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A B S T R A C T

This paper addresses the challenge of performing importance sampling in high-dimensional space (several
hundred inputs) in order to estimate the failure probability of a physical system subject to randomness. It is
assumed that the failure domain defined in the input space can possibly include multiple failure regions. A
new approach is developed to construct auxiliary importance sampling densities sequentially for each failure
region identified as part of the failure domain. The search for failure regions is achieved through optimization.
A stochastic decomposition of the elliptically distributed inputs is exploited in the structure of the auxiliary
densities, which are expressed as the product of a parametric conditional distribution for the radial component,
and a parametric von Mises–Fisher distribution for the directional vector. The failure probability is then
estimated by multiple importance sampling with a mixture of the densities. To demonstrate the efficiency
of the proposed method in high-dimensional space, several numerical examples are considered involving the
multivariate Gaussian and Student distributions, which are commonly used elliptical distributions for input
modeling. In comparison with other simulation methods, the numerical cost of the proposed approach is found
to be quite low when the gradient of the performance function defining the failure domain is available.
1. Introduction

Estimation of the failure probability of an engineering system is a
major challenge in reliability analysis, especially when a large number
of input variables is involved. Suppose that subject to a location shift,
the unknown values of these variables can be represented by a 𝑑-variate
continuous uncorrelated random vector 𝐗 with zero mean, where 𝑑 ≥
50, say. Further assume that the vector 𝐗 is elliptically distributed [1–
3], which is the case for the Gaussian and Student distributions, among
others. The vector 𝐗 can then be expressed in the form 𝐗 = 𝑅𝐓 in terms
of a positive random variable 𝑅 with fixed distribution and a 𝑑-variate
random vector 𝐓 which is independent of 𝑅 and uniformly distributed
on the unit sphere 𝑑 = {(𝑡1,… , 𝑡𝑑 ) ∈ R𝑑 ∶ 𝑡21 +⋯ + 𝑡2𝑑 = 1}.

The engineering system is modeled with a black-box function 𝑀
which depends on 𝐗 and is assumed to be numerically expensive. The
failure domain 𝐷𝑓 is defined as the set of outcomes 𝑀(𝐗) = 𝑀(𝑅𝐓)
for which a performance function 𝑔 takes non-positive values, viz.
𝐷𝑓 = {𝑟𝐭 ∶ 𝑔[𝑀(𝑟𝐭)] ≤ 0}. For simplicity, the function 𝑔◦𝑀 will be
written 𝑔 and referred to as the limit state function (lsf).

This paper focuses on failure probability estimation with failure
domains 𝐷𝑓 comprising possibly several failure modes [4]. The failure
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is supposed to be a rare event and its probability is defined by the
integral

𝑃𝑓 = ∫𝐷𝑓

𝑓𝑅(𝑟)𝑓𝐓(𝐭) d𝑟d𝐭 = ∫R+
∫𝑑

I𝐷𝑓
(𝑟𝐭)𝑓𝑅(𝑟)𝑓𝐓(𝐭) d𝑟d𝐭

= E𝑓𝑅 ,𝑓𝐓

[

I𝐷𝑓
(𝑅𝐓)

]

, (1)

where 𝑓𝑅 is the probability density function (pdf) of the random
variable 𝑅 and 𝑓𝐓 is the joint pdf of the random vector T. The indicator
function I𝐷𝑓

(𝑟𝐭) is equal to 1 if 𝑔(𝑟𝐭) ≤ 0 and 0 otherwise. The operator
E𝑓𝑅 ,𝑓𝐓 stands for mathematical expectation with respect to 𝑅 and 𝐓
simultaneously.

It is often impossible to evaluate the integral given by Eq. (1)
analytically. Therefore, several approaches have been proposed to esti-
mate Eq. (1) accurately with as few evaluations of 𝑔 as possible; they
typically involve approximation methods, simulation techniques [5] or
both [6,7]. In low-dimensional input space, approximation techniques
such as the first- and second-order reliability method (FORM/SORM)
for multiple design points [8] and the surrogate-assisted method [9]
are efficient. In the FORM/SORM method, the lsf is approximated with
a Taylor expansion around the so-called design points, while in the
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List of Abbreviations

CE-AIS Cross-entropy based adaptive importance
sampling

CV Coefficient of variation
DS Directional sampling
FORM/SORM First- and second-order reliability method
iCE-vMFNM Improved cross-entropy von Mises–Fisher–

Nakagami mixture
iid independent and identically distributed
IS Importance sampling
KL Kullback–Leibler
LB Lower bound
LHS Latin hypercube sampling
LS Line sampling
lsf limit state function
MBIS Multisphere-based importance sampling
MC Monte Carlo
MCMC Markov chain Monte Carlo
MIS Multiple importance sampling
MLE Maximum likelihood estimation
pdf probability density function
RBIS Radial-based importance sampling
SS Subset simulation
UB Upper bound
VM Variance minimization
vMF von Mises–Fisher

surrogate-assisted method the lsf is approximated with a surrogate
model constructed from training points [10,11]. Numerically inex-
pensive approximations of the lsf are then obtained. However, these
techniques generally do not perform well in high-dimensional input
spaces, as their performance deteriorates with increased dimension and
their accuracy is jeopardized. Therefore, several approaches have been
recently developed in order to solve this problem by mapping the
high-dimensional inputs into a lower dimensional space [7], using the
subset active subspace method [12] or a sufficient dimension reduction
method [13] for instance. The limit state function metamodel is then
built in the lower dimensional space.

Simulation methods are based on the crude Monte Carlo (MC)
method [14] which is robust, irrespective of the dimension 𝑑 and the
omplexity of 𝑔. After generating a sample of inputs of size 𝑁 , the
robability is estimated by the sample mean of the failure domain
ndicator function. However, the MC method is very costly in terms
f evaluation of the lsf because its variance, given by 𝑃𝑓 (1 − 𝑃𝑓 )∕𝑁 ,
ecreases slowly with 𝑁 . To reduce the variance of the MC estimate
nd improve convergence, advanced simulation techniques can be used,
uch as subset simulation (SS) [15,16], importance sampling (IS) [17,
8], line sampling (LS) [19,20] and directional sampling (DS) [21,22].

The focus of this paper is on importance sampling. The main idea
f IS is to introduce an auxiliary density ℎ whose support includes the
upport of I𝐷𝑓

𝑓𝑅𝑓𝐓 in the integral (1), viz.

𝑓 = ∫R+
∫𝑑

I𝐷𝑓
(𝑟𝐭)

𝑓𝑅(𝑟)𝑓𝐓(𝐭)
ℎ(𝑟, 𝐭)

ℎ(𝑟, 𝐭) d𝑟d𝐭 = Eℎ

[

I𝐷𝑓
(𝑅𝐓)

𝑓𝑅(𝑅)𝑓𝐓(𝐓)
ℎ(𝑅,𝐓)

]

.

The IS estimate of 𝑃𝑓 and its coefficient of variation (CV) are then
respectively given by

𝑃 IS
𝑓 = 1

𝑁

𝑁
∑

𝑖=1
I𝐷𝑓

(𝑅𝑖𝐓𝑖)
𝑓𝑅(𝑅𝑖)𝑓𝐓(𝐓𝑖)
ℎ(𝑅𝑖,𝐓𝑖)

and CV =
√

var(𝑃 IS
𝑓 )∕𝑃 IS

𝑓 , (2)

here the random pairs (𝑅1,𝐓1),… , (𝑅𝑁 ,𝐓𝑁 ) are mutually indepen-
ent and identically distributed (iid) with density ℎ. The efficiency
2

of the auxiliary density ℎ depends on its ability to generate more
observations in the failure domain than 𝑓𝑅𝑓𝐓. The variance, and hence
also the CV, of the IS estimate can then be drastically reduced compared
to those of the crude MC. The theoretically optimal IS density, which
leads to a zero variance IS probability estimate, is given by

ℎopt (𝑟, 𝐭) = I𝐷𝑓
(𝑟𝐭)𝑓𝑅(𝑟)𝑓𝐓(𝐭)∕𝑃𝑓 . (3)

owever, this density ℎopt is unavailable in practice as it depends on
he quantity of interest, 𝑃𝑓 . The goal of IS methods is then to construct
n auxiliary density which is as close as possible to the optimal one, so
hat the greatest possible variance reduction can be achieved.

In low-dimensional space (say 𝑑 ≤ 50), IS methods for inputs that
an be decomposed in the form 𝑅𝐓 have already been considered
n the special case of the standard Gaussian distribution. The radial-
ased importance sampling method (RBIS) studied in [23,24] improved
he numerical performance of the IS method by narrowing down the
earch to (typically large) values of the radial component associated
ith the failure domain. This approach inspired many developments,
otably the recent multisphere-based importance sampling method
MBIS) in [25]. Studies on the directional component have also been
onducted, e.g., in [26], where DS is performed on direction vectors
enerated from a mixture of von Mises–Fisher (vMF) distributions [27].
he number of components in the mixture, which corresponds to the
umber of failure modes, is selected by a clustering approach (DBSCAN
lgorithm used in [28]) but the procedure performs poorly in large
imension [29].

In high-dimensional input space, the radial component of the ellip-
ical variable, representing its Euclidean norm, has higher value. For
nstance, the mean value of the radial component of a standard Gaus-
ian variable is near

√

𝑑 with a variance converging to 1∕2; see [30].
An important ring is then defined with two hyperspheres of radius
LB and UB (for lower bound and upper bound, respectively) so that
the interval [LB,UB] encompasses most of the probability mass of the
radial component. Taking into account the important ring of standard
Gaussian variables, the method proposed in [31] focuses on finding an
optimal IS radial distribution within this important interval [LB,UB],

ithout modifying 𝑓𝐓. In contrast, the method proposed in [32] sets
as a deterministic variable equal to

√

𝑑 and focuses on finding an
optimal IS density for the vector 𝐓 using a vMF mixture distribution.
The latter method is generalized in [33] by combining it with an
optimal parametric model for the radial distribution. However, the
number of failure modes remains difficult to estimate in the absence
of information concerning the failure domain.

The method proposed herein follows the work of [32,33] as it
retains the idea of creating a mixture of densities to take into account
the multiple failure modes. More precisely, the densities are assembled
as a product of a density for the radial component, 𝑅, and another for
the directional component, T. However, the composition of the final
IS density mixture differs from the previous methods in that it is built
gradually as the different failure regions are being found.

The search for the failure regions is accomplished with the iden-
tification, through optimization, of the failing points closest to the
origin in the standard elliptical space. These optimization procedures
are inspired by the FORM/SORM methods in the case of multiple design
points, but an original adaptation of the optimization is proposed in
order to take into account the important ring. It is assumed that the
gradient of the lsf is known, as in [34], for this optimization problem.

For each identified failure region, a single IS density is constructed
as a product of a conditional density on 𝑅, as in the RBIS method, and a
vMF density for the vector 𝐓. For each failure region, the set of density
parameters is derived and an optimization is performed with a Cross-
Entropy based Adaptive IS algorithm (CE-AIS); see [35,36]. This new
way of constructing the final IS density mixture proves to be simpler
and requires fewer evaluations of the lsf. Moreover, the proposed
failure probability estimate takes advantage of the multiple importance
sampling (MIS) framework to reuse all the generated samples [7,18].
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Fig. 1. Scheme of the proposed method to find and model every failure region.
i

𝑃

This paper adds to the previous literature on the subject in being
the first to use multiple importance sampling in high-dimensional
space for elliptical distributions; to generalize auxiliary distributions
based on a stochastic decomposition of the inputs for other elliptical
distributions than the Gaussian distribution; and to use an adaptive
search for the multiple failure regions of the failure domain. A complete
description of the proposed algorithm is detailed in Section 2. Four
numerical examples with elliptical inputs illustrate the performance of
the proposed method in Section 3: three with the Gaussian distribution
and one with the Student distribution. The results are summarized and
some conclusions are drawn in Section 4.

2. High-dimensional failure probability estimation with multiple
importance sampling

It is taken for granted that the limit state function (lsf) is complex,
and hence that several failure regions in the high-dimensional input
space have to be identified in order to get an accurate estimate of the
failure probability. Instead of trying to sample in the failure domain
as a whole with a mixture of densities optimized together as done
in [32,33], the method proposed here sequentially identifies and gener-
ates samples in each of the failure regions. The final failure probability
estimate is then computed with a mixture of the optimized single IS
auxiliary densities.

2.1. Presentation of the proposed method and MIS estimate

In order to estimate the failure probability, it is proposed to de-
compose the problem in two parts. First, an identification problem is
considered which consists of identifying the different regions of the
failure domain in the input space. Next, a sampling problem is solved
by constructing an optimized auxiliary density for each failure region.
Although these two problems are distinct, they are intertwined and
cannot be solved separately. As soon as a failure region is found, the
construction of its IS auxiliary density is considered. Next, the search
3

for a new failure region is initiated, taking into account the failure
region previously found; this is the adaptation step. This scheme is
repeated until all failure regions have been found and sampled as
illustrated in Fig. 1.

Section 2.2 details the search for a set 𝐿 of failing points which are
representative of the failure regions, and the selection of a first failure
region to be sampled. The sampling problem for this failure region
is then considered in Section 2.3. The adaptation step in described
in Section 2.4, as well as the loop which must be initiated when the
set 𝐿 is not empty after the adaptation step. The procedure to be
followed when the set 𝐿 is empty after the adaptation step is laid out
in Section 2.5.

At the end of this scheme, every failure region has been identified
and sampled, and the failure probability can be estimated by the MIS
method [18]. For every failure region 𝑗, a number 𝑛𝑗 + 1 of densities
ℎ𝑗,0,… , ℎ𝑗,𝑛𝑗 are created successively in the construction of the optimal
density for the sampling problem derived in Section 2.3. They result
from the parameter optimization process with ℎ𝑗,0 being the initial
density and ℎ𝑗,𝑛𝑗 the optimized density that best fits the failure region.
Instead of using only the last density ℎ𝑗,𝑛𝑗 and its sample to represent
the failure region 𝑗, all intermediate densities and samples are included
to improve the stability of the estimate.

Let 𝐾 denote the number of failure regions. Then the MIS probabil-
ty estimate is given by

̂MIS
𝑓 = 1

𝑁samp

𝑁samp
∑

𝑖=1
I𝐷𝑓

(𝑅𝑖𝐓𝑖)
𝑓𝑅(𝑅𝑖)𝑓𝐓(𝐓𝑖)
ℎMIS(𝑅𝑖𝐓𝑖)

, 𝑅𝑖𝐓𝑖 ∼ ℎMIS

with

ℎMIS(𝑟𝐭) =
1

𝑛total

𝐾
∑

𝑗=1

𝑛𝑗
∑

𝓁=0
ℎ𝑗,𝓁(𝑟, 𝐭),

where the random pairs (𝑅1,𝐓1), (𝑅2,𝐓2),… are iid conditionally on
the parameter values which may be estimates. In the latter case, the
random pairs are conceivably dependent on the information used to
derive these estimates, but such dependence can be safely assumed to
be negligible. Here, 𝑁samp is the total number of observations generated

in the various sampling problems performed for the estimation of the
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Fig. 2. Illustration of the location of the failure region and the important ring in (a) Case 1 where the closest failing point of the failure region is inside the important ring, and
in (b) Case 2 where the closest failing point of the failure region is outside the important ring. The red circles delineate the lower bound and the upper bound of the important
ring. In both examples, there is only one failure region in the failure domain, located in the upper right corner delimited in black.
failure probability, and the total number of densities in the mixture is
𝑛total. The number 𝑛total of IS auxiliary densities is equal to 𝑛1+⋯+𝑛𝐾 +
𝐾. The following sections describe the successive steps of the method
summarized in Fig. 1 to determine a valuable IS mixture density ℎMIS.

2.2. Identification problem: Search for the failure regions through optimiza-
tion

The search for the failure regions is inspired by what is achieved in
the approximation methods FORM/SORM for multiple design points. In
those methods, each failure region is identified with the failing point
closest to the origin in the standard elliptical space [8,37]. Indeed
the closest failing point, the so-called design point or most probable
point [24], of a failure region is the most likely single realization of the
input random variables that causes failure. Nevertheless, as reported
in [30], in high-dimensional standard normal space those design points
seldom belong to the important ring. Hence they are of little interest
in the search for the main failure regions in such a space, as the
probability mass associated with their surrounding space is negligible.
To take this issue into account, the solution proposed here is to look
for the closest failing points inside the important ring.

For each failure region, depending on its location with respect to the
important ring, two different situations must be considered. In Case 1,
the closest failing point of the failure region is inside the important ring.
In Case 2, the closest failing point of the failure region does not belong
to the important ring, as it is closer than the lower bound LB of the
important interval, and the failure region spreads across the important
ring. Case 2 is typical of contexts where the distribution of the radial
component 𝑅 leads to a particularly narrow important ring.

Fig. 2 provides schematic illustrations of the two cases. In each one
of these situations, the failure region is identified with a failing point
found as follows:

Case 1: The failure region is identified with the closest failing point.
The local optimization problem is written in the form

𝑃 ∗ = argmin
𝐱∈Imp.Ring ∩𝐷𝑓

‖𝐱‖, (4)

where 𝑃 ∗ is a point belonging to both the failure domain 𝐷𝑓 and the
important ring (Imp.Ring), which minimizes the Euclidean norm ‖ ⋅ ‖;
see Fig. 3 (a). It is assumed that the gradient ∇𝑔 of the limit state
function 𝑔 is available, so that a gradient algorithm can be used to
perform the optimization.

Case 2: The failure region is identified with a failing point resulting
from two optimizations, as optimization (4) then has an infinite number
4

of solutions: any point in the failure region on the lower bound LB
of the important ring is a solution to problem (4). It is assumed that
the optimizer then randomly selects one of them, say 𝑃 ∗. A second
optimization is performed to find a point that would better represent
this particular failure region. The proposed solution consists of finding
the point 𝑃 ∗ that minimizes the limit state function in the lower bound
LB of the important ring, viz.

𝑃 ∗ = argmin
𝐱∈LB∩𝐷𝑓

𝑔(𝐱). (5)

See Fig. 3 (b). The starting point of the second optimization is 𝑃 ∗. This
local optimization is performed at fixed radius value with a gradient
algorithm and hence relatively cheap in terms of lsf evaluation.

Depending on the shape of the failure region and the important
ring, the representative point is thus either the starting point 𝑃 ∗ of this
failure region in the important ring (Case 1) or the most negative point
𝑃 ∗ at the lower bound of the important ring for failure regions starting
before the important ring (Case 2), as illustrated in Fig. 3.

To find all the failure regions, these optimizations are repeated with
a random multi-start technique. The resulting local minima 𝑃 ∗ or 𝑃 ∗

representing the failure regions of the systems are gathered in a set 𝐿.
It may happen that some points represent the same failure region. To
select a first failure region for sampling, the representative points of
the set 𝐿 are ranked and sorted. In Case 1, representative points 𝑃 ∗ of
failure regions are ranked according to their norm ‖𝑃 ∗

‖ > LB. In Case 2,
representative points 𝑃 ∗ of failure regions are ranked according to the
value of their lsf 𝑔(𝑃 ∗) < 0, as their norms are equal to LB. The set 𝐿 is
then sorted in ascending order with regard to the ranking value of each
representative point. It should be noted that the representative points of
Case 2 whose ranking values are negative are necessarily ranked before
those of Case 1 whose ranking values are positive. A first failure region
is then identified with the first point 𝑃1 of the ordered set 𝐿. This point
is thus the closest to the origin and its lsf evaluation is the most negative
if its norm is equal to LB. The identification problem is summarized in
Algorithm 1.

2.3. Sampling problem: Construction of the auxiliary density for the failure
region

To generate more observations in the failure region found in the pre-
vious section, an auxiliary density is built step by step with optimized
parameters as per the sampling problem introduced above. Taking
advantage of the stochastic decomposition of the elliptical inputs, the
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Fig. 3. Illustration of the failing point representative of the failure region 𝑃 ∗ in (a) Case 1 and 𝑃 ∗ in (b) Case 2. The blue line represents the Euclidean distance between the
representative point and the origin. The red circles delineate the lower bound and upper bound of the important ring. In both examples, there is only one failure region in the
failure domain, located in the upper right corner delimited in black.
Algorithm 1 Identification Problem
Require: The lsf 𝑔 and its gradient∇𝑔.
Initialization
The set 𝐿 is empty. Generate a random vector V of starting points
X0.
Multi-start local optimizations
for X0 ∈ V do

Search for the closest failing point with Eq. (4) with starting point
X0. The result is 𝑃 ∗.
if ‖𝑃 ∗

‖ = LB then
The failure region starts before the important ring: This is Case 2.
Perform the optimization given in Eq. (5), with starting point 𝑃 ∗,
to find the most negative point in the LB. The result is 𝑃 ∗. Add
the representative point 𝑃 ∗ to the set 𝐿, with associated ranking
value 𝑔(𝑃 ∗).

else
The closest failing point is inside the important ring: This is
Case 1. Add the representative point 𝑃 ∗ to the set 𝐿, with
associated ranking value ‖𝑃 ∗

‖.
end if

end for
Identification of a first failure region
Sort the set 𝐿 in ascending order with respect to the ranking value of
each representative point. Identify 𝑃1 as the first point of the ordered
set 𝐿.
return The ordered set 𝐿 and a first identified failure region with
𝑃1.

parametric IS density used to sample in the failure region is constructed
as the product of a density ℎ𝑅 on the random variable 𝑅 and a density
ℎ𝐓 on the random vector 𝐓.

The selected radial distribution ℎ𝑅 is the original law of 𝑅, condi-
tional on being greater than a scalar parameter 𝑟opt ∈ R+, viz.

ℎ𝑅(𝑟; 𝑟opt ) = 𝑓𝑅|𝑅>𝑟opt (𝑟) = I𝑅>𝑟opt (𝑟)𝑓𝑅(𝑟)∕P(𝑅 > 𝑟opt ).

This choice of distribution for the radial component, which excludes
part of the original distribution, is close to what is achieved in RBIS [23,
24], where its efficiency is underlined.

The selected directional distribution ℎ𝐓 is a vMF distribution, a
choice already proven to be efficient in [26,32,33]. It depends on two
parameters, namely the concentration parameter 𝜅 ∈ R and the mean
5

+

direction parameter 𝝂 ∈ 𝑑 = {(𝑡1,… , 𝑡𝑑 ) ∈ R𝑑 ∶ 𝑡21 + ⋯ + 𝑡2𝑑 = 1} of
dimension 𝑑. Specifically,

ℎ𝐓(𝐭; 𝜅, 𝝂) = 𝑐𝑑 (𝜅)𝑒𝜅𝝂
⊤𝐭 with 𝑐𝑑 (𝜅) =

𝜅𝑑∕2−1

(2𝜋)𝑑∕2𝐼𝑑∕2−1(𝜅)
,

where 𝐼𝑑∕2−1 denotes the modified Bessel function of the first kind of
order 𝑑∕2 − 1. If 𝜅 = 0, this boils down to the uniform distribution on
𝑑 . As 𝜅 grows, the distribution is more and more concentrated around
the mean direction 𝝂.

The choice of these parametric densities leads to a total of 𝑑 + 2
scalar parameters to be set. For the first failure region identified above
with 𝑃1, the goal is thus to find the optimal parameters 𝑟opt,1, 𝜅1 and 𝝂1
such that the density ℎ𝑅(𝑟; 𝑟opt,1) × ℎ𝐓(𝐭; 𝜅1, 𝝂1) is close to the optimal
density of this failure region, viz.

ℎopt,1(𝑟, 𝐭) = I𝐷𝑓,1
(𝑟𝐭)𝑓𝑅(𝑟)𝑓𝐓(𝐭)∕𝑃𝑓,1,

where 𝐷𝑓,1 denotes the failure domain of this particular failure region
and 𝑃𝑓,1 its probability. Instead of optimizing the parameters 𝑟opt,1, 𝜅1,
and 𝝂1 of dimension 𝑑 + 2 with a Cross-Entropy (CE) algorithm as
in [33], one can take advantage of the coordinates of the optimized
point 𝑃1 representative of the failure region as derived below. This
simplifies the optimization of the parameters.

The parameter 𝑟opt,1 defines the minimum value of 𝑅 such that 𝑅𝐓
belongs to 𝐷𝑓,1, for all 𝐓. Depending on the location of the failure
region compared to the important ring, 𝑟opt,1 is set differently. Using
the same notation as in Section 2.2 with Cases 1 and 2, the settings of
𝑟opt,1 are as follows:

Case 1: Set 𝑟opt,1 = ‖𝑃1‖. Indeed, 𝑃1 is the closest failing point in the
important ring. No point whose norm is below 𝑟opt,1 can be in the failure
region of the important ring.

Case 2: The norm of 𝑃1 equals the distance between the origin and the
lower bound of the important ring. Thus, 𝑟opt,1 is set to 0 to avoid any
bias, given that additional information on the radial component of the
failure region is not available. Therefore, the distribution of the variable
𝑅 is left unchanged in this particular case.

The mean direction 𝝂1 is set to be the direction of 𝑃1, viz. 𝝂1 =
𝑃1∕‖𝑃1‖. This decision implies that the direction of the point 𝑃1 is
where the likelihood of the density ℎ𝐓 is largest. It makes it possible
to set the value of the vector 𝝂1 of dimension 𝑑 directly with the
coordinates of 𝑃1, which are available after the optimizations of the
identification problem described in Section 2.2.
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Selecting the direction of 𝑃1 as the most important direction for this
ailure region is relevant both in Cases 1 and 2. Indeed in Case 1, 𝑃1 is

the design point; thus, selecting its direction as the most important is
close to what is done in line sampling [5], where the efficiency of this
choice has already been underlined. In Case 2, given that the evaluation
of 𝑃1 with the lsf has the most negative value in the lower bound LB
of the important ring, the direction of 𝑃1 is the most likely to be well
centered with regard to the location of the failure region.

Finally, the scalar 𝜅1 is set as the result of a Cross-Entropy based
Adaptive IS method (CE-AIS) [35,36]. CE-AIS is a sampling method
allowing to optimize sequentially the parameters of an IS density in
order to get as close as possible to the optimal IS density. To do
so, it minimizes the Kullback–Leibler (KL) divergence between the
parametric density and the optimal IS density. Here, the parameter
𝜅 has to minimize the KL distance between the optimal IS density
ℎopt,1(𝑟, 𝐭) of this particular failure region and the product density
ℎ𝑅(𝑟; 𝑟opt,1) × ℎ𝐓(𝐭; 𝜅, 𝝂1). After some calculations, see [33], one finds
that the optimization problem is given by the following equation:

𝜅1 = argmax
𝜅

[

∫R+
∫𝑑

1
𝑃𝑓,1

I𝐷𝑓,1
(𝑟𝐭)𝑓𝐓(𝐭)𝑓𝑅(𝑟) ln

{

ℎ𝑅(𝑟; 𝑟opt,1)

×ℎ𝐓(𝐭; 𝜅, 𝝂1)
}

d𝑟d𝐭
]

.

The probability 𝑃𝑓,1 being a constant, it can be ignored; the same
holds for the ℎ𝑅 density in the logarithm, which does not depend on 𝜅.
This integral is then estimated by a Monte Carlo method, viz.

𝜅1 ≈ argmax
𝜅

1
𝑀

𝑀
∑

𝓁=1
I𝐷𝑓,1

(𝑅𝓁𝐓𝓁) ln{ℎ𝐓(𝐓𝓁 ; 𝜅, 𝝂1)}, 𝑅𝓁 ∼ 𝑓𝑅, 𝐓𝓁 ∼ 𝑓𝐓.

ntroducing an IS density ℎCE for the computation of the above, one
an write

1 ≈ argmax
𝜅

1
𝑀

𝑀
∑

𝓁=1
I𝐷𝑓,1

(𝑅𝓁𝐓𝓁) ln{ℎ𝐓(𝐓𝓁 ; 𝜅, 𝝂1)}
𝑓𝑅(𝑅𝓁)𝑓𝐓(𝐓𝓁)
ℎCE(𝑅𝓁𝐓𝓁)

,

𝑅𝓁𝐓𝓁 ∼ ℎCE. (6)

Were the indicator function of the failure domain and the IS likeli-
ood ratio to be removed, this optimization would be exactly the same
s a maximum likelihood estimation (MLE) of the vMF distribution
arameters, when 𝝂 is known. With the indicator function and the IS
ikelihood ratio, the optimization (6) becomes a weighted MLE prob-
em whose solution is known. After some calculations using formulas
rom [27,32], the optimal 𝜅1 is found to be the solution of the equation

𝐼𝑑∕2(𝜅1)
𝐼𝑑∕2−1(𝜅1)

=
𝐫⊤𝝂1

𝑀
∑

𝓁=1
I𝐷𝑓,1

(𝑅𝓁𝐓𝓁) 𝑓𝑅(𝑅𝓁)𝑓𝐓(𝐓𝓁)∕ℎCE(𝑅𝓁 𝐓𝓁)

, (7)

where

𝐫 =
𝑀
∑

𝓁=1
I𝐷𝑓,1

(𝑅𝓁𝐓𝓁)
𝑓𝑅(𝑅𝓁)𝑓𝐓(𝐓𝓁)
ℎCE(𝑅𝓁𝐓𝓁)

𝐓𝓁 .

As one cannot solve Eq. (7) analytically, it is proposed in [27] to ap-
roximate 𝜅1 with 𝜅1 ≈ (𝜉𝑑−𝜉3)∕(1− 𝜉2), where 𝜉 = 𝐼𝑑∕2(𝜅1)∕𝐼𝑑∕2−1(𝜅1).

If 𝜅1 happens to be negative, then it is set to 0. With these equations,
the value of 𝜅1 is gradually updated with the convergence of a CE-AIS
algorithm as follows.

1. Initialization. Starting from a value 𝜅1,0 ≠ 0, a sample 𝑆0 of size
𝑁 is generated from ℎ𝑅(𝑟, 𝑟opt,1) × ℎ𝐓(𝐭, 𝜅1,0, 𝝂1). With this sample, the
failure probability of this region is estimated by

𝑃𝑓,1,0 =
1
𝑁

𝑁
∑

𝑖=1
I𝐷𝑓,1

(𝑅𝑖𝐓𝑖)
𝑓𝑅(𝑅𝑖)𝑓𝐓(𝐓𝑖)
ℎCE,0(𝑅𝑖𝐓𝑖)

, (8)

here

= ℎ (𝑟; 𝑟 ) × ℎ (𝐭; 𝜅 , 𝝂 ).
6

CE,0 𝑅 opt,1 𝐓 1,0 1
he theoretical CV of 𝑃𝑓,1,0, given by Eq. (2) and denoted CV0, is
stimated, and 𝜅1,1 is computed with population 𝑆0, density ℎCE,0, and
qs. (7). Set 𝑝 = 1.

It is assumed that I𝐷𝑓,1
(𝑅𝑖𝐓𝑖) = I𝐷𝑓

(𝑅𝑖𝐓𝑖) while the observations
are generated with 𝜅1,𝑝 ≠ 0 around 𝝂1. Thus in Eqs. (7), (8) and (9), no
distinction is made between those two failure domains. The situation
where not a single 𝑅𝑖𝐓𝑖 from 𝑆0 is failing may occur in two different
settings. First, if the initial 𝜅1,0 is too small, then the observations are
not concentrated enough around 𝝂1 and with a particularly narrow
failure region, I𝐷𝑓,1

(𝑅𝑖𝐓𝑖) = 0 for all 𝑆0. Second, if the failure region
associated with 𝑃1 is extremely small, then even with a large 𝜅1,0
all points of 𝑆0 may belong to the safety domain. For both of these
situations the cross-entropy optimization is stopped and the failure
region associated to 𝑃1 is considered negligible for the estimation of
the failure probability.

2. Updating of the concentration parameter. While CV𝑝−1 ≥ 10%,
a sample 𝑆𝑝 of size 𝑁 is generated from ℎ𝑅(𝑟; 𝑟opt,1)×ℎ𝐓(𝐭; 𝜅1,𝑝, 𝝂1). The
ailure probability of this region is estimated from the 𝑝 + 1 samples
enerated, viz. 𝑆0,… , 𝑆𝑝, using the following adaptive MIS estimate:

𝑃𝑓,1,𝑝 =
1

𝑁(𝑝 + 1)

𝑁(𝑝+1)
∑

𝑖=1
I𝐷𝑓,1

(𝑅𝑖𝐓𝑖)
𝑓𝑅(𝑅𝑖)𝑓𝐓(𝐓𝑖)
ℎCE,𝑝(𝑅𝑖𝐓𝑖)

, (9)

where

ℎCE,𝑝 = ℎ𝑅(𝑟; 𝑟opt,1) ×
1

𝑝 + 1

𝑝
∑

𝑢=0
ℎ𝐓(𝐭; 𝜅1,𝑢, 𝝂1).

The theoretical CV of 𝑃𝑓,1,𝑝, denoted CV𝑝, is estimated and the 𝜅1,𝑝+1
is updated with samples 𝑆0,…, 𝑆𝑝, density ℎCE,𝑝, and Eq. (7). The
arameter 𝑝 is then incremented to 𝑝 + 1. This step is repeated until
V𝑝−1 < 10%.
3. End of the algorithm. Once the CV convergence criterion is

eached, set 𝑛1 = 𝑝. A last sample 𝑆𝑛1 of size 𝑁 is generated from
𝑅(𝑟; 𝑟opt,1) × ℎ𝐓(𝐭; 𝜅1,𝑛1 , 𝝂1).

Updating 𝜅1,𝑝+1 with all the previous samples, rather than just the
last one 𝑆𝑝 in Step 2, proved to be more efficient in terms of stability
of the 𝜅 value and leads to a faster convergence of the algorithm.
The matrix 𝑀1 is defined as the vector 𝑀1 = (𝑆0,… , 𝑆𝑛1 ) of all the
generated samples.

The accurate computation of the coordinates of 𝑃1 with the local
optimization problems of Section 2.2 is thus crucial. Indeed, a greater
number of iterations in the CE-AIS algorithm could be required to reach
the CV convergence criterion if the mean direction 𝝂1 or 𝑟opt,1 are
inaccurate. This would lead to a larger simulation budget.

At the end of the algorithm, the density ℎ𝑅(𝑟; 𝑟opt,1) × ℎ𝐓(𝐭; 𝜅1,𝑛1 , 𝝂1)
is close to ℎopt,1 and is the best density with this parametric setting
to sample the failure region. Nevertheless, each intermediate density
ℎ𝑅(𝑟; 𝑟opt,1)×ℎ𝐓(𝐭; 𝜅1,𝑝, 𝝂1) and its corresponding sample 𝑆𝑝 are also kept
and used in the final MIS estimate. This improves the accuracy of the
probability estimate in terms of empirical CV. Also, it allows for a better
use of all the evaluations of the expensive limit state function 𝑔.

2.4. Adaptation step to take into account the failure region modeled

Once a first failure region has been identified and sampled, the
search for the remaining failure regions can be initiated. As mentioned
at the beginning of Section 2.2, the search for the failure regions is
greatly inspired by the FORM method for multiple failure modes [8]. In
this method, once a failure region is found, a bulge, denoted by Bulge1,
is built around the location of its associated representative failing point
𝑃1 and added to the lsf 𝑔. The modified limit state function, written 𝑔̃,
is then

̃(𝐱) = 𝑔(𝐱) + Bulge1(𝐱),

and the modified failure domain is written 𝐷̃𝑓 = {𝑟𝐭 ∶ 𝑔̃ (𝑟𝐭) ≤ 0}.
This failure region is thus not considered again in the search for the
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Fig. 4. Illustration of the bulge built around the representative point 𝑃1 of the failure region and the resulting modified failure domain 𝐷̃𝑓 in (a) Case 1 and (b) Case 2. This
illustration should be compared to Fig. 3 for a better understanding. The red circles represent the lower bound and upper bound of the important ring. In both examples, there is
only one failure region in the failure domain, located in the upper right corner delimited in black.
remaining failure regions, as it belongs to the safety domain. The same
process is employed here with some adjustments; it is the adaptation
step introduced above.

In the proposed method, two different situations have been defined
as Case 1 and Case 2 depending on the location of the failure region
within the important ring. Given that the value of the lsf at the failing
point 𝑔(𝑃1) is not equal to zero in Case 2, a small modification has been
added to the classical bulge equation presented in [8] to introduce a
bulge equation that suits both situations:

Bulge1(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠1
(

𝛼21 − ‖𝐱 − 𝑃1‖
2)2

−I𝑔(𝑃1)<0
𝑔(𝑃1)
𝛼1

(

𝛼1 − ‖𝐱 − 𝑃1‖
)

if ‖𝐱 − 𝑃1‖ ≤ 𝛼1,

0 elsewhere,

where I𝑔(𝑃1)<0 = 1 when 𝑔(𝑃1) < 0 and 0 otherwise. The resulting
modified failure regions in those two situations are displayed in Fig. 4.

The scalar 𝛼1 is the radius of the bulge defined by 𝛼1 = 𝛾 × 𝛽1 and
𝑠1 is the scale of the bulge, defined by

𝑠1 =
𝛿𝛽1‖∇𝑔(𝑃1)‖

{

(𝛾𝛽1)2 − (𝛿𝛽1)2
}2

,

where 𝛿 = 0.75 and 𝛾 = 1.1 as in [8], and 𝛽1 = ‖𝑃1‖. Any point in
the bulge is thus no longer in the updated failure domain 𝐷̃𝑓 . A first
updating of the ordered set 𝐿 is made to remove any of those points.

In Case 2, 𝑃1 is located on the lower bound of the important ring and
hence 𝛽1 = LB. However, most of the observations generated are not
located around 𝑃1. Indeed, as the distribution of the radial component
𝑅 is left unchanged (see Section 2.3), most observations have a radial
value closer to the mean value of 𝑅 than LB. Therefore, the bulge built
around 𝑃1 is not representative of the samples generated in this failure
region. A failing point belonging to the same failure region as 𝑃1 may
be found at a distance from 𝑃1 superior to 𝛼1.

In Case 1, the same situation may happen if the radius 𝛼1 of the
bulge is not large enough. Thus another criterion, inspired by the angle
criterion in [8], is introduced for both Case 1 and Case 2 in order to
prevent this phenomenon: the maximum angle 𝜙1 between 𝑃1 and the
failing points of the population 𝑀1 is estimated and the failing cone 𝐶1
associated to 𝑃1 is defined as 𝐶1 = {𝐱 ∶ 𝐱𝑃1 ≤ 𝛾 ×𝜙1}. Any failing point
belonging to this cone is representative of the same failure region and
must also be removed from the ordered set 𝐿 to avoid redundancy.

After this second updating, if the ordered set 𝐿 is not empty, then
the remaining points represent some failure regions that are different
7

Algorithm 2 Sampling in all failure regions of the ordered set 𝐿
Require: The ordered set 𝐿, the lsf g, the modified lsf 𝑔̃ and the

number 𝑘 of failure regions.
Construction of densities and sampling
while 𝐿 ≠ ∅ do

Set 𝑘 = 𝑘 + 1. Select 𝑃𝑘 as the first element of the ordered set 𝐿.
Sampling Problem: Construct an optimal auxiliary density for the
failure region represented by 𝑃𝑘 and generate a population 𝑀𝑘 in
this failure region as in Section 2.3.
Adaptation Step: Add the Bulge𝑘 to the modified lsf 𝑔̃ and update
the set 𝐿 by removing points closer to 𝛼𝑘 from 𝑃𝑘 and belonging
to the cone 𝐶𝑘.

end while
All the failure regions represented by failing points in the set 𝐿 have been
sampled.
return The number 𝑘 of failure regions and the modified lsf 𝑔̃.

from the first one and need to be considered. The next failure region is
identified with the first point of the updated ordered set 𝐿, denoted as
𝑃2. The sampling problem (Section 2.3) is then repeated with this fail-
ure region represented by 𝑃2. The failure domain used in the sampling
problem is still 𝐷𝑓 = {𝑟𝐭 ∶ 𝑔 (𝑟𝐭) ≤ 0} without the modification 𝑔̃ de-
fined above. It prevents introducing a bias in the probability estimation.
At the end of the sampling problem, the second failure region around
𝑃2 has been properly sampled and another auxiliary density has been
iteratively constructed. A second bulge Bulge2 is created in the same
way as Bulge1, so that 𝑔̃ is updated again. The ordered set 𝐿 is also
updated with the distance criterion 𝛼2 and the cone criterion 𝐶2.

This scheme goes on until the set 𝐿 is empty, with the number of
failure regions found equal to 𝑘. Algorithm 2 sums up the process of
sampling in all failure regions represented by points in the set 𝐿. The
modified lsf is initialized with 𝑔̃ = 𝑔 and the number of failure regions
𝑘 is initialized with 𝑘 = 0 as there is no identified failure region at the
start of the algorithm.

2.5. Search for missed failure regions

The set 𝐿 found in the identification problem presented in Sec-
tion 2.2 may not include all the existing failure regions. For example,
one failure region may be so dominant that all the optimized points
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of the set 𝐿 have converged to this particular region. Therefore, some
failure regions that are slightly harder to find by optimization may
be missed. To solve this problem, another set of optimizations is per-
formed, to find the failure regions that could have been overshadowed.
The optimizations are the same as the ones presented in Section 2.2
with Eqs. (4) and (5) except for two updates. First, the failure domain
is no longer 𝐷𝑓 but the modified one 𝐷̃𝑓 = {𝑟𝐭 ∶ 𝑔̃ (𝑟𝐭) ≤ 0}.
Thereby, all the bulges constructed earlier prevent the optimization
from converging back to the same points, because they are no longer
in the failure domain. Second, the multi-start technique of the first
optimization (4) is centered around the opposite direction 𝐱0 of the
failing points previously found, as suggested in the FORM method with
multiple design points [8], viz.

𝐱0 = −𝜖(𝑃1 +⋯ + 𝑃𝑘), (10)

where 𝜖 = 0.5. After the optimizations, a new set 𝐿 is found. The
failing points of this set are all located at least 𝛼𝑖-away from each
point 𝑃𝑖 with 𝑖 ∈ {1,… , 𝑘}. After removing the failing points of the
set belonging to the cone 𝐶𝑖 of each 𝑃𝑖, the set 𝐿 contains only failing
points representative of failure regions that have not been sampled yet.
It is sorted as described in Section 2.2. Algorithm 2 is then repeated for
this ordered set 𝐿 until is it empty. Algorithm 3 sums up the sampling
of all failure regions of the failure domain.

Algorithm 3 Search and sampling of all failure regions of the failure
domain
Require: The lsf 𝑔 and its gradient ∇𝑔.
Initialization
Identification Problem: Create an ordered set 𝐿 as output of the
Algorithm 1 with inputs (𝑔,∇𝑔).
Set the number of failure region 𝑘 = 0. Initialize the modified lsf with
𝑔̃ = 𝑔
Sampling all failure regions represented by failing points in the set 𝐿
while 𝐿 ≠ ∅ do

Sampling Problem and Adaptation Step: Generate a sample in ev-
ery failure region represented by failing points in the ordered set 𝐿
as derived in Algorithm 2 with inputs (𝐿, 𝑔, 𝑔̃, 𝑘) and outputs (𝑘, 𝑔̃).

Identification Problem: Create a new set 𝐿 with the optimizations
presented in Section 2.2 with the modified lsf 𝑔̃ and failure domain
𝐷̃𝑓 = {𝑟t ∶ 𝑔̃ (𝑟t) ≤ 0} and x0 = −𝜖(𝑃1 + ⋯ + 𝑃𝑘). Update this set
𝐿 by removing points located within the cones 𝐶𝑖 for each 𝑃𝑖 with
𝑖 ∈ {1,… , 𝑘} and sort the set 𝐿.

end while
All failure regions of the failure domain have been identified and sampled.

Set 𝐾 equal to the last value of 𝑘, such that 𝐾 is the final number of
failure regions identified and sampled, in the failure domain.
return The total number of failure regions 𝐾.

The algorithm ends when the new set 𝐿 is found to be the empty
set. It means that no other failure region has been found, i.e., the entire
failure domain has (presumably) been covered. The bulges keep getting
added to the modified lsf 𝑔̃ through the different created sets 𝐿. It is
recalled here that the modified limit state function is used only for the
optimizations performed in the identification problems, and not for the
construction of the auxiliary densities in the sampling problems.

2.6. Estimation of the global failure probability

The global failure probability is estimated at the end of Algorithm 3
with the MIS estimate presented before. The global IS auxiliary density
is a mixture of a number 𝑛 of densities structured as ℎ × ℎ . The
8

total 𝑅 𝐓
Fig. 5. Limit state function for the 4-branch system. This system has four failure regions
located at the four corners of the input space; the failure domain is delimited in black.

final form of the estimate is

𝑃MIS
𝑓 = 1

𝑛total ×𝑁

𝑛total×𝑁
∑

𝑖=1
I𝐷𝑓

(𝑅𝑖𝐓𝑖)
𝑓𝑅(𝑅𝑖)𝑓𝐓(𝐓𝑖)
ℎMIS(𝑅𝑖𝐓𝑖)

, 𝑅𝑖𝐓𝑖 ∼ ℎMIS

with

ℎMIS(𝑟𝐭) =
1

𝑛total

𝐾
∑

𝑗=1
ℎ𝑅(𝑟; 𝑟opt,𝑗 )

{ 𝑛𝑗
∑

𝓁=0
ℎ𝐓(𝐭; 𝜅𝑗,𝓁 , 𝝂𝑗 )

}

.

Thus 𝑁samp = 𝑛total ×𝑁 . As previously noted, the number 𝑛total of IS
auxiliary densities is equal to 𝑛1 +⋯ + 𝑛𝐾 + 𝐾. This estimate does not
require any prior knowledge of the number 𝐾 of failure regions, as it is
computed within the algorithm. The lsf 𝑔 is evaluated through several
repetitions of the identification problem (Section 2.2) and the sampling
problem (Section 2.3). The numbers 𝑁opt,1 and 𝑁opt,2 denote the global
numbers of evaluations of 𝑔 and ∇𝑔, respectively, required for all the
optimizations performed in the identification problems, and 𝑁samp is
the final number of lsf evaluations required in the sampling problems.
The total number of lsf evaluations is equal to 𝑁opt,1 + 𝑁samp. If there
exist some errors in the gradient estimation or in the local optimizations
performed during the identification steps, the identification of the
different failure regions and the coordinates of their corresponding
representative point can be impacted. The resulting MIS probability
estimate may be biased if the parameters 𝑟opt,𝑖 are not identified well.
Also, a greater simulation budget may be required to reach the CV
convergence criterion of the CE-AIS algorithm if the sampling density
is sub-optimal because of inaccurate mean direction 𝝂𝑖 or 𝑟opt,𝑖.

To clarify the procedure, an example in dimension 2 is presented
next. This example is meant to be for illustrative purposes only, as the
goal of the algorithm is to estimate the failure probability of systems
involving a large number of input variables.

Example in dimension 2: A 4-branch system
The following example is frequently used in the literature [10,33].

The inputs are assumed to be Gaussian, viz. 𝐗 ∼  (𝟎2, 𝐈2), and the lsf
equation is given by

𝑔(𝐗) = min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑋1 −𝑋2)2∕10 − (𝑋1 +𝑋2)∕
√

2 + 3,
(𝑋1 −𝑋2)2∕10 + (𝑋1 +𝑋2)∕

√

2 + 3,
(𝑋1 −𝑋2) + 7∕

√

2,
(𝑋2 −𝑋1) + 7∕

√

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

The reference value for the failure probability is 2.22 × 10−3. Fig. 5
displays the function 𝑔 and the contour of the failure domain.
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Fig. 6. Sampling of the first failure region of the 4-branch system. One has 𝑃1 =
(−2.12,−2.12), 𝑟opt,1 = 2.99 and 𝝂1 = (−0.71,−0.71). The population 𝑀1 is of size 2𝑁 as
only two iterations were needed in the algorithm, with 𝜅1,0 = 20 and 𝜅1,1 = 33.5.

The first step of the algorithm is to find 𝑃1 through optimization
(Section 2.2); this is the identification problem. Here the dimension is
too low for the important ring to be any restrictive; it encompasses
the whole input space. Hence, the failure regions all start inside the
important ring. This application is thus an example of the situation
referred to as Case 1 in the previous sections. After this identification
problem, the set 𝐿 contains only three different representative points,
viz. (−2.12,−2.12), (2.12, 2.12) and (2.47,−2.47). The Euclidean norm of
both (2.12, 2.12) and (2.12,−2.12) is very close to 3 while the Euclidean
norm of (2.47,−2.47) is close to 3.5; thus it is last in the ordered set.
This first identification problem has missed the fourth failure region.

The first point of the set is 𝑃1 = (−2.12,−2.12) with 𝑟opt,1 = 2.99
and 𝝂1 = (−0.71,−0.71). The sampling of the failure region around
𝑃1 is performed (sampling problem, Section 2.3) with 𝜅1,0 = 20 and
𝑁 = 1000. The first CV0 computed is equal to 2.6%, thus 𝜅 is only
updated once and its final value is 33.5. The population 𝑀1 of size 2𝑁
is illustrated in Fig. 6.

The Bulge1 is added to the limit state function 𝑔 to create the
modified lsf 𝑔̃ and the set 𝐿 is updated (adaptation step). The same
scheme is repeated for 𝑃2 = (2.12, 2.12) and 𝑃3 = (2.47,−2.47) (Sec-
tion 2.4). Populations 𝑀2 and 𝑀3 are displayed in Fig. 7. The set 𝐿
is empty at this point, and the search for missed failure regions begins
(identification problem, Section 2.5) with a new set 𝐿 resulting from
the optimization on the modified limit state function 𝑔̃, displayed in
Fig. 8.

The new set 𝐿 results in the singleton {(−2.47, 2.47)}. The sampling
of the fourth failure region is performed (sampling problem), Bulge4
is added to 𝑔̃ and once this is done, the set 𝐿 is empty (adaptation
step). The resulting population 𝑀4 is displayed in Fig. 9 with the new
modified lsf.

The new set 𝐿 resulting from the optimization fails to detect any
failure region different from the ones previously found (identification
problem) and thus the algorithm stops. The failure probability is es-
timated with a MIS estimate of eight densities, two for each failure
region. The estimated probability is equal to 2.23×10−3, with a theoret-
ical CV equal to 1.3%. The total number of evaluations of the gradient
of 𝑔 for the optimizations of the identification problems is equal to
𝑁opt,2 = 330. The number of evaluations of 𝑔 comprises 𝑁opt,1 = 476
evaluations for the optimizations of the identification problems, and
𝑁samp = 4 × 2 × 1000 = 8000 for the sampling problems of the four
9

failure regions.
3. Numerical investigations with high-dimensional input space

The performance of the proposed algorithm was investigated with
three numerical examples taken from the IS literature and with a real-
istic engineering application taken from the aviation industry. The first
two were compared with the improved Cross-Entropy vMF-Nakagami
Mixture algorithm (iCE-vMFNM) of [33] and with a subset simulation
(SS) algorithm [15]. SS algorithms are known to be efficient in high-
dimensional input space [38]. The Monte Carlo method was used for
reference value. The inputs of the first two examples and the realis-
tic engineering application follow the standard Gaussian distribution,
while the inputs of the third example follow a multivariate Student
distribution.

As previously noted, all the examples involve inputs of dimension
100 and above. Nevertheless, as shown at the end of the previous
section, the algorithm can also perform well in small dimension, even
though it is not the primary objective of the proposed method.

The first example is a series system problem with four components
for which the number of random variables can be chosen without
affecting the probability of failure; it was inspired by a numerical
application from [32,33]. The second example has to do with a Duffing
oscillator under a random loading as considered in [39]. The third
example pertains to a large portfolio comprising loans that are subject
to possible default, with 𝑑 = 250, taken from [40–42]. The last example
concerns the drag coefficient of an airfoil in inviscid transonic flow
subject to random shape distortion [43], with 𝑑 = 100.

Optimization was performed with the SLSQP algorithm [44]. The
random vector for the multi-start technique mentioned in the search
for the failure regions was generated with a Latin Hypercube Sampling
(LHS) [45] of size 10. This sampling ensures that 10 random starting
points are well distributed over the entire input space. Although the
choice of 10 for the sampling size is arbitrary, it proved to be sufficient
for the examples considered here.

For the CE-AIS method, 𝑁 was always set to 1000 and the maximum
number of iterations was set to 𝑝max = 10 except for the last application,
where it is set to 5. The number 𝑝max is rather low, but it is adequate as
the only updated parameter is the scalar 𝜅. In the first example, a study
of the best initial value of 𝜅𝑖,0 in the CE-AIS method was performed.
For the iCE-vMFNM algorithm, the maximum number of iterations in
the CE method was also set to 10 for comparison purposes and the
parameters 𝐾 and CVtarget were optimally set for each application. For
the SS algorithm, the maximum number of iterations was also set to
10, while the quantile parameter 𝜌 equals 0.1. To compare the different
methods, 500 independent simulation runs were performed to calculate
the statistics of the probability estimates and the other quantities of
interest, except for the last example where the algorithm ran only once.

3.1. Series system of four linear lsfs

The first example demonstrates the robustness of the proposed
algorithm to find all the failure regions in the high-dimensional input
space. It is defined by a series system of four linear lsfs in the standard
Gaussian space 𝐗 ∼ (𝟎𝑑 , 𝐈𝑑 ). The lsf is given by

𝑔1(𝐗) = min
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⎩

𝛽 + 1
√

𝑑

𝑑
∑

𝑖=1
𝑋𝑖,

𝛽 − 1
√
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√

𝑑

(𝑑∕2
∑

𝑖=1
𝑋𝑖 −

𝑑
∑

𝑖=𝑑∕2+1
𝑋𝑖

)

,

𝛽 + 1
√

𝑑

(

−
𝑑∕2
∑

𝑖=1
𝑋𝑖 +

𝑑
∑

𝑖=𝑑∕2+1
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⎪
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⎪
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.

The failure probability is then independent of the number 𝑑 of
random variables. In order to have a low failure probability, it was
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Fig. 7. Sampling of (a) the second and (b) third failure regions of the 4-branch system. One has 𝑃2 = (2.12, 2.12), 𝑟opt,2 = 2.99, and 𝝂2 = (0.71, 0.71). Population 𝑀2 is of size 2𝑁 as
only two iterations were needed in the algorithm, with 𝜅2,0 = 20 and 𝜅2,1 = 27.6. Moreover, 𝑃3 = (2.74,−2.47), 𝑟opt,3 = 3.49, and 𝝂3 = (0.71,−0.71). Population 𝑀3 is of size 2𝑁 as
only two iterations were needed in the algorithm, with 𝜅3,0 = 20 and 𝜅3,1 = 18.1.
Fig. 8. The modified limit state function 𝑔̃ after the additions of Bulge1, Bulge2, and
Bulge3.

assumed that 𝛽 = 5. The reference probability value computed with
the Monte Carlo method is equal to 𝑃𝑓 = 1.15 × 10−6 with an empirical
CV of 4.1% and a sample of size 5 × 108. There are four failure regions
in this failure domain.

The performance of the proposed method was studied in dimensions
200, 300, and 400. As the inputs are standard Gaussian, one has 𝑅2 ∼
𝜒2(𝑑). The definition of the important ring is the same as in [30]: the
interval [LB, UB] is centered around

√

𝑑 and the smallest value of 𝑟 such
that P(

√

𝑑−𝑟 ≤ 𝑅 ≤
√

𝑑+𝑟) ≥ 1−10−8 is selected. The interval becomes
(10.02, 18.26) for 𝑑 = 200, (13.22, 21.42) for 𝑑 = 300 and (15.91, 24.09) for
𝑑 = 400. Each of the four failure regions starts before the beginning
of the important ring and spreads across it. Thus this application is an
example of the situation referred to as Case 2 in the previous sections.

For each of the four failure regions, the converged 𝜅 value of the
CE-AIS algorithm is the same. This value grows with the dimension.
For 𝑑 = 200, the converged 𝜅 value is around 79. For 𝑑 = 300, the
converged 𝜅 value is around 94. Finally for 𝑑 = 400, the converged 𝜅
10
value is around 107. A study of the influence of the initial 𝜅𝑖,0 in the CE-
AIS algorithm of the sampling problem (Section 2.3), simply denoted
𝜅0, is displayed in Fig. 10.

The number 𝐾 of failure regions found by the algorithm is displayed
in Fig. 10 (c). In dimension 300, where the converged 𝜅 value is equal
to 94, setting 𝜅0 = 50 or 𝜅0 = 150 did not prevent the algorithm
from finding the four failure regions each time. However, in dimension
200, if 𝜅0 is greater than the converged value 79, the algorithm finds
on rare occasions five failure regions instead of four (once every 500
independent simulations, for 𝜅0 = 120 and 𝜅0 = 150). This means
that the samples generated in one particular failure region were too
concentrated and did not cover the whole failure region; as a result, the
remaining part was identified as another new failure region (as both the
bulge and the cone associated to the representative failing point were
not wide enough; see Section 2.4). This is not a problem in terms of
failure probability estimation, but it results in a heavier budget 𝑁samp
for these particular simulation runs.

In contrast in dimension 400, if 𝜅0 is a lot smaller than the opti-
mal 𝜅 equal to 107, the algorithm sometimes failed to find the four
failure regions and stopped at three (18 times out of 500 independent
simulations, for 𝜅0 = 50). Indeed, if 𝜅0 is too small, then the sample
generated in the first step of the CE-AIS algorithm is too wide, and the
situation occurs where not a single 𝑅𝑖𝐓𝑖 is failing. This particular failure
region is thus considered as negligible (see Section 2.3) and therefore
𝐾 = 3. The resulting probability estimate is then biased (see Fig. 10 (a))
and the variance of the estimate is higher (see Fig. 10 (d)). However, it
should be noted that finding three failure regions or five remained rare
instances, and that the algorithm is quite robust regarding the number
of failure regions found depending on the value of 𝜅0.

The fluctuations seen in the probability estimates in Fig. 10 (a) are
due to the randomness of the sampling of the CE-AIS algorithm. The
probability estimate is very close to the reference value and is not
dependent on 𝜅0, except in dimension 400 when 𝜅0 = 50. It seems
that the value of 𝜅0 that minimizes the number 𝑁samp of evaluations
of the limit state function is when 𝜅0 is really close to the optimal 𝜅,
which is expected (see Fig. 10 (b)). Then, as 𝜅0 is set greater or smaller,
the budget 𝑁samp increases as more steps are necessary for the CE-AIS
algorithm to converge.

The global numbers 𝑁opt,1 and 𝑁opt,2 of evaluations of 𝑔 and ∇𝑔
required for all the optimizations performed in the identification prob-
lems did not vary throughout the study. Indeed, as the initial LHS is
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Fig. 9. (a) Sampling of the fourth failure region of the 4-branch system. One has 𝑃4 = (−2.74, 2.47), 𝑟opt,4 = 3.49, and 𝝂4 = (−0.71, 0.71). Population 𝑀4 is of size 2𝑁 as only two
iterations were needed in the algorithm, with 𝜅4,0 = 20 and 𝜅4,1 = 16.4. (b) The modified limit state function after the addition of Bulge4 to the previous modified lsf.

Fig. 10. (a) Evolution of the failure probability estimate with 𝜅0, for dimensions 200, 300, and 400. (b) Evolution of the number of lsf evaluations 𝑁samp with 𝜅0. (c) Evolution of
the number 𝐾 of failure regions found with 𝜅0. (d) Evolution of variance of the failure probability estimate with 𝜅0.
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Table 1
Comparison of the proposed algorithm with the iCE-vMFNM algorithm and a SS algorithm for 𝑔1. The reference probability
is equal to 1.15 × 10−6 for the three dimensions considered.
Series system of four linear limit state functions

Proposed algorithm iCE-vMFNM Subset sampling

𝑑 = 200
1.14 × 10−6 1.00 × 10−6 1.15 × 10−6

CV 4.1% CV 56.4% CV 10.6%
(3.9%)

𝑁samp 14486 𝑁samp 449400 𝑁samp 91530
𝑁opt,1 261
𝑁opt,2 204

𝑑 = 300
1.15 × 10−6 1.03 × 10−6 1.15 × 10−6

CV 3.6% CV 50.6% CV 10.9%
(3.6%)

𝑁samp 12174 𝑁samp 456800 𝑁samp 91860
𝑁opt,1 231
𝑁opt,2 184

𝑑 = 400
1.15 × 10−6 1.05 × 10−6 1.15 × 10−6

CV 3.3% CV 33.1% CV 10.3%
(3.4%) [**]

𝑁samp 11308 𝑁samp 400000 𝑁samp 91470
𝑁opt,1 255
𝑁opt,2 213
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of size 10, if the algorithm finds three or five failure regions instead of
four, the number of performed optimizations remains the same in the
end. Thus 𝜅0 does not influence the value of these numbers.

The conclusion of this study is to choose 𝜅0 relatively high when no
nformation concerning the failure regions is available and the higher
he dimension, the higher 𝜅0.

To compare the algorithm with the other available methods, 𝜅0 was
elected as follows: 70 when 𝑑 = 200, 90 when 𝑑 = 300, and 110 when
= 400. The performance of the algorithms is summarized in Table 1;

he CV displayed for all the methods is the empirical one, estimated
ver the 500 independent simulation runs. The numbers in parentheses
re the mean of the theoretical CV estimates of the proposed method.

The estimates of the proposed method and the subset simulation
ethod are quite close to the reference value, i.e., 1.15×10−6. However,

he proposed algorithm has the smallest CV with the smallest global
udget. Indeed, the total number 𝑁opt,1 + 𝑁samp of evaluations of the
sf is very low: with less than 15,000 evaluations, the CV is below 4%

whatever the dimension 𝑑. For every simulation, the number of failure
regions found by the proposed method is equal to 4. The number 𝑁samp
seems to decrease as the dimension increases; only the scalar parameter
𝜅 is optimized with the CE-AIS method. The optimization budgets 𝑁opt,1
nd 𝑁opt,2 remain negligible compared to the number of lsf evaluations
equired by the other two methods. The estimates of the theoretical CV
re very close to the empirical CV, which suggests that the precision
f the algorithm can be correctly determined with only one simulation
un.

The iCE-vMFNM algorithm performs poorly compared to the other
wo algorithms. Indeed, the mean estimate is a bit biased compared
o the reference value; the CV is very high and the simulation budget
s huge compared to the other two methods. In dimension 400, the

displayed statistics result from less than 500 independent simulations,
hence the symbol [**], given that the algorithm did not converge most
of the time. The CVtarget parameter was set to 10 as it resulted in being
the best value after several tests, and the size of the sample per iteration
was set quite high for each dimension or else the algorithm would
not converge, hence the very large simulation budget. The number
𝐾 = 4 of failure regions is a parameter to be set; therefore, its previous
knowledge is required unlike in the proposed algorithm where no
assumption is made on 𝐾.

The number of evaluations of 𝑔1 for the subset sampling method is
independent of the dimension of the inputs. The simulation budget is
quite high: at least six times higher than the proposed algorithm global
12

p

budget. This method leads to large CVs as well: they are two to three
times larger than the proposed algorithm estimate CVs.

3.2. Duffing oscillator

The second example is a nonlinear elastic system as described
in [39]. The Duffing oscillator is modeled by the equation

𝑚𝑧̈(𝑡) + 𝑐𝑧̇(𝑡) + 𝑘{𝑧(𝑡) + 𝛾𝑧(𝑡)3} = 𝑓 (𝑡),

here 𝑧(𝑡), 𝑧̇(𝑡), and 𝑧̈(𝑡) are the displacement, velocity, and acceleration
f the oscillator at time 𝑡, respectively, and the constants are taken as
n [39], viz. 𝑚 = 1000 kg, 𝑐 = 200𝜋 Ns/m, 𝑘 = 1000(2𝜋)2 N∕m and
= 1 m−2. The oscillator is subjected to the random loading 𝑓 (𝑡,𝐗),

iscretized in the frequency domain as in [33], viz.

(𝑡,𝐗) = −𝑚𝜎
𝑑∕2
∑

𝑖=1
{𝑋𝑖 cos(𝜔𝑖𝑡) +𝑋𝑑∕2+𝑖 sin(𝜔𝑖𝑡)},

here 𝜔𝑖 = 𝑖𝛥𝜔 with 𝛥𝜔 = 30𝜋∕𝑑 and 𝜎 =
√

2𝑆𝛥𝜔, where 𝑆 =
0.005 m2∕s3 is the intensity of the loading. Here, 𝐗 is a vector of
independent standard Gaussian random variables of dimension 𝑑. The
lsf 𝑔2 is the maximum displacement of the oscillator at 𝑡 = 2 s defined
as

𝑔2(𝐗) = min{𝑧crit,1 − 𝑧(2𝑠), 𝑧(2𝑠) − 𝑧crit,2},

here 𝑧crit,1 = 0.1 and 𝑧crit,2 = −0.06. The initial values are set to
(0) = 0 and 𝑧̇(0) = 1.5. The reference value is computed with a Monte
arlo method and is equal to 4.28 × 10−4 with an empirical CV of 4.9%
ith a sample of size of 106, whatever the dimension 𝑑. There are two

ailure regions for this failure domain.
The performance of the proposed method was studied in dimen-

ions 100, 200, and 300 and the important ring was defined as in
he previous application. Thus for 𝑑 = 100, the importance interval
quals (5.83, 14.17) and for the other two dimensions the interval is the
ame as in the previous application. Both failure regions start before
he beginning of the important ring and spread across it; thus this
pplication is another example of the situation referred to as Case 2
n the previous sections.

To compare the algorithm with the other available methods, the
nitial values of 𝜅0 were selected as follows: 𝜅0 = 50 when 𝑑 =
00, 𝜅0 = 70 when 𝑑 = 200, and 𝜅0 = 90 when 𝑑 = 300. These
articular values are inspired by the study of the previous example. The
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Table 2
Comparison of the proposed algorithm with the iCE-vMFNM algorithm and a SS algorithm for 𝑔2. The reference probability
is equal to 4.28 × 10−4 for the three dimensions considered.
Duffing oscillator

Proposed algorithm iCE-vMFNM Subset sampling

𝑑 = 100
4.28 × 10−4 4.28 × 10−4 4.29 × 10−4

CV 4.7% CV 5.0% CV 8.7%
(4.6%)

𝑁samp 5818 𝑁samp 9312 𝑁samp 40000
𝑁opt,1 386
𝑁opt,2 278

𝑑 = 200
4.26 × 10−4 4.26 × 10−4 4.28 × 10−4

CV 4.0% CV 5.0% CV 9.5%
(4.1%)

𝑁samp 5624 𝑁samp 16170 𝑁samp 40000
𝑁opt,1 244
𝑁opt,2 187

𝑑 = 300
4.26 × 10−4 4.25 × 10−4 4.28 × 10−4

CV 4.5% CV 4.6% CV 8.9%
(4.3%)

𝑁samp 5978 𝑁samp 23660 𝑁samp 40000
𝑁opt,1 268
𝑁opt,2 201
a

𝐿

T
0

𝑔

a
v

performance of the algorithms is summarized in Table 2, where the CV
displayed for all the methods is the empirical one, estimated over the
500 independent simulation runs. The numbers in parentheses are the
mean of the theoretical CV estimates of the proposed method.

The estimates of the three methods are close to the reference value
4.28 × 10−4. As in the previous example, the proposed algorithm has
the smallest CV with the smallest global budget. The total number
𝑁opt,1 +𝑁samp of evaluations of the lsf is extremely low: with less than
7000 evaluations, the CV is below 5% whatever the dimension 𝑑. For
very simulation, the number of failure regions found by the proposed
ethod is equal to 2. Given that the number of failure regions found

s twice smaller than in the previous example, it is not surprising that
samp is also twice smaller. It seems that 𝑁samp is thus strongly linked

o the number of failure regions and completely independent of the
imension. The numbers 𝑁opt,1 and 𝑁opt,2 have the same magnitude as

in the previous application even though the lsf is more complex; they
remain below 400, which is very low compared to 𝑁samp. Once again,
the estimates of the theoretical CV are very close to the empirical CV.

For this application, the iCE-vMFNM algorithm performs better
than in the previous example. The number of lsf evaluations gradually
increases, for a CV close to 5%. The size of the sample per iteration
is set depending on the dimension 𝑑 as the model includes a total
of 2(𝑑 + 3) + (2 − 1) parameters that have to be optimized with the
mproved CE-AIS algorithm [33]. In dimension 𝑑 = 300, the number

of lsf evaluations required is still four times higher than with the
proposed algorithm. The number of failure regions, 𝐾 = 2, was set as an
input of the iCE-vMFNM and for this particular application, the CVtarget
parameter was set to 2% as it resulted in being the optimal value after
several tests.

The number of evaluations of 𝑔2 for the subset sampling method is
the highest with also the highest CV and it is still independent of the
dimension. As for the other two methods, this number is lower than
in the previous example. The number 𝑁samp for the subset sampling
method is very high compared to the proposed method, as it is six to
seven times superior in size.

3.3. Portfolio loss

The third example is often used in financial studies [40–42]. It
consists of a large portfolio of loans with 250 obligors, each of whom
having a non-zero probability of default. It is assumed that a 𝑑×1 vector
of underlying latent variables 𝐙 represents the obligors as such: when
13
𝑍𝑖 > 0.5
√

𝑑, then the 𝑖th obligor defaults. The portfolio loss is expressed
s

(𝐙) = I𝑍1>0.5
√

250 +⋯ + I𝑍250>0.5
√

250.

he value of interest is the probability that the portfolio loss exceeds
.25 × 250; thus, the limit state function is given by

3(𝐙) = 62.5 − 𝐿(𝐙).

This example comprises only one failure region. The inputs 𝐙 are
ssumed to be centered and their joint distribution is taken to be 𝑑-
ariate Student with 𝜈 = 4 degrees of freedom and 𝑑 × 𝑑 dispersion

matrix

𝑫𝐙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

9 − 8𝜌2 𝜌2 . . . 𝜌2

𝜌2 9 − 8𝜌2 𝜌2 . . .
. .
. .
𝜌2 . . . 𝜌2 9 − 8𝜌2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with 𝜌 a constant set to 0.25. The reference probability value is equal
to 8.12 × 10−3. To use the proposed method, the first step is to apply a
linear transformation to remove the correlation of the inputs. To do so,
one has to pre-multiply the inputs 𝐙 by the matrix 𝐴−1 such that 𝐴𝐴⊤

is the Cholesky decomposition of 𝑫𝐙. The limit state function with the
standard variable 𝐗 = 𝐴−1𝐙 is then

𝑔̄3(𝐗) = 62.5 − 𝐿(𝐴𝐗).

Given that 𝐗 is a standard multivariate Student random vector with
𝜈 = 4 degrees of freedom and dimension 𝑑 = 250, then 𝑅2∕250 ∼
 (250, 4) with  a Fisher–Snedecor distribution. This distribution is
heavy-tailed and is not symmetric around its mean. The important ring
is defined with the two hyperspheres of radius LB and UB based on the
quantiles of the Fisher–Snedecor distribution, viz. 𝑞10−5∕2( (250, 4)) and
𝑞1−10−5∕2( (250, 4)). The important interval is thus equal to (5.62, 398.22)
and is a lot wider than for the 𝜒2 distribution of the previous applica-
tions. The failure region then starts inside the important ring; therefore,
this application is an example of the situation referred to as Case 1 in
the previous sections.

The proposed algorithm requires the gradient of 𝑔̄3 for the opti-
mizations performed in the identification problems. Nevertheless, this
particular limit state function is not differentiable, as it involves the
indicator function in the portfolio loss function 𝐿. Thus, only for the

optimizations performed in the identification problems, a substitute 𝑔̂3
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w

𝐿

Table 3
Comparison of the proposed algorithm with the VM algorithm of [41] and a classical Monte Carlo for 𝑔̄3. The reference probability
is equal to 8.12 × 10−3.
Portfolio Loss

Proposed
algorithm
(𝑁 = 1000)

Proposed
algorithm
(𝑁 = 13000)

VM MC

8.12 × 10−3 8.15 × 10−3 8.14 × 10−3 8.12 × 10−3

CV 8.4% CV 3.9% CV 0.5% CV 1.1%
(8.4%) (3.7%)

𝑁samp 7452 𝑁samp 50258 𝑁samp 55000 𝑁samp 106

𝑁opt,1 1354 𝑁opt,1 1340
𝑁opt,2 1119 𝑁opt,2 1108
t
a

of 𝑔̄3 is used, viz.

𝑔̂3(𝐗) = 62.5 − 𝐿̂(𝐴𝐗),

here

̂ (𝐴𝐗) = 𝛹 ([𝐴𝐗]1 − 0.5
√

250) +⋯ + 𝛹 ([𝐴𝐗]250 − 0.5
√

250)

with 𝛹 being the cdf of the standard Gaussian law. This regularization
for the indicator function is quite common (as derived in [46]) and
makes differentiation possible.

The performance of the proposed algorithm is displayed in Table 3
with 𝜅0 = 80 for 𝑁 = 1000 and 𝑁 = 13,000. The numbers in parentheses
are the theoretical coefficients of variation of the proposed method.
The results are compared with a variance minimization algorithm (VM)
from [41] and a classical Monte Carlo algorithm. The iCE-vMFNM
algorithm and the SS algorithm were not used for this application as
the inputs are not normally distributed.

For every simulation, the number of failure region found by the
proposed method is equal to 1. Compared to the two previous examples,
the proposed algorithm here is not as precise in terms of CV. Indeed, a
very large budget is needed to reach a CV value lower than 4%, even
though there is only one failure region. Since the important interval
is wide for this particular elliptical law, the conditional distribution
selected as an IS density for the radial component 𝑅 may not be the
most appropriate parametric distribution. Also, as there is only one
failure region here, the proposed algorithm is probably not best suited.

The VM algorithm, in contrast, is very precise. However, to achieve
such results, it is assumed that it is possible to generate observations
from ℎopt , the optimal IS density in Eq. (3), with a Markov Chain
Monte Carlo (MCMC) algorithm. This assumption is reasonable in this
particular case as there is only one failure region. The VM algorithm
would take a very long time to converge if there were several failure
regions and is not applicable on the first two examples considered in
this paper.

In the end, the proposed algorithm remains relevant, as it makes it
possible to compute the probability with a CV lower than 10% with a
budget lower than 10,000. Furthermore, the estimates of the theoretical
CV are still very close to the empirical CV. This example with the
Student distribution shows the flexibility of the proposed algorithm in
terms of elliptically distributed inputs.

3.4. Airfoil in inviscid transonic flow

3.4.1. Description of the problem and optimal airfoil
The last example is inspired by an optimization test case provided by

the Computational Fluid Dynamic (CFD) solver SU2 [43]. For the sake
of completeness, the main features of this problem are now detailed.
The objective of this test case is to design the shape of an airfoil that
minimizes the drag coefficient in transonic inviscid flow conditions.
The baseline shape is a NACA 0012 airfoil, the freestream pressure is set
to 101,325 Pa, its temperature is set to 273.15 K and the Mach number
is equal to 0.8. The 2D Euler fluid model is solved by the finite-volume
method on a computational mesh of 5233 points and 10,216 triangular
14
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elements. Fig. 11 (a) presents the mesh around the airfoil. Under such
conditions, a transonic shock appears on the upper surface of the airfoil
leading to a high drag coefficient equal to 𝐶NACA 0012

𝐷 = 2.13 × 10−2, as
presented in Fig. 11 (b).

The shape of the airfoil is parameterized through Hicks–Henne
bump functions defined around the airfoil. These functions include two
parameters, the location of their center and the amplitude of the bump.
For this example, 10 Hicks–Henne bump functions are used, five on the
upper surface of the airfoil and five on the lower surface of the airfoil,
respectively centered at 5%, 25%, 50%, 75%, 95% of the airfoil chord.
The optimization problem is then to minimize the drag coefficient with
respect to the 10 amplitudes of the Hicks–Henne bump functions, under
a constraint of lift coefficient equals to 𝐶𝐿 = 0.326 (value obtained with
the initial NACA 0012 airfoil). This problem is solved using a gradient-
based optimizer and the gradient of the objective function is obtained
through an adjoint approach. Readers interested in the details of this
resolution are referred to the SU2 tutorials and to the many articles
about the adjoint approach in CFD computation; see [47] for example.

The solution of the optimization problem is illustrated in Fig. 12.
One can note that the optimal solution (Fig. 12 (a)) reaches some char-
acteristics of a supercritical airfoil, as a flattened upper surface near
the leading edge. The obtained pressure coefficient field (Fig. 12 (b))
shows no transonic shock and leads to an overall drag coefficient equal
to 𝐶opt

𝐷 = 1.02 × 10−3.

3.4.2. Reliability problem
It is now assumed that the optimal airfoil shape previously defined

is subjected to random distortion. This distortion is represented by 100
Hicks–Henne bump functions, 50 at the lower airfoil surface and 50
at the upper airfoil surface. The centers of the 50 functions are linearly
spaced between 5% and 95% of the airfoil chord. It is assumed that the
amplitudes of the Hicks–Henne functions are independent and normally
distributed. The mean value is null and the variance is chosen to
create reasonable deformations of the airfoil, modeling manufacturing
uncertainties for example. With previous notations, this leads to 𝐗 ∼
 (𝟎, 2.5×10−7 × 𝐈𝑑 ). A failure of the system occurs when the distortion
causes a value of the drag coefficient that is above a certain threshold
equal to 0.01; thus the limit state function is written

𝑔4(𝐗) = 0.01 − 𝐶𝐷(𝐗).

First a Monte Carlo estimation is performed in order to get a reference
value for this problem. A total of 106,770 simulations were run leading
to a failure probability estimation equal to 𝑃MC

𝑓 = 5.61 × 10−4 with a
theoretical coefficient of variation of 12.9%. Each CFD simulation was
run on a cluster using 24 CPU and took approximately 7𝑠. The Monte
Carlo estimation thus lasted approximately 8.5 days on 24 CPU.

The approach proposed in this article is now applied to this exam-
ple. The definition of the important ring is the same as in Section 3.2,
but given that the standard deviation of the inputs is equal to 5 × 10−4,
he bounds of the importance interval are multiplied by 5×10−4 as well,
nd IR = (2.92 × 10−3, 7.08 × 10−3). The equations between the inputs 𝐗

nd the resulting drag coefficient 𝐶𝐷 are the Euler and adjoint Euler
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Fig. 11. (a) Close view on the initial computational mesh of the NACA 0012 airfoil. (b) Pressure coefficient field showing the transonic shock on the NACA 0012 airfoil.

Fig. 12. (a) Comparison between the optimal airfoil solution and the baseline NACA 0012 airfoil. (b) Pressure coefficient field around the optimal solution.
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Fig. 13. Shape comparison between the optimal airfoil and the critical point found by the proposed approach: (a) 𝑃1, (b) 𝑃2, (c) 𝑃3.
equations. The lsf for this engineering problem is a black-box function
as the analytical form of the drag coefficient 𝐶𝐷 is not available but
numerically computed by the finite-volume CFD code. One can note
that it is thus impossible to know a priori the number of failure regions.

The proposed algorithm found 𝐾 = 3 different failure regions.
For each failure region, the representative point 𝑃𝑖 was found on the
lower bound LB of the important ring. The vector values of these three
points represent the worst configurations for the shape of the airfoil.
Indeed they lead to shapes that produce particularly high drag. The
shapes induced by the three representative failing points 𝑃1, 𝑃2 and
𝑃3 are displayed in Fig. 13. The pressure fields resulting from these
three shapes are illustrated in Fig. 14. Shocks appear which explain the
high drag of these shapes. Indeed, for the point 𝑃1 a large deformation
appears at the rear of the airfoil causing a strong acceleration of the
flow on this part and thus a transonic shock on the rear of the airfoil;
see Fig. 14 (a). The point 𝑃 deforms the optimal shape near the leading
16
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Table 4
Comparison of the proposed algorithm with the Monte Carlo method for 𝑔4.

Failure probability of the airfoil shape

Proposed algorithm Monte Carlo

5.30 × 10−4 5.61 × 10−4

CV 9.8% CV 12.9%
𝑁samp 13000 𝑁samp 106770
𝑁opt,1 4717
𝑁opt,2 918

edge and curves the airfoil in this area. The 𝑃2 deformed shape looks
approximately like the original NACA 0012 airfoil and thus leads to
a transonic shock; see Fig. 14 (b). The point 𝑃3 results from a negative
curvature at the leading edge side and a bump at the trailing edge side.
This deformation creates two transonic shocks as shown in Fig. 14 (c).
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Fig. 14. Pressure coefficient fields at the critical point found by the proposed approach: (a) 𝑃1, (b) 𝑃2, (c) 𝑃3.
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The performance of the proposed algorithm is summarized in
Table 4, where the coefficients of variation are the theoretical ones. One
can note that the failure probability found by the proposed algorithm
is very close to the Monte Carlo reference, and has a smaller coefficient
of variation. Compared to the Monte Carlo estimation, the simulation
budget is divided by a factor close to 7, which is a very interesting
gain for such a costly numerical application. This example also shows
the value of finding the important failure regions in the input space
as this information can further help to understand the critical failure
mechanisms and help the design. It should be noted that the proposed
algorithm was run two more times, and on both occasions the same
three different failure regions were found (with small differences due
to numerical precision).

4. Conclusions

This paper presents a new algorithm that estimates the failure
probability of a high-dimensional system whose failure domain encom-
passes several failure regions. It follows the work of [32,33] as it takes
advantage of the stochastic decomposition of the elliptical inputs to
create flexible IS densities for each of the failure regions. The search for
the failure regions is inspired by the FORM method [8] but innovative
as the important ring is taken into account in the optimization problems
performed in the standard elliptical input space. The parameters of the
proposed IS densities are set thanks to the performed optimizations
and the cross-entropy method. A mixture of the IS auxiliary densities
is gradually constructed and the failure probability is then computed
with a MIS estimate.

The performance of this algorithm is demonstrated with four nu-
merical examples: three with the Gaussian distribution and one with
the Student distribution. The results underline the great efficiency of
the proposed method, as the number of lsf evaluations is consistently
lower than the one obtained with other methods, with a comparable
accuracy with respect to the bias and variance. The algorithm is simple
to parameterize, as only 𝜅0 and 𝑁 have to be set.

In this paper, it was assumed that the gradient of the limit state
function is available for the optimization problems in the elliptical
input space. When the gradient is unavailable, these optimizations are
very difficult to perform in high-dimensional space and the proposed
algorithm may be inefficient. However, new methods recently pre-
sented in [48,49] make it possible to find the design points for the
FORM in high-dimensional standard normal space without resorting
to the gradient. Combining these new optimization schemes with the
proposed algorithm could be a promising alternative to the requirement
that the gradient is known.
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