Hz infrared thermopile (TEM) for
temperature measurement, a 32 Hz 3-axis accelerome-

ter sensor, and eye-tracking data with head movement
managed within the VR application at a frequency
of 20 Hz. To ensure consistency and coherency, a
dedicated pre-processing module has been developed.
It synchronizes the collected data to a unified frequency
of 4 Hz, effectively merging data from different sources
for subsequent analysis.

◦ AI Module:

1) Model: As discussed in section III, our architecture
incorporates a Stream learning approach. We have
established a pipeline that integrates a scaler trans-
former with a binary classifier based on a linear
logistic regression model [22]. To optimize the per-
formance of the model, we have chosen stochastic
gradient descent (SGD) [23] as the algorithm, with
a learning rate set to 0.01.

2) Classification Indicator: We used the self-reported
FMS scale to classify the data into sick (scale >=
1) and non-sick (scale = 0) observations. Users
verbally provided these indicators, which were then
converted to text using the ASR module. To match
participants’ reporting capabilities, we modified the
original FMS scale from 1 to 20 to a simplified
scale of 0 to 3. This adjustment was necessary as
participants were unable to report their status with
high-resolution accuracy.

◦ Detection/Adaptation Module:After sufficient train-
ing according to the prescribed protocol (three minutes
of reporting ”sick”), the AI model receives data from
both the Data TCP client and the E4 TCP Client at a
pre-set interval, usually 1 minute. If the trained model
detects sickness in a record, it stops validating the
remaining records in that data packet.



◦ Adaptive Variable: To mitigate cybersickness, we
employed linear and rotational accelerations as adap-
tive variables [16]. This led to a deceleration of the
virtual car in the VR program. The deceleration was
accomplished by reducing the engine power by 70%
in each detection time, directly impacting the primary
parameter controlling the car’s engine torque.

VI. DISCUSSION

The SmartSimVR architecture is a distributed architecture in
VR applications that offers numerous benefits. It incorporates
concurrent processes communicating through a shared mem-
ory system, enabling efficient data exchange and preparation
for the AI module.

One key advantage of SmartSimVR is stream learning,
which allows real-time adaptation of the virtual environment
based on the user’s context. Stream learning is preferred over
batch learning models like reinforcement learning due to its
efficiency in terms of time, resources, and data utilization. This
eliminates the need for extensive offline training with large
datasets, as the AI module trains itself using user-specific data
for immediate personalization.

The distributed nature of the SmartSimVR architecture opti-
mizes resource utilization by distributing the workload across
multiple systems. This effectively handles high-load processes
in VR applications, leading to improved performance, reduced
latency, and enhanced scalability. The result is a seamless and
immersive user experience.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced SmartSimVR, a user-specific
intelligent architecture for immersive virtual environments.
The architecture addresses real-time AI training and adapts
the virtual environment based on the user’s state or external
parameters. Through a case study on cybersickness, we suc-
cessfully trained an AI model in real time and personalized it
for individual users in a driving simulator application.

Future work includes a comprehensive analysis of Smart-
SimVR’s performance, evaluating metrics like response time,
scalability, memory usage, CPU utilization, and network la-
tency. By quantitatively assessing its performance, we aim to
gain deeper insights and identify areas for improvement.

Furthermore, we envision expanding SmartSimVR beyond
cybersickness mitigation. The architecture has potential appli-
cations in adaptive training simulations, personalized gaming
experiences, and real-time user feedback systems, enhancing
various aspects of virtual reality experiences.
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