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Physical Ring Signature
Xavier Bultel #

INSA Centre Val de Loire, Laboratoire d’informatique fondamentale d’Orléans, Bourges, France

Abstract
Ring signatures allow members of a group (called ring) to sign a message anonymously within the
group, which is chosen ad hoc at the time of signing (the members do not need to have interacted
before). In this paper, we propose a physical version of ring signatures. Our signature is based on
one-out-of-many signatures, a method used in many real cryptographic ring signatures. It consists of
boxes containing coins locked with padlocks that can only be opened by a particular group member.
To sign a message, a group member shakes the boxes of the other members of the group so that the
coins are in a random state (“heads” or “tails”, corresponding to bits 0 and 1), and opens their box
to arrange the coins so that the exclusive “or” of the coins corresponds to the bits of the message
they wish to sign. We present a prototype that can be used with coins, or with dice for messages
encoded in larger (non-binary) alphabets. We suggest that this system can be used to explain ring
signatures to the general public in a fun way. Finally, we propose a semi-formal analysis of the
security of our signature based on real cryptographic security proofs.
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1 Introduction

The signature is a fundamental primitive of public key cryptography that allows the owner
of a secret key to sign messages in such a way that anyone can verify the signature using a
public key. In some cases, it may be useful to allow group members to sign on behalf of the
group without revealing their personal identity. A simple solution is to agree a priori on a
public and secret key pair within the group, but this solution does not allow the signer to
dynamically choose group members without consulting them when signing the message.

In 2001, Rivest, Shamir, and Tauman introduced ring signatures in their seminal paper
“How to Leak a Secret” [13]. In this primitive, a user generates a signature on behalf of
the group using their own secret key and the public keys of the group members (which the
user can select when signing). The term “ring” refers to the method of signing used in this
pioneering paper: the signer generates a chain of values depending on the message, using
successively the public keys of all the group members except their own to encrypt the values.
Then, using their own secret key, the signer decrypts the last value in the chain to append
it to the beginning of the chain, thus closing the chain in a ring. To verify the signature,
a user verifies that the ring is correct by reproducing the successive encryptions with the
group members public keys, but cannot guess with which key the ring has been closed.

Ring signatures have always been of great interest because of their relevance to real-world
problems, both technical and societal. The first motivation for ring signatures is to protect
whistleblowers [13]. For instance, an employee of a company with illegal practices could, if
each employee had a public key, expose those practices by signing as a member of the company,
but without revealing their exact identity. Less directly, ring signatures have been used
in many protocols, such as e-voting and e-cash [17], to guarantee anonymous membership.
More recently, they have been used to anonymize certain actions on the blockchain [15], and
to prevent transactions in the Monero cryptocurrency from being traced [16].
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7:2 Physical Ring Signature

This primitive is therefore fundamental to many tools designed for a wide audience
without advanced computer or mathematical skills. We believe that the use of security
technology is only possible if users trust it, which is only possible if they feel that they have
understood how their data is being processed and protected. It is thus necessary to find
straightforward and convincing ways to explain the mechanisms used in ring signatures in
order to inform and reassure the people who use its applications.

In this paper we propose a physical ring signature construction based on everyday objects
such as boxes, padlocks, coins, dice, and glass. The actions to be performed are simple and
consist of opening and closing the padlocks on the boxes, shaking the boxes, or looking
through the glass to see the value of the coins and dice. Some basic calculations are also
required, such as adding small integers, which can be done with a calculator. The overall look
of the device is intriguing, and it is fun and easy enough for children to use. We believe that
this playful aspect makes it an accessible tool for popularising the concept of ring signatures
to the general public.

Technical Overview of our Contributions

Our signature mechanism is based on one-out-of-many signatures [1], which are themselves
inspired by proofs of partial knowledge [6]. This general paradigm has been widely used to
construct ring signatures, so the mechanism of our physical ring signature gives an accurate
idea of how cryptographic ring signatures are actually designed. In a nutshell, this paradigm
is based on message-randomizable signatures, i.e., signature schemes where it is possible
to construct signatures on random messages even without knowing the signer’s secret key
(on the other hand, it is impossible to construct a signature on a fixed message). To sign a
message within a group, the signer creates signatures on random values for the public key
of all the other members of the group. The signer then computes the bitwise exclusive “or”
of all the random values and the message, and signs the result with their secret key. The
ring signature is the set of signed values. To verify it, the verifier checks the signature of
each value with the public key of the corresponding group member and verifies that the
bitwise exclusive “or” of all the values is equal to the message. This method is based on
the indistinguishability of the signature made with the secret key from those generated for
random values, and on the impossibility of stumbling upon random values that will give the
message if no secret key is known.

The first building block in our construction is a physical message-randomizable signature.
To do this, we use compartmentalized boxes with a transparent top and place a coin with
two different sides in each compartment. The signer manually signs padlocks to which they
have the key and locks the boxes with these padlocks. These locked boxes are their public
keys, and they distribute them to everyone. To sign a binary message, the signer takes one
of their boxes, opens it with their key, and arranges the coins so that they correspond to
the bits in the message (we assign “heads” to 0 and “tails” to 1). Note that this operation
requires their key. They then close the box. To verify the signature, the verifier checks the
manual signature on the padlock and checks that the value of the coins matches the message
by looking through the transparent top (without opening the box). To obtain a signature on
a random message, anyone can take a box from the signer and shake it so that the coins are
disturbed and end up in random “heads” or “tails” state.

The general construction of the physical ring signature results from using the one-out-
of-many signatures method applied to our physical message-randomisable signature. As
it stands, this construction allows a user to generate ring signatures for random messages,
which can be problematic in some cases. We propose a countermeasure where the message
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must start with a given binary string. To sign longer messages, it is possible to replace
the coins with dice. Our prototype uses 30-sided dice, which can encode the letters of the
alphabet and certain punctuation marks. Finally, we highlight the security assumptions that
our material must verify for our signature to be secure, and we prove the security of our
signature in a semi-formal way using a sequence of games [14]. By semi-formal, we mean
that we try to get close to a real computational security proof. This is not entirely possible
because our assumptions are physical and not computational, whereas the ring signature
security model considers an adversary modelled by a polynomial time Turing machine.

Related Works

Many cryptographic tools have been adapted in physical form. For example, several physical
zero-knowledge proofs, mainly using cards and envelopes, have been proposed for many
logic puzzles [9, 4]. The use of cards has also been exploited to build secure multi-party
computation protocols [12]. Other works use different tools, such as coin-based secure
computation [10] or light cryptography [11], which uses light and shadows for specific secure
computation protocols. Physical secure auction protocols have also been proposed [8], one
using envelopes and the other a more complex construction using wooden boxes and padlocks.
Another example is the construction of threshold access control using padlocks and latches
placed in certain configurations [7]. However, to the best of our knowledge, no physical
ring signature has ever been proposed, none of the existing physical primitives can be easily
adapted to obtain a physical ring signature, and no physical construction uses a mechanism
similar to ours (shaking transparent boxes containing coins/dice to randomise data).

2 Technical Background

In this section we first define our notations, then recall the definition of ring signatures and
their security properties, and finally recall a property about modular additions.

▶ Notations. (xi)n−1
i=0 (resp. {xi}n−1

i=0 ) denotes the vector (resp. set) containing the idexed
elements x0, x1, · · · , and xn−1, and Zn denotes the set of integers modulo n (i.e., {i}n−1

i=0 ).
The expression y ← x denotes the affectation of the value of the variable x to the variable y,
the expression y ← Algo(x) denotes the affectation of the output of the algorithm Algo on
input x to the variable y, and the expression y

$← S denotes the affectation of a value chosen
in the uniform distribution on a set S to the variable y. The acronym p.p.t. in λ means
probabilistic polynomial time in λ (when the context is clear, we omit the parameter λ).

▶ Definition 1 (Ring Signature [2]). Let λ be a security parameter. A ring signature is a
tuple of p.p.t. algorithms (Gen, Sig, Ver) defined as follows:
Gen(λ): on input λ, returns a pair of public/secret keys (pk, sk).
Sig(sk, R, m): on input a secret key sk, a set of public keys R (containing the public key

corresponding to sk), and a message m, returns a signature σ.
Ver(R, m, σ): on input a set of public keys R, a message m, and a signature σ, returns a

bit b ∈ {accept, reject}.
Moreover, for any integers s and j such that j < s, any message m, any (pki, ski) output-
ted by Gen(λ) for all i ∈ Zs, and any σ outputted by Sig(skj , {pki}s−1

i=0 , m), the condition
Ver({pki}s−1

i=0 , m, σ) = accept is required to hold.

A secure ring signature is required to satisfy two security properties: unforgeability and
anonymity [2]. These properties are modelled by experiments that simulate the use of a ring
signature and where a p.p.t. adversary tries to perform an attack.

FUN 2024



7:4 Physical Ring Signature

Unforgeability ensures that a user who is not a member of the group cannot generate a
valid signature for a fresh message, even if they can access ring signatures for other messages.
In the unforgeability experiment, the adversary is given public keys (corresponding to secret
keys they do not know), and can query an oracle for signatures on selected messages using
these keys. Their goal is to generate a fresh valid ring signature that has not been generated
by the oracle. A ring signature is considered to be unforgeable if no adversary can succeed
in this attack with a significant (non-negligible1) probability.

▶ Definition 2 (Unforgeability [2]). Let λ be a security parameter, let RS = (Gen, Sig, Ver)
be a ring signature, and let A be a p.p.t. algorithm. For any integer s, we define the
s-unforgeability experiment on RS for A as follows:

The experiment generates s key pairs {(pki, ski)}s−1
i=0 and sends {pki}s−1

i=0 to A.
A has access to an oracle Sig(·, ·, ·) that returns a signature generated by Sig(skj , R, m)
on query (j, R, m).
A returns (R∗, m∗, σ∗). The experiment returns 1 if and only if Ver(R∗, m∗, σ∗) = 1,
R∗ ⊆ {pki}s−1

i=0 , and no query (j, R, m) satisfies (R, m) = (R∗, m∗).
RS is said to be unforgeable if for all s and all p.p.t. algorithms A, the probability that the
s-unforgeability experiment returns 1 is negligible in λ.

Anonymity ensures that it is not possible to guess which member of the group is the author
of a given signature. In the anonymity experiment, the adversary is given public/secret keys,
chooses two of them, and is given a ring signature generated from one of these two secret
keys (and whose ring contains the two public keys). The adversary tries to distinguish which
of the two keys was used with a non-negligible advantage.

▶ Definition 3 (Anonymity [2]). Let λ be a security parameter, let RS = (Gen, Sig, Ver) be a
ring signature, and let A be a p.p.t. algorithm. For any integer s and any bit b, we define
the (s, b)-anonymity experiment on RS for A as follows:

The experiment generates s key pairs {(pki, ski)}s−1
i=0 and sends {(pki, ski)}s−1

i=0 to A.
A sends (R, m, i0, i1) to the experiment. If R ⊆ {pki}s−1

i=0 and (pki0 , pki1) ∈ R2, then the
experiment computes σ ← Sig(skib

, R, m), and sends σ to A.
A returns a bit b∗.

RS is said to be anonymous if for all s and all p.p.t. algorithms A, the probability that A
returns 1 on the (s, 0)-anonymity experiment is negligibly close (in λ) to the probability that
A returns 1 on the (s, 1)-anonymity experiment.

The one-out-of-many signatures paradigm [1] presented in Section 1 uses the following result:
for any m ∈ Zn, if we randomly generate s integers (xi)s−1

i=0 whose sum modulo n is m by
choosing j ∈ Zs, by randomly drawing xi

$← Zn for all i ̸= j, and by completing with the
only possible xj , the integers (xi)s−1

i=0 and m do not reveal any information about j. For
instance, for m = 0, n = 2 and s = 2, if we randomly draw x0 then we should set x1 = x0 to
get x0 + x1 mod 2 = 0, and if we randomly draw x1 then we should set x0 = x1; both cases
return (x0, x1) = (0, 0) and (x0, x1) = (1, 1) with the same probability. On the other hand,
for m = 1, the two cases (0, 1) and (1, 0) have the same probability, no matter which element
was randomly generated. This result is generalised for vectors of integers in the following
theorem. A proof of this theorem is given in Appendix A.

1 A function f is negligible in x if for any positive polynomial p, there exists un integer x0 such that for
all x > x0, |f(x)| ≤ 1/p(x)
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Figure 1 On the left, some coins with red “heads” and blue “tails” associated with the values 0
and 1 and a padlock with its key, and on the right, a latch on a box, with and without the padlock.

▶ Theorem 4. Let N, n, and s be three integers. For any m ∈ ZN
n , any pair (i0, i1) ∈ Z2

s,
and any distinguisher D, we have:

Pr
[
∀i ∈ Zs\{i0}, xi

$← ZN
n ;

∀j ∈ ZN , xi0,j ←
(

mj −
∑s−1

i=0;i̸=i0
xi,j

)
mod n; : 1← D((xi)s−1

i=0 )
]

=

Pr
[
∀i ∈ Zs\{i1}, xi

$← ZN
n ;

∀j ∈ ZN , xi1,j ←
(

mj −
∑s−1

i=0;i̸=i1
xi,j

)
mod n; : 1← D((xi)s−1

i=0 )
]

An example of unforgeable and anonymous cryptographic ring signature based on the
BLS [3] signature that follows the one-out-of-many signatures paradigm [1] is given in [5].

3 Our Physical Ring Signature

In this section we present our physical ring signature scheme. We first introduce the material
required, then explain how to use it to design a physical message-randomisable signature,
and finally explain how a user can anonymously sign within a group using it. We illustrate
the steps involved with the help of a physical prototype that we have built.

3.1 Material
Each member of the ring/group must be provided with indelible felt-tip pens to enable them
to make indelible manual signatures on any surface. Each user must also have an unlimited
number of padlocks. Padlocks belonging to the same user must be identical and have a
single key that can be used to open them. We assume that users have access to an unlimited
number of coins whose two sides (heads and tails) are easily distinguishable. We associate
“heads” with the binary value 0 and “tails” with the binary value 1. The coins and the
padlocks we use for our prototype are shown in Figure 1.

An unlimited number of compartmentalised boxes are also available (see Figure 2), with
the following features:

The box has a lid that can be opened by a mechanism.
Each box is divided into N compartments indexed from 0 to N − 1 so that it is not
possible to move an object from one compartment to another when the box is closed.
When the box is open, a user can freely place or remove objects in each compartment.
Each compartment has the shape of a parallelepiped whose edges are larger than the
diameter of the coins. A coin in a compartment can therefore move freely within the
space of the compartment.

FUN 2024



7:6 Physical Ring Signature

Figure 2 A box with 9 compartments and with a slip-on lid.

The lid of the box is transparent so that the top of an object in a compartment can be
clearly seen.

The box has a latch that prevents it from being opened (see Figure 1). This latch must
be perfectly lockable with a padlock, preventing anyone from opening the box without
the padlock key.

As explained in Section 1, our ring signature is based on the one-out-of-many signatures
paradigm, which uses message-randomisable signatures. Therefore, we first present how
to generate physical message-randomisable signatures, before showing how to use them to
generate our physical ring signature.

3.2 Key Generation

We have assumed that a user has an unlimited number of identical padlocks and a single key
that can be used to open these padlocks. The user manually signs their padlocks with an
indelible felt-tip pen, so that the signature is visible and can be verified by anyone. The user
then fills the compartments of several boxes by placing a coin in each compartment. The
visible side of the coin (“heads” or “tails”) in each compartment is randomly chosen. The
user closes each of these boxes with one of their signed padlocks. These boxes containing
coins and closed by signed padlocks are their public key pk (see Figure 3) and they distribute
them to the other users. If necessary, they can create new ones at any time. Their secret key
sk is the key that opens their padlocks.

Figure 3 A padlocked box (opened then closed) corresponding to a user’s public key, and the
padlock key corresponding to their secret key.
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3.3 Message-randomisable Signature Generation and Verification
To sign a binary message (mi)N−1

i=0 of N bits, the signer takes one of their public keys (i.e., a
box divided into compartments numbered from 0 to N − 1 containing coins and closed by a
signed padlock for which they have the key), uses their key to open the padlock and the box
to arrange the coins so that the state of the coin in the i-th compartment (“heads” or “tails”)
corresponds to the i-th bit mi of the message, and then closes the padlock on the box.

To verify this signature, the verifier checks that the padlock in the box has been manually
signed by the signer (by comparing the manual signature with the manual signature on the
padlock of one of the signer’s public keys), and looks through the transparent lid to check
that the state of the coins corresponds to the bits of the message (mi)N−1

i=0 .
Without knowing the secret key (and therefore without being able to open the box), any

user can generate the signature for a random message by shaking the box: since the
diameter of the coins is smaller than the dimensions of the compartments, the coins can turn
on themselves and randomly land on one of their sides, forming a random binary message.

3.4 Ring Signature Generation
We now show how to use the physical message-randomizable signatures to create physical
ring signatures. Let s be the size of the ring/group. The signer has all the (indexed) public
keys R = {pki}s−1

i=0 of the members of the group (including their own), their secret key sk,
and wishes to sign a message m = (mi)N−1

i=0 of N bits. The index corresponding to their
public key is denoted j. Recall that public keys are closed boxes containing coins whose
visible sides are random. For each pki such that i ̸= j, the signer shakes the box so that the
coins in the compartments are randomly flipped (this is the mechanism used to generate
signatures for random messages without knowing the key, as described above).

We set ci,k to the binary value associated with the state of the coin in the k-th compartment
of the box of the i-th public key pki. Using their secret padlock key, the signer opens the
box corresponding to their public key pkj and manually arranges the coins (this is the
mechanism used to sign a given message by knowing the key described above) so that∑s−1

i=0 ci,k mod 2 = mk.
To put it in simple terms, this operation is equivalent to the following: for each bit

mi of the message, if mi = 0 (resp. mi = 1), then the signer places the coin in the i-th
compartment of their own box, so that there is an even (resp. odd) number of coins on “tails”
(corresponding to the bit 1) in the i-th compartments of all the boxes of all members.

The signer then closes the padlock on their box and arranges the boxes in random order.
The signature is the set of all the boxes of the members after these operations.

3.5 Signature Verification
The verifier receives the signature that consists on s padlocked boxes signed by the s members
of the group, and the binary message (mi)N−1

i=0 . They first check that the padlocks have all
been manually signed by a different member of the group, and that these signatures are
valid (by comparing it with the manual signatures on the padlocks of the group member’s
public keys). The verifier sets ci,k to the binary value associated with the state of the coin in
the k-th compartment of the box signed by the i-th member of the group. They check that∑N−1

i=0 ci,k mod 2 = mk for each k.
To put it in simple terms, this operation is equivalent to the following: for each bit mi of

the message, if mi = 0 (resp. mi = 1), then the verifier checks that there is an even (resp.
odd) number of coins on “tails” (corresponding to the bit 1) in the i-th compartments of all
the boxes of all members. If this is the case, they accept the signature, if not, they refuse it.

FUN 2024



7:8 Physical Ring Signature

Figure 4 Signature of M = 111111 in a ring of s = 3 users with security parameter λ = 3 and
boxes with N = 9 compartments.

3.6 Preventing the Signing of Random Messages
As it stands, it is possible to generate signatures on random messages without having any
padlock key: all you have to do is take the group member boxes and shake them. The result
is a signed message whose bits are the modulo two additions of the random values associated
to the state of the coins in each compartment. To prevent this, the following countermeasure
can be applied: given a security parameter λ, the first λ bits of the signed message must be
0, otherwise the signature is not valid. Thus, the probability of obtaining a valid signature
by shaking the boxes is 1/2λ, which is negligible in λ. On the other hand, the size of the
actual signed message becomes N − λ bits.

3.7 Example Using a Prototype
We have built a prototype of our signature using boxes with N = 9 compartments. In
Figure 4, we show all the steps to generate a ring signature of a message M = 111111 with
λ = 3 and s = 3 group members. Each group member has a different coloured padlock (blue,
orange, and pink) and we have omitted the manual signatures on the padlocks. The signer is
the owner of the key for the pink padlock. We set m = (mk)N−1

k=0 = (0, 0, 0, 1, 1, 1, 1, 1, 1) the
message that starts with λ = 3 times 0 and ends with the bits of M .
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Step A: The signer places the three public key boxes side by side. The state of the coins in
each of these boxes is associated with the respective values:

cB = (cB,k)N−1
k=0 = (1, 1, 0, 0, 1, 0, 1, 1, 0); cO = (cO,k)N−1

k=0 = (0, 1, 1, 1, 0, 1, 0, 1, 1);
cP = (cP,k)N−1

k=0 = (1, 1, 0, 1, 1, 0, 1, 0, 0);

Step B: The signer shakes the blue member box.
Step C: The signer shakes the orange member box.
Step D: At this step, the coins in each box are associated with the values:

cB = (cB,k)N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1); cO = (cO,k)N−1

k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0);
cP = (cP,k)N−1

k=0 = (1, 1, 0, 1, 1, 0, 1, 0, 0);

Step E: The signer opens the pink paddlock using their key, then opens the box.
Step F: The signer rearranges the coins in their open box in such a way that cP,k =

mk ⊕ cB,k ⊕ cO,k for 0 ≤ k < N (exclusive “or” ⊕ is equivalent to addition/substraction
modulo 2). In other words, for each index k they make the number of coins on the blue
side (corresponding to 1) even if the bit of the message mk is 0, and odd if the bit of the
message mk is 1. This results in the following configuration:

cB = (cB,k)N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1); cO = (cO,k)N−1

k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0);
cP = (cP,k)N−1

k=0 = (0, 1, 0, 0, 1, 1, 0, 1, 0);

Step G: The signer closes their box with their padlock.
Step H: The signer shuffles the boxes: the blue member’s box stays first, and the orange

and pink members’ boxes are swapped.
At the end of the signature, the coins are associated with the following binary values:

cB = (cB,k)N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1); cP = (cP,k)N−1

k=0 = (0, 1, 0, 0, 1, 1, 0, 1, 0);
cO = (cO,k)N−1

k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0);

Any user can compute: (cB,k ⊕ cP,k ⊕ cO,k)N−1
k=0 = (0 ⊕ 0 ⊕ 0, 0 ⊕ 1 ⊕ 1, 0 ⊕ 0 ⊕ 0, 0 ⊕ 0 ⊕

1, 0⊕ 1⊕ 0, 0⊕ 1⊕ 0, 1⊕ 0⊕ 0, 1⊕ 1⊕, 1⊕ 0⊕ 0) = (0, 0, 0, 1, 1, 1, 1, 1, 1), and thus verify
that (cB,k ⊕ cP,k ⊕ cO,k)λ−1

k=0 = (0, 0, 0) and (cB,k ⊕ cP,k ⊕ cO,k)N−1
k=λ = M . This is equivalent

to verifying that for each index k, the number of blue coins in the k-th compartments of
the 3 boxes is even if mk = 0 (i.e., for 0 ≤ k ≤ 2), and odd if mk = 1 (i.e., for 3 ≤ k ≤ 8).
Note that the probability of producing a valid signature without the keys (by shaking the
boxes only) is 1/2λ = 1/8 (this is the probability that the first three sums of bits give 0). Of
course, to have a more realistic probability of preventing the generation of random message
signatures, we would need to use boxes with more compartments.

3.8 Generalising on Larger Alphabets with Dice
A coin can be thought of as a two-sided die. By generalising the principle of our signature,
we could sign messages on alphabets of n symbols using n-sided dice (numbered from 1 to
n). For example, using 30-sided dice, any integer i between 1 and 26 can be associated with
the i-th letter of the Latin alphabet, and 27, 28, 29, and 30 can be respectively associated
with space, comma, dot, and a special character ’*’. Figure 5 shows our prototype used
with 30-sided dice (whose diameter is small enough for the dice to roll freely through the
compartments).
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Figure 5 Two public keys of our prototype used with 30-sided dice.

The idea remains the same: the i-th character of the signed message corresponds to the
sum modulo n of the values at the top of the dice in the i-th compartment of the boxes of
the members of the group. The first λ characters must correspond to the special character
’*’, so the probability of generating a signature for a valid random message is 1/nλ. On the
other hand, a signer who has the key to one of the padlocks will always be able to arrange
the dice to obtain a valid signature for a given message.

In Figure 6, we show all the steps to generate a ring signature of a message M = "hello."
with our prototype using 30-sided dice and with λ = 3 and s = 3. Each user has a different
coloured padlock (green, red, and yellow) and we have omitted the manual signatures
on the padlocks. The signer is the owner of the key for the yellow padlock. We set
m = (mk)N−1

k=0 = (0, 0, 0, 8, 5, 12, 12, 15, 29) the message that starts with λ = 3 times 0 (that
corresponds to the sepcial character ’*’ since 30 mod 30 = 0) and ends with the integers that
correspond to the characters ’h’, ’e’, ’l’, ’l’, ’o’, and ’.’.

Step A: The signer places the three public key boxes side by side. The dice in each of these
boxes indicate the respective values:

cG = (cG,k)N−1
k=0 = (28, 11, 29, 13, 25, 28, 30, 15, 11)

cR = (cR,k)N−1
k=0 = (9, 11, 9, 16, 27, 30, 13, 1, 8)

cY = (cY,k)N−1
k=0 = (21, 8, 21, 15, 27, 1, 16, 15, 20)

Step B: The signer shakes the green group member box.
Step C: The signer shakes the red group member box.
Step D: At this step, the dice in each of these boxes indicate the respective values:

cG = (cG,k)N−1
k=0 = (6, 1, 29, 13, 28, 20, 8, 27, 11)

cR = (cR,k)N−1
k=0 = (7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)N−1
k=0 = (21, 8, 21, 15, 27, 1, 16, 15, 20)

Step E: The signer opens the yellow paddlock using their key, then opens the box.
Step F: The signer rearranges the dice in their open box in such a way that cY,k = mk −

cG,k − cR,k mod 30 for 0 ≤ k < N . This results in the following configuration (where 0 is
encoded by 30 on the dice, since dice are numbered from 1 to 30):
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Figure 6 Signature of M = "hello." in a ring of s = 3 users with security parameter λ = 3 and
boxes with N = 9 compartments.

cG = (cG,k)N−1
k=0 =(6, 1, 29, 13, 28, 20, 8, 27, 11)

cR = (cR,k)N−1
k=0 =(7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)N−1
k=0 =(−6− 7 mod 30,−1− 29 mod 30,−29− 28 mod 30,

8− 13− 14 mod 30, 5− 28− 10 mod 30, 12− 20− 17 mod 30,

12− 8− 16 mod 30, 15− 27− 19 mod 30, 29− 11− 21 mod 30)
=(17, 0, 3, 11, 27, 5, 18, 29, 27)
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Step G: The signer closes their box with their padlock.
Step H: The signer shuffles the boxes: the order of the boxes changes from green then red

then yellow to red then yellow then green.

At the end of the signature, the dice are in the following configuration:

cR = (cR,k)N−1
k=0 = (7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)N−1
k=0 = (17, 0, 3, 11, 27, 5, 18, 29, 27)

cG = (cG,k)N−1
k=0 = (6, 1, 29, 13, 28, 20, 8, 27, 11)

Any user can verify the signature by computing:

(cR,k + cY,k + cG,k mod 30)N−1
k=0

= (7 + 17 + 6 mod 30, 29 + 0 + 1 mod 30, 28 + 3 + 29 mod 30,

14 + 11 + 13 mod 30, 10 + 27 + 28 mod 30, 17 + 5 + 20 mod 30,

16 + 18 + 8 mod 30, 10 + 29 + 27 mod 30, 21 + 27 + 11 mod 30)
= (0, 0, 0, 8, 5, 12, 12, 15, 29),

and thus verify that (cR,k + cY,k + cG,k mod 30)λ−1
k=0 = (0, 0, 0) and that (cR,k + cY,k +

cG,k mod 30)N−1
k=λ = M .

Note that the probability of producing a valid signature without the keys (by shaking
the boxes only) is 1/nλ = 1/27000 (this is the probability that the first three sums give 0).

4 Security Analysis

In this section, we identify the assumptions required to ensure the security of our prototype.

▶ Assumptions. The following properties are assumed to be true:
1. It is not possible to break or force open a compartmentalised box, i.e., a box can only be

opened by its lid using the mechanism provided for this purpose.
2. It is impossible to forge a user’s manual signature without being that user.
3. Padlocks are unbreakable and cannot be opened without a key. In particular, it is

impossible to forge a key for a padlock.
4. A padlock attached to the latch of a box prevents the lid of the box from being opened

by the mechanism provided for this purpose.
5. An object cannot be moved to another compartment when a box is locked.
6. The only action that can be performed on a closed box to move the objects contained in

its compartments is to shake it.
7. Shaking the box when it contains dice is equivalent to rolling the dice. More precisely,

given a box with dice, and knowing the previous position of the dice, it is impossible to
determine whether the box has been shaken, or opened, the dice rearranged to show a
random value chosen from the uniform distribution, and the box closed again.

These assumptions allow us to claim the following two theorems. For each of them we
give an intuitive explanation of the results, then we give a security proof in a semi-formal
style: we show a sequence of games [14] that reduce to each other by hops, eliminating events
whose probability of occurrence is at most negligible under our assumptions. In our security
proofs, we consider that the physical actions of closing a padlock, opening a padlock, closing
a box, opening a box, moving an object, and shaking a box are achievable by an adversary
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(modelled by a p.p.t. algorithm) in constant time. In general, no basic physical operation
depends on the security parameter λ. We also consider that any physical action performed
by the adversary can be observed by the challenger who simulates the security experiment
for them.

▶ Theorem 5. Our physical ring signature is unforgeable under Assumption 1, 2, 3, 4, 5, 6,
and 7. More precisely, for any integer s, any security parameter λ, any p.p.t. algorithm A,
and any polynomial function q, the probability that the s-unforgeability experiment on our
physical ring signature using n-sided dice for A returns 1 is bounded by q(λ)

nλ , where q(λ) is
the number of times that a box is shaken during the experiment.

According to Assumptions 1, 2, 3, and 4, an adversary cannot manually sign a box in
place of a member of the group, and cannot break/force the box and its mechanism if it
is locked by a padlock. Nor can they open a box to manually change the value of the dice
under Assumption 5 and 6. Furthermore, according to Assumption 6 and 7, they cannot bias
the roll of the dice so that it is not uniform when they decide to shake a box. Their only
possible strategy is to hope that shaking the boxes will produce a valid signature. To do
this, the first λ dice in the boxes must match the special character ’*’, which happens with a
negligible probability of at most q(λ)

nλ where q(λ) is the number of times a box is shaken.

Proof (Theorem 5). Let s be an integer, and A be a p.p.t. algorithm. We consider the
following sequence of games.

Game G0: In this game, a challenger simulates the s-unforgeability experiment on our
physical ring signature for A. The event “A wins G0” denotes that the unfogeability exper-
mient returns 1.

Game G1: Same as G0, except that if A breaks or opens a box on an other way that
by its lid using the mechanism provided for this purpose, forge a group member’s manual
signature, or breaks or opens a padlock without its key, then the challenger returns 0.
According with Assumption 1, 2, and 3, we have that Pr[A wins G0] = Pr[A wins G1].

Game G2: Same as G1, except that if A opens the box in one of the public keys pki,
then the challenger returns 0. Note that at this step the public key boxes cannot be opened
except by their normal opening mechanism, and each box is locked with a padlock that cannot
be broken. According with assumption 4, we have that Pr[A wins G1] = Pr[A wins G2].

Game G3: Same as G2, except that if A moves one die to another compartment in the box of
a public key, then the challenger returns 0. Note that at this step the public key boxes cannot
be opened. According with assumption 5, we have that Pr[A wins G2] = Pr[A wins G3].

At this step, the only way to change the position of the dice in the boxes corresponding
to the public keys is to shake them, according to Assumption 6. In addition, according to
Assumption 7, shaking a box is equivalent to giving random values to the dice inside.

Game G4: Same as G3, except that if A returns a valid signature beginning with λ times
the special character ’*’, then the challenger returns 0. We claim that |Pr[A wins G3] −
Pr[A wins G4]| ≤ q(λ)

nλ .
In order for the k-th symbol of the message to be ’*’, we must have

∑s−1
i=0 ci,k mod n = 0,

where ci,k is the value indicated by the die in the k-th compartment of the box of the i-th
member of the group. Since the ci,k are all drawn in a uniform distribution (when the box
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is shaken), evaluating the probability of having
∑s−1

i=0 ci,k mod n = 0 is equivalent to fixing
the value ci,k of the last s − 1 dice and evaluating the probability of drawing the value
c0,k verifying

∑s−1
i=0 ci,k mod n = 0. This probability is 1/n. Moreover, the adversary must

succeed this for all 0 ≤ k ≤ λ−1, knowing that all the ci,k are randomly refreshed when a box
is shaken. Thus, the probability of drawing the values c0,k verifying

∑s−1
i=0 ci,k mod n = 0 for

all 0 ≤ k ≤ λ− 1 is 1/nλ. Since the number of times a box is shaken during the experiment
is q(λ), the adversary has at most q(λ) tries to draw the correct c0,k (we assume that the
box of each public key was shaken before being distributed). So A has a probability bounded
by q(λ)

nλ to draw all the correct c0,k together for 0 ≤ k ≤ λ− 1 during the experiment, and
so having λ times the symbol ’*’ at the beginning of its returned signing message, which
concludes the proof of the claim.

Note that in G4, A can no longer win, since a signature must begin with λ times the special
character ’*’ to be valid, so its probability of winning the game is 0. Since Pr[A wins G0] =
Pr[A wins G3], we have |Pr[A wins G0] − Pr[A wins G4]| ≤ q(λ)

nλ , so Pr[A wins G0] ≤ q(λ)
nλ .

Finally, the probability that the unforgeability experiment returns 1 is bounded by the
negligible function q(λ)

nλ , which concludes the proof. ◀

▶ Theorem 6. Our physical ring signature is anonymous under Assumption 7. More precisely,
for any integer s, any security parameter λ, and any p.p.t. algorithm A, the probability that
A returns 1 on the (s, 0)-anonymity experiment is equals to the probability that A returns 1
on the (s, 1)-anonymity experiment on our physical ring signature.

Assumption 7 ensures that it is not possible to distinguish from a physical point of view
whether a box has been shaken or whether the things in it have been moved manually, and
Theorem 4 ensures that it is not possible to distinguish from a computational point of view
which dice value have been drawn randomly and which have been chosen to complete the
sum in order to obtain the message. Thus, an adversary has no way of distinguishing which
box has been opened, and therefore the identity of the signer.

Proof (Theorem 6). Let s be an integer, and A be a p.p.t. algorithm. We consider the
following sequence of games.

Game G0: In this game, a challenger simulates the (s, 0)-anonymity experiment on our
physical ring signature for A. The event “b∗ = 1 in G0” denotes that A returns 1 at the end
of the experiment.

Game G1: Same as G0, except that when the challenger signs the message m chosen by A,
each time they are supposed to shake a box, they instead open it, manually arrange the dice
to give them a random value, and close the box again. Under Assumption 7, we have that
Pr[b∗ = 1 in G0] = Pr[b∗ = 1 in G1].

Game G2: Same as G1, except that the challenger signs with ski1 instead of ski0 . Assuming
that Pr[b∗ = 1 in G1] ̸= Pr[b∗ = 1 in G2], we will show that there exists a distinguisher D
that contradicts Theorem 4.

We build D as follows: D simulates G2 to A, receives (R, m, i0, i1) from A, sets |R| = s′,
and receives the input (xi)s′−1

i=0 . We parse R as {pk′
i}s′−1

i=0 , m as (mk)N−1
k=0 , and xi as (xi,k)N−1

k=0
for 0 ≤ i < s′. According to the definition of D in Theorem 4 on the values N, n, s′, m, and
(i0, i1), the input (xi)s′−1

i=0 verifies mk =
∑s′−1

i=0 xi,k mod n for all 0 ≤ k < N . To forge the
signature, D opens the box corresponding to each key pk′

i and arranges the dice in such a
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way that the die in the k-th compartment of the i-th box indicates the value xi,k. Finally, D
sends the resulting signature to A, receives b∗ from A, and returns it. We have:

Pr

 ∀i ∈ Zs′\{i0}, xi
$← ZN

n ;

∀k ∈ ZN , xi0,k ←

(
mk −

s−1∑
i=0;i ̸=i0

xi,k

)
mod n; : 1← D((xi)s′−1

i=0 )


= Pr[b∗ = 1 in G1];

Pr

 ∀i ∈ Zs′\{i1}, xi
$← ZN

n ;

∀k ∈ ZN , xi1,k ←

(
mk −

s−1∑
i=0;i ̸=i1

xi,k

)
mod n; : 1← D((xi)s′−1

i=0 )


= Pr[b∗ = 1 in G2].

This contradicts Theorem 4 on the values N, n, s′, m, and (i0, i1) for the distinguisher D,
because Pr[b∗ = 1 in G1] ̸= Pr[b∗ = 1 in G2]. Finally, we deduce that Pr[b∗ = 1 in G1] =
Pr[b∗ = 1 in G2].

Game G3: Same as G2, except that when the challenger signs the message m chosen by A,
each time they are supposed to open a box, manually arrange the dice to give them a random
value, and close the box again, they instead shake the box. Under Assumption 7, we have
that Pr[b∗ = 1 in G2] = Pr[b∗ = 1 in G3].

We observe that in G3 the challenger simulates the (s, 1)-anonymity experiment on
our physical ring signature for A. Moreover, we have shown that Pr[b∗ = 1 in G0] =
Pr[b∗ = 1 in G3]. Finally, we deduce that the probability that A returns 1 on the (s, 0)-
anonymity experiment is equals to the probability that A returns 1 on the (s, 1)-anonymity
experiment on our physical ring signature, which concludes the proof. ◀

5 Conclusion

In this paper we have described a physical ring signature that is easy to set up and that uses
everyday objects. We have built a prototype, and we believe that it can be used to explain
in a playful way how a ring signature works to a public not familiar with cryptography.
Some ring signatures have additional properties, such as linkability (any user can link two
signatures produced by the same member) and traceability (an authority can lift anonymity
in some cases). In future work, we would like to find ways to adapt our physical ring signature,
or propose new ones, to achieve these properties.
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A Proof of Theorem 4

To prove Theorem 4, we prove the following two lemmas.

▶ Lemma 7. Let n be an integer. For any m ∈ Zn and any distinguisher D, we have:

Pr[x1
$← Zn; x0 ← m− x1 mod n; : 1← D(x0, x1)] =

Pr[x0
$← Zn; x1 ← m− x0 mod n; : 1← D(x0, x1)]

Proof. In the first case, since x1
$← Zn and x0 ← m − x1 mod n, each pair (x0, x1) ∈ Zn

such that x0 + x1 = m mod n is generated with probability 1/n. We remark that each of the
n pairs contains a different x0, so each x0 ∈ Zn appears with probability 1/n. Similarly, in
the second case, if x0

$← Zn and x1 ← m− x0 mod n, then each pair (x0, x1) ∈ Zn such that
x0 + x1 = m mod n with a different x1 is generated with probability 1/n. We deduce that
the two cases are indistinguishable, which concludes the proof. ◀

▶ Lemma 8. Let n and s be two integers. For any m ∈ Zn, any pair (i0, i1) ∈ Z2
s such that

i0 ̸= i1, and any distinguisher D, we have:

Pr
[
∀i ∈ Zs\{i0}, xi

$← Zn;
xi0 ←

(
m−

∑s−1
i=0;i ̸=i0

xi

)
mod n; : 1← D((xi)s−1

i=0 )
]

=

Pr
[
∀i ∈ Zs\{i1}, xi

$← Zn;
xi1 ←

(
m−

∑s−1
i=0;i ̸=i1

xi

)
mod n; : 1← D((xi)s−1

i=0 )
]

Proof. If i0 = i1, the result is trivial because the two expressions are the same. Else, by
setting:

m′ =

m−
s−1∑

i=0;i ̸∈{i0,i1}

xi

 mod n,

we have:

xib
=

m−
s−1∑

i=0;i̸=ib

xi

 mod n⇔ xi0 = m′ − xi1 mod n (1)

⇔ xi1 = m′ − xi0 mod n. (2)
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We recall that in the two cases, each xi such that i ̸∈ {i0, i1} is generated at random.
Therefore, these values cannot be used to distinguish between the two cases. If xi1 is chosen
at random, then Equation 1 corresponds to the expression in the first probability in Lemma 7.
Similarly, if xi0 is chosen at random, then Equation 2 corresponds to the expression in
the second probability in Lemma 7. The values generated by these two expressions are
therefore indistinguishable according to Lemma 7. Finally, the proof of Lemma 8 follows
from Lemma 7. ◀

Lemma 8 can easily be generalized to the case where the xi are vectors of integers, which
leads directly to Theorem 4.
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