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Abstract: Fertilisation of cereal crops with nitrogen (N) has increased in the last five decades.
In particular, the fertilisation of wheat crops increased by nearly one order of magnitude from 1961 to
2010, from 9.84 to 93.8 kg N ha−1 y−1. We hypothesized that this intensification of N fertilisation
would increase the content of allergenic proteins in wheat which could likely be associated with the
increased pathology of coeliac disease in human populations. An increase in the per capita intake
of gliadin proteins, the group of gluten proteins principally responsible for the development of
coeliac disease, would be the responsible factor. We conducted a global meta-analysis of available
reports that supported our hypothesis: wheat plants growing in soils receiving higher doses of N
fertilizer have higher total gluten, total gliadin, α/β-gliadin, γ-gliadin and ω-gliadin contents and
higher gliadin transcription in their grain. We thereafter calculated the per capita annual average
intake of gliadins from wheat and derived foods and found that it increased from 1961 to 2010 from
approximately 2.4 to 3.8 kg y−1 per capita (+1.4 ± 0.18 kg y−1 per capita, mean ± SE), i.e., increased by
58 ± 7.5%. Finally, we found that this increase was positively correlated with the increase in the rates
of coeliac disease in all the available studies with temporal series of coeliac disease. The impacts and
damage of over-fertilisation have been observed at an environmental scale (e.g., eutrophication and
acid rain), but a potential direct effect of over-fertilisation is thus also possible on human health
(coeliac disease).
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1. Introduction

The demand for, and application of, nitrogen (N) fertilizer in cropland at a global scale has been
continuously increasing. The global use of N fertilizers has increased substantially from 11.3 Tg N y−1

(0.9 g N m−2 y−1) in 1961 to 107.6 Tg N y−1 (7.4 g N m−2 y−1) in 2013 [1]. The data provided
in the last International Nitrogen Initiative Conference indicated that the global consumption of
N fertilizers increased 33% from 2000 to 2013 [2]. FAOstat data [3] indicated that the recent (2014–2018)
intensification of N fertilisation at global and regional scales has affected most of the world, but with
regional differences, with increases, from highest to lowest, of 29.1, 24.5, 17.6, 9.0, 5.4, 4.8, 4.1, 2.5 and
1.3% in eastern Asia, southern Asia, Latin America and the Caribbean, eastern Europe and central
Asia, Sub-Saharan Africa, North America, western Asia, northern Africa and Oceania, respectively,
and a decrease of 1.5% in western Europe [4]. Although continuous N fertilisation reduces nitrogen
use efficiency on wheat yield production [5], this large increase in N fertilisation of wheat crops is
the effective driver of the increased wheat yield [6,7]. This effect is especially important in wheat
because it comes associated with a positive relationship between N fertilisation and wheat protein
concentration [7,8].

Wheat (Triticum sp.) is currently the most widely planted crop and continues to be the most
important food grain for humans [9]. Furthermore, despite a decrease of direct flour food products
intake has occurred in some countries such as the United States of America, there is still a net
increase in per capita annual wheat flour intake due to an additional flour intake from the extra
flour used as food additive that has increased the net gluten annual intake per person from 4.1 kg
in 1970 to 5.4 kg in 2000 [10]. Wheat crops currently cover an area of 217 × 106 ha globally [11].
Global wheat yield in recent decades (1961–2015) has continuously increased despite representing
a similar area of land (Figure 1) [3,12,13]. The annual amounts of N fertilizer applied to wheat
crops have increased globally in the same period from approximately 10 to 100 kg N ha−1 y−1.
This increase in N fertilisation is associated with an increase in the production of wheat grains
and flour per hectare. The fertilisation (kg ha−1) to yield (t ha−1) ratio, however, increased from
0.9 to 3.1 kg N t grains−1 during 1961–2010, i.e., the yield-to-fertilisation ratio is now only 3.5-fold
what it was 50 years ago.
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Figure 1. Global N-fertilisation rates (kg N ha−1 y−1) in wheat crops. Wheat grain yield (t ha−1 y−1) and 
global annual area of wheat crops (107 ha) during 1961–2016 (1961–2010 for N-fertilisation rates) (A). 
Efficiency of N fertilisation (kg−1 N ha−1 per tonne of wheat grains (t wheat-1)) (B). Sources: [3,13–15] 

Figure 1. Global N-fertilisation rates (kg N ha−1 y−1) in wheat crops. Wheat grain yield (t ha−1 y−1)
and global annual area of wheat crops (107 ha) during 1961–2016 (1961–2010 for N-fertilisation rates)
(A). Efficiency of N fertilisation (kg−1 N ha−1 per tonne of wheat grains (t wheat-1)) (B). Sources: [3,13–15]

The protein composition of wheat grains varies depending on genotype and environmental
conditions, but wheat proteins are generally deficient in some fundamental amino acids, such as
lysine and threonine [16]. Structural proteins of wheat grains are mostly albumins, globulins and



Foods 2020, 9, 1602 4 of 21

amphiphilic proteins [16], whereas storage proteins are gliadins (monomeric proteins) and glutenins
(polymeric proteins) [17]. N fertilisation generally influences the quantity and quality type of storage
proteins (gliadins and glutenins) [18,19], but has little effect on structural proteins [20]. Martre et al.
(2006) [21] modelled N-gliadin contents in wheat grains as a function of N partitioning among
plant-protein groups and validated the model using 18 experimental studies. They observed a positive
relationship between N-fertilisation rates and the amount of N allocated to gliadins after sowing.

Ingestion of wheat gluten can trigger several intolerances and allergic diseases, among which
coeliac disease (CD) is the most widespread in humans [22]. The mean prevalence of CD in the general
population in Europe and the United States of America (USA) is approximately 1% [23,24], with some
regional differences, e.g., the prevalence of CD is as high as 2–3% in Finland and Sweden but is only
0.2% in Germany. The overall prevalence of CD is now clearly increasing everywhere. The prevalence
of CD in the USA was only 0.2% in 1975 but increased 5-fold during the next 25 years [25]. The causes
remain elusive but are likely linked to the environmental components of CD (e.g., changes in the
quantity and quality of ingested gluten, patterns of infant feeding, the spectrum of intestinal infections
and colonization by gut microbiota) [25].

Among the components of gluten, glutenins have been also associated with coeliac disease [26],
but the group of gliadin proteins appears to be the primary cause of coeliac disease by gluten
intake [22,27] in genetically susceptible individuals [28]. All three gliadin families, α/β, γ and ω,
have been associated with allergic reactions to gluten and with the development of CD in humans [29–37].
The autoimmune response is due to the deamidation of glutamine residues in gliadins by human
transglutaminase 2 (tTG2) produced in the gut mucosa [22,28,38,39]. These deamidated peptides
can bind to histocompatibility leukocyte antigen (HLA) class II in some humans, which stimulates
lymphocyte T cells and triggers an inflammatory response in the gut [22,23]. Most studies have
reported that gliadins are most responsible for CD [29–37], but some studies have reported that the
high-molecular-weight glutenins can also induce these autoimmune responses in some people [26,40,41].
Glutenins, however, are easily degraded by digestive enzymes, providing mostly di- and tripeptides,
whereas gliadins are more resistant to enzymatic degradation, producing mostly oligopeptides that are
the main cause of inflammatory responses [27]. We hypothesize that the increase in N fertilisation
could be related to a potential increase of gluten in wheat grains and flours and thus to the spread
of coeliac disease. More detailed information is now available from experimental data in field
conditions including studies with a great variety of wheat genotypes growing in distinct areas of world.
By gathering all this information, we aimed to analyse the gluten and gliadin concentrations in the
grains and flour of wheat as a function of N-fertilisation levels and their potential association with
higher coeliac disease prevalence at global scale.

2. Methods

We collected these data searching PubMed, ISI Web of Science and Google Scholar using the
following terms spanning 1960–2019: coeliac, coeliac disease, nitrogen, fertilisation, gliadins, gluten,
glutenin grain, wheat, and flour. We selected only studies providing information of the concentrations
of these compounds in grain and/or flour and data on N-fertilizer doses that could be expressed in
Kg ha−1 y−1. To obtain the data of the prevalence (percentage of coeliac cases in the total population)
or incidence (new cases per 1000 inhabitants and year) of coeliac disease from studies with large
and representative sets of population data, adjusted for age and sex, from 1961 to 2019, we have
also searched PubMed, ISI Web of Science and Google Scholar using the following terms spanning
1960–2019: celiac, coeliac, celiac disease, coeliac disease, gluten, health, time, incidence and prevalence.
We also used the FAO data: FAOSTAT http://www.fao.org/faostat/en/#data. (2019a) and the other
sources cited in each figure caption. In the first bibliographic exploration, we gathered 172 articles.
After data quality selection, we finally used the information provided by 47 articles (Table 1).

We examined the effects of the intensification of N fertilisation by a meta-analysis of the
studies reporting the differences of total contents of gluten, total gliadins, α/β-gliadins, γ-gliadins,

http://www.fao.org/faostat/en/#data
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ω-gliadins and gliadin transcripts (operational taxonomic units) in wheat grains and/or flour under
different levels of N fertilisation by calculating the response ratios from each study (Table 1), as described
by Hedges et al. [42]. The natural-log response ratio (lnRR) was calculated as ln (Xi/Xn) = lnXi − lnXn,
where Xi and Xn are the values of each observation in treated and control plants, respectively.
The sampling variance for each lnRR was calculated as ln[(1/ni) × (Si/Xi)2 + (1/nn) × (Sn/Xn)2]
using the R package metafor 1.9–2 [43], where ni and nn, Si and Sn and Xi and Xn are the sample
sizes, standard deviations and mean response values of the treatments and controls, respectively.
The natural-log response ratios were determined by specifying studies as random factors using the
rma model in metafor. The differences of contents of total gluten, gliadins, α/β-gliadins, γ-gliadins,
ω-gliadins and gliadin transcripts in wheat grains and/or flour under different levels of N-fertilisation
were considered significant if the 95% confidence interval of lnRR did not overlap zero. All statistical
analyses were performed in R 3.6.0 (2019) (Copenhagen Business School, Copenhagen, Denmarck).
We analyzed only the variables with >30 observations available at the global scale. We then examined
the sensitivities of contents of total gluten, total gliadins, α/β-gliadins, γ-gliadins, ω-gliadins and
gliadin transcripts in wheat grains and/or flour under different levels of N-fertilisation using REML
estimation in the rma.unl model for metafor. We also analysed the relationship between the prevalence
of coeliac disease and the per capita wheat intake at country level using a regression type II analysis
conducted with the package lmodel2 [44] (R-Forge, Vienna, Austria).
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Table 1. Responses of the concentrations of total gluten, total gliadins, α/β-gliadins, γ-gliadins and ω-gliadins and gliadin transcripts in wheat grains after an
experimental increase in N fertilisation rates.

Bibliographic Source Experimental Traits Result

Reference Site Type of
Experiment

Tested
N-Fertilisation Rates (Kg N ha−1

y−1 if not Specified)
Genotypes

Changes in Concentrations in Grain and/or
Flour in Response to Increasing

N-Fertilisation

[45] Experimental Farm Shiraz University
(Iran) Field 0, 120, 240, 360 Shiraz variety of winter wheat Increases in gluten concentrations in grain

[46] Bezek experimental station (Poland) Field 0, 50, 80 Triticum aesticum ssp. spelta Increases in total protein and gluten
concentrations in grain

[47] Two field areas of Tunis Field 0, 67
Chili, Biskri, Mahmoudi,
INRAT69, Karim, Razzak,

Omrabiaa and Khiar varieties
Increases in gluten concentrations in grain

[48] Experimental Station J. Hirschhorn
(Argentina) Field 0, 70, 140 Increases in gluten concentrations in grain

[49]
Upland crop experimental farm of
National Institute of crop Science

(Korea)
Field 25, 50, 75 Five Korean wheat varieties

Increases in gluten concentrations in flour.
Increases in α + β-gliadin and decreases inω

and γ-gliadin concentrations

[50] Replicates in five field sites in U.K. Field 100, 200, 350
Five breadmaking wheat varieties

(Cordial, Hereward, Malacca,
Marksman and Xi19)

Increases in total gliadin concentrations in grain

[50] Canada Field 0, 100 Neepawa variety Increases in total gliadin concentrations in grain

[51] Canada Field 0, 50, 100, 150, 200, 250, 300, 350,
400 Neepawa variety Increases in total protein and total gliadin

concentrations in grain

[30] Eight different site sources Field 0, 105, 165, 225 Triticum aesticum ssp. spelta Increases of total epipodes expression of
a-gliadin in grain

[52] Plant Breeding Station of
Sladkovicovo-Novy (Slovakia) Field 120, 140 Winter wheat Increases in total protein and gluten

concentrations in grain

[53] Experimental Station J. Hirschhorn
(Argentina) Field 0, 70, 140 Increases in total gluten concentrations in flour

[54] Alava (Spain) Field 0, 100, 140, 180 Soissons variety Increases in total gliadin concentrations in grain

[55] Spain Pot experiment 37, 48 mg ammonium or nitrate per
pot Cezanne variety Increases in total protein and gliadins

concentrations in flour

[56] Experimental field station Teramo
University (Italy) Field 50, 100, 150, 250 Triticum turgidum L. subsp. durum Increases in total protein, gluten and gliadins

concentrations in flour

[57] Spain Greenhouse 0, 22.2, 66.7, 200 Bobwhite variety Increases in total, α,ω and γ-gliadin and total
protein concentrations in flour

[58] National Center of Irrigation
Technology station (Spain) Field 0, 120 Winter wheat Increases in total gliadins concentrations in flour
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[59] Field (Sweden) Field 0, 70, 140 Sport, Dacke, Dragon and Thasos
varieties

Increases in total proteins and gliadins
concentrations in flour

[60] UK Field 0, 40, 80, 120, 160, 200, 240 Option and Riband varieties Increases in total proteins and gliadins
concentrations in grain

[61] Malice (Poland) Field 0, 40, 80, 120 Tybalt variety Increases in gluten concentrations in grain

[62]
Agricultural experimental Staion of
University of Technology and Life

Sciences of Minikowo (Poland)
Field 80, 120 Spring wheat Increases in gluten concentrations in grain

[6] Peterlauki research and Study Farm
(Latvia) Field 0, 60, 90, 120, 150, 180, 210, 240 Skagen variety Increases in gluten concentrations in grain

[63] Henan Agricultural University
Experimental Satation (China) Field 0, 90, 180, 270, 360, 450 Yumai and Lanko Aizao varieties Increases in total gliadins concentrations in flour

[64] Swadzim Experimental Station
(Poland) Field 0, 50, 100, 150

Durabon, Durabonus,
Duraprimus and Rusticano

varieties
Increases in gluten concentrations in flour

[65] Lincoln Research Farm (New
Zealand) Field 0, 50, 100 Batten, Kotare, Oroua, Rongotea,

Ruapuna and Tui varieties Increases in total gliadins concentrations in flour

[66] Mira (Italy) Field 70, 120, 130, 160, 180, 200, 240 Biensur variety Increases in gluten concentrations in flour

[67] Two different sites (Austria) Field 0, 180 Three varieties: Capo, Renan and
Lindos

Increases in total, α,ω and γ gliadin
concentrations in flour

[68] Experimental Farm of Helsinki
University (Finland) Field 0, 110 Scandinavian, Kadett, Ruso and

Reno wheat varieties
Increases in total proteins concentrations but not

changes in gliadin concentrations in flour

[69] Hungary Field 30–300 Winter wheat Increases in gluten concentrations in flour

[70] Chile Field 0, 220, 250 Increases in gluten concentrations in flour

[71] France Field 40, 60 Seedling from INRA Increases in total gliadins concentrations in flour

[72] Minokowo (Poland) Field 0, 60, 90, 120 Zebra variety Increases in gluten concentrations in flour

[73]
Field experimental Station of

Mediterranean Agronomic Institute
of Bari (Italy)

Field 30, 40, 50, 70 Triticum turgidum subsp. durum Increases in total gluten concentrations in grain
and flour

[74] Brazil Field 0, 50, 100, 150 Quartzo variety Increases in gluten concentrations in grain

[75] Experimental farm of INRA, Grignon,
France Field 40, 60, 120 Soissons variety Increases in total gliadin concentrations in grain

[76] Research field sation of Faculty of
Agriculture (Croatia) Field 0–194 Marija and Soissons varieties Increases in gluten concentrations in grain

[77] Rothamsted Research station (UK) Field 100, 200, 350
Cordiale, Hereward, Istabraq,

Malacca, Marksman
and Xi 19 varieties

Increases in γ-gliadin gene expression
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Table 1. Cont.

[78] Rothamsted Research station (UK) Field 100, 200, 350
Cordiale, Hereward, Istabraq,

Malacca, Marksman
and Xi 19 varieties

Increases inω-gliadin gene expression

[17] Germany Field 0, 40, 120, 180, 200

Dozent, Monopol, Rektor, Apollo,
Ares, Astron, Basalt, Bussard,

Herzog, Ignaz, Kanzler, Monopol,
Obelisk, Sperber varieties

Increases of α/β -gliadin,ω- and γ-gliadins,
total gliadins and gluten concentrations in flour

[79]

Johann
Heinrich von Thunen-Institute,

Federal Research Institute for Rural
Areas, Forestry and Fisheries, in

Braunschweig, Germany

Field 84, 168 Batis variety Increases of α/β -gliadin,ω- and γ-gliadins,
total gliadins and gluten concentrations in flour

[80] Research Station of Warmia and
Mazury University (Poland) Field 80, 120 Spring triticale cv. Andrus Increases of α/β -gliadin, no clear effects onω-

and γ-gliadins in grain

[81] Research Station of Warmia and
Mazury University (Poland) Field 80, 120 Spring triticale cv. Andrus Increases of total gliadins concentrations in in

grain

[82]
Uhrusk Experimental

Station belonging to the University of
Life Sciences in Lublin (Poland)

Field 90, 150 Opatka variety Increases in gluten concentrations in grain

[83] Fields research stations of Idaho and
Monatana state Universities (USA) Field 168, 224, 280 Spring wheat Increases in gluten concentrations in flour

[84]
Futterkamp

and Sonke-Nissen-Koog
Northern Germany

Field 220, 260 Tobak and Asano varieties Increases in total gliadin and gluten
concentrations in flour

[85] Grains Research Centre Kragujevac
(Serbia) Field 60, 90, 120 Increases in gluten concentrations in grain

[86]
China Agricultural University

Research Center field station, Hebei
province, China

Field 180, 240 Zhongmai variety Increases in gluten concentrations in grain

[87]
Chongzhou and Renshou

experimental stations of Sichuan
Agricultural University, China

Field 0, 75, 150, 225
Shumai 969, Shumai 482,

Chuannong 16 and Mianmai 51
varieties

Increases of total, α/β-gliadin andω-gliadins
and gluten concentrations, no clear effects on

ω-gliadins in flour

[88] Germany Pot experiment 0.25, 1.0 and 2.5 g N/pot Privileg variety Increases of total gliadin concentrations
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3. Increasing Gluten and Gliadin Contents with N-Fertilisation

Our meta-analysis found that the increase in N-fertilisation rates was associated with increased
content of total gluten, total gliadins, α/β-gliadins, γ-gliadins,ω-gliadins and gliadin transcripts in
wheat grains (Figure 2). Our analyses also identified a significant relationship (R2 = 0.30, p < 0.001)
between the increase in N fertilisation and the increase in total gliadin content in wheat grains (Figure 3).
Although the analysis has been conducted with very different genotypes of wheat growing under
different soil types and climates, and therefore under very diverse conditions, the level of N fertilisation
explained 30% of the change in gliadin content. These results are consistent with several studies
observing a positive link of nutrient availability with the expression of gliadin genes [19,77,78,89] and all
gluten proteins [17,90–92]. Furthermore, the results are also consistent with common farmer knowledge
on protein concentration in wheat grain being strongly affected by N availability, which leads farmers
to adjust the level of nitrogen fertilisation to obtain the required protein concentration in grain for
bread making [93].
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Figure 2. Response ratios (±95% CI) of contents of total gluten, total gliadins, α/β-gliadins,
γ-gliadins andω-gliadins and gliadin transcripts in wheat grains after an increase in N fertilisation.
See Table 1 and References therein for the sources. The number into parenthesis indicates the number
of studies. *** p < 0.0001.
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Figure 3. Increases in total gliadin contents in wheat grains as a function of the increases in N-fertilisation
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The per capita annual increase in gliadin intake from wheat and derived foods during 1961–2010
was estimated to be approximately 1.4 kg y−1 (+58% ± 7.5%) (Mean ± SE; Figure 4). This estimation
took into account the annual intake of wheat and derivatives at the global scale, [3] the increase in N
fertilisation in wheat crops and the relationships between N fertilisation and gliadin increase (Figure 3
and Table 1). The increase in N-fertilisation from approximate 10 to 100 kg N ha−1 corresponded to an
increase in gliadin contents in grains/flour from 44 to 59 mg g−1, respectively) (Figure 3 and Table 1).
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4. Increased Prevalence of Coeliac Disease

Part of the increase in CD prevalence in populations in recent decades has frequently been
attributed to improved diagnosis [94], with some studies suggesting that the increase in diagnoses
was due to increased awareness [95]. Some studies of populations over time, however, have reported
an actual increase in CD development in recent decades beyond the improvement of diagnostic
efficiency [96]. The increase in diagnosed cases of new coeliac patients may thus be due to more
efficient diagnosis and higher awareness, but also to changes in environmental variables associated
with this increase in the percentage of a population affected by CD. Our study provides good evidence
of a strong potential increase in the average human intake of gliadins by associating the changes in
global per capita intakes of wheat and derivatives with the empirical effects of a global 10-fold increase
in intensification of N fertilisation during 1961–2010. The contents of digested peptides derived from
gliadin in the gut have been demonstrated to be a determinant for the appearance of autoimmunological
responses and CD manifestation [97,98], and the amount of gluten/gliadin necessary to trigger CD in
susceptible people can vary [99].

A comparison of the changes in global per capita intake of gliadins from 1961 to 2010, with data
for CD prevalence (percentage of coeliac cases in the total population) or incidence (new cases per
10,000 inhabitants per year) provided by studies of large and representative sets of population data,
adjusted for age and sex is shown in Figure 5. The increases in prevalence/incidence during this
period coincided with the per capita increase in gliadin intake associated to the increase in the
application of N fertilizer per tonne of wheat grains produced and with the per capita increase
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in gliadin intake (Figure 5). The higher per capita ingestion of gluten/gliadin globally in recent
decades could thus account for, at least partially, the spread of coeliac pathology in the global human
population. New research is though warranted to test this possibility and to figure out why instead
the prevalence of CD is comparable between countries in which the intake of gluten is much higher,
e.g., Italy with its high consumption of pasta, than in other EU countries where the intake is much
lower [100]. Long-term evolutionary adaptation may play a role there. However, several studies
have demonstrated the link between probability of coeliac disease development and gluten intake.
For example, Makharia et al. [101] observed that northern Indian populations had much higher rates
of CD than southern Indian populations despite having similar predisposing HLA susceptibility genes
across the country. This was primarily attributed to the mainly wheat-based diet in the North and
the rice-based diet in the South. We have checked the available data at country level for the period
2001–2017 and found a positive relationship between prevalence of coeliac disease and per capita
wheat intake across 38 countries (Figure 6).
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Figure 5. Changes in global per capita intake of gliadins, global per capita intake of gliadins per kg of
N fertilisation, amount of N fertilizer applied per tonne of harvested wheat grains and the prevalence
(percentage of coeliac cases in the total population) or incidence (new cases per 1000 inhabitants and
year) of coeliac disease from studies with large and representative sets of population data, adjusted for
age and sex, from 1961 to 2010 [23,25,102,103].
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Figure 6. Relationship between the prevalence of coeliac disease and the per capita wheat intakes at
country level. DZA = Argelia. ARG = Argentina. AUS = Australia. AUT = Austria. BFA = Burkina Faso.
BRA = Brazil. CZE = Czech Republic. DNK = Denmark. EGY = Egypt. EST = Estonia.
CUB = Cuba. FIN = Finland. DEU = Germany. GRC = Greece. HUN = Hungary. IND = India.
ISL = Iceland. IRN = Iran. IRL = Ireland. ISR = Israel. ITA = Italy. JPN = Japan. MEX = Mexico.
NLD = Netherland. NZL = New Zealand. NOR = Norway. POL = Poland. PRT = Portugal.
RUS = Russia. SVN = Slovenia. ESP = Spain. SWE = Sweden. CHE = Switzerland. TUN = Tunisia.
TUR = Turkey. GRB = United Kingdom. USA = United States of America. URY = Uruguay.
Data from [3,15,104–108].

The modern procedures of management and processing (shortening the fermentation time, use of
non-acid dough, add protein fortification and use of refined white flour) could have also increased
the exposure to immunoreactive compounds [109]. The use of different genotypes of wheat may be
involved too since the gluten and gliadin composition are highly determined by environmental effects
but also by genetic differences among wheat varieties. The genotypes and varieties of cultivated
wheat have also changed in these last 60 years. Breeding practices in wheat genotypes have been
mainly addressed to achieve higher yield, rheological conditions and gluten quality and high protein
concentration for better baking and also for better livestock foods [7,110,111], providing stronger
glutens rich in glutenins [89,112] but with scarce effects on gliadins and coeliac disease prevalence [10].
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Some studies have reported that breeding activities in the last decades have contributed
to increase the prevalence of coeliac disease [113], but there are more studies reporting no
contribution of modern wheat breeding practices to coeliac disease prevalence during the
last decades [109,112,114]. Most studies have reported that both modern and ancient wheat
genotypes have similar concentrations of the pathogenic peptides responsible of inflammatory
diseases [115–122], similar quantities of immunostimulatory epitopes [109,115,119,123], similar human
T cell immunological responses [124–127] and similar immunogenic peptide sequences [128].
Some studies have even concluded that old varieties produced larger amounts of peptides containing
immunogenic and toxic sequences than modern ones [129] and also that old varieties trigger more
inflammatory processes in gut [130]. The current literature does not thus sustain the hypothesis that
the shift in wheat genotypes could be a significant potential explanation for the rise in coeliac disease
at global scale. Furthermore, breeding is now aiming to produce new wheat genotypes with less
gliadin epitopes but without clear success yet [30]. The research to find wheat genotypes with less
capacity to produce coeliac disease, i.e., less immune-reactive wheat genotypes, is very recent [116].
Independently of wheat subspecies, our results show that the increase in N fertilisation is related with
increasing levels of gluten and gliadin concentrations in wheat grain and flour in all types of wheat
genotypes and varieties studied, that the average per capita intake of wheat flour and grain food
derivatives has been kept more or less constant in the last 60 years, and therefore the per capita ingest
of gluten and gliadins has substantially increased.

There are, moreover, other possible factors predisposing to the development of CD such as
the many substances emitted by humans into the environment. For instance, some studies have
reported significant relationships between the ingestion of glyphosate, an increasingly used herbicide,
and the predisposition to the development of CD [39,131]. In fact, CD is a very complex pathology,
whose development involves not only environmental factors (gluten) but also genetic factors. Recently,
a gene Inc13 has been identified that encodes for a noncoding RNA that blocks and represses the
expression of certain inflammatory genes under normal conditions. The Inc13 expression can be
inhibited by stimulation and increased expression of inflammatory genes favoring CD [132]. Moreover,
the inflammatory over-expression of T cells could be also favoured under the infestation of certain
reovirus that would suppress peripheral regulatory T cell [133]. In any case, though, we now know
that autoimmune responses are generally triggered by gliadin peptides [39], and we have shown here
that these gliadin peptides increase their concentration in grains in response to the intensification of N
fertilisation (Figures 2 and 3).

5. Conclusions

The intensification of N fertilisation of wheat crops has been very high (ten-fold since 1961).
Our meta-analysis of the literature has demonstrated that wheat growing under higher soil N availability
produces not only higher yield but also grains and flours with higher gliadin concentrations in all
type of wheat genotypes. Since gliadins are the main direct responsible triggering coeliac disease
and the per capita intake of wheat products in the last decades has remained more or less constant,
there has been a rise in per capita intake of gliadins at the global scale. We suggest that the rise in
coeliac disease reported in several human populations around the world could be related, at least in
part, to N fertilisation intensification of wheat crops. If this suggested link between N fertilisation
intensification and coeliac disease expansion is demonstrated in future experimental studies, we will
have an important tool to control and prevent the expansion of coeliac disease.
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