
HAL Id: hal-04624474
https://hal.science/hal-04624474

Preprint submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Modularity and New Features in ipie:
Towards Even Larger AFQMC Calculations on CPUs

and GPUs at Zero and Finite Temperatures
Tong Jiang, Moritz K. A. Baumgarten, Pierre-Francois Loos, Ankit Mahajan,
Anthony Scemama, Shu Fay Ung, Jinghong Zhang, Fionn D Malone, Joonho

Lee

To cite this version:
Tong Jiang, Moritz K. A. Baumgarten, Pierre-Francois Loos, Ankit Mahajan, Anthony Scemama, et
al.. Improved Modularity and New Features in ipie: Towards Even Larger AFQMC Calculations on
CPUs and GPUs at Zero and Finite Temperatures. 2024. �hal-04624474�

https://hal.science/hal-04624474
https://hal.archives-ouvertes.fr


Improved Modularity and New Features in ipie: Towards Even Larger
AFQMC Calculations on CPUs and GPUs at Zero and Finite Temperatures

Tong Jiang,1 Moritz K. A. Baumgarten,1 Pierre-François Loos,2 Ankit Mahajan,3 Anthony Scemama,2 Shu Fay
Ung,3 Jinghong Zhang,1 Fionn D Malone,4 and Joonho Lee1, a)
1)Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
2)Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France
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ipie is a Python-based auxiliary-field quantum Monte Carlo (AFQMC) package that has undergone sub-
stantial improvements since its initial release [J. Chem. Theory Comput., 2022, 19(1): 109-121]. This paper
outlines the improved modularity and new capabilities implemented in ipie. We highlight the ease of in-
corporating different trial and walker types and the seamless integration of ipie with external libraries.
We enable distributed Hamiltonian simulations, allowing for multi-GPU simulations of large systems. This
development enabled us to compute the interaction energy of a benzene dimer with 84 electrons and 1512
orbitals, which otherwise would not have fit on a single GPU. We also support GPU-accelerated multi-slater
determinant trial wavefunctions [arXiv:2406.08314] to enable efficient and highly accurate simulations of large-
scale systems. This allows for near-exact ground state energies of multi-reference clusters, [Cu2O2]

2+ and
[Fe2S2(SCH3)]

2−. We also describe implementations of free projection AFQMC, finite temperature AFQMC,
AFQMC for electron-phonon systems, and automatic differentiation in AFQMC for calculating physical prop-
erties. These advancements position ipie as a leading platform for AFQMC research in quantum chemistry,
facilitating more complex and ambitious computational method development and their applications.

I. INTRODUCTION

Auxiliary-field quantum Monte Carlo (AFQMC)1,2 has
become increasingly popular in quantum chemistry3,4

and is furthermore being recognized as a useful ap-
proach in the context of quantum algorithms.5–9 A well-
maintained AFQMC program with flexibility and robust
performance will play a pivotal role at the intersection of
many disciplines, including chemistry, physics, materials
science, and quantum information science.

Given the initial PAUXY development effort for rapid
prototyping, while lacking performance,10–14 the Python-
based AFQMC program ipie was designed from scratch
for high performance and ease of development. It was
officially introduced as a production-level package in
Ref. 15. ipie was optimized for high-performance com-
puting architectures with both central and graphical pro-
cessing units (CPUs and GPUs). High performance
was largely achieved by integrating Numba’s JIT compila-
tion16 to fine-tune the computational efficiency of specific
kernels and MPI parallelism for effective distributed com-
puting. The utility of ipie was showcased through the
resolution of intricate quantum chemical challenges, no-
tably the [Cu2O2]

2+ torture track.15,17 Rigorous bench-
marks on CPU and GPU platforms position ipie com-
petitively, displaying speed on par with–or surpassing–
existing Python and C++ codes.15,18,19 Since its release,
ipie has gained widespread adoption in both quantum
chemistry and quantum computing studies.3,7,8,20–23

In this article, we describe the recent development and
current status of ipie, introducing enhanced modularity,

a)Electronic mail: joonholee@g.harvard.edu

a suite of new features, interfaces to external packages,
and associated numerical examples. Below are the key
highlights:

a. High degree of modularity and customizability.
The AFQMC driver has been restructured to be fully
modular, allowing for a straightforward combination of
features. This provides greater flexibility in adapting to
a wide range of user demands. Advancements in AFQMC
algorithms often focus on developing new trial wavefunc-
tions to control better the fermionic sign/phase prob-
lem.5,23–26 The key routines in an AFQMC calculation
compute intermediates using walker and trial wavefunc-
tions, including overlap, force bias, Green’s function, and
energy estimators. Without altering the internal core
code of ipie, users and developers can customize all
components making up an AFQMC simulation, including
trial wavefunctions, walkers, Hamiltonians, propagators,
and estimators. The key objects are all structured using
object-oriented programming (OOP) principles, facilitat-
ing straightforward customization through inheritance.

b. Development-friendly design. This improvement
standardizes the component interfaces and workflow pro-
cesses while offering a flexible system that adapts to var-
ious data types and user requirements. The abstract
base classes serve as a foundational blueprint, ensuring
all components adhere to a uniform structure and inter-
act seamlessly. Complementing this, the factory methods
for common workflows simplify the instantiation process,
allowing users to set up standard calculations with min-
imal effort and reduced potential for errors. Integrating
type-based dispatch through Plum27 brings increased pre-
cision and efficiency in method handling, ensuring every
component downstream dynamically adjusts its opera-
tions based on the specific trials and walkers requested.
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Moreover, we have simplified the integration of ipie
with external quantum chemistry packages. While the
necessary integrals and orbitals for running AFQMC
are most commonly obtained through an interface with
PySCF,28 our simplified file format also ensures that other
packages can be easily used. For sophisticated trial wave-
functions, such as multiple Slater determinant (MSD) tri-
als derived from selected configuration interaction, inter-
faces with PySCF,28 Dice,19,29 and TrexIO30 are avail-
able. An additional interface with the Fermionic Quan-
tum Emulator (FQE)31 has also been introduced, facil-
itating the conversion between ipie’s MSD wavefunc-
tion and quantum circuit wavefunctions, which facilitates
AFQMC applications in the quantum information science
(QIS) community.

c. New improvements and features. Several features
have been added to ipie to improve memory manage-
ment, handle new problems, enhance integration test-
ing, etc. To address the significant memory demand
associated with storing Cholesky vectors for large sys-
tems, ipie offers options for shared memory across CPU
processes or distributing among CPU processes or GPU
cards. Support for complex-valued Hamiltonians has also
been added.

While ipie is primarily developed for phaseless
AFQMC (ph-AFQMC) targeting ab initio systems, it
supports other AFQMC methods as well, including free-
projection AFQMC,24 finite temperature AFQMC,12

AFQMC for coupled electron-phonon systems,13 and au-
tomatic differentiation within AFQMC for calculating
observables which do not commute with the Hamilto-
nian.32 Furthermore, ipie is equipped with improved
integration testing, boosting the package’s robustness
and adaptability and significantly enhancing its reliabil-
ity and usability for end-users and developers alike.

The organization of this paper is as follows: Sec-
tion II overviews the theory of AFQMC; Section III de-
tails the components, software architecture, and work-
flow of ipie, including examples to illustrate the frame-
work’s adaptability for AFQMC development; Section IV
introduces new features in ipie and provides correspond-
ing examples; Section V outlines the interfaces to exter-
nal packages; and Section VI concludes with a summary
and outlook.

II. THEORY OF AFQMC

AFQMC is based on the following imaginary time evo-
lution:

|Ψ0⟩ ∝ lim
τ→∞

exp(−τĤ) |Φ0⟩ = lim
n→∞

(exp(−∆τĤ))n|Φ0⟩,
(1)

where ∆τ is an infinitesimal time step, |Ψ0⟩ is the ground
state wavefunction, and |Φ0⟩ is an initial state satisfying
⟨Φ0|Ψ0⟩ ≠ 0. While ipie supports some of the proto-
typical model Hamiltonians, its development has focused
on the simulation of the ab initio Hamiltonian, which in

second quantization is given by

Ĥ =

N∑
p,q=1

hpqâ
†
pâq +

1

2

N∑
p,q,r,s=1

gpsqrâ
†
pâ

†
qârâs, (2)

where the two-electron repulsion integral (ERI) is factor-
ized with the Cholesky decomposition

gpsqr = (ps|qr) =
Nγ∑
γ=1

LγpsL
γ
qr. (3)

With this factorization, we have

Ĥ = v̂0 −
1

2

Nγ∑
γ=1

v̂2γ , (4)

where

v̂0 =
∑
pq

[
hpq −

1

2

∑
r

(pr|rq)
]
a†paq (5)

v̂γ = i
∑
pq

Lγpqâ
†
pâq. (6)

The short-time propagator with Trotter decomposition is
written as

e−∆τĤ = e−
∆τ
2 v̂0e

∆τ
2

∑
v̂2γ e−

∆τ
2 v̂0 +O

(
∆τ3

)
. (7)

Upon applying the Hubbard–Stratonovich
transformation,33,34 our effective propagator contains
only one-body operators,

e−∆τĤ =

∫
dx p(x)B̂(x,∆τ) +O

(
∆τ2

)
, (8)

where p(x) is the standard Gaussian distribution, x =
(x1, x2, · · · , xNγ ) are the auxiliary fields, and the one-

body propagator B̂ is

B̂(x,∆τ) = e−
∆τ
2 v̂0e−

√
∆τx·v̂e−

∆τ
2 v̂0 . (9)

where v̂ = (v̂1, v̂2, · · · , v̂Nγ
).

In AFQMC, each walker samples auxiliary fields and
represents a statistical sample of the global wavefunction
at imaginary time τ , written as

|Ψ(τ)⟩ =
Nw∑
i

wi(τ)
|ψi(τ)⟩

⟨ΨT|ψi(τ)⟩
, (10)

where |ψi(τ)⟩ is the wavefunction of the i-th walker at
time τ and |ΨT⟩ is the trial wavefunction used for im-
portance sampling. The energy estimator is then

E(τ) =

Nw∑
i

wi(τ)Eloc,i(τ) =

Nw∑
i

wi(τ)
⟨ΨT|Ĥ|ψi(τ)⟩
⟨ΨT|ψi(τ)⟩

.

(11)
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The walker state |ψi(τ)⟩ is updated by applying the
discrete-time propagator, and the weight wi(τ) is up-
dated following the phaseless approximation:2

|ψi(τ +∆τ)⟩ = B̂ (xi − xi,∆τ) |ψi(τ)⟩ (12)

wi(τ +∆τ) = Iph (xi,xi, τ,∆τ)× wi(τ). (13)

We dynamically shift the distribution of auxiliary fields
using the force bias xi defined by

xi(∆τ, τ) = −
√
∆τ

⟨ΨT |v̂ − ⟨v̂⟩T|ψi(τ)⟩
⟨ΨT|ψi(τ)⟩

, (14)

where ⟨v̂⟩T is usually called the mean-field shift in the
AFQMC literature.4 Furthermore, the phaseless impor-
tance function1,2 used in the weight update (13) is given
by

Iph (xi,xi, τ,∆τ) = |I (xi,xi, τ,∆τ)|×max [0, cos (θi(τ))] ,
(15)

which remains real and positive throughout the propaga-
tion. The so-called hybrid importance function is given
by

I (xi,xi, τ,∆τ) = Si(τ,∆τ)e
xi·xi−xi·xi/2, (16)

and the overlap ratio of the i-th walker is

Si(τ,∆τ) =

〈
ΨT

∣∣∣B̂ (∆τ,xi − xi)
∣∣∣ψi(τ)〉

⟨ΨT|ψi(τ)⟩
. (17)

We define the phase of the overlap as

θi(τ) = arg [Si(τ,∆τ)] . (18)

The computation of local energies in Eq. (11), propa-
gation of wavefunctions in Eq. (12), and evaluation of
force biases in Eq. (14) are the primary computational
hotspots in AFQMC calculations. We optimize these rou-
tines by employing optimized algorithms and adopting
high-performance computing techniques. We provide an
overview of the phaseless AFQMC algorithm described
above in Fig. 1.

III. SOFTWARE ARCHITECTURE AND DESIGN
PRINCIPLES

A. AFQMC driver

We overview the software architecture of ipie with
emphasis on improved modularity, as shown in Fig. 2.
ipie generates an AFQMC simulation by assembling
the generic AFQMC driver from problem-specific compo-
nents and then running it to execute the simulation. The
driver requires several inputs to define the QMC simula-
tion, including the trial wavefunction, walkers, and the
Hamiltonian, as well as more generic parameters such
as the number of blocks and time step. The following

stochastic 
evolution

∑
i

force bias

overlap

local energy
phaseless  

approx.

FIG. 1. Overview of phaseless AFQMC in terms of computa-
tional hotspots.

Python Code Snippet shows how the driver can be in-
stantiated:

Code Snippet 1 The AFQMC class within ipie.

class AFQMC(object):

def __init__(self, system, hamiltonian, trial,

walkers,propagator, mpi_handler, params:

QMCParams):

......

The code takes several objects needed for a typical
AFQMC driver:

(1) system contains information that defines the prob-
lem, including the number of spin-up and spin-
down electrons.

(2) hamiltonian stores molecular integrals as detailed
in Sec. III B.

(3) trial represents a trial wavefunction object, for
which ipie provides many options as detailed in
Sec. III C.

(4) walkers manages all information about walkers
during the imaginary time propagation. This in-
cludes the initial walker wavefunctions and the
number of walkers, among other details. ipie
allows walkers to be explicitly passed into the
AFQMC driver or dynamically dispatched with de-
fault settings, as detailed in Sec. IIID.

(5) propagator handles the update of walker weights
and wavefunctions during the imaginary time evo-
lution. ipie’s AFQMC driver can take the prop-
agator class as an input or dispatch it internally
with default settings.

(6) mpi handler manages information related to the
Message Passing Interface (MPI) for parallel com-
puting, including rank details, chunking, and
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Input AFQMC factory

User
customized

external
packages

Pyscf

Dice

Trexio

Renormalizer

...

TrialWavefunctionBase
SingleDet, SingleDet_GHF,

NOCI, ParticleHole,
Customized

calc_overlap
calc_force_bias
calc_green_function
calc_energy

BaseWalkers
UHFwalker, GHFwalker,
UHFwalkerParticleHole

UHFwalkerNOCI
Customized

Dispatch

GenericBase
GenericRealChol

GenericRealCholChunked
GenericComplexChol

Trial

(Walkers)

Hamiltonian

Propagator
PhaselessGeneric

PhaselessGenericChunked
PhaselessCustom

construct_mean_field_shift
construct_one_body_propagator
propagate_walkers_onebody
propagate_walkers_twobody
construct_VHS
apply_VHS
update_weight

Estimators (overwritable)
local_energy_batch,
local_energy_noci

local_energy_single_det_uhf
local_energy_multi_det_trial_wicks, ..

local_energy_custom

Dispatch

overwritable: calc_overlap, force_bias,
green_function

Simulation

Propagation

Population Control

Save & Print

periodically

setup

Stabilization
periodically

Interface
Utils

each step

Compute Estimator
each block

Analysis
reblocking 

FIG. 2. The workflow of ipie.

groups (i.e., a group is a collection of MPI
processes). The parameter shared comm in
mpi handler refers to the MPI rank within a group
where the chunking integrals are distributed. The
specifics of these are elaborated in Section IVA.

(7) params encompasses other fundamental parameters
for the QMC simulation, such as the time step.

While users can directly provide all of the aforemen-
tioned inputs to construct the AFQMC driver object,
especially for development purposes, a factory method is
provided to simplify the process greatly. This is espe-
cially useful for standard AFQMC calculations using sin-
gle or multiple Slater determinant trials. This method
significantly reduces the number of inputs required to
construct the AFQMC object, as demonstrated in Code
Snippet 2:

Code Snippet 2 Factory method for AFQMC driver.

def build(

num_elec: Tuple[int, int],

hamiltonian,

trial_wavefunction

) -> "AFQMC":

......

As illustrated in the Code Snippet 2 and Fig. 2, the
construction of the AFQMC driver ultimately relies on
two key inputs: the Hamiltonian and the trial wave-
function. The Hamiltonian object is assembled with
one-electron integrals and the Cholesky decomposition
(or density fitting) of two-electron integrals, detailed in
Sec. III B. As for trial wavefunctions, ipie offers vari-
ous options that utilize interfaces with external packages
such as PySCF,28 Dice,19 TrexIO30 to facilitate stan-
dardized workflows. ipie can also accommodate user-

customized trials, which offers flexibility in future de-
velopments. Benefited from the flexibility of ipie, we
are also able to incorporate more complicated trial wave-
functions, such as density matrix renormalization group
(DMRG), and in Sec. III C we show the AFQMC calcula-
tion with matrix product states (MPS) trials by incorpo-
rating ipie with the DMRG package Renormalizer.35

The build method in the AFQMC class is designed
to streamline the setup of an AFQMC calculation by
requiring only three inputs: the number of electrons,
the Hamiltonian, and the trial wavefunction. Its main
purpose is automating the construction of key compo-
nents such as walkers, propagators, and estimators, etc..
Users need only specify the hamiltonian and trial inputs
trial wavefunction, with the build method handling
downstream instantiation of the rest.

Once the driver is built, wavefunction propagation, sta-
bilization, population control, and estimator calculation
are performed with the provided QMC parameters. Sim-
ulation outputs in both text file and hdf5 file formats
are saved and updated after each block, which enables
real-time reblocking analysis36 via built-in tools.

B. Hamiltonian

The construction of a Hamiltonian object can be
achieved in several ways. One can construct the object
directly by inputting the one-electron integrals and the
Cholesky decomposition (Eq. (3)) of either 8-fold (for real
symmetric integrals) or 4-fold (for complex hermitian in-
tegrals) symmetric two-body integrals:
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Code Snippet 3 Constructing the Hamiltonian object
with provided electron integrals

from ipie.hamiltonians.generic import Generic as

HamGeneric↪→

ham = HamGeneric(h1e, chol, ecore)

where h1e, chol and ecore are the one-electron integrals,
the Cholesky decomposition (Eq. (6)) of the two-electron
integrals within the desired orbitals in Eq. (2), and the
nuclear repulsion energy, respectively.

ipie also offers built-in functions for assembling the
Hamiltonian object from PySCF calculations. One can
provide: (i) a PySCF check file; (ii) a PySCF mol object
together with the molecular orbital (MO) coefficient ma-
trix mo coeff; or (iii) a mol object, mo coeff, and a
basis transformation matrix X that transforms MOs to
orthogonal atomic orbitals (OAO), natural orbitals and
so on, depending on the single particle basis used in the
AFQMC calculation:

Code Snippet 4 Constructing the Hamiltonian object
from PySCF.

from ipie.utils.from_pyscf import generate_hamiltonian,

generate_hamiltonian_from_chk↪→

# OAO basis

ham = generate_hamiltonian_from_chk(

'scf.chk', use_mcscf=False,

chol_cut=1e-5, num_frozen_core=0, ortho_ao=True

)

# MO basis

ham = generate_hamiltonian(mol, mo_coeff, h1e, mo_coeff,

chol_cut=1e-5, num_frozen_core=0)

# basis with transform matrix X

ham = generate_hamiltonian(mol, mo_coeff, h1e, X,

chol_cut=1e-5)

The argument chol cut specifies the cutoff for the
Cholesky decomposition; use mcscf specifies whether to
use the multi-configurational self-consistent field (MC-
SCF) MO coefficients; and num frozen core specifies the
number of frozen cores for the subsequent AFQMC cal-
culations.

Given that the size of Cholesky vectors scales as
O(N3), with N as the number of orbitals, large systems
with large basis sets can generate electron integrals of
considerable size. For such systems, one cannot store
copies of integrals for each MPI process and must resort
to other strategies. Utilizing shared memory across dif-
ferent MPI processes, ipie offers an approach that allows
processes on the same node to access Cholesky vectors in
the same memory block. The following code snippet can
be adopted to ensure the use of shared memory Hamil-
tonian objects:

Code Snippet 5 Constructing the Hamiltonian object
with shared memory.

from ipie.utils.mpi import get_shared_comm

from ipie.hamiltonians.utils import get_hamiltonian

from mpi4py import MPI

shared_comm = get_shared_comm(MPI.COMM_WORLD)

ham = get_hamiltonian("ham.h5",comm=shared_comm,

pack_chol=True)

This reads the integrals from the ham.h5 file and gener-
ates the Hamiltonian object with shared integrals across
all MPI processes. pack chol refers to another strategy
used by ipie to reduce memory usage by a factor of two
and speed up the propagation. Namely, the permuta-
tion symmetry of Cholesky vectors is exploited to utilize
only the upper-triangular part of the Cholesky vectors.
Propagation using the packed matrix contracts only the
symmetric part in Eq. (12) and is thus more efficient.

However, the shared memory strategy often creates
a memory access overhead and reduces the MPI paral-
lel efficiency when many cores are used. We also en-
able a chunking (or distributed-memory) strategy. The
Cholesky vectors are divided into segments, or ‘chunked,’
and distributed across different MPI processes to opti-
mize memory usage and computational efficiency. The
Cholesky vectors are divided into several chunks, each of
which will be allocated to separate MPI processes. The
specifics of this chunking process and the associated MPI
communication strategy will be thoroughly explained in
Sec. IVA. Given enough nodes, our approach completely
removes the memory bottleneck in AFQMC and can work
on both CPU and GPU nodes. We especially recom-
mend our distributed-memory implementation for GPUs,
where memory capacity is much more limited than that
of CPUs.

C. Trial wavefunctions

Any new trial wavefunction may inherit from the
TrialWavefunctionBase class, which contains methods
to calculate essential quantities including the overlap
(Eq. (17)), force bias (Eq. (14)), etc., as shown in Fig. 3.
Some trials, such as single/multiple Slater determinants,
also require computation of Green’s function and half ro-
tation of electron repulsion integrals.11 There is flexibil-
ity to either inherit these functions directly or overwrite
them with customized implementations, ensuring both
consistency in fundamental operations and adaptability
for specialized needs.

Single Slater determinant (SD) trials can be generated
with
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Trial (WavefunctionBase)

calc overlap() calc force bias() calc greens function()∗ half rotate()∗

⟨ΨT|ψi⟩ Eq. (14) ⟨ΨT|â†pâq|ψi⟩
⟨ΨT|ψi⟩

see Ref. 11

FIG. 3. The functions to be defined for a trial object. ∗: The function is optional depending on the trial type, used in certain
trials to computations like overlap, force bias, or local energy.

Code Snippet 6 The single determinant trial object.

from ipie.trial_wavefunction.single_det import SingleDet

trial = SingleDet(np.hstack([orbs_a, orbs_b]), nelec,

num_basis)

where orbs a and orbs b are the spin-up and spin-down
coefficient matrices for the SD trials. Similarly, MSD
trials can be generated with:

Code Snippet 7 The multiple Slater determinant trial
object.

from ipie.trial_wavefunction.particle_hole import

ParticleHole↪→

trial = ParticleHole(wfn, nelec, num_basis)

with wfn containing the occupation indices in the basis
used in the configuration interaction (CI) expansion of
the MSD and their coefficients.

A new customized trial can be defined straightfor-
wardly in ipie. For instance, we consider a “noisy” SD
trial that can be inherited from our existing SD trial class.
The noisy trial adds Gaussian noise to the overlap eval-
uation and keeps everything else the same as for regular
SD trials. The following code snippet achieves this:

Code Snippet 8 Example of constructing a custom
noisy trial class.

class NoisySingleDet(SingleDet):

def __init__(self, wavefunction, num_elec,

num_basis, noise_level=1e-12):

super().__init__(wavefunction, num_elec,

num_basis)

self._noise_level = noise_level

def calc_overlap(self, walkers) -> np.ndarray:

ovlp = super().calc_overlap(walkers)

noise = np.random.normal(

scale=self._noise_level,

size=ovlp.size

)

return ovlp * (1 + noise)

Recently, we have also implemented a more sophisti-
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FIG. 4. Application of MPS-AFQMC to two-
dimensional hydrogen lattice with r = 4.2a0. En-
ergy deviation from exact results using MPS-AFQMC, UHF-
AFQMC, and DMRG with different bond dimensions.23

cated extension using a matrix product state (MPS) trial
wavefunction.23 MPS is the variational ansatz used in
the density matrix renormalization group (DMRG) al-
gorithm, and we obtain the MPS solution from external
DMRG packages such as Renormalizer.35 The theory
explaining the structure of the MPS trial and associated
functions is detailed in Ref. 23. A representative calcu-
lation is shown in Fig. 4.

D. Dispatchers of walkers, propagators and estimators

As the program grows, additional complexity arises
from the need to dispatch different features for arbi-
trary combinations of smaller building blocks. While
there are numerous ways to achieve this, ipie previ-
ously relied on conditional if statements at the com-
putational subroutines, which–despite its simplicity–will
result in many intractable conditions as the number of
features increases. The latest release of ipie thus uti-
lizes the multiple dispatch library Plum27 to dispatch fea-
tures for different combinations of objects in a compact
and flexible manner. This can be especially useful in
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Plum Dispatcher

BaseWalkers

GHFWalkersUHFWalkers

UHFWalkersParticleHole UHFWalkersNOCI

ParticleHole SingleDet NOCI SingleDetGHF

GHFWalkersTrialUHFWalkersTrial

WavefunctionBase

FIG. 5. Dispatcher for different walkers depending on the
trial. Lines with arrows indicate class inheritance, while
dashed lines signify the use of the Plum dispatcher for dis-
patching.

AFQMC, where the behavior of many functions varies
based on the type of trial, walkers, and Hamiltonians. In
Fig. 5, we illustrate the dispatcher for walkers depending
on the type of trial. As for ipie’s native trial wavefunc-
tions, including both single and multiple (orthogonal and
non-orthogonal) Slater determinants, once the trial and
Hamiltonian objects are in place, the AFQMC driver can
be formed. In instances where the walkers object is not
explicitly provided, the AFQMC driver constructs it in-
side the build function based on the type of the trial
wavefunction via Plum. The appropriate energy estima-
tors and propagators are also built according to the ob-
ject type of the trial, walkers, and Hamiltonian, complet-
ing the necessary initialization for AFQMC calculations.

E. Estimators

ipie supports well-optimized energy estimators for
wavefunctions, including SD,11 MSD,37 and non-
orthogonal configuration interaction (NOCI) trials. It
supports real and complex Hamiltonians on both CPUs
and GPUs. As mentioned in Section. IIID, dispatchers
can automatically determine a specific implementation of
the estimator required for given user inputs. Users can
also compose customized estimators for new types of trial
wavefunctions. Considering the example in Code Snip-
pet 8, we may define the corresponding energy estimator
as

Code Snippet 9 Customized noisy estimator.

class NoisyEnergyEstimator(EnergyEstimator):

def __init__(

self, system, ham, trial):

super().__init__(system=system, ham=ham,

trial=trial)

def compute_estimator(self, system, walkers,

hamiltonian, trial, istep=1):

trial.calc_greens_function(walkers)

energy = local_energy_batch(system, hamiltonian,

walkers, trial)

self._data["ENumer"] = xp.sum(walkers.weight *

energy[:, 0].real)

self._data["EDenom"] = xp.sum(walkers.weight)

self._data["E1Body"] = xp.sum(walkers.weight *

energy[:, 1].real)

self._data["E2Body"] = xp.sum(walkers.weight *

energy[:, 2].real)

return self.data

where xp serves as an abstract linear algebra backend,
facilitating seamless integration of either NumPy for pure
CPU-based computations or CuPy for GPU-accelerated
tasks. In this estimator, we still evaluate the local energy
as we do for any SD trial. This customized estimator can
be passed to the AFQMC driver simply with

Code Snippet 10 Adding the customized noisy estima-
tor to the AFQMC driver.

add_est = {"energy":

NoisyEnergyEstimator(Generic(mol.nelec), ham, trial)

}

afqmc.run(additional_estimators=add_est)

For more sophisticated cases such as MPS trials, in ad-
dition to the usual energy estimator, we can furthermore
define other estimators such as one to measure the bond
dimension of walkers when converted into an MPS.23

IV. NEW FEATURES

Many new features have been added to ipie since our
first release paper;15 we highlight some of the more im-
portant ones in this section.

A. Distributed Hamiltonian for limited memory

When using GPUs, we routinely encounter cases where
the Cholesky vectors cannot entirely fit into a single GPU
card’s memory. Or one could imagine a large system
where a single CPU node cannot fit the Cholesky vec-
tors in memory anymore. In such circumstances, the
Cholesky vectors are distributed over several GPU cards
or CPU nodes that constitute a group. Each group stores
the full Cholesky tensor as shown in Fig. 6(a). Whenever
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FIG. 6. (a) Distribution of walkers and the chunked Hamilto-
nian over multiple groups. (b) MPI communication between
MPI processes within a group with the distributed Hamilto-
nian and walker batches.

the tensor is required by the computational subroutines,
for example, in computing the force bias or local energy,
the walkers in each member of the group are communi-
cated to other members in the same group, as illustrated
in Fig. 6(b). We employ a cyclic data passing scheme
of walkers among MPI processes to apply all existing
Cholesky chunks to given walkers. With this strategy,
one can accumulate locally contracted quantities before
moving to the next QMC time step.

We performed timing benchmarks as an application
by computing the parallel-displaced benzene dimer, a
Van der Waals complex taken from the S22 dataset.38

Disk usage for the benzene dimer calculations varies with
the choice of basis set: 11GB for the aug-cc-pVTZ basis
and 67GB for the aug-cc-pVQZ basis with a Cholesky
decomposition threshold of 10−3. The threshold is set
based on the Hartree-Fock energy error around typical
density fitting errors39 (< 50µEh per atom here). We
used our shared memory framework for CPU calculations
and distributed Cholesky vectors and half-rotated inte-
grals11 across multiple cards were used for GPU compu-
tations. For the benzene dimer analysis employing an
aug-cc-pVTZ basis set, a single A100 GPU card achieves
performance around tenfold faster than 36 CPU cores
(see Fig. 7). Increasing the GPU count for non-chunked
Hamiltonian configurations (nmembers=1) results in a
nearly linear acceleration proportional to the number
of GPUs deployed, as shown in Fig. 7(a). Distributing
the Hamiltonian across additional GPUs slightly slows
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FIG. 7. (a) Timing benchmarks for AFQMC calculations on
the benzene dimer with the aug-cc-pVTZ basis employing 36
CPUs with shared memory and multiple A100 GPUs with
the distributed Hamiltonian. The data were obtained by av-
eraging 100 blocks, each containing 25 steps with a time step
of 0.005E−1

h . The interaction energy of the dimer computed
from AFQMC is compared against other methods using the
aug-cc-pVTZ basis in (b) and in the complete basis set limit
obtained from a two-point basis extrapolation40 from aug-
cc-pVTZ and aug-cc-pVQZ calculations in (c). The MP2,
CCSD, and CCSD(T) data using the aug-cc-pVTZ basis in (b)
were obtained from Refs. 41 and 42. The CCSD(T) and FN-
DMC data in (c) were extracted from Ref. 43. All AFQMC
results were obtained with 1224 total walkers.

down the performance, predominantly during the VHS
step, which involves the construction of two-body propa-
gators (where HS stands for Hubbard-Stratonovich) dur-
ing propagation.
Using our GPU implementation, we calculated the

interaction energy of the benzene dimer with counter-
poise correction.44 We compared AFQMC results with
those from other methodologies, as shown in Fig. 7(b)(c).
While coupled cluster with singles and doubles (CCSD)
underestimates the binding energy, second-order Møller-
Plesset perturbation theory overestimates. Crucially, we
observed that RHF-AFQMC is on par with CCSD with
perturbative triples (CCSD(T)).

B. Support of complex Cholesky vectors

Most calculations in quantum chemistry deal with real-
valued integrals. However, in some cases, especially in
the presence of external magnetic fields, when consid-
ering spin-orbit coupling or employing Bloch orbitals in
solid-state calculations, the wavefunctions (and orbitals)
can become complex-valued.45 This adds a layer of math-
ematical and computational complexity. To handle these
cases, ipie supports complex Cholesky vectors; the num-
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ber of auxiliary fields is hence twice as many as the num-
ber of Cholesky vectors. The implementation details are
available in Ref. 46.

C. GPU accelerated MSD-AFQMC and timing
benchmarks

ph-AFQMC with MSD trials is a powerful tool for
systems with multi-reference characteristics, especially
when the phaseless bias can be converged away. Build-
ing on top of our successful CPU implementation15 based
on Wick’s theorem,37 As detailed in Ref. 47, ipie has
now enabled GPU-accelerated MSD-AFQMC implemen-
tations. Here, we summarize some of the important fea-
tures of our implementation and discuss applications of
this feature. Interested readers are referred to Ref. 47 for
more details.

Similar to our single determinant GPU implementa-
tion, ipie employs cupy.einsum via the cuTENSOR li-
brary to enhance matrix multiplication performance. Ad-
ditionally, Wick’s algorithm is adapted for GPU execu-
tion using custom CUDA kernels, effectively speeding
up the computational hotspots in MSD-AFQMC, such
as Green’s function, overlap, and local energy computa-
tions.

The GPU implementation of MSD-AFQMC is bench-
marked on the example [Cu2O2]

2+ from ipie’s first re-
lease paper.15 In addition to employing a total of 10
walkers to directly compare with our previous results in
Ref. 15, calculations using a total of 640 walkers were also
performed to obtain a more realistic comparison. With
10 walkers, the GPU implementation on a single NVIDIA
A100 card is six times faster than using a single CPU core
when the number of determinants in the trial is less than
103. As the number of determinants increases, the per-
formance improvement is even more pronounced: tenfold
with 104 determinants and approximately 100-fold with
106 determinants, as illustrated in Fig. 8(a). With 640
walkers, the GPU code on a single A100 card is com-
pared against with 32 CPU cores. As shown in Fig. 8(b),
a fourfold speedup is observed with less than 102 deter-
minants that increase to around sixfold with more de-
terminants. The determinants were divided into chunks
and computed sequentially to handle a larger number of
determinants within the memory limits. This approach
introduces an overhead that mostly affects the energy
estimator, as reported in Ref. 47.

The timing and absolute energy benchmarks are fur-
ther benchmarked on the (20o, 30e) active space of
the [Fe2S2(SCH3)]

2− cluster,47 as shown in Fig. 9. In
contrast to the 108-orbital calculation of [Cu2O2]

2+, a
merely two-fold speedup is observed using a single A100
card compared to 32 CPUs. This speedup increases to
almost tenfold when the number of determinants exceeds
104. As shown in Fig. 9(b), another observation is using
natural orbitals for AFQMC calculation leads to chemi-
cal accuracy with around 3×105 determinants in the trial.
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FIG. 8. (a) Comparisons of the time cost per block for
AFQMC calculations on [Cu2O2]

2+ using the BS1 basis 15

with 10 walkers on a single CPU core and a single A100 GPU.
(b) Time per block with 640 walkers on a single A100 against
32 CPU cores. Figure adapted from Ref. 47.

In contrast, reaching chemical accuracy is more challeng-
ing when using localized orbitals employed for DMRG
calculations.48 These observations highlight the critical
need to select an appropriate set of orbitals for AFQMC
calculations involving strongly correlated systems. Addi-
tionally, it is noteworthy that the energies obtained using
localized orbitals with a limited number of determinants
are initially lower than the FCI energy, and they tend to
converge upward toward the FCI reference as the number
of determinants increases.

D. Free projection AFQMC

Free projection (fp-) AFQMC is a numerically exact
method for calculating the eigenvalues of a Hamiltonian.
While the more commonly used ph-AFQMC variant em-
ploys the phaseless constraint to control the sign problem,
fp-AFQMC attempts to sample the ground state energy
brute-force with exponential-scaling sample complexity.
Despite this scaling, it is possible to perform relatively
large active space calculations in practice using accurate
trial states.
In fp-AFQMC, the ground-state energy is estimated

by

E(τ) =
⟨ψl|Ĥe−τĤ |ψr⟩
⟨ψl|e−τĤ |ψr⟩

=

∫
dx p(x)⟨ψl|ĤB̂(x,∆τ)|ψr⟩∫
dx p(x)⟨ψl|B̂(x,∆τ)|ψr⟩

,

(19)
where |ψl⟩ and |ψr⟩ are left and right trial states, re-

spectively; B̂(x,∆τ) is defined in Eq. 9; and τ is the
imaginary time. Analogously to the ph-AFQMC propa-
gator sampling, the auxiliary fields x are sampled from
the Gaussian distribution p(x). Unlike ph-AFQMC, we
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FIG. 9. Time cost and absolute energy benchmarks on the
[Fe2S2(SCH3)]

2− cluster. (a) The time cost per block with
640 walkers on 32 CPU cores and a single A100 GPU. (b)
Absolute energies are derived using localized atomic orbitals
and natural orbitals. Figure adapted from Ref. 47.

do not use the force bias to perform importance sam-
pling. Instead, only mean-field subtraction is used. We
also do not employ population control.

A judicious choice of |ψl⟩ and |ψr⟩ offers two advan-
tages. First, more accurate trial states (eg., selected CI)
reduce the imaginary time required to project the ground
state energy to a given accuracy, thereby reducing the
noise in the energy estimate.24,37 Integrating the GPU-
accelerated MSD code47 will also significantly accelerate
the fp-AFQMC calculations with MSD trials. Second,
since energies are measured using the state |ψl⟩, the closer
this state is to the ground state, the smaller the variance
in the energy estimate due to the zero variance princi-
ple.49 Furthermore, one can use a CCSD wavefunction as
the initial state |ψr⟩, which reduces the projection time.
CCSD wavefunction is employed by performing a Hub-
bard–Stratonovich transformation on the exponential of
the cluster operator.24 Using trial states belonging to spe-
cific symmetry sectors also allows one to target the lowest
energy states in the corresponding sectors.

As an illustrative example, we consider the D4h sym-
metric transition state of cyclobutadiene. This state has
a biradical character, which makes it a challenging prob-
lem for single reference electronic structure methods, in-

cluding spin-restricted and spin-unrestricted CCSD(T)
(RCCSD(T) and UCCSD(T)). We performed fp-AFQMC
calculations on this system using an MSD trial, obtained
via heat-bath configuration interaction (HCI), as |ψl⟩ and
the spin-restricted CCSD (RCCSD) state as |ψr⟩. The
HCI state was obtained from an HCI calculation with a
crude ϵ1 = 10−4 in the full space except for four frozen
HF orbitals. These orbitals were kept frozen in all corre-
lated calculations. The geometry was taken from Ref. 24,
which also reported fp-AFQMC energies for this system.
As additional validation of our results, we converged the
ph-AFQMC energy with respect to the number of deter-
minants in the trial HCI state; we expect this energy to
be nearly exact. Results are shown in Fig. 10.
The fp-AFQMC energy converges to the converged ph-

AFQMC energy within statistical error bars. Our re-
sults suggest that hybrid (H)-AFQMC energies reported
in Ref. 50 are likely biased as they are too much lower
than our converged ph-AFQMC and fp-AFQMC ener-
gies. RCCSD(T) is about 13.5 mEh higher than ph-
AFQMC, while UCCSD(T) is closer but still about 4.5
mEh higher. The differences in the barrier height largely
come from transition state energies because all these
methods work well for the equilibrium D2h geometry.
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FIG. 10. Convergence of the fp-AFQMC energy for the cy-
clobutadiene transition state in the cc-pVDZ basis set with
projection time. The inset shows the convergence of ph-
AFQMC energy with respect to the number of determinants
in the trial.

E. AFQMC beyond the ground-state electronic structure
energy

The preceding discussions concentrate on the ground-
state ab initio electronic structure energy calculations.
Apart from this, ipie now also accommodates other
types of calculations within the framework of AFQMC,
such as property calculations,32 finite temperature cal-
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culations12,51 and ground-state calculations of electron-
phonon coupled model systems.13 The code structures
for these different features mirror those of the zero tem-
perature ab initio electronic structure implementation.

1. Electronic structure at finite temperatures

An extension of the phaseless AFQMC method at
zero temperature, finite-temperature AFQMC (FT-
AFQMC), was developed to study systems at finite tem-
peratures.12 It is customary (though not necessary52) to
work in the grand canonical ensemble described by the
temperature T , volume V , and chemical potential µ. The
central quantities of interest are thermal expectation val-
ues computed from the partition function

Ξ = Tr
[
e−β(Ĥ−µN̂)

]
, (20)

where N̂ is the total number operator and µ is the chem-
ical potential. The Boltzmann factor in Eq. (20) can be
interpreted as a propagator in imaginary time τ = β.
Analogously to the zero temperature case, τ is first

discretized into l intervals of length ∆τ = τ/l,

Ξ = Tr
[
e−β(Ĥ−µN̂)

]
= Tr

[
lim
l→∞

k=l∏
k=1

e−∆τ(Ĥ−µN̂)

]
,

(21)

the short-time propagator is then Trotter decomposed as

e−∆τ(Ĥ−µN̂) ≃ e−
∆τ
2 (v̂0−µN̂)e

∆τ
2

∑
γ v̂

2
γ e−

∆τ
2 (v̂0−µN̂),

(22)

and the application of the Hubbard–Stratonovich trans-
formation gives

e−∆τ(Ĥ−µN̂) ≃
∫
dx p(x)B̂(x,∆τ, µ), (23)

where the one-body propagator B̂ is now also function of
µ:

B̂(x,∆τ, µ) = e−
∆τ
2 (v̂0−µN̂)e−

√
∆τx·v̂e−

∆τ
2 (v̂0−µN̂). (24)

The grand canonical partition function is thus evaluated
as

Ξ = Tr
[
e−β(Ĥ−µN̂)

]
=

∫
dx1 · · · dxl p(x1) · · · p(xl)︸ ︷︷ ︸

p(x1,...,xl)

Tr

[
l∏

k=1

B̂(xk,∆τ, µ)

]
,

(25)

with p(x1, . . . ,xl) being the probability of sampling a
specific path designated by auxiliary fields x1, . . . ,xl.

Furthermore, the trace in Eq. (25) can be written in
terms of a determinant,53–55 which finally yields

Ξ =

∫
dx1 · · · dxl p(x1, . . . ,xl) det

[
I+

l∏
k=1

B(xk,∆τ, µ)

]
,

(26)

where I is the identity matrix and B is a matrix rep-
resentation of B̂ in a single-particle basis. It should be
noted that the partition function itself is not explicitly
calculated–expectation values derived from it are. For
some generic observable Ô, its expectation value is

⟨Ô⟩ = 1

Ξ
Tr

[
e−β(Ĥ−µN̂)Ô

]
(27)

=

∫
dX

p(X) Tr [A(X,∆τ, µ)]∫
dY p(Y) Tr [A(Y,∆τ, µ)]

× (28)

Tr
[
A(X,∆τ, µ)Ô

]
Tr [A(X,∆τ, µ)]

, (29)

where we introduced the shorthand X for the set of aux-
iliary fields along an imaginary path {x1, · · · ,xl}, and

A(X,∆τ, µ) =

l∏
k=1

B̂(xk,∆τ, µ). (30)

Rewriting Eq. (27) in the form Eq. (29) allows ⟨Ô⟩ to
be estimated through an importance sampling proce-
dure. The field configurations X are obtained via Monte
Carlo sampling from the modified probability distribu-
tion p̃(X) = p(X) Tr [A(X,∆τ, µ)], while the computed
random variables are the local expectation values

OL(X,∆τ, µ) =
Tr

[
A(X,∆τ, µ)Ô

]
Tr [A(X,∆τ, µ)]

. (31)

Similar to the zero temperature case, the importance
sampling is implemented by initializing a set of walkers
in the space of auxiliary fields with weights wi and prop-
agating them in imaginary time. We therefore evaluate
Eq. (29) in practice as

⟨Ô⟩ =
∑
i wiOL(Xi)∑

i wi
. (32)

An example of the imaginary time trace for observables is
provided in Fig. 11, which reproduces Fig. 3 in Ref. 12.
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FIG. 11. Imaginary time trace from FT-AFQMC of the uni-
form electron gas model with 2 electrons. The top panel de-
picts the average electron number at imaginary time τ , ⟨N̂⟩τ ,
while the bottom panel shows the error in the total energy
compared to FCI, i.e. EFT-AFQMC(τ) − EFCI. These results
reproduce Fig. 3 in Ref. 12.

2. Electrons coupled to phonons

Utilizing the tools provided in ipie, one may write
a new projector Monte Carlo method to calculate the
ground state of electrons coupled to phonons (i.e., lattice
vibration).13

Ĥ =
∑
pq

hpqa
†
paq︸ ︷︷ ︸

Ĥel

+
∑
ν

ωνb
†
νbν︸ ︷︷ ︸

Ĥph

+
∑
pqν

gpqνa
†
paq(bν + b†ν)︸ ︷︷ ︸
Ĥel-ph

(33)
where b(†) represents the bosonic annihilation (and cre-
ation) operator, the first term represents the electronic
band term, the second term represents the phonon band
term, and the third term represents the coupling between
electrons and phonons.

The corresponding ground-state projector is obtained
from trotterizing the imaginary time propagator corre-
sponding to Eq. (33),

e−∆τĤ = e−
∆τ
2 Ĥele−

∆τ
2 Ĥphe−∆τĤel−phe−

∆τ
2 Ĥphe−

∆τ
2 Ĥel

+O(∆τ3) (34)

In our method, we choose walkers of the form |ψw⟩ ⊗
|Xw⟩ ≡ |ψw(τ),Xw(τ)⟩, with |ψw⟩ being a single deter-
minant and |Xw⟩ being the coordinates for phonon dis-
placements. Using the Monte Carlo sampling, we can
work in the position space of phonons without invoking
any boson number truncation. This strategy differs from
other standard Monte Carlo approaches in this area.56,57

With importance sampling via a trial wavefunction,
|ΨT⟩, our global wavefunction is a weighted linear com-
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FIG. 12. Reproduction of Fig. 3 in Ref. 13. Results are shown
for a 20-site Holstein model at half-filling. We used a co-
herent state trial to obtain the AFQMC/S results. CSMP2
data points correspond to perturbation theory-based compu-
tations based on molecular orbitals obtained from SCF cal-
culations for a Holstein Fock operator.13 Panels (a)-(d) show
scans along phonon frequencies ω for λ equals (a) 0.1, (b) 0.3,
(c) 0.8, and (d) 2.

bination of walker vibronic wavefunctions,

|Ψ(τ)⟩ =
Nwalkers∑
w=1

ww(τ)
|ψw(τ),Xw(τ)⟩

⟨ΨT|ψw(τ),Xw(τ)⟩
. (35)

The propagation of the bosonic degrees of freedom un-
der Ĥph is performed via a diffusion Monte Carlo algo-
rithm.58 With the walker representation, the propaga-
tion with Ĥph and Ĥel-ph is straightforward by exploit-
ing the Thouless theorem. More details can be found in
Ref. 13. As an example calculation, we picked the one-
dimensional Holstein model under a periodic boundary
condition,59 which involves hpq = −tδp+1,q, ων = ω, and
gpqν = gδpqδpν . For 20-site at half-filling, we considered
four different unitless electron-phonon coupling strengths

λ = g2

2tω , which are displayed in Fig. 12.

3. Automatic differentiatiable AFQMC

The computation of observables that do not commute
with Ĥ poses additional challenges in projector Monte
Carlo, such as AFQMC. A recently proposed approach
by Mahajan et. al.32 aims to compute the response es-
timator (Eq. (36)), which, though still not exact due to
the discontinuity in the distribution, is accurate enough
to give reliable results:

⟨Ô⟩response =
dEAFQMC(λ)

dλ

∣∣∣∣∣
λ=0

. (36)



13

Here λ is a parameter for the perturbed Hamiltonian:
Ĥ(λ) = Ĥ + λÔ, and AFQMC energy EAFQMC(λ) is
given by the Monte Carlo estimator

EAFQMC(λ) =

∑
i wi(λ)

⟨ΨT (λ)|Ĥ(λ)|ψi(λ)⟩
⟨ΨT (λ)|ψi(λ)⟩∑
i wi(λ)

, (37)

where wi(λ) is the weight for the i-th walker, and |ψi(λ)⟩
is the i-th walker state at coupling strength λ.
We implemented this scheme for computing observ-

ables using the Automatic Differentiation (AD) function-
ality of PyTorch60 as an add-on within ipie. It is note-
worthy that storing the computation graph for an en-
tire AFQMC run requires substantial memory. In prac-
tice, we use the concept of AD blocks.32 We only track
the computation graph within an AD block; there is no
connection between different AD blocks. Using this ap-
proach, we manage memory costs by adjusting block size.
We also use the gradient checkpointing technique61 to re-
duce the memory cost further.

For relatively large systems, the AFQMC calculation
is parallelized using MPI to distribute walkers over MPI
tasks. The differentiation of the AFQMC global energy
estimator is not embarrassingly parallel since walkers will
mix between different MPI ranks via population control.
The AD implementation in ipie does not support com-
munication between MPI tasks. Therefore, we perform
“local” population control within an MPI rank. Because
the local population control does not mix the walkers
between different ranks, it is valid to regard those esti-
mates as independent samples. We thus perform block
analysis on those samples to obtain the final result. Effec-
tively, this amounts to running very low walker popula-
tion simulations (50 walkers per task here), which is only
practically possible for small system sizes where popula-
tion control is not a concern. For intermediate system
sizes, one could imagine using large memory nodes and
OpenMP threading or using single GPUs with a sufficient
amount of memory.

Here, we present the results of AD-AFQMC calcula-
tions on various molecular systems. The molecular inte-
grals are obtained by PySCF,28 and the modified Cholesky
decomposition is performed with ipie, with a threshold
of 10−5. We used a time step of 0.01 a.u., and peri-
odic reorthogonalization of walkers is performed every 5
steps for all calculations. We used the restricted Hartree
Fock (RHF) trial for all systems. For accurate statistical
analysis, we perform block analysis for ≥ 200 gradient
samples for each calculation. All AFQMC calculations
are performed using the frozen-core approximation.

We benchmarked our implementation on various small
molecules using aug-cc-pVTZ62 basis set and compared
the results to Ref. 32 in Table I. All dipole moments
align strongly with the AD-AFQMC results reported
in Ref. 32. Furthermore, except for CO, AD-AFQMC
matches experimental values better than RCCSD and
exhibits accuracy comparable to RCCSD(T). This sup-
ports the widely held view that AFQMC’s accuracy falls

between CCSD and CCSD(T).

F. Enhanced integration testing and no-MPI mode

As ipie expands its functionalities, robust testing
workflows become crucial. ipie supports a new inte-
gration testing framework that enhances the package’s
robustness and adaptability and significantly contributes
to its reliability and ease of use for the end-users. The
GitHub continuous integration (CI) workflow automati-
cally tests new pull requests, ensuring that every change
to the codebase does not break existing functionalities.
The workflow encompasses a comprehensive test suite
and executes various linting and code formatting checks
before running serial and parallel unit tests and integra-
tion tests.
Recognizing the diverse computational environments

in which ipie might be deployed, we introduced the no-
MPI mode. This mode is designed for situations where
MPI is unavailable, or its use is not desired, offering
greater flexibility for users and developers. The CI work-
flow includes a job that tests ipie’s functionality without
the MPI dependency. This mode is particularly benefi-
cial for users who wish to perform quantum Monte Carlo
simulations on personal computing setups or in environ-
ments where setting up MPI is challenging.

V. INTERFACES TO EXTERNAL PACKAGES

A. Dice interface and SHCI-AFQMC

ipie includes utilities for converting the output from
Dice,19 a package that employs semistochastic heat bath
configuration interaction (SHCI)19,29 as the complete ac-
tive space (CAS) solver.

Code Snippet 11 Convert Dice output to the MSD trial
in ipie.

python -u /path-to-ipie/tools/extract_dice.py --dice-wfn

/path-to-Dice-output/dets.bin --sort --verbose↪→

which produces the wfn.h5 file containing the coeffi-
cients and the indices of occupied orthogonal orbitals for
spin-up and spin-down sectors that follows the block-
formatted (αα · · ·ββ · · · ) orbital convention in ipie.
The SHCI calculation generates a good MSD trial for
challenging systems.15,37 However, it is not a black-box
approach and often requires careful handling, such as se-
lecting CAS and using natural orbitals, as discussed in
Section IVC.
These detailed discussions are beyond the scope of this

article, and we briefly mention the procedures in the
semi-blackbox example provided within ipie:15
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TABLE I. Comparison of AD-AFQMC dipole moment (in a.u.) of various molecules at equilibrium geometry with the
implementation in Ref. 32 and other quantum chemistry methods. The data using RCCSD and RCCSD(T) are also extracted
from Ref. 32.

Molecule This work AD-AFQMC in Ref. 32 RCCSD RCCSD(T) Experiment
H2O 0.723(2) 0.720(2) 0.7335 0.7247 0.73063

NH3 0.592(2) 0.592(2) 0.6015 0.5938 0.581(1)64

CO 0.022(4) 0.019(4) 0.0199 0.0429 0.048(1)65

HCl 0.428(1) 0.429(1) 0.4318 0.4273 0.43066

HBr 0.332(2) 0.329(2) 0.3289 0.3245 0.32566

1. Initiate a preliminary rough SHCI calculation in an
extensive active space for the system under study.

2. Derive the SHCI one-electron reduced density ma-
trix (1-RDM), extracting the resultant natural or-
bital occupation number (NOON) and natural or-
bitals.

3. Define an active space criterion based on a prede-
termined NOON threshold.

4. Adjust the orbitals through rotation, aligning them
with the unitary transformation specified by the
natural orbitals.

5. Execute a refined SHCI self-consistent field calcu-
lation within the new active space determined in
the previous step.

6. Use this MSD trial in AFQMC.

This strategy ensures the trial wavefunction encapsu-
lates static correlations within the active space via
the MSD trial. At the same time, AFQMC in-
corporates the residual dynamic correlations. This
procedure is folded into the factory utility method
ipie.utils.from dice.build driver from shciscf.

B. TREXIO support and CIPSI-AFQMC

The TrexIO library and file format have been de-
veloped to offer a robust and efficient solution for stor-
ing and exchanging wavefunction parameters and matrix
elements.30 This library supports bindings in several pro-
gramming languages, including Python, and can be con-
veniently installed via the pip package manager.

The compatibility of ipie with the TrexIO format
facilitates its integration with various software packages.
Specifically, it allows ipie to utilize trial wavefunctions
produced by Quantum Package,67 along with the asso-
ciated one-electron integrals and Cholesky-decomposed
electron repulsion integrals. This interface allowed us
to check if AFQMC could complement configuration in-
teraction using perturbative selection done iteratively
(CIPSI) calculations to improve full configuration inter-
action (FCI) energy estimates of large systems.

Typically, to estimate the FCI energy from a CIPSI cal-
culation, one extrapolates to zero the variational energy,
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FIG. 13. Energy of the trial wavefunction (Etrial) as a func-
tion of ∆E, where ∆E = ErPT2 for CIPSI calculations and
∆E = EAFQMC − Etrial for AFQMC. exFCI is the extrapo-
lated FCI energy obtained from CIPSI calculations.

Etrial, as a function of the renormalized second-order per-
turbative correction, ErPT2.

67 However, the AFQMC en-
ergy, EAFQMC, is anticipated to provide a closer approx-
imation to the FCI energy than the sum of Etrial and
ErPT2. This expectation is particularly relevant for sys-
tems with large ErPT2 corrections.
We conducted AFQMC calculations on the nitroxyl

and benzene molecules using CIPSI trial wavefunctions
of increasing sizes. The results of these calculations
are detailed in Table II. Supporting our expectation,
Fig. 13 demonstrates that the AFQMC corrections align
the data points along a straight line,68 validating the
hypothesis that AFQMC energies are more reliable for
the extrapolation towards the FCI value, especially in
cases with large rPT2 corrections. Employing calcula-
tions with comparatively small wavefunctions for ben-
zene, as shown in Table II, a three-point linear extrapo-
lation based on the rPT2 correction yields a correlation
energy of −858.6mEh. In contrast, extrapolation us-
ing AFQMC energies results in a correlation energy of
−862.2mEh. This latter value is significantly closer to
the correlation energy of −863.4mEh achieved through
CIPSI with 167 million determinants.69

These preliminary calculations enabled by the
TrexIO interface illustrate that the integration of
AFQMC with CIPSI emerges as a promising methodol-
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TABLE II. Renormalized PT2 correction ErPT2, Variational energy Evar, and AFQMC energy EAFQMC for the nitroxyl and
benzene molecules as functions of the number of determinants in the variational space.

System, Basis Ndet Etrial Etrial + ErPT2 EAFQMC

HNO, 6-31G 1 −129.712554 −129.987361 −129.971(1)
2 −129.752113 −129.987158 −129.974(1)

41 −129.781149 −129.981219 −129.9727(6)
748 −129.894775 −129.973405 −129.9724(2)

2838 −129.942391 −129.975057 −129.9726(1)
14201 −129.955368 −129.973620 −129.9727(1)

C6H6, cc-pVDZ 1 −230.7204904 −231.39330 −231.5887(7)
23 −230.7615816 −231.42167 −231.5866(7)

828 −230.8687072 −231.44602 −231.5864(6)
15690 −231.1300087 −231.49330 −231.5848(4)

109869 −231.3152399 −231.53022 −231.5842(4)

ogy for estimating the FCI energy of systems larger than
those currently feasible.

C. FQE interfaces

The Fermionic quantum emulator (FQE)31 is a
lightweight fermionic circuit simulator, which is partic-
ularly useful in quantum computing where it aids in the
development and testing of quantum algorithms tailored
for fermionic systems. ipie provides the conversion be-
tween the ipie’s MSD wavefunction and the FQE wave-
function.

VI. CONCLUSIONS AND OUTLOOKS

This paper summarized the improvements and new fea-
tures added in ipie since its original release.15 These im-
provements enhance modularity and computational effi-
ciency and offer intuitive user-end APIs. New features
and interfaces aim to expand a broader spectrum of
AFQMC calculations in quantum chemistry.

We summarize the key features we highlighted in this
manuscript:

1. Distributed Hamiltonians to remove the memory
bottleneck. We demonstrated ipie’s capacity for
studying large systems deploying GPUs with sig-
nificantly higher efficiency than CPU-based imple-
mentations, exemplified in our case study assessing
the interaction energies in a benzene dimer.

2. GPU support for MSD trial wavefunctions. With
customized CUDA kernels, we enabled an efficient
realization of Wick’s theorem. Timing benchmarks
for [Cu2O2]

2+ and [Fe2S2(SCH3)]
2− were shown to

achieve more than an order of magnitude speedup
compared to our CPU implementation for a large
MSD trial.47

3. Support for complex-valued Cholesky vectors. ipie
can handle complex-valued Cholesky vectors that

may arise when the underlying basis functions are
complex-valued.

4. Free-projection AFQMC. A numerically exact
AFQMC approach can be used to study small
strongly correlated systems.

5. Finite-temperature AFQMC. A finite-temperature
AFQMC algorithm based on the grand canonical
ensemble was added.

6. Electron-phonon QMC. A QMC algorithm that
computes the ground state of electron-phonon
problems was added.

7. Automatic differentiable AFQMC. We offer
AFQMC property calculations via automatic
differentiation.

8. External package interfaces. ipie is now interfaced
with PySCF, Dice, TrexIO, and FQE.

We hope that ipie will serve as a community code base
for developing ab initio AFQMC methods and their ap-
plications. Furthermore, as ipie is written mainly in
Python, we anticipate its use in machine learning and
quantum computing communities will also grow.
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J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse,
P. Barbaresco, N. Renon, G. David, J.-P. Malrieu, M. Véril,
M. Caffarel, P.-F. Loos, E. Giner, and A. Scemama, “Quantum
package 2.0: An open-source determinant-driven suite of pro-
grams,” J. Chem. Theory Comput. 15, 3591–3609 (2019).

68H. G. A. Burton and P.-F. Loos, “Rationale for the extrapolation
procedure in selected configuration interaction,” J. Chem. Phys.
160, 104102 (2024).

69P.-F. Loos, Y. Damour, and A. Scemama, “The performance
of CIPSI on the ground state electronic energy of benzene,” J.
Chem. Phys. 153 (2020), 10.1063/5.0027617.

https://github.com/quantumlib/OpenFermion-FQE
https://doi.org/10.22331/q-2021-10-27-568
https://doi.org/https://doi.org/10.1063/5.0171996
https://link.aps.org/doi/10.1103/PhysRevLett.3.77
https://link.aps.org/doi/10.1103/PhysRevLett.3.77
https://github.com/shuaigroup/renormalizer
https://doi.org/https://doi.org/10.1002/wcms.1614
https://doi.org/https://doi.org/10.1002/wcms.1614
https://doi.org/https://doi.org/10.1063/1.457480
https://doi.org/https://doi.org/10.1063/5.0087047
https://doi.org/https://doi.org/10.1063/5.0087047
https://doi.org/https://doi.org/10.1039/B600027D
https://doi.org/https://doi.org/10.1039/B600027D
https://doi.org/10.1063/1.3116103
https://doi.org/https://doi.org/10.1016/S0009-2614(98)00111-0
https://doi.org/https://doi.org/10.1016/S0009-2614(98)00111-0
http://vergil.chemistry.gatech.edu/active_bfdb/bfdb/cgi-bin/reactionviewer.py?dataset=S22&rxn=S22-4
https://doi.org/https://doi.org/10.1063/1.4903765
https://doi.org/https://doi.org/10.1063/1.4903765
https://doi.org/https://doi.org/10.1038/s41467-021-24119-3
https://doi.org/https://doi.org/10.1063/5.0076588
https://doi.org/https://doi.org/10.1063/5.0076588
https://arxiv.org/abs/2406.08314
https://arxiv.org/abs/2406.08314
https://doi.org/10.1021/acs.jctc.7b00270
https://doi.org/10.1021/acs.jctc.7b00270
https://doi.org/10.1103/PhysRevLett.83.4682
https://doi.org/https://doi.org/10.1021/acs.jctc.3c00038
https://doi.org/https://doi.org/10.1021/acs.jctc.3c00038
https://doi.org/10.1103/PhysRevB.99.045108
https://doi.org/10.1103/PhysRevB.99.045108
https://doi.org/10.1063/5.0026606
https://doi.org/10.1103/physrevd.24.2278
https://doi.org/10.1103/physrevd.24.2278
https://doi.org/10.1103/physrevb.31.4403
https://doi.org/10.1590/s0103-97332003000100003
https://doi.org/10.1103/PhysRevB.95.035117
https://doi.org/10.1103/PhysRevB.95.035117
https://doi.org/10.1103/PhysRevA.9.2178
https://doi.org/10.1103/PhysRevA.9.2178
https://doi.org/10.1016/0003-4916(59)90002-8
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.48550/arXiv.1604.06174
https://doi.org/https://doi.org/10.48550/arXiv.1604.06174
https://doi.org/https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.460471
https://doi.org/10.1063/1.460471
https://doi.org/10.1063/1.1673524
https://doi.org/https://doi.org/10.1016/0022-2852(75)90287-8
https://doi.org/https://doi.org/10.1016/0022-2852(75)90287-8
https://doi.org/10.1021/acs.jctc.9b00176
https://doi.org/10.1063/5.0192458
https://doi.org/10.1063/5.0192458
https://doi.org/10.1063/5.0027617
https://doi.org/10.1063/5.0027617

	Improved Modularity and New Features in ipie: Towards Even Larger AFQMC Calculations on CPUs and GPUs at Zero and Finite Temperatures 
	Abstract
	Introduction
	Theory of AFQMC
	Software architecture and design principles
	AFQMC driver
	Hamiltonian
	Trial wavefunctions
	Dispatchers of walkers, propagators and estimators
	Estimators

	New Features
	Distributed Hamiltonian for limited memory
	Support of complex Cholesky vectors
	GPU accelerated MSD-AFQMC and timing benchmarks
	Free projection AFQMC
	AFQMC beyond the ground-state electronic structure energy
	Electronic structure at finite temperatures
	Electrons coupled to phonons
	Automatic differentiatiable AFQMC

	Enhanced integration testing and no-MPI mode

	Interfaces to external packages
	Dice interface and SHCI-AFQMC
	TREXIO support and CIPSI-AFQMC
	FQE interfaces

	Conclusions and outlooks
	Acknowledgements
	Data Availability


