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AT M O S P H E R I C S C I E N C E

Threefold reduction of modeled uncertainty in direct
radiative effects over biomass burning regions by
constraining absorbing aerosols
Qirui Zhong1*, Nick Schutgens1, Guido R. van der Werf1, Toshihiko Takemura2, Twan van Noije3,
Tero Mielonen4, Ramiro Checa-Garcia5,6, Ulrike Lohmann7, Alf Kirkevåg8, Dirk J. L. Olivié8,
Harri Kokkola4, Hitoshi Matsui9, Zak Kipling6, Paul Ginoux10, Philippe Le Sager3, Samuel Rémy11,
Huisheng Bian12,13, Mian Chin13, Kai Zhang14, Susanne E. Bauer15,16, Kostas Tsigaridis15,16

Absorbing aerosols emitted from biomass burning (BB) greatly affect the radiation balance, cloudiness, and cir-
culation over tropical regions. Assessments of these impacts rely heavily on the modeled aerosol absorption
from poorly constrained global models and thus exhibit large uncertainties. By combining the AeroCom
model ensemble with satellite and in situ observations, we provide constraints on the aerosol absorption
optical depth (AAOD) over the Amazon and Africa. Our approach enables identification of error contributions
from emission, lifetime, and MAC (mass absorption coefficient) per model, with MAC and emission dominating
the AAOD errors over Amazon and Africa, respectively. In addition to primary emissions, our analysis suggests
substantial formation of secondary organic aerosols over the Amazon but not over Africa. Furthermore, we find
that differences in direct aerosol radiative effects between models decrease by threefold over the BB source and
outflow regions after correcting the identified errors. This highlights the potential to greatly reduce the uncer-
tainty in the most uncertain radiative forcing agent.
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INTRODUCTION
Biomass burning (BB) is a leading contributor to global emissions
of carbonaceous aerosols that can potentially exacerbate climate
warming by absorbing solar radiation at visible to ultraviolet
(UV) wavelengths [i.e., black carbon (BC) and organic aerosol
(OA), the absorbing component of OA is also referred to as
brown carbon] (1, 2). Therefore, these absorbing BB aerosols
(BBAs) can essentially affect radiation balance (2, 3), cloud forma-
tion and properties (4, 5), precipitation (6, 7), and regional circula-
tion patterns (8, 9). To better understand these impacts, recent flight
campaigns have paid particular attention to the BBA over tropical
regions where large amounts of BBA are injected into the atmo-
sphere every year (10–13).
Despite the recent progress in airborne measurements of BBA,

large-scale and long-term assessments of the climate impacts of
BBA have far relied on global aerosol models (14, 15). However,
models have shown substantial discrepancies and errors regarding
BBA absorption (16–19), which remains a key obstacle to reliable

climate assessments because BBA absorption can simultaneously
contribute to direct, semidirect, and indirect aerosol effects (9,
20). Comparisons between models and satellite observations
suggest that global models generally underestimate the overall
warming impacts of BBA, as indicated by a substantial underestima-
tion of the aerosol absorption optical depth (AAOD) (21) in com-
bination with an overestimation of the single-scattering albedo
(SSA) (20). These findings are supported by flight campaign mea-
surements (22, 23) such as the ObseRvations of Aerosols above
CLouds and their intEractionS (ORACLES) project (22), suggesting
that the overall warming caused by BBA plumes is greater than pre-
viously considered, particularly in tropical regions. However, when
considering the aerosol composition, global models tend to produce
stronger absorption than observed from field and laboratory mea-
surements for a given BC mass mixing ratio (24). The contradiction
between the underestimated overall warming and overestimated ab-
sorbing capability per unit of BC mass highlights important errors
in the emission, composition, and optical properties of absorbing
BBA. Although there have been discussions regarding the possible
reasons for these model errors [e.g., particle size distribution, verti-
cal profiles, mixing states, and refractive index (24–28)], a quantita-
tive evaluation of how these factors contribute to the overall errors is
still missing. This poses a fundamental challenge to the aerosol
modeling community, which hinders reliable climate assessments
over tropical regions.
Here, we investigate the seasonal- and regional-scale AAOD over

two key BBA-emitting areas in the world (the larger Amazon region
and Southern Africa; see fig. S1) by breaking AAOD down into
three factors

AAOD ¼ E� τ�MAC ð1Þ

where E, τ, and MAC denote seasonal carbonaceous aerosol (BC +
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OA) emissions, aerosol lifetime, and mass absorption coefficient
(MAC), respectively. Other absorbing components (e.g., dust)
account for only 4% of AAOD in the model ensemble over the
two focused regions and are therefore ignored. Because of the def-
initions of aerosol lifetime (column burden of BC + OA divided by
E) and MAC (AAOD divided by the column burden of BC + OA),
this equation is always applicable. Both lifetime andMAC are emer-
gent properties of models, resulting from various physical and
chemical processes. MAC has been identified as an important but
highly uncertain parameter (29) and exhibits a wide range across
models (19). Note that we consider secondary OA (SOA) formation
as part of the total emissions given the short formation time scale
compared to the seasonal time scale in our analysis (30).
The overall procedure for constraining the above three compo-

nents is somewhat similar to strategies commonly used in the
context of “emergent constraints,” but we have introduced a
closure relation (based on a simple box model) that allows estimat-
ing three components from two modeled relationships. It is similar
to the methodology applied in a previous study (31), in which we
analyze AOD and considered all aerosols instead of carbonaceous
aerosols only. Briefly, we linearly regressed modeled MAC against
modeled SSA and modeled τ against modeled precipitation and the
angstrom exponent (AE; an indicator of ambient particle size) using
the model data from the AeroCom (Aerosol Comparisons between
Observations and Models; see table S1) project. Then, we applied
satellite observations of SSA to estimate the constrained MAC and
similarly constrain τ from observations of precipitation and AE.
Last, we used Eq. 1 to constrain E. The constrained values of E, τ,
and MAC allow us to attribute AAOD errors to contributions from
these three factors for individual models. Uncertainty analysis is
conducted for all these constraining processes as shown in Fig. 1.
Notably, the constrained results are only effective on a regional
and seasonal scale, and caution must be exercised when directly ap-
plying these results to smaller scales. This work presents advance-
ments upon the foundation of (31) as it constrains MAC instead of
MEC (mass extinction coefficient). In addition, we implement in
situ data in the interpretation of satellite observations that allows
a disaggregation of BC and OC emissions. Furthermore, in our sea-
sonal, regional analysis, we find that SOA formation is important
for fire aerosols over the Amazon but not over Africa.

RESULTS
Constraining total emission, lifetime, and MAC
Despite the substantial variation in MAC values in the AeroCom
models, we find a linear relationship between the modeled MAC
and SSA (Fig. 2); both variables depend strongly on the BC mass
mixing ratio within the total aerosols. Such a linear relationship
compares favorably with in situ and laboratory observations
(Fig. 2) (24). The relationship is also confirmed by Mie calculations
with varying configurations (e.g., mixing state, refractive index, and
particle size; fig. S2). This suggests that the modeled relationship
between MAC and SSA in AeroCom is robust. We then combine
satellite observation of SSAwith the linear relationship to constrain
the MAC.
Similar to constraining MAC, we constrain aerosol lifetime via

linear regression with precipitation and AE, as derived from
AeroCom models and the satellite observations of the two predic-
tors (fig. S3 and Materials and Methods). This relationship can be
expected because precipitation and particle size affect aerosol
removal, with a dominant impact from precipitation over our
study regions (31, 32). AeroCom mean precipitation patterns
agree very well with observations (see the correlations; fig. S4), sug-
gesting that AeroCom mean wet deposition patterns are realistic.
Equation 1 enables an estimate of carbonaceous aerosol emis-

sions from satellite observations of AAOD and with constrained
values of MAC and aerosol lifetime. Given that the carbonaceous
component is the dominant contributor to the total aerosol emis-
sions over the study regions, we compare the constrained emissions
with the total emissions (for both carbonaceous and other species)
from our previous work using independent AOD and aerosol ex-
tinction data (31) and find that these are in good agreement (fig. S5).
The constrained values for the three factors considered in Eq. 1

allow us to investigate the AAOD errors due to each factor’s contri-
bution in the AeroCommodels. As shown in Fig. 3, we find that the
contributions of the three factors to the overall AAOD errors for
each model are diverse and exhibit substantial compensation.
Over the Amazon, the AAOD errors mainly arise from biased
MAC (47 ± 24%). In contrast, the AAOD errors in Africa are
more related to underestimated emissions in the models (40 ±
20%), although the MAC contribution is also important (31 ±
16%). In comparison, the contribution from lifetime error is
smaller. This suggests the importance of correcting the MAC

Fig. 1. Flowchart showing the procedures of the constraining analysis in the current study. The colors indicate the modeled relationships (blue), satellite obser-
vations (orange), in situ relationships (purple), field measurements of emission factors (EFs) for the primary BBA (gray), and constrained estimates (red). In particular, the
satellite observation is labeled with a subscript of “0,” and constrained values are labeled with a subscript of “C.” F1 and F2 show the linear regressions developed from the
AeroCom models. F3 indicates the observed relationship from (24). Abbreviations/notations are defined as follows: SSA (single-scattering albedo), AE (Angstrom Expo-
nent), Precip (precipitation), MAC (mass absorption coefficient), τ (lifetime), and E (emission).
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errors (or errors in SSA, as discussed in text S1 and figs. S2 and S6)
and emission errors in models to improve the overall performance.
To verify the reliability of the constrained results, we predict the

African outflow AAOD for the AeroCom models through a meta-
model analysis (see text S2). We show that adopting the constrained
results (E, τ, and MAC) allows an accurate prediction of the AAOD
over the African outflow region (fig. S7), providing independent
confirmation on the above constraining analysis and error
attribution.

BC and OA emissions in BB regions
Although the above analysis highlights the errors in total emissions,
it can provide more valuable insights if the total emissions can be
speciated into either BC or OA emissions with a constrained rBC
[i.e., BC:(BC +OA)]. To achieve this goal, we use the linear relation-
ship observed by (24) between rBC and SSA to estimate ambient
rBC from satellite observations of SSA. AeroCom models allow us
to establish a relationship between ambient and emitted rBC, which,
in any case, is close to identical (see Materials and Methods). These
constrained BC and OA emissions can be compared with four
widely used inventories of BC and OC emissions [i.e., Global Fire
Emission Database version 4.1s (GFED), Global Fire Assimilation
System version 1.2 (GFAS), Fire Energetics and Emission Research
version 1.2 (FEER), and Quick Fire Emissions Dataset version 2.5
(QFED)], providing that we have reasonable OA/OC ratios
(Fig. 4). Field measurements of primary BBA emissions exhibit a
narrow range (1.5 to 1.9) for OA/OC (33–39). We find that most
inventories estimate lower emissions than our estimates over
Africa, which partly explains the negative AAOD bias (Fig. 3B), as
these inventories are used in AeroCom models (table S1).

Inventories with underestimated emissions may be related to unde-
tected small fires (40). The discrepancy is also affected by the vari-
ation in emission factor (EF), but it is unlikely to fully explain the
low emissions, as the EFs used in the inventories generally agree
with field measurements (see table S2 and fig. S8). In the
Amazon, the inventories also estimate lower OA emission levels rel-
ative to our constrained OA. However, the BC inventory emissions
are generally higher (except in the GFAS inventory), which is con-
sistent with the overestimatedMAC in models (Fig. 3A). Again, this
cannot be explained by uncertainties in the EFs (fig. S8), which
implies that the low OA emissions in the inventories over the
Amazon result from missing sources.
It is important to mention that the AeroCom models also apply

OA/OC ratios to estimate OA emissions from the inventories.
However, their OA/OC ratios (1.4 to 2.6; see table S1) tend to
spread larger than the aforementioned field measurements, suggest-
ing that part of the emission errors shown in Fig. 3 are due to inap-
propriate OA/OC ratios.

Contribution of SOA formation to total OA
Our constrained OA emissions consist of both primary emission
and SOA formation, which can be a potential reason for the
differences between our results and the inventories. Because all
BB BC results from primary emissions, we constrain primary OA
emissions (POA) with in situ measurements of OC/BC for the BB
source (ROC/BC; see table S2) and an assumed OA/OC ratio of 1.7
(see Fig. 4), as shown in Eq. 2

POA ¼ BCC � ROC=BC � 1:7 ð2Þ

where BCC denotes the total constrained BC emission. Given the
prevalence of tropical forest and deforestation fires in the
Amazon and savanna fires in Africa (fig. S9), we use the average
EF values corresponding to each fire type to compute OC/BC for
the respective regions. Over the Amazon, the constrained POA is
much lower than the total OA emissions, suggesting a substantial
contribution from SOA. According to the difference between con-
strained POA and total OA emissions, we estimate that SOA forma-
tion accounts for 52% of total OA emissions over the Amazon. Such
a contribution is comparable to studies based on in situ observa-
tions (41). The estimated SOA formation is affected by the choice
of OA/OC ratio for primary OA emissions, but it does not funda-
mentally alter the large contribution (47 to 58% with OA/OC
ranging from 1.5 to 1.9). Uncertainty in the OC/BC ratio also
affects the SOA contribution, but we estimate its contribution to
range from 45 to 58% (interquartile range; see Materials and
Methods). Likewise, using an OC/BC ratio weighted by fire type
(tropical forest and savanna) does not substantially alter our
results. In contrast with the Amazon, we find that SOA formation
contributes little over Southern Africa, as revealed by the small dif-
ference between constrained total and primary OA emis-
sions (Fig. 4B).
Support for this somewhat unexpected finding comes from the

correlation between AOD and formaldehyde columns derived from
satellite observations (Fig. 4, C and D). Formaldehyde has a very
short lifetime and shares the same chemical pathway as other
low-volatility species (42). Consequently, it has been interpreted
as an indicator of SOA formation (43). Although fires also emit
formaldehyde, observed quantities on a regional scale are much

Fig. 2. Relationships between modeled MAC and modeled SSA in the Amazon
and Southern Africa. Each dot represents the seasonally averaged data from a
single model, with colors indicating the two fire regions. MAC is calculated as
AAOD/(BC + OA). SSA is for total aerosols. The solid color lines indicate the
linear regressions with 95% confidence intervals (shaded areas). Vertical dashed
lines denote the regional SSA observations from satellite (see Materials and
Methods), and the horizontal dashed lines show the constrained MAC with 95%
confidence intervals (horizontal dotted lines). The in situ relationship (24) is
shown as the mean (black solid line) and 95% confidence interval (gray shaded
area). Note that the in situ relationship is built for aerosols with a high carbona-
ceous content (≥85% of the total aerosol mass). For AeroCom models, we show
that the fire-season averaged SSA well represents such a conditional SSA for BBA
given the prevailing abundance of carbonaceous aerosols (see Materials
and Methods).
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too high to be explained in that way (44). Over the Amazon, form-
aldehyde correlates with both AOD and SSA, suggesting primarily
an increase in non- or low-absorbing aerosols with higher formal-
dehyde columns (or more active SOA formation). In situ observa-
tions of OA and formaldehyde in smoke plumes (45) agree with our
results (Fig. 4C), confirming the validity of the satellite measure-
ments. Differently, there is no significant correlation between
AOD and formaldehyde over Africa (P > 0.1; Fig. 4D), consistent
with the aforementioned low SOA contribution. Our results high-
light the potential of detecting and constraining SOA formation
from aerosol absorption.

Correcting AAOD errors in two global models
The above error analysis is used to improve two global models by
correcting the identified errors in the three components (Materials
and Methods and table S3). The ECHAM-HAM [a model devel-
oped from the atmospheric model by European Center for
Medium-Range Weather Forecasts (EC) and a parameterization
package developed at Hamburg (HAM)] and SPRINTARS (Spectral
Radiation-Transport Model for Aerosol Species) models are select-
ed given their opposite SSA errors in the AeroCom ensemble (fig.
S6). The models have been thoroughly validated against satellite ob-
servations, which inherently have a considerable retrieval uncer-
tainty in AAOD data. However, it is worth noting that this
retrieval uncertainty is generally smaller than the default errors in
the model. As shown in Fig. 5, our corrections over the BBA source
regions in both models have reduced the seasonal AAOD error, es-
pecially in the ECHAM-HAM model. Although the SPRINTARS
AAOD error has slightly increased following the corrections, it
remains comparable to the uncertainty associated with satellite re-
trievals. The SSA is also found to better agree with satellite observa-
tions, suggesting the robustness of our analysis and corrections. In
addition, the modeled AOD exhibits much smaller errors, which in-
dependently verifies our analysis. Moreover, our corrections over
the source regions also benefit the simulations in the outflow
areas, with smaller errors found for AAOD, AOD, and SSA in the
two models (figs. S10 and S11). This model improvement is also
found when validated against independent Aerosol Robotic
Network (AERONET) observations (fig. S12).

As a result of the corrections, the difference in the all-sky instan-
taneous direct radiative effect (IDRE) between the two models is
greatly reduced. By default, the SPRINTARS model produces
much stronger cooling effects than the ECHAM-HAM model
over the two BB source regions (Fig. 6 and fig. S13). This difference
becomes much smaller after our correction. In previous studies, the
spread of multiple models has been used to characterize the uncer-
tainty of aerosol climate impacts [e.g., (46)]. Assuming the differ-
ence between ECHAM-HAM and SPRINTARS IDRE as an
indication of IDRE uncertainty for the AeroCom ensemble, our cor-
rection reduces such an uncertainty by 71% (from 4.5 to 1.3 Wm–2;
see table S4). The correction results in a stronger reduction in Africa
for the IDRE difference between the two models, mostly because of
the higher BC content in African aerosols. In addition, an even
larger reduction (by 86%, from 4.2 to 0.6 W m–2) of the IDRE dif-
ference is observed over the outflow regions, where the default
models produce IDREs with opposite signs (fig. S13). In particular,
the default SPRINTARS model simulates a cooling effect in the
African outflow region, which differed fundamentally from the
overall warming effect as reported from aircraft measurements
(15). The African outflow region has large areas covered by quasi-
permanent stratocumulus clouds with bright surfaces, which ampli-
fies the change in IDRE due to our modification of absorbing aero-
sols above the cloud deck. This explains the larger changes in the
IDRE differences in the African outflow region than in the source
region. Moreover, our modifications have obtained a better agree-
ment between the two models for the IDRE patterns over both the
African source and outflow regions, with the spatial correlations in-
creasing from 0.27 to 0.73. Note that the all-sky IDRE is also affected
by the different cloudiness in the two models. Our results suggest a
potential for constraining the model uncertainty from the aerosol
perspective.

DISCUSSION
In this study, we constrain the aerosol absorption over two tropical
BB regions (the Amazon and Southern Africa) through a combina-
tion of AeroCom models and in situ and satellite observations.
Errors in three key AAOD factors (emission, lifetime, and MAC)
are quantified, and we identify leading contributions from emission

Fig. 3. Absolute AAOD errors due to individual components in AeroCom models. Results are shown individually for the Amazon (A) and Southern Africa (B). The
calculation of the errors due to emission (E), aerosol lifetime (τ), MAC, and cross terms (Cross) is described in the Materials and Methods. The numbers in the legend
indicate the average contribution of each component for all the AeroCom models.
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and MAC to total AAOD errors in the AeroCom models. Correc-
tions for these identified errors bring two models more in line with
the observations, confirming the reliability of our analysis. The cor-
rections reduce the modeled uncertainty in the direct radiative
effects by 71% (from 4.5 to 1.3 W m–2) over the BB source
regions, with an even larger reduction in the outflow areas (by
86%, from 4.2 to 0.6 W m–2). This indicates the potential of our
methodology to greatly reduce the overall uncertainty of the
aerosol climate impacts. The results also suggest the necessity of
dealing with errors in refractive index, particle size distribution,
and precipitation in models for future model development.
In addition to primary BB emissions, our analysis suggests that

substantial SOA formation contributes to the modeled aerosol ab-
sorption errors over the Amazon but not over Africa. The remark-
able regional difference may be associated with the variation in
precursor gas emissions from biogenic sources, with a notably
higher level of such emissions found over the Amazon than over
Africa (fig. S14). In comparison, model estimates of SOA produc-
tion are very uncertain and usually fail to show regional differences

between the Amazon and Africa. Our estimation, to our knowledge,
is the first one in which SOA formation is constrained by aerosol
absorption, which provides an innovative perspective on SOA esti-
mation. The results also highlight the importance of SOA during
fire seasons. This particular aspect has often been overlooked, and
our findings emphasize the need for further research.
Our work presents an integration of satellite and in situ obser-

vations, providing a more comprehensive and robust conclusion
than relying on a single data source. Our work rigorously considers
uncertainties in these observations. In particular, the satellite-
derived aerosol absorption retrieval errors contribute the most to
the overall uncertainty in this study (fig. S15), even when using
themost reliable satellite products. This suggests that the impending
improvement of satellite products will greatly reduce the uncertain-
ty and promote the utility of our method.

Fig. 4. The constrained emissions for BC and total OA. The constrained emissions (Cons_BC, Cons_OA) over the Amazon (A) and Southern Africa (B) are shown with
interquartile ranges (blue dots with thick error bars). Note that Cons_OA indicates total OA, which is further separated into primary BB emission (Cons_POA) and SOA
formation (SOA). The constrained results are compared with four BB emission inventories (EI_BC and EI_OA). The thin error bars for EI_OA indicate the ranges of the OA/
OC ratio ranging from 1.5 to 1.9, with the dot showing the mean emission (i.e., OA/OC = 1.7). Bottom: Correlations between satellite AOD and formaldehyde column for
the Amazon (C) and Southern Africa (D) to support our constrained SOA, given that formaldehyde is an indicator of SOA formation. The AOD and SSA data are from
Polarization and Directionality of the Earth’s Reflectances with the Generalized Retrieval of Aerosol and Surface Properties algorithm (POLDER-GRASP), and the formal-
dehyde column is fromOzoneMonitoring Instrument (OMI). Both satellite products are collocated with each other at 1° × 1° × daily grid cells during fire seasons. Each dot
represents the daily average of AOD and the formaldehyde column after collocation. The color scale denotes the SSA observation. Correlations between formaldehyde
and AOD (rAOD) and between formaldehyde and SSA (rSSA) are shown with P values. In (C), the solid line indicates the regression based on the data points as shown. The
dashed line is a regression derived from in situ measurements of formaldehyde and OC (45), here converted to formaldehyde column and AOD, assuming similar vertical
profiles and an MEC of 5.9 m2 g−1 (31).
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MATERIALS AND METHODS
Models and variables over fire regions
We base our analysis on data from 17 AeroCom models, collected
from two control experiments conducted in 2016 (CTRL2016) and
2019 (CTL2019). Both experiments perform model simulations for
2010 with default model configurations (table S1). The selected var-
iables from these models include AOD at 440 and 550 nm, AAOD at
550 nm, emissions, column burdens, and precipitation. AE (550
versus 440 nm), SSA (550 nm), and MAC (550 nm) are calculated
from these fields. We focus our analysis on two major BB emission
regions, the Amazon and Southern Africa (see fig. S1), as defined by
model emissions. We consider the data during fire seasons only
(July to October and June to September for Amazon and Southern
Africa, respectively).

Observation data
Previous studies have suggested large and diverse errors in the sat-
ellite-based observations of AAOD and SSA (47). To characterize
satellite errors, we consider three datasets: the Polarization and Di-
rectionality of the Earth’s Reflectances with the Generalized Re-
trieval of Aerosol and Surface Properties (POLDER-GRASP)
algorithm, the Ozone Monitoring Instrument (OMI) with UV
aerosol algorithm (OMAERUV), and the Advanced Along-Track
Scanning Radiometer with Optimal Retrieval of Aerosol and
Cloud algorithm (AATSR-ORAC). We validate the three datasets
against AERONET data (the locations of the AERONET sites

used in this study are shown in fig. S1) following the procedure in
(47) and find that POLDER-GRASP exhibits the lowest error and
has the highest correlations with AERONET data for both AAOD
and SSA (fig. S16). Therefore, we use POLDER-GRASP as the sat-
ellite observation (including AE) during 2010 fire seasons through-
out the analysis. However, even for POLDER-GRASP, large retrieval
errors exist, which contribute substantially to the overall uncertain-
ties presented in this work.
To apply Eq. 1 in our analysis, a regional estimation of AAOD is

required, which cannot be obtained directly from the sparsely
sampled raw satellite data. Following the homogenization method
in our previous work (31), we perform a linear regression
between the modeled regional AAOD and modeled AAOD with
POLDER-GRASP sampling (averaged over the region and fire
season; fig. S17). The raw POLDER-GRASP data are then applied
to the regression to estimate the regional AAOD. A similar
method is also used to estimate the regional SSA. The robustness
of the method is verified through a jackknife test by removing the
models one by one, which produces small relative variations in the
predicted regional AAOD and SSA (<1%), suggesting that the con-
struction of regional values is independent of the models used. The
regional observations of AAOD and SSA are also used to validate
the models on a seasonal scale (see fig. S18), showing a varying
degree of error per model. Broadly, models tend to underestimate
SSA over the Amazon (by 0.05 on average) and underestimate
AAOD over Southern Africa (by 32% on average).

Fig. 5. Seasonal mean modeling errors for default and corrected simulations in global models. Results are shown for ECHAM-HAM and SPRINTARS models over the
Amazon (A) and Southern Africa (B). The two global models produce themost absorbing (ECHAM-HAM) andmost scattering aerosols (SPRINTARS) in the AeroCommodel
ensemble (see fig. S6). The target variables include AAOD, AOD, and SSA. The normalized mean bias for AAOD and AOD and the mean bias of SSA (doubled to match axis
scale) are shown for thewhole fire season. Two configurations are considered for eachmodel, including the default (bars with solid edges) and corrected simulations (bars
without solid edges) based on constrained aerosol properties. Details of the model settings can be found in Materials and Methods and table S2. All the model data are
collocated and validated with POLDER-GRASP. The vertical solid lines indicate the observation uncertainties of AAOD, AOD, and SSA for POLDER-GRASP. The observation
uncertainty is calculated as the average of the absolute errors for POLDER-GRASP compared with AERONET sites, as shown in fig. S1. The POLDER-GRASP and AERONET
datasets are collocated with each other before calculating these observation uncertainties.

Fig. 6. Modeled all-sky instantaneous direct radiative effect (AS-IDRE) on top of the atmosphere. The results are shown for ECHAM-HAM (orange) and SPRINTARS
models (green) over the Amazon and Southern Africa source (A) and outflow regions (B). Data from the default and corrected simulations are shown as bars with and
without edges, respectively. The IDRE is averaged for all fire seasons and regions, with error bars indicating the SEs of the daily variation during fire seasons.
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In addition to aerosol observations, daily precipitation data are
taken from the global precipitation climatology project (GPCP),
which has been proven to be superior to other reanalysis datasets
(48). The formaldehyde column is obtained from the OMI
onboard the Aura satellite (49). Field measurements of fire EFs
are also collected for the prevailing tropical forest/deforestation
fires in the Amazon and the savanna/grassland fires in Southern
Africa (table S2). All these observations are collected for the fire
seasons during 2010.

Constraining BB carbonaceous aerosols in models
The overall constraining procedure is displayed in Fig. 1. The basic
idea is to decompose AAOD into three interpretable factors: emis-
sion, lifetime, andMAC (see Eq. 1). The emission is calculated as the
total of the BC and OA emissions; lifetime is calculated as the
(burden of BC + OA)/(emission of BC + OA), and MAC is
AAOD/(burden of BC + OA). All the variables are calculated as re-
gional fire-season averages. Other absorbing components (e.g.,
dust) are assumed to have negligible impacts given the small contri-
bution indicated by the observations (50) and AeroCom models
(4%) for the two regions. In addition, we find a small absorption
AE from POLDER-GRASP observations (fig. S19), suggesting that
brown carbon is not important (51, 52). Note that the emission in
Eq. 1 includes both primary emissions and those from secondary
formation (SOA), as the latter happens on a much smaller time
scale than the seasonal average that we are working with.
The constrained aerosol lifetime and MAC are predicted by ap-

plying observations [of precipitation (Pr) and AE and SSA, respec-
tively] to the following linear regressions built from the AeroCom
models

1=τ ¼ αPrþ βAEþ A;MAC ¼ γSSAþ B ð3Þ

We have also tried to include other predictors in the regressions
(e.g., plume height), which cannot improve the performance of re-
gressions. With the constrained aerosol lifetime and MAC, we esti-
mate the total emission based on the regional observation of AAOD.
These constrained values allow us to attribute the modeled AAOD
errors due to total emission (∆AAODE), aerosol lifetime
(∆AAODτ), MAC (∆AAODMAC), and cross terms (C), as described
in Eq. 4

AAODC þ ΔAAOD ¼ ðEC þ ΔEÞðτC þ ΔτÞðMACC þ ΔMACÞ
ΔAAOD ¼ ΔEτC MACC þ EC ΔτMACC þ ECτCΔMACþ C

¼ ΔAAODE þ ΔAAODτ þ ΔAAODMAC þ C
ð4Þ

where the “∆” and subscript “C” indicate the modeled errors and
constrained values, respectively.
In addition to the total emissions for BC + OA, the rBC ratio is

constrained in this work by using the observational relationship
between SSA and ambient rBC at 550 nm wavelength from (24).
Here, we do not use the modeled relationship between rBC and
SSA, as we find that it contains a large error (see fig. S6). It
should be noted that the relationship by (24) was established
under the criteria that OA and BC accounted for more than 85%
of the total aerosol mass (to focus on BBAs). For the AeroCom
models, we compare the SSA for total aerosols and the SSA of
grid cells with ≥85% carbonaceous aerosol components, with
small differences being found for most models, especially within

the range of the SSA observations (see fig. S20A). This suggests
that the SSA for total aerosols during fire seasons could sufficiently
represent the aerosol criteria by (24), which allows us to constrain
the rBC in the ambient aerosols from SSA on the basis of the ob-
served relationship. Using another regression to link the rBC from
ambient aerosols to the emissions (see fig. S20B), we lastly obtain
the constrained rBC in emissions and estimate the separate emis-
sions for BC and OA.
To assess the robustness of our constraining procedure, we use

individual AeroCommodels to serve as a truth and generate perfect
(i.e., errorless) synthetic observations from it. The remaining
models are then used to predict the emission, lifetime, and MAC
of the truth run following the same procedure as described above
(the regression between SSA and ambient rBC is replaced with
the modeled relationship; see fig. S6). As shown in fig. S21, the pre-
dicted values agree well with truth model data, demonstrating the
robustness of the methodology. In particular, the average of the ab-
solute relative errors for predicted BC emissions are 17 and 14% for
the Amazon and Southern Africa, respectively, which are much
smaller than the uncertainty in our main analysis using real obser-
vations. This suggests that the overall uncertainty of our constrain-
ing analysis is primarily affected by observational errors, as
corroborated by our uncertainty analysis shown in fig. S15.

Uncertainties of the constraining analysis
We consider three types of uncertainty in our constraining analysis:
(i) Satellite retrieval uncertainties for AAOD, SSA, AE, and precip-
itation. The first three are set as 27%, 0.022, and 0.23 according to
validations with AERONET over the studied domain, and the last is
set as 9% according to the error in GPCP (53); (ii) the uncertainties
for estimating regional values (AAOD, SSA, and AE; see fig. S17);
and (iii) the uncertainty in constraining lifetime, MAC, and emis-
sions for BC and OA (see Eq. 2) due to the uncertainty in the regres-
sions developed from the AeroCom models (Fig. 2 and figs. S3 and
S20B) and from (24) (see fig. S6). We use a Monte Carlo method to
estimate the overall uncertainties by repeating the constraining
analysis 100,000 times by randomly dropping a data point of each
input from the distributions built from their stated uncertainties.
The interquartile range of the results is used to characterize the un-
certainty in this study. Uncertainties due to individual factors are
also estimated. For the constrained BC and OA emissions, the sat-
ellite retrieval errors of AAOD and SSA contribute the most to our
constrained values (fig. S15).
To account for the uncertainty of speciation between POA and

SOA, we investigate the impacts of variations in EFs across in situ
studies. This is achieved by constructing normal distributions for
BC and OC using the means and SEs for their EFs based on indi-
vidual studies (table S2). Subsequently, we perform random draws
from these distributions to estimate the resulting variations in OC/
BC. Upon inclusion of these uncertainties, the estimated SOA con-
tribution spans from 45 to 58% (as interquartile) over the Amazon
and 0 to 14% over Africa. We also investigate the uncertainty by as-
suming log-normal distributions for EFs. The resulting variations in
SOA contribution expand to a range of 49 to 62% over the Amazon
and from 0 to 10% over Africa. Moreover, as both regions encom-
pass multiple fire types, we have also used GFED data to obtain a
regional average OC/BC weighted by fire type. Consequently, the
estimated SOA contribution is 58% (53 to 62% as interquartile)
over the Amazon, slightly higher than the previously mentioned
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value (52%; 45 to 58%) but still well within the associated uncertain-
ty range. In Africa, a low SOA contribution of 1% is computed.
These results suggest that incorporating variations in EFs would
not alter our SOA estimation fundamentally, lending further
support to the robustness of our SOA assessments.

Global model simulations and corrections
We conduct simulations in two global models that produce themost
negative (ECHAM-HAM) and positive (SPRINTARS) SSA errors in
the AeroCom ensemble (fig. S6). The latest version of ECHAM-
HAM (ECHAM6.3.0-HAMMOZ2.3) is run at a T63 horizontal res-
olution (~1.875°) and 47 vertical level (54). The SPRINTARS model
presents simulations at the T213 horizontal grid (0.5625°) with 40
vertical hybrid layers (55). Both simulations start in January 2010
with runs before the fire seasons as spin-up, and validations are
made during the fire seasons. The ECHAM-HAM model includes
inactive SOA following the prescribed emissions in (56), while
SPRINTARS calculates the oxidation of precursors (terpene and
isoprene) at a prescribed emission level over land according to the
Global Emissions Initiative dataset. With default configurations, the
differences in modeled SSA and direct radiative effects between two
models are likely associated with the very different particle size dis-
tribution and refractive index, the two factors that affect SSA the
most in the AeroCom models (text S1). Accordingly, we modify
the modeled particle size and BC refractive index in the two
models. In addition, emission and lifetime are corrected on the
basis of our constrained results (table S3). The detailed corrections
are listed below for MAC (1 and 2), lifetime (1 and 3), and emis-
sion (4).
1) Particle size. The modeled ambient particle size is modified to

match the observed AE. For ECHAM-HAM, we increase the
emitted/ambient particle size by referring to our previous study
(31). In SPRINTARS, we switch off the hygroscopic growth for
OA which is likely too strong (57). Modifications to both models
produce better agreement with the AE observations from
POLDER-GRASP (fig. S22A). The AE bias in the default simula-
tions and the corresponding improvement through corrections
are further supported by AERONET observations (fig. S22B).
2) Refractive index for BC. According to field measurements (58,

59), the imaginary part of refractive index of BC in the twomodels is
changed to 0.3i. Note that this value is lower than those used in the
AeroCommodels (0.44 to 0.79 for the imaginary part; see table S1).
We conduct a sensitivity test on the imaginary part ranging from 0.1
to 0.5 with the corrected ECHAM-HAM model and find that the
modified particle size with a value of 0.3 agrees the best with SSA
observations from (24), suggesting that the observation-based re-
fractive index is more suitable than those used in the AeroCom
models (see fig. S23). In addition to SSA, this correction also
results in better agreement with our constrained MAC for the two
models (fig. S24). This refractive index is also used in a previous
model study (60). Moreover, we also test different real parts of re-
fractive index by changing values from 1.4 to 1.95 encompassing
both observed values (61) and model-recommended values (see
table S1). The resulting changes in AAOD are negligible (<1%),
and we maintain the default model values.
3) Precipitation. A scaling factor is directly added to the modeled

wet deposition based on the default precipitation error. This will
correct the lifetime together with the modified particle size as
stated above.

4) Emissions. BC and total OA emissions (both primary emis-
sions and those from secondary formation) are scaled to our con-
strained results.
Details of the parameterizations can be found in table S3, and the

impacts of the modifications on SSA and MAC are shown in fig.
S24. The corrected simulations are validated against POLDER-
GRASP (Fig. 5 and figs. S10 and S11), showing better agreement
than the default simulations. Please note that the above modifica-
tions are conducted specifically over the selected regions during
fire seasons and may not be directly applicable to different times
or domains.
In addition to the simulations for 2010, we extend our constrain-

ing analysis and model correction for the year 2009, which shows a
lower AAOD observation than 2010 (−47% for the Amazon and
−10% for Africa). This assumes that the modeled relationships es-
tablished from 2010 data are applicable to a different year, enabling
us to use the 2009 observation data to constrain the models. Such an
assumption is supported by the substantial model improvement
after correction for 2009 (fig. S25). This compelling result under-
scores the robustness of our methodology, as it is independent of
the specific year of model data chosen for analysis.
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