
HAL Id: hal-04624334
https://hal.science/hal-04624334v1

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three-dimensional numerical investigation of a
suspension flow in an eccentric Couette flow geometry

A. Badia, E. d’Ambrosio, Y. d’Angelo, F. Peters, L. Lobry

To cite this version:
A. Badia, E. d’Ambrosio, Y. d’Angelo, F. Peters, L. Lobry. Three-dimensional numerical investigation
of a suspension flow in an eccentric Couette flow geometry. Physics of Fluids, 2024, 36 (2), pp.023349.
�10.1063/5.0189379�. �hal-04624334�

https://hal.science/hal-04624334v1
https://hal.archives-ouvertes.fr


Three-dimensional numerical investigation of a suspension flow in an

eccentric Couette flow geometry
A. Badia,1, 2 E. D’Ambrosio,2 Y. D’Angelo,1 F. Peters,2 and L. Lobry2

1)Université Côte d’Azur, Laboratoire Mathématiques & Interactions J.A. Dieudonné, LJAD, UMR 7351 CNRS, Nice,

France
2)Université Côte d’Azur, Institut de Physique de Nice, InPhyNi, UMR 7010 CNRS, Nice,

France

(*Electronic mail: Laurent.Lobry@univ-cotedazur.fr)

(Dated: 11 January 2024)

This paper investigates the influence of eccentricity on flow characteristics and particle migration in Couette geome-
tries. The study involves numerical simulations using the recent frame-invariant model developed by Badia et al. 1 . The
study begins with a two-dimensional analysis, focusing first on Newtonian fluid, in order to thoroughly characterize
the specific properties of this flow configuration. Next, the impact of eccentricity on particle migration in an isodense
suspension is examined by numerical simulations based on the experiments conducted by Subia et al. 2 . Furthermore,
the study is extended to include a full three-dimensional analysis of a dense suspension flow in an eccentric Couette ge-
ometry, based on resuspension experiments conducted by Saint-Michel et al. 3 and D’Ambrosio, Blanc, and Lemaire 4 .
The main objective of the latter study is to investigate the influence of eccentricity on the resuspension height and on the
calculation of the particle normal stress in the vertical direction through volume fraction profile analysis. Our results
show that even minimal eccentricity can lead to significant changes compared to the centered case.

I. INTRODUCTION

Whether in the industrial sector or in the natural sciences,
the description of flows involving suspensions requires an ad-
vanced understanding of the mechanisms operating in such
complex flows. Depending on the geometry and the type of
suspension, various complex physical phenomena, coupled or
not, may be involved.

Cylindrical Couette geometry is one of the most commonly
used devices for studying and understanding the behavior of
suspensions. Since the first work of Gadala-Maria 5 , it is
known that for such a geometry, a concentrated isodense sus-
pension undergoes particle migration. The rotation of the in-
ner cylinder of a Couette cell containing a uniform suspen-
sion generates particle migration towards the outer cylinder,
where the shear rate is the lowest. Several experimental6–10,
numerical1,2,11–13 and even analytical works9,14,15 have been
carried out to study and measure such particle migration.

Similarly, when an initially sedimented dense particle sus-
pension is sheared in a cylindrical Couette cell, vertical mo-
tion of the particles is induced until a non-uniform station-
ary vertical concentration distribution is reached. This phe-
nomenon, called viscous resuspension, is the result of the bal-
ance between a downward flow of particles due to gravity and
an upward flow of particles induced by shear16. Several pa-
pers in the literature have addressed this problem. Indeed,
Acrivos, Mauri, and Fan 17 studied viscous resuspension by
both analytically establishing the vertical concentration pro-
file and experimentally measuring the resuspension height.

Particle migration and viscous resuspension share the same
theoretical framework. We give here a short account on the
literature concerning the modeling of particle migration. De-
tailed historical reviews can be found in other sources18–20.
The simplest theoretical description of particle migration, and
the first from a historical perspective, is based on a phe-
nomenological diffusion equation, where the diffusion flux is

related to the shear rate and volume fraction gradients6,9. De-
spite its simplicity and suitability for computational studies,
Denn and Morris 18 noted conflicts with experiments in ge-
ometries beyond the Couette cell. Then Nott and Brady 14 in-
troduced the Suspension Balance Model (SBM) to explain the
migration observed in their particle resolved simulations of a
channel flow. Starting from the momentum balance equation
for the particle phase, they identified the divergence of a par-
ticle stress as the driving force that induces the particle flux.
In the considered (parallel) channel flow, the stress anisotropy
was not relevant. Taking the stress anisotropy into account
is mandatory when curvilinear geometries are involved. The
SBM was reformulated by Morris and Boulay 15 to this pur-
pose, allowing to generalize the SBM to account for flow
and migration in the main rheometrical flows. This refor-
mulation was confirmed by experiments by Dbouk, Lobry,
and Lemaire 21 . Later, a frame-invariant formulation for the
stresses was proposed to tackle general flows, mainly 2D, as
opposed to quasi-simple-shear flows22. Finally, the SBM was
revisited in order to discuss in depth the nature of the driving
stress23,24.

As highlighted above, a precise knowledge of the suspen-
sion rheology is of primary importance in order to tackle sus-
pension flows, including migration and resuspension. A huge
amount of experimental, theoretical and numerical work has
been devoted to the characterization of the suspension rhe-
ology and its relation to the relevant particle scale mecan-
isms, including hydrodynamic interactions and contact forces.
The interested reader is referred to recent reviews for de-
tailed information18,19,25,26. One of the main issues is the
anisotropic rheological behaviour of such suspensions. Exper-
imental characterization of the full stress tensor has been un-
dertaken for a long time21,27–29. The contribution of R.Tanner
and co-workers in that field is of primary importance, in par-
ticular concerning the experimental determination of the rel-
evant material functions in shear30,31 or elongational flow32,
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including their rate dependence33 and their relation to the par-
ticle surface roughness34. In addition, they recently proposed
a general tensorial formulation of the stress constitutive laws
for non-Brownian suspensions35 inspired from polymer ma-
terial rheology, which model is close to the one used in the
following.

Modeling stress anisotropy in general suspension flow is
not an easy task. Some models explicitly accounts for the
shear-induced microstructure, often modeled using a time
varying tensor field. Such models are able to tackle even
complex flows with reasonable accuracy, including shear-
reversal36–38, superposition of steady and perpendicular oscil-
latory shear39 and shear rotation40, with the drawback though
that they are sometimes difficult to calibrate. Some models
follows a simpler approach, as in the present paper, where no
explicit reference to the microstructure is included1,35,41. Such
models are simpler, but cannot tackle fast transient flows like
shear-reversal.

Regarding the particle stress responsible for migration and
resuspension, experimental determination have been carried
out too21,42. The work by Zarraga, Hill, and Leighton 27

or those, more recent, by Saint-Michel et al. 3 and by
D’Ambrosio, Blanc, and Lemaire 4,43 deal with the determi-
nation of the normal stress in the vorticity direction from ex-
perimental measurements of the solid concentration profile. It
should be noted that very few studies dealing with discrete
numerical simulations of this problem can be found in the
literature44. Other papers deal with particle resuspension in
the direction of the velocity gradient45, in particular in the
frame of bedload transport46.

The flow of a Newtonian fluid between two eccentric cylin-
ders has been widely studied, both theoretically and numeri-
cally. One of the important features of this flow is the devel-
opment of a recirculation zone when the eccentricity exceeds
a threshold value47,48, leading to additional mixing effects49.
Subia et al. 2 propose a short bibliography where several the-
oretical and numerical papers on the topic are listed. If a rich
literature is available, which deals with the flow of a Newto-
nian fluid in an eccentric Couette geometry, or with the sus-
pension flow in a centered Couette geometry, the situation is
quite different concerning the suspension flow in an eccentric
Couette geometry. Among the few studies available in the lit-
erature, we can mention the articles by Phan-Thien et al. 50

and by Subia et al. 2 who numerically and experimentally
studied the flow of an isodense suspension for two different
values of the eccentricity. However, to our knowledge, the
case of a suspension of dense particles has not been tackled in
the past.

In the present paper, we make use of numerical simulation
to study in detail the flow of non-Brownian suspensions in an
eccentric Couette geometry. To this aim, we use the frame-
invariant model recently developed and validated by Badia
et al. 1 . In the frame of this three-dimensional model, close
to the SBM, the driving force for particle migration originates
in the divergence of the contact contribution to the stress. All
stresses are computed from frame-invariant constitutive laws
taking into account the anisotropic normal stresses and al-
lowing the simulation of quasi-stationary suspension flows in

general geometries. Such constitutive laws share similarities
with second-order fluid modeling, a well-established concept
in polymer rheology51,52. Its adaptation to suspension flow
problems is very close to that proposed by Lhuillier 23 and,
as mentioned above, by Mahmud, Dai, and Tanner 35 . This
model makes it possible to study numerically flows that are
more complex than conventional rheometric flows, and which
are found in industrial applications such as journal bearings.

In section II, we recall the equations of the frame-invariant
model developed by Badia et al. 1 . Section III presents a study
of the two-dimensional (2D) flow in an eccentric Couette ge-
ometry, starting with a Newtonian fluid as an introduction. In
a second part, we will be interested in the influence of the
eccentricity on particle migration in an isodense suspension
through the simulation of the experiments by Subia et al. 2 . Fi-
nally, section IV deals with the three-dimensional (3D) eccen-
tric Couette flow of a dense suspension. This study is based
on the resuspension experiments by Saint-Michel et al. 3 and
by D’Ambrosio, Blanc, and Lemaire 4 .

II. MATHEMATICAL MODELING

In a previous work1, we proposed a numerical modelling
suitable for any quasi-steady state suspension flow in general
geometry. This model, developed and validated numerically
on several kinds of flow, is a version of the SBM, which is
based on a continuous single-phase approach, derived from
a two-phase modelling. The stress tensors are expressed via
a frame-invariant formulation allowing the simulation of any
type of quasi-steady flow. Below are recalled the modelling
equations that we consider.

The suspension, modelled here as a continuous medium,
consists of rigid spherical particles of radius a and density ρp

suspended in a Newtonian fluid of viscosity η f and density ρ f .
The main constitutive equations, i.e. continuity, momentum
and particulate phase continuity equations, can be expressed
as follows:

∇.u = 0 (1a)

∂ρmu

∂ t
+∇.(ρmu⊗u) =∇.Σ+ρmg (1b)

∂φ

∂ t
+∇.(φu)+∇.(φused) =−∇.Jmigr (1c)

Here, φ denotes the volume fraction of particles, u and ρm are
the average velocity and density of the mixture defined as u =
φvp+(1−φ)v f , ρm = φρp+(1−φ)ρ f , where vp and v f are
respectively the underlying particle and fluid phase velocity
field. Σ is the total stress of the suspension defined as Σ =
Σ

f +Σ
c, with Σ

f the fluid stress tensor and Σ
c the particle

contact stress tensor. g is the gravitational acceleration.
used is the sedimentation velocity corrected for the suspen-

sion acceleration:

used =
2a2 f (φ)

9η f

(

(ρp −ρ f )

[

g− Du

Dt

])

(2)
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where f (φ) = (1 − φ)5.1 is the empirical hindered settling
function.
Jmigr is the migration flux of particles originating from the
presence of contact forces between particles :

Jmigr =
2a2 f (φ)

9η f

∇.Σc (3)

where Σ
c stands for the direct contribution of the contact

forces to the stress, with no hydrodynamic contribution. The
choice of Σc as the driving stress for particle migration de-
serves a few words. In the pioneering version of the SBM,
the particle stress including the fluid particle interaction con-
tribution was selected14,15,53. Later, Lhuillier 23 and Nott,
Guazzelli, and Pouliquen 24 showed that the relevant stress
primarily originates in the contact force contribution, possibly
supplemented by some hydrodynamic contribution though. In
the present modeling, the simplest version of the SBM is cho-
sen.

This system of equation is closed by giving a frame-
invariant expression for the total and contact stress tensors1:

Σ=−pI+η f ηsγ̇
(

2Ê (4a)

+2
(

N̂1 +2N̂2
)

(

Ê.Ê− tr(Ê.Ê)

3
I

)

− N̂1
1
γ̇

DÊ

Dt

)

Σ
c= η f ηsγ̇

(

Σ̂
c
33I+2

ηc

ηs

Ê (4b)

+4

(

Σ̂
c
11 + Σ̂

c
22

2
− Σ̂

c
33

)

Ê.Ê−
(

Σ̂
c
11 − Σ̂

c
22

) 1
γ̇

DÊ

Dt

)

where p is the average fluid pressure, I is identity, Ê = E/γ̇

is the reduced deformation rate tensor and γ̇ =
√

2E : E is the
shear rate; DÊ/Dt denotes the Jaumann derivative, defined
as:

DÊ

Dt
=

∂ Ê

∂ t
+(u.∇)Ê+ Ê.Ω−Ω.Ê (5)

with Ω the vorticity tensor. Since we deal here with quasi-
steady state flows, the term ∂ Ê/∂ t can be omitted. Parameters
ηs, ηc, N̂i = Ni/(η f ηsγ̇) and Σ̂

c
ii = Σ

c
ii/(η f ηsγ̇) are functions

of φ and denote respectively the effective viscosity, the con-
tact viscosity, the normalized normal stress differences (N1 =
Σ11−Σ22 and N2 = Σ22−Σ33) and the normal contact stresses
in simple shear flow. The reader is referred to Badia et al. 1 for
detailed expressions of these parameters, which have been de-
termined from particle scale simulations54–56. It’s worth not-
ing again that Mahmud, Dai, and Tanner 35 (please also refer
to the paper by Tanner 25 ) have recently formulated a frame-
invariant constitutive relation, closely similar to the expres-
sion found in equation (4a), to calculate the total stress.

Eqs. 4 and 5 deserve a few comments. A detailed discussion
may be found in Badia et al. 1 . Focusing on Eq. 4b and leav-
ing aside the pressure term, the third and fourth term inside the
parenthesis induce normal stress differences in homogeneous

simple shear flow. This is easily understood in the case of the
third term, which depends on the squared reduced deforma-
tion rate tensor Ê. The fourth term is responsible for the first
normal stress differences as measured in simple shear flow.
In homogeneous simple shear flow, and in steady concentric
cylindrical Couette flow, the Jaumann derivative involves the
difference between the angular velocity of the eigenframe of
Ê, ΩE

51, and the fluid angular velocity, Ω:

DÊ

Dt
= (ΩE −Ω) · Ê− Ê · (ΩE −Ω) (6)

In homogeneous shear flow and in concentric cylindrical Cou-
ette flow, ‖ΩE −Ω‖ = γ̇/2 and Eq. 4 with Eq. 5 yields the
same expression for the stresses as the usual formulation in
simple shear flow, in the flow-aligned frame (v,∇v,∇× v).
As an example, in the case of the centered cylindrical Couette
flow, the contact stress tensors writes in the azimuthal refer-
ence frame (er,eθ ,ez):

Σ
c = 2η f ηcE

+η f ηsγ̇



Σ̂
c
33I+(

Σ̂
c
11 + Σ̂

c
22

2
− Σ̂

c
33)





1 0 0
0 1 0
0 0 0





− Σ̂
c
22 − Σ̂

c
11

2





−1 0 0
0 1 0
0 0 0







 (7)

= 2η f ηcE+η f ηsγ̇





Σ̂
c
22 0 0
0 Σ̂

c
11 0

0 0 Σ̂
c
33





As discussed by Badia et al. 1 , the present frame-invariant for-
mulation allows computation of the stress tensor when the
flow field is locally very different from a standard simple shear
flow, i.e. when the flow-aligned tensor model is difficult to
use, in particular in 2D flows when ‖ΩE −Ω‖ ≪ γ̇/2 (exten-
sional flow) or ‖ΩE −Ω‖≫ γ̇/2 (solid body rotation). The in-
terested reader is referred to Badia et al. 1 for an in-depth dis-
cussion, and to Badia 57 for a comparison with the 2D frame-
invariant model proposed by Miller, Singh, and Morris 22 .

The numerical resolution of the system of equations (1) is
performed by making use of the popular open source software
package OpenFOAM. OpenFOAM is a C++ Computational
Fluid Dynamics toolbox that uses the finite volume method on
a colocated grid for the discretization of the partial differen-
tial equations system. Again, we refer to the paper by Badia
et al. 1 for a detailed presentation of the algorithm and dis-
cretization schemes used. It should be noted that in the present
work we use an upwind-downwind discretization scheme for
the term related to sedimentation flux in equation (1c)58,59.
This scheme guarantees the solution for a problem with dis-
continuous flux to be bounded.
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FIG. 1. Sketch of the eccentric Couette geometry

III. TWO-DIMENSIONAL ECCENTRIC COUETTE FLOW

A. Newtonian fluid

The flow of a Newtonian fluid in an eccentric Couette ge-
ometry, i.e. when the axes of the inner and outer cylinders are
parallel but not merged, has been widely studied, both theo-
retically and numerically. One of the well-known features of
this flow is the development of a recirculation zone for a suffi-
ciently large eccentricity. A first approach to solve this prob-
lem analytically is the lubrication approximation60. However,
this method is limited to cylinders with nearly equal radii. An-
other approach, more elaborate, is that of Wannier 47 who pro-
poses an analytical solution by solving biharmonic equations
for the stream function. We refer to the paper by Subia et al. 2

for a brief bibliography on this topic.
Throughout the present work, the outer cylinder, centered at

Oout and of radius Rout , is stationary, while the inner cylinder,
centered at Oin and of radius Rin, rotates at an angular velocity
ω (see Fig. 1). The distance between the respective parallel
axes is denoted by e and the eccentricity ratio ε is defined as
ε = e/(Rout −Rin). The origin of the reference frame (ex, ey)
is the center of the inner cylinder Oin. Let M be any point
located between the two cylinders. As shown in Fig. 1, θ
defines the angle formed by the segment OinM and the axis
−ey. We consider for the time being that the cylinders are
infinite so that the flow is invariant in the Ez direction, and
takes place in the plane orthogonal to the cylinders axes.

First, we want to calculate the velocity and pressure asso-
ciated with this flow. The geometry studied is that of Subia
et al. 2 , i.e. cylinders of radius Rin = 6.4 mm, Rout = 25.4
mm and for two values of the eccentricity ratio ε = 1/3 ,

(a)

(b)

FIG. 2. 2D computational mesh for the eccentric Couette geometry:
100 meshes in the radial direction and 200 meshes in the azimuthal
direction. (a) ε = 1/3 (b) ε = 1/2.

ε = 1/2. This first study is performed for a small Reynolds
number Re = (Rout −Rin)Rinωρ f /η f ≈ 0.039. The numerical
mesh is 2D with 100 meshes in the radial direction and 200
meshes in the azimuthal direction, see Fig. 2. Regarding the
boundary conditions, an angular velocity is imposed on the in-
ner cylinder while a no-slip condition is imposed on the outer
cylinder. Please refer to1 for the boundary conditions applied
to the other variables.

In Fig. 3, the pressure at the outer cylinder obtained from
the numerical simulation is plotted as a function of angle θ for
all two values of the eccentricity and compared to the analyti-
cal solutions of Wannier 47 . Similarly, in Figs. 4 and 5, we plot
the streamlines, a color map of the norm of the velocity vector
and the azimuthal velocity profile in the large gap region along
the ey axis. This profile is compared to the theoretical solu-
tion by Wannier 47 for all two values of the eccentricity. First,
we observe that the numerical and analytical solutions are in
very good agreement. We also note that, contrary to a cen-
tered Couette flow, a non-zero azimuthal pressure gradient is
induced (∂ p/∂θ 6= 0, Fig. 3). In the main, this pressure gradi-
ent is associated with the formation of an additional parabolic
(Poiseuille) type flow in the azimuthal direction. The flow
may be understood as the superposition of a Poiseuille flow,
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(a) ε = 1
3

(b) ε = 1/2

FIG. 3. Pressure profiles at the outer cylinder for eccentricity ratios
of: (a) ε = 1

3 , (b) ε = 1/2. The pressure is normalized by the typical
shear stress τ = η f ωRin/(Rout −Rin). The red line is the analytical
solution of Wannier 47 while the blue points denote the numerical
solution of the model used here.

associated with the pressure gradient, and a Couette flow, as-
sociated with the rotation of the inner cylinder60. Indeed, the
flow being incompressible, the flow rate must necessarily be
conserved. However, the flow rate of the underlying Couette
flow varies with the angular position, since the thickness of
the gap varies, while the velocity of the liquid at the inner
cylinder does not. Consequently, to ensure this conservation,
a Poiseuille flow is generated to counterbalance this flow rate
variation. It takes place in the direction of shear, to increase
the flow rate, in the narrow region and in the direction opposite
to shear, to decrease the flow rate, at the large gap (see Fig. 6).
The greater the eccentricity, the stronger the Poiseuille flow.
As displayed in Figs. 4 and 5, the azimuthal pressure gradient
may considerably alter the flow. While at ε = 1/3, the over-
all features of a centered Couette flow are recovered, it is not
the case for the larger value ε = 1/2, where a recirculation
flow takes place in the large gap region. In the latter case, the
Poiseuille flow is strong enough to reverse the velocity and to
induce this recirculation flow. In Figs. 7a and 8a, we plot the
χ classification criterion – Eq. (8) – introduced by Ryssel and
Brunn61:

χ =
2‖∆Ω‖

γ̇
2 +‖∆Ω‖

(8)

with ∆Ω=ΩE −Ω, the relative angular velocity of the strain
rate tensor with respect to the liquid (see Badia et al. 1 ). This
criterion is used to classify the type of flow : χ → 0 corre-
sponds to a pure extensional flow, χ → 1 to a simple shear
flow and χ → 2 to a solid-body rotation. We observe that,

for ε = 1/3 (Fig. 7a), the flow is a simple shear flow over
the whole domain, while for ε = 1/2 (Fig. 8a), solid-body ro-
tation and pure extensional flow take place over a thin zone
within the recirculation area. The position of this latter zone
is a bit counterintuitive since it may have been expected that
the extensional flow zones would be located near the narrow
gap region, where the gap narrows and then widens. It should
also be noted that the solid body rotation region is not situated
right at the center of the recirculating area, where the shear
rate keeps a finite value. Actually, the solid-body rotation and
pure extension regions are located in the vicinity of the re-
gions where the shear rate vanishes (Fig. 8b). These regions
exist only when a recirculating flow is generated. It should be
noted that in the ε = 1/3 case, the shear rate vanishes at the
outer cylinder in the large gap region (Fig. 7b), as it vanishes
in the solid-body rotation region for the ε = 1/2 case (Fig. 8).
The reason is the following: the value ε = 1/3 corresponds (at
least approximately) to the particular value of the eccentricity
beyond which the recirculation flow occurs. We can therefore
observe the beginning of this recirculation in Fig. 7b.

B. Suspension flow

We are interested here in an isodense suspension flow (ρp =
ρ f ) in an eccentric Couette geometry. We take up the experi-
ments by Subia et al. 2 whose geometry is the same as in the
previous section. The mixture is composed of PMMA parti-
cles of radius a = 337.5 µm and density ρp = 1180 kg.m−3,
suspended in a Newtonian fluid of viscosity η f = 4.95 Pa.s
and density identical to that of the solid. The inner cylinder
rotates at an angular velocity of ω = 90 rpm corresponding
to the Reynolds number Re = (Rout −Rin)Rinωρ f /η f ≈ 0.27.
In the initial state, the Couette contains a uniform suspension
of concentration φbulk = 0.5. In order to better visualize the
influence of the eccentricity, we start with the simulation of
a centered geometry (ε = 0). The numerical calculations are
performed on the same 2D mesh as in the previous section
(Fig. 2).

It is well known that particles in a Couette flow migrate
from the inner cylinder to the outer cylinder, i.e. to the low
shear rate region7,8,10,43. In the present case (Fig. 9), since the
gap (Rout −Rin) is quite large and the initial concentration is
high, migration is considerable and the suspension is jammed
(φm = 0.583) close to the outer cylinder.

The simulations of the experiments by Subia et al. 2 for
eccentricity ratio of ε = 1/3 and ε = 1/2 yield numerical
data in fair agreement with the experimental measurements
both in steady flow (Fig. 10) and during the transient migra-
tion (Fig. 11). This constitutes an additional validation of the
model developed by Badia et al. 1 . As shown in Fig. 12, the
steady concentration distribution is strongly affected by the
eccentricity. Indeed, for the lowest eccentricity ratio ε = 1/3,
jamming is reached in the large gap near the outer cylinder,
similarly to the case of the centered Couette geometry. In
contrast, for an eccentricity ratio of ε = 1/2, jamming does
not occur near the outer cylinder but rather within the re-
circulation zone. Moreover, as experimentally and numeri-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
8
9
3
7
9



6

(a) (b)

FIG. 4. Flow velocity normalized by the velocity at the inner cylinder ωRin for ε = 1/3: (a) streamlines and velocity norm, (b) azimuthal
velocity profile across the large gap along the ey axis.

(a) (b)

FIG. 5. Flow velocity normalized by the velocity at the inner cylinder ωRin for ε = 1/2: (a) streamlines and velocity vector norm, (b) azimuthal
velocity profile across the large gap along the ey axis.

FIG. 6. Numerical pressure distribution, normalized by τ =
η f ωRin/(Rout − Rin), for ε = 1/3. Illustration of the flow which
may be understood as a superposition of Couette flow and Poiseuille
flow.

cally observed by Subia et al. 2 , symmetry breaking occurs for
both values of the eccentricity ratio. In both cases, the steady
volume fraction and shear rate distributions are tilted toward
the counterclockwise direction. In addition, for the largest
value of the eccentricity ratio ε = 1/2, a strong modulation of
both distributions occurs in the wide gap region, starting from
the entrance of the expansion area, due to the recirculation
flow, which is rather inclined toward the clockwise direction
(Fig. 12c-12d). Figure 12 also shows that the volume fraction
distribution has the same general features as the shear rate dis-
tribution for both values of the eccentricity ratio. The concen-
tration is higher in low shear rate locations, that is consistent
with the usual direction of particle migration: in the ε = 1/2
case, the region of lowest shear rate moves to the center of the
recirculation area, while in the ε = 1/3 case, it is found in the
vicinity of the outer cylinder. Finally, in both cases, particle
migration interacts with the convective transport of particles
and contributes to generate a complex asymmetric flow.

When considering the flow kinematics again, it can be ob-
served (Fig. 13) that the χ classification criterion for this sus-
pension flow gives the same result as for a Newtonian fluid in
the case of ε = 1/3, i.e. the flow is everywhere a simple shear.
In the case of ε = 1/2, the solid–body rotation zone is larger,
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(a) (b)

FIG. 7. Representation of the flow kinematics for ε = 1/3: (a) Flow classification with the χ criterion, (b) shear rate γ̇ normalized by the shear
rate near the inner cylinder γ̇(Rin).

(a) (b)

FIG. 8. Representation of the flow kinematics for ε = 1/2: (a) Flow classification by χ criterion, (b) shear rate γ̇ normalized by the shear rate
near the inner cylinder γ̇(Rin).

and not symmetrical with respect to the symmetry axis of the
geometrical boundaries which is most probably due to the in-
crease of the concentration in the centre of the recirculation
zone.

As a conclusion, as already shown by Subia et al. 2 , the ec-
centric Couette flow of non-Brownian suspensions, for suffi-
ciently high eccentricity ratio, presents significant complexity
due to the feedback of particle migration on the development
of the recirculation flow. This results in particular in an al-
tered shear rate distribution, compared to the Newtonian fluid
flow, where the symmetry of the geometrical boundaries is
broken. Noticeably, the volume fraction distribution approxi-

mately mirrors the shear-rate distribution. The flow complex-
ity is also reflected by the distribution of the reduced angular
velocity difference χ , according to which the flow in the re-
circulation region rather approaches a rigid body motion. The
present numerical modelling proves to be able to accurately
tackle all aspects of this complex flow, including velocity and
volume fraction distributions in transient and steady flow, and
their variation with the eccentricity.
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(a) (b)

FIG. 9. Computed volume fraction distribution for ε = 0 at steady state: (a) color map over the whole domain (b) radial profile along the ey

axis.

FIG. 10. Volume fraction along the ey axis for ε = 1/3 at steady
state. The blue points correspond to the experiments by Subia et al. 2

while the red line represents the numerical solution of the model used
here.

IV. VISCOUS RESUSPENSION

Viscous resuspension refers to the process during which,
under the effect of shear, a bed of initially sedimented dense
particles becomes suspended. We simulate in the present sec-
tion a cylindrical Couette cell containing a suspension of ini-
tially settled dense particles (ρp>ρ f ). As the inner cylinder
begins to rotate, the contact stresses induce an upward flux of
particles, opposing the effect of gravity until a stationary state
is reached. The particles are then distributed non-uniformly
throughout the Couette flow.

In Section IV A, a centered geometry will be addressed,
mostly as a validation of the numerical modelling – Eqs. (1).
To this purpose, the data from the numerical computation will
be compared to analytical solutions and experimental mea-
surements. In Section IV B, the viscous resuspension in an ec-
centric cylindrical Couette geometry will be considered, and
the influence of the eccentricity established.

A. Centred Cylindrical Couette Geometry

Acrivos, Mauri, and Fan 17 studied the resuspension of dif-
ferent types of mixtures in a small gap cylindrical Couette ge-
ometry. With an assumed constant shear rate across the gap,
they showed that the reduced resuspension height h/h0 was
function of the Shields number A only. It is defined by :

A =
9
2

η f γ̇

g
(

ρp −ρ f

)

h0
(9)

with h0 the initial height of the sediment and g the gravita-
tional acceleration. This parameter represents the ratio be-
tween the viscous forces and the apparent weight. Before
comparing the numerical results of our model with the ex-
perimental results of Acrivos, Mauri, and Fan 17 , it is possi-
ble to compute a semi-analytical stationary solution for this
problem. Indeed, as the gap is small compared to the inner
radius, the shear rate is assumed to be constant. The parti-
cle volume conservation equation (Eq. (1c)) then becomes in
the steady state equivalent to an ODE. In more detail, it is as-
sumed that the suspension velocity is written as u = uθ (r)eθ ,
while the balance equation for the angular momentum yields
γ̇ = C/r2η f ηs, where C is a constant1. When the gap is nar-
row, the shear rate is almost constant, and particle migration
is weak. It is assumed here that the gap is narrow enough for
the radial migration to be neglected. Moreover, the suspen-
sion acceleration ‖Du/Dt‖ is of the same order of magnitude
as rω2, and in the present problem we consider angular veloc-
ities such that rω2/g ≪ 1. These assumptions are equivalent
to considering a flow between two parallel vertical plates for
which the shear rate is uniformly equal to ωRin/(Rout −Rin).
The volume fraction is assumed to depend only on height z.
In this case, Eq. (1c) writes at steady state (∂φ/∂ t = 0) :

d

dz

(

−φ
2a2 f (φ)

9η f

(ρp −ρ f )g+
2a2 f (φ)

9η f

× d Σ
c

dz

)

= 0 (10)

Hence the sum of the sedimentation and migration fluxes is
equal to a constant, which amounts to the total flux at the bot-
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(a) 40 turns (b) 1000 turns

(c) 5000 turns (d) 10000 turns

FIG. 11. Volume fraction profile at different times along the ey axis for ε = 1/2: (a) 40 turns, (b) 1000 turns, (c) 5000 turns, (d) 10000 turns.
The numerical solution corresponds to the red curve while the experimental measurements by Subia et al. 2 are represented by blue points.

tom of the Couette cell, i.e. zero :

d Σ
c
zz

dz
− (ρp −ρ f )gφ = 0 (11)

In our specific flow geometry, Σ
c
zz is actually the normal con-

tact stress in the vorticity direction in a simple shear flow
Σ

c
33 = ηs(φ)Σ̂

c
33(φ)η f γ̇ . Since γ̇ does not depend on z, the

relevant dimensionless ODE – Eq. (12a) – is easily deduced,
where A is the Shields number and ẑ = z/h0. This ODE is
solved with the constraint that the total particle volume is con-
stant, as written in Eq. (12b), where h is the height of the re-
suspended layer and h0 is the initial height of the sediment of
concentration φm.

dφ

dẑ
− 9

2
1

A d
dφ

(

ηsΣ̂
c
33

)φ = 0 (12a)

∫ h
h0

0
φ(ẑ) dẑ = φm (12b)

Moreover, it is also possible to demonstrate from the above
equations that the resuspension height, h, only depends on the
Shields number, as was done by Acrivos, Mauri, and Fan 17 .
Indeed, after a change of variable, Eq. (12a) yields the follow-
ing expressions:

h

h0
=−2

9
A

∫ φ(0)

0

1
φ

d

dφ
(ηsΣ̂

c
33) dφ (13a)

∫ h
h0

0
φdẑ =−2

9
A

∫ φ(0)

0

d

dφ
(ηsΣ̂

c
33) dφ (13b)

where φ(0) is the unknown volume fraction at z = 0. Com-
bining equations (12b) and (13b), we obtain:

−2
9

A

φm

∫ φ(0)

0

d

dφ
(ηsΣ̂

c
33) dφ = 1 (14)

Thus, Eq. (14) shows that φ(0) depends only on Shields num-
ber A. Finally, by combining equations (13a) and (14), we
obtain:

h−h0

h0
=

2
9

A

∫ φ(0)

0

(

1
φm

− 1
φ

)

d

dφ
(ηsΣ̂

c
33) dφ (15)

This clearly shows that for a given φm, the relative variation
of the resuspension height (h− h0)/h0 only depends on the
Shields number A.

The solution of the equations (12) is now to be compared
with the volume fraction profile from the numerical simula-
tions. The geometry consists of a narrow gap cylindrical Cou-
ette cell with Rin/Rout ≈ 0.92 (Rout −Rin = 2 mm). The sus-
pension is made of particles of radius a= 69.5 µm and density
ρp = 2450 kg/m3 in a fluid of viscosity η f = 0.47 Pa.s and
density ρ f = 980 kg/m3

(

ρp/ρ f = 2.5
)

. The initial height of
the sediment is chosen equal to h0 = 9.18 mm (h0/a ≈ 132).
The outer cylinder is fixed while the inner cylinder rotates
at an angular velocity ω giving the dimensionless parame-
ters: A = 0.73, Re = (Rout − Rin)Rinωρ f /η f = 0.367 and
ω2Rin/g = 0.034. The mesh of our numerical simulation is
3D with 80 grid points in the azimuthal direction and 15 in the
radial direction. In order to examine the influence of the grid
step size in the vertical direction on the clear fluid/suspension
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(a) (b)

(c) (d)

FIG. 12. Shear rate distribution γ̇/γ̇(Rin) (normalized by the shear rate near the inner cylinder) in logarithmic scale and volume fraction ϕ :
(a) and (b) ε = 1/3 at steady state (≈ 6800 turns); (c) and (d) ε = 1/2 at 10000 turns.

interface, we perform two different simulations using vertical
space steps of respectively ∆z1 = 0.038h0 and ∆z2 = ∆z1/4.

In Fig. 14, we represent volume fraction profile frome the
numerical simulations compared to the ODE solution (12)
computed using a multistep backward differentiation formula
method from the Scipy library, suitable for stiff equations.
The volume fraction is plotted as a function of z at the cen-
ter of the gap (i.e., for r = Rc = (Rout +Rin)/2). We observe a
very good agreement except near the clear fluid-suspension
interface. Indeed, the theoretical volume fraction presents
an infinite derivative at this location. This is explained by
the very low values taken by ηSΣ̂

c
33(φ) – actually its deriva-

tive in Eq. (12) – as soon as the volume fraction is lower
than about thirty percent1. As a consequence, the volume
fraction changes very rapidly in an undersampled area, and

the numerical solution is therefore strongly influenced by the
mesh size. Consistently, dividing the mesh size by 4 re-
duces the maximum difference between the two numerical
curves by approximately the same amount. In addition, we
note that the numerical results show a radial variation of the
shear rate of (γ̇(Rin)− γ̇(Rout))/γ̇(Rc) ≈ 0.16 and a radial
change in volume fraction of (φ(Rout)−φ(Rin))/φ(Rc) ≈
0.042, which is, as expected, relatively small. Moreover,
the acceleration of the suspension ‖Du/Dt‖ obtained numer-
ically is negligible compared to the gravitational acceleration
(max(‖Du/Dt‖)/g ≈ 0.04 ≪ 1), and the term ∇.(φu) is very
small compared to the other terms of the Eq. (1c). This con-
firms the assumptions made for the derivation of the semi-
analytical solution and validates the numerical solution of this
problem.
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(a) ε = 1/3 (b) ε = 1/2

FIG. 13. Classification by the criterion χ of the suspension flow with an initial concentration φbulk = 0.5: (a) ε = 1/3, (b) ε = 1/2.

FIG. 14. Vertical volume fraction profile calculated at the center of
the gap for A = 0.73 and h0 = 0.00918 m. Comparison between
the semi-analytical solution and the numerical solutions with for the
latter a vertical step of ∆z1 = 0.038h0 and ∆z2 =

∆z1
4 .

The relative resuspension height (h− h0)/h0 as a function
of the parameter A is shown in Fig. 15. We compare the result
of the present model (Eq. (15)) with the theoretical result of
the diffusive model used by Acrivos, Mauri, and Fan 17 , as
well as with their experimental measurements. We observe
that the resuspension height from the present model is quite
close to their theoretical and experimental results.

We now consider another set of experiments by
D’Ambrosio, Blanc, and Lemaire 4 , which will be of in-
terest in the next section devoted to the influence of the
eccentricity of the geometry. The inner and outer radii are re-
spectively Rin = 19 mm and Rout = 24 mm (Rin/Rout ≈ 0.79).
The mixture is composed of spherical particles of radius
a = 134 µm and density ρp = 1190 kg/m3 in a fluid of
viscosity η f = 0.34 Pa.s and density ρ f = 1060 kg/m3

(ρp/ρ f ≈ 1.12). The initial height of the sediment is
h0 = 21.3mm ≈ 159a. We present here simulations for two
angular velocities, respectively ω = 20 rpm and ω = 0.5
rpm, which yield the following scaled parameters: A ≈ resp.
0.45 and 0.011; Re ≈ resp. 0.62 and 0.015; ω2Rin/g ≈ resp.
8.510−3 and 5.310−6.

The Shields number A is here based on the shear rate γ̇c =
ωRin/(Rout −Rin). Compared to the experiment of Acrivos,
Mauri, and Fan 17 , the ratio of the gap to the inner radius is less
small and notable radial migration is expected to take place.
The radial and vertical mesh sizes are here respectively ∆r =
(Rout −Rin)/20 ≈ 0.012h0 and ∆z ≈ 0.0023h0.

In Fig. 16, the volume fraction profiles from the simula-
tions and from the experiments by D’Ambrosio, Blanc, and
Lemaire 4 are displayed, which are quantitatively quite con-
sistent. Nevertheless, the numerical simulation predicts sig-
nificant radial migration (Fig. 17) equivalent to that of an iso-
dense case, i.e. for z/h0 = 0.94, a variation of (φ(Rout)−
φ(Rin))/φ(Rc) ≈ 0.108 for ω = 0.5 rpm and (φ(Rout) −
φ(Rin))/φ(Rc) ≈ 0.111 for ω = 20 rpm (we recall that Rc

is the radius of the gap center). On the contrary, D’Ambrosio,
Blanc, and Lemaire 4 observe a very weak radial migration
once resuspension is complete. Although they proposed pos-
sible reasons for this lack of migration, no definitive expla-
nation has yet been found, and this problem still remains an
open question.

In such a resuspension experiment, assuming that the flow
is locally a simple shear flow, it is possible to determine the
material function, Σ̂

c
33, from the volume fraction profile3,4,43

using Eq. (11), and identifying Σ
c
zz with ηsΣ̂

c
33η f γ̇ . It is in-

structive here to follow the same approach to compute the
vertical profile of Σ

c
zz using the volume fraction profile φ(z)
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FIG. 15. Relative resuspension height as a function of Shields num-
ber A. Red line: theoretical prediction of the model by Acrivos,
Mauri, and Fan 17 ; Black line: theoretical prediction of the present
model; Blue dots: experimental measurements by Acrivos, Mauri,
and Fan 17 for 4 different suspensions.

FIG. 16. Vertical concentration profile obtained by averaging φ(r)
over the central third of the gap. Comparison between the present
numerical simulation and the experiments by D’Ambrosio, Blanc,
and Lemaire 4 for ω = 20 rpm and ω = 0.5 rpm.

(a) ω = 0.5 rpm (b) ω = 20 rpm

FIG. 17. Steady state color map of shear rate (normalized by γ̇c =
ωRin/(Rout −Rin)) and volume fraction for: (a) ω = 0.5 rpm and (b)
ω = 20 rpm.

(a) ω = 0.5 rpm

(b) ω = 20 rpm

FIG. 18. Normalized contact stress in the vorticity direction for two
values of the angular velocity: (a) ω = 0.5 rpm, (b) ω = 20 rpm.
The black curve represents the expression of −ηsΣ̂

c
33, the symbols

represent the stress calculated from Eq. (11) with ∆z = 9.39× 10−3

h0 (blue bullets) and the red dots the stress calculated with ∆z =
2.35×10−3 h0 (red bullets).

from the numerical data. This "experimental" determination
of Σ

c
zz(φ) may then be compared to the shear flow consti-

tutive law ηsΣ̂
c
33η f γ̇ that was inserted in Eq. (11) (and in

the suspension modelling in the simulations Eq. (4b)), allow-
ing to validate such an experimental procedure. Figure 18
presents the variation of ηsΣ̂

c
33 (see1) compared to the values

of Σ
c
zz/η f γ̇ calculated from the numerical data in Fig. 16 using

Eq. (11). This comparison is performed for the angular veloc-
ities ω = 20 rpm, ω = 0.5 rpm and for two different mesh
sizes ∆z = 2.35×10−3 h0, ∆z = 9.39×10−3 h0. We observe
a very good agreement, except at low concentration, where the
calculated stress deviates from the value of the corresponding
material function. This discrepancy is actually due to the fi-
nite spatial sampling of the computation volume, which, as
previously mentioned, induces numerical errors in the region
close to the suspension surface. In this location, according to
Eq. (12a), the derivative dφ/dz(z = h) is theoretically infinite
in absence of radial migration, since Σ

c
zz ∼ φ 4 at low volume

fraction1. As an illustration, decreasing the mesh size narrows
the volume fraction range where discrepancy occurs. As ob-
served in Fig. 18, dividing the mesh size by 4 results in the
decrease of the volume fraction value below which an error of
10% is observed : at ω = 20 rpm, this volume fraction cut off
decreases from 0.32 to 0.22, and from 0.50 to 0.44 at 0.5 rpm.
In the same line, a lower angular velocity results in weaker re-
suspension, meaning in particular that the stiff region of the
volume fraction profile extends over a wider volume fraction
range, and the volume fraction cut-off is increased (Fig. 18).
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B. Eccentric cylindrical Couette geometry

We now consider particle resuspension in an eccentric
cylindrical Couette geometry. In this section, we will expose
an effect observed in experiments and still not clearly under-
stood. In some resuspension experiments, it can be observed
that the surface of the resuspended material is not horizontal,
i.e. the resuspension height near the inner cylinder is different
from that near the outer cylinder. In addition, the height varies
in the azimuthal direction as well as in the radial direction. As
shown in the following, this behaviour is in fact caused by a
slight eccentricity of the Couette flow geometry. In addition,
even a very small eccentricity yields significant variation in
the height of the sediment.

This study has been triggered by preliminary experiments
conducted by D’Ambrosio, Blanc, and Lemaire 4 . The au-
thors carried out resuspension experiments whose first (un-
published) measurements showed a sediment surface tilted
from the horizontal (see Fig. 19b). Independently, Saint-
Michel et al. 3 published the results of their own resuspension
experiments, where a slight variation in sediment height in the
gap was also observed. In addition, Saint-Michel et al. 3 had
access to two diametrically opposite vertical sections. They
observed that the sediment heights were different in these two
sections. Considering these observations, we simulated the
experiments performed in both aforementioned papers by in-
serting a slight offset between the location of the axes of the
inner and outer cylinders. As shown in the following, we were
able to establish that this offset was the actual cause of the
variations of the sediment height with the position in the gap.
For example, this offset has been estimated in the case of the
experiments shown in Fig. 19b to 250 µm, which is smaller
than the diameter of a particle. Knowing that the gap thick-
ness is 5 mm, it amounts to an eccentricity of 5%. Thus, a
small eccentricity leads to a non negligible variation of the re-
suspension height. We present in the following a numerical
study of this behaviour.

It should be stressed that the flow that is presently tackled
is quite complex, and in particular, 8 dimensionless numbers,
among which 7 are independent, are necessary to conveniently
define the flow (Appendix A). The general study of the influ-
ence of each dimensionless number is out of the scope of the
present paper, which will focus instead on the mentioned two
recent experiments.

Geometry of the experiments by D’Ambrosio, Blanc, and
Lemaire 4

We first consider the preliminary experiments carried out
by D’Ambrosio, Blanc, and Lemaire 4 , whose parameters are
described in section IV A. The 3D geometry is discretized into
80 mesh cells in the azimuthal direction, 15 cells in the radial
direction, and 150 cells in the vertical direction. We present in
Fig. 19 a vertical section of the Couette geometry (ε = 0.05)
for two values of the angular velocity. The radial variation in
sediment height from the simulation is qualitatively the same
as from the experiments.

(a) (b)

FIG. 19. Color map of the volume fraction φ(r,z) on a vertical sec-
tion of the eccentric Couette cell (ε = 0.05) for angular velocities of
ω = 10 rpm and ω = 60 rpm: a) simulations using the present model,
b) preliminary experiments by D’Ambrosio, Blanc, and Lemaire 4 .

FIG. 20. Variation of the gap g(θ), normalized by Rout −Rin, as a
function of θ . Geometrical parameters from4.

To accurately determine the influence of the eccentricity,
we fix the angular velocity of the inner cylinder at ω = 60
rpm and extend the simulation to eccentricity ratios of ε = 0,
ε = 0.01, ε = 0.05 and ε = 0.1. Since the Couette cell is
eccentric, the thickness of the gap is no longer uniform and
varies with angle θ . Considering that the cylinders radii are
quite close to each other, an expression for the approximate
value of the thickness, denoted by g(θ), can be written as :

g(θ)≈ (Rout −Rin)(1− ε cos(θ)) (16)

The function g(θ) is represented in Fig. 20.
Figure 21 displays a vertical cross–section of the concentra-

tion at θ = 0 (narrowest gap) and θ = π (widest gap) for the
different values of the eccentricity. We observe a variation of
the sediment height across the gap, which is more pronounced
as the eccentricity increases. Moreover, for largest values of
the eccentricity (Fig. 21c and Fig. 21d), the average resuspen-
sion height across the gap is larger at θ = 0, where the gap is
smaller, and the asymmetry is stronger in these two cases. To
be more specific, the variation of ĥ, the resuspension height
normalized by its counterpart in the centered case, is shown in
Fig. 22. We observe that eccentricity increases the average re-
suspension height, both at the inner and outer cylindrical wall
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(a) ε = 0 (b) ε = 0.01 (c) ε = 0.05 (d) ε = 0.10

FIG. 21. Vertical cross-section of the concentration at θ = 0 (narrower gap) and θ = π (wider gap) for angular velocity ω = 60 rpm and for
different values of the eccentricity ratio: (a) ε = 0, (b) ε = 0.01, (c) ε = 0.05, (d) ε = 0.1.

FIG. 22. Resuspension height, normalized by the height of the cen-
tered case, as a function of θ near the outer and inner cylinders and
for different values of the eccentricity ratio. Geometrical parameters
from4.

(Table I). Moreover, while the normalized height ĥ weakly
changes with the angle θ near the inner cylinder, it varies
considerably near the outer cylinder, and this all the more as
the eccentricity increases. The slope of the resuspended layer
surface, (hout − hin)/(Rout −Rin), also depends on θ , and the
amplitude of its variation in the azimuthal direction increases
with the eccentricity. Finally, the maximum value of the re-
duced height at the outer cylinder is found closer and closer to
θ = 0 as the eccentricity increases.

Inspection of the pressure variations is also instructive. To
this purpose, the pressure and the azimuthal pressure gradient
at the height of 20mm ≈ h0 at the inner and outer cylinders
are displayed in Fig. 23. As explained in the previous sec-

(a)

(b)

FIG. 23. (a) Pressure, normalized by typical shear stress τ =
η f ωRin/(Rout −Rin), as a function of θ at the inner and outer cylin-
ders and for different values of the eccentricity ratio. The pressure is
measured at the height of 20 mm for angular velocity ω = 60 rpm.
(b) Azimuthal pressure gradient as a function of θ and for different
values of the eccentricity ratio. Geometrical parameters from4.

tions, the eccentricity induces an azimuthal pressure gradient,
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TABLE I. Simulation results for the geometry of4: for each eccentricity ratio ε , are presented, respectively, the normalized height mean value
at the inner and outer cylinders, the amplitude of variation with the angle normalized by the mean value at the inner and outer cylinders, and
finally the maximum and minimum slope of the resuspended layer surface.

ε ĥin ĥout
ĥmax

in −ĥmin
in

ĥin

ĥmax
out −ĥmin

out

ĥout

max
(

hout−hin

Rout−Rin

)

min
(

hout−hin

Rout−Rin

)

0.01 1.0033 1.005 0.001 0.026 0.094 -0.077
0.05 1.038 1.048 0.003 0.119 0.47 -0.367
0.10 1.120 1.155 0.005 0.180 0.846 -0.537

and the higher the eccentricity, the stronger the pressure gradi-
ent (the pressure difference between inner and outer bounding
cylinders originates in the inertia of the suspension). More-
over, according to Figs. 20 and 23b, the values of θ that define
the extremums of the azimuthal pressure gradient (Fig. 23b)
approximately correspond to those that define the extremums
of the gap thickness, i.e. θ = 0 and θ = π (Fig. 20). All this
is qualitatively similar to the 2D flow of a Newtonian liquid
studied in Section III A. However, in addition to being accel-
erated or decelerated in the horizontal plane, the fluid here is
driven upward or downward.

Geometry of the experiments by Saint-Michel et al. 3

We now focus on the resuspension experiments by Saint-
Michel et al. 3 , using the same geometry as previously, with
an inner radius of Rin = 23 mm, an outer radius of Rout = 25
mm, and a height H = 53.5 mm. The mixture is composed
of particles of density ρp = 2500 kg.m−3 and radius a = 125
µm, suspended in a fluid of density ρ f = 1030 kg.m−3 and
viscosity η f = 0.23 Pa.s. The initial height of the sedi-
ment is h0 = 70.4a = 8.8 mm. Compared to the geometry
in the paper by D’Ambrosio, Blanc, and Lemaire 4 , the ratio
(Rout −Rin)/Rin is significantly smaller, meaning in particu-
lar that the shear rate is expected to be more uniform across
the gap. As mentioned above, Saint-Michel et al. 3 observe
a slight slope of the suspension surface and difference in the
resuspension height between two opposite sections (ranging
from 1% to 9% depending on the shear rate applied). They
assume that this is due to a slight misalignment of the ge-
ometry since they measure a 3% difference in size between
the two sections studied. We simulate this resuspension ex-
periment by applying eccentricity for different shear rate val-
ues. Since we ignore the exact value of the eccentricity, we
choose ε = 0.05. Simulations are performed for the shear rate
values γ̇ = ωRin/(Rout −Rin) = 25 s−1, 50 s−1, 100 s−1 and
250 s−1. The mesh is similar to that in the previous simula-
tion, except that the vertical spatial step has been decreased to
∆z = 1.68 10−3 H.

The resuspension height at the inner and outer cylinders,
normalized by its counterpart in the centered geometry, is
plotted in Fig. 24 as a function of θ for the different values
of the shear rates. As in the previous set of experiments, the
mean resuspension height at the inner cylinder is larger than
in the centered geometry, and the amplitude of the variation of

ĥ with the angle is quite low (Table II). In addition, the shear
rate hardly changes this amplitude. At the outer cylinder, the
amplitude is larger, and the effect of the shear rate on both
the mean reduced height and the amplitude is significant. As
a consequence, the amplitude of the slope of the resuspended
layer in the radial direction increases with the shear rate.

We can also observe qualitative differences between the
data from the two simulated geometries (Fig. 22 and 24). In-
deed, the maximum of ĥ in Fig. 22 is not reached at the same
angle as in Fig. 24. This could be explained by the fact that the
geometry of Saint-Michel et al. 3 has a smaller gap, the radial
shear rate weakly varies and therefore the radial migration is
negligible, on the contrary to the experiment of D’Ambrosio,
Blanc, and Lemaire 4 where the gap is not small and therefore
significant particle migration occurs.

In Fig. 25, we plot the resuspension height h at the center
of the gap normalized by the initial sediment height h0 as a
function of the Shields number Sh = η0γ̇/(ρp −ρ f )ga for the
experiments by Saint-Michel et al. 3 as well as for the simula-
tion data. This Shields number, used by Saint-Michel et al. 3

and based on the size of the particles, is quite similar to A

(Eq. (9)), which is based on the suspension depth h0 though.
As to the experimental data, the resuspension height is shown
for two diametrically opposite sections of the Couette cell.
Concerning the simulation data, since we ignore the position
of the sections relative to the narrow section, i.e. the θ angle,
where Saint-Michel et al. 3 measured the resuspension height,
we chose to plot the smallest and largest height measured over
one revolution. The experimental and simulation data are in
good agreement. An apparent discrepancy is that the curves
from the opposite sections in the experiments by Saint-Michel
et al. 3 are close (0.5% difference for the smallest number of
Shields and 10% difference for the largest one) while those
from our simulations are further away (16% difference for the
smallest number of Shields and 15% difference for the largest
one). However, it should be noted that Saint-Michel et al. 3

use a different h0 for each section, i.e. there is a relative dif-
ference of 6% between the values of h0 in the left and the right
section. Thus, if the original normalization is applied, the dif-
ference between the values of the normalized height in the op-
posite sections is expected to be larger and qualitatively simi-
lar to the simulation data in Fig. 25. But again, it is difficult to
compare quantitatively experiments and simulations since we
ignore the exact eccentricity in the experimental case.
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(a) γ̇ = 25 s−1 (b) γ̇ = 50 s−1

(c) γ̇ = 100 s−1 (d) γ̇ = 250 s−1

FIG. 24. Resuspension height normalized by the centered case height as a function of θ near the outer and inner cylinders and for different
shear rates: (a) γ̇ = 25 s−1, (b) γ̇ = 50 s−1, (c) γ̇ = 100 s−1 and (d) γ̇ = 250 s−1. The eccentricity ratio is ε = 0.05. Geometrical parameters
from3.

TABLE II. Simulation results for the geometry of Saint-Michel et al. 3 : for each shear rate γ̇ , are presented, respectively, the normalized height
mean value at the inner and outer cylinders, the amplitude of variation with the angle normalized by the mean value at the inner and outer
cylinders, and finally the maximum and minimum slope of the resuspended layer surface.

γ̇ (s−1) ĥin ĥout
ĥmax

in −ĥmin
in

ĥin

ĥmax
out −ĥmin

out

ĥout

max
(

hout−hin

Rout−Rin

)

min
(

hout−hin

Rout−Rin

)

25 1.027 1.008 0.027 0.125 0.230 -0.505
50 1.034 1.016 0.016 0.160 0.392 -0.632
100 1.037 1.036 0.011 0.190 0.670 -0.682
250 1.038 1.066 0.008 0.179 0.951 -0.521

FIG. 25. Resuspension height h calculated at the center of the gap
and normalized by the initial sediment height h0 as a function of the
Shields number Sh = η0γ̇/(ρp −ρ f )ga. The red curves correspond
to the experimental results of Saint-Michel et al. 3 (right section: cir-
cles, left section: squares). The green curves represent the results of
the present work for ε = 0.05 (maximum height: circles, minimum
height: squares).

Determination of the contact normal stress Σ
c
zz

We are now interested in the influence of eccentricity on
the calculation of the normal stress in the vorticity direction
from the volume fraction vertical profile using Eq. (11), as
discussed in Section IV A, in the same geometry as in the ex-
periments by Saint-Michel et al. 3 . We first calculate the stress
Σ

c
zz by integrating the vertical volume fraction profile from the

simulation for the centered Couette geometry and compare it
to the expression expected in a simple shear flow from the con-
stitutive law that we use , i.e. η f ηsγ̇Σ̂

c
33 – Eq. (4).b. This stress

is here normalized by the local shear rate. Again, we observe
(Fig. 26) that the "experimental" determination of the stress
yields the expected material function, except for the lowest
concentrations. However, as shown in Section IV A, the dis-
crepancy is due to the steepness of the φ(z) profile which in-
duces numerical error in the solution for a given finite mesh
size. We now consider the computed stress for the eccentric
Couette cell in the center of the gap, i.e. on the cylindrical sur-
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face with center Oi and radius (Rout +Rin)/2. We observe in
Fig. 27 that the stress Σ

c
zz/η f γ̇ calculated using Eq. (11) does

not correspond exactly to the expression of ηsΣ̂
c
33 at low vol-

ume fraction. It seems clear that the size of the mesh does not
play a decisive role, at least to a first approximation, since the
curve resulting from the integration of Eq. (11) separates from
the expected curve at a volume fraction that does not depend
on the angular velocity, i.e., on the resuspension intensity, as
was the case for the centered geometry. Thus Eq. (11) seems
not completely valid when the rotor is eccentric. We note that
the apparent normal stress is higher than expected, meaning
that resuspension is stronger, in agreement with the overall
larger observed resuspension height compared to the centered
geometry. The explanation may be found in the emergence of
fluxes in the vertical and azimuthal directions (see Eq. (1c))
that Eq. (11) does not take into account. To illustrate this idea,
the respective divergences of the migration flux ∇.Jmigr, of
the sedimentation flux ∇.(φused) and of the convection flux
∇.(φu) are displayed in Fig. 28 for the centered and eccentric
Couette flows. In the case of the centered geometry, the con-
vection contribution is low compared to the other ones, mean-
ing that the net migration flux is balanced by the net sedimen-
tation flux, in agreement with Eq. (11). On the other hand,
in the case of the eccentric geometry, the net convection flux
contribution is comparable to the other fluxes, and omitting it
seems to induce significant imbalance in Eq. (1c). It should
be noted that the omitted convection flux shows significant
contribution only in the vicinity of the resuspension layer sur-
face, i.e. in the region where the volume fraction is low. As a
consequence, the discrepancy between the measured and ex-
pected values is only significant at low volume fraction (Fig.
27), where the contact stress is nevertheless very low, which
lessens the consequences of such an error in practical situa-
tions.

We thus see, in the frame of the present model, the influence
that a small eccentricity can have on the measurement of the
Σ

c
zz stress. However, it should be recalled that we do not take

into account here the rheo–fluidification although it seems to
play an important role in the experiments3. Furthermore, let
us recall here that we have chosen contact stress as the driving
force for migration. Even though recent particle scale sim-
ulations seem to confirm this choice62, this particular issue is
still open, as discussed by Lhuillier 23 and Nott, Guazzelli, and
Pouliquen 24 , and other choices are conceivable, especially at
low volume fraction. It is possible that in this case the eccen-
tricity does not have the same consequences on the measure-
ment of the relevant normal stress, at least quantitatively.

V. CONCLUSION

In this paper, we have presented a numerical study of non-
Brownian suspensions in eccentric cylindrical Couette flow,
where the axes of the inner and outer cylindrical walls are
parallel but not coincident. Both neutrally buoyant and dense
suspensions were considered. To this purpose, a recently pro-
posed and validated suspension modelling was used1. In the
first part, the 2D flow of isodense suspensions was tackled.

As an introduction, the standard flow of a Newtonian liquid
was considered, allowing to recall the main features of such
a flow. The eccentricity creates an azimuthal pressure gradi-
ent which generates a Poiseuille flow in addition of the base
Couette flow. For a sufficiently large eccentricity, the gen-
erated Poiseuille flow is strong enough to locally reverse the
velocity and induce a recirculation flow. Moreover, using a
kinematic criterion proposed by Ryssel and Brunn 61 , it was
shown that this flow is purely a simple shear flow at low ex-
centricity, while purely extensional flow as well as solid body
rotation take place in the recirculation region, although over
moderate spatial extension.

In the second part of the 2D study, we focused on an iso-
dense suspension, based on the experiments of Subia et al. 2 .
We observed that migration is influenced by eccentricity, es-
pecially when recirculation occurs. The shear rate spatial dis-
tribution is indeed different compared to the case of a centred
geometry, which affects the volume fraction distribution. The
symmetry is broken and, when recirculation takes place, the
volume fraction reaches, in the large gap, its maximum value
within this recirculation zone, and not at the outer cylindri-
cal wall as evidenced in a centered geometry. Moreover, the
comparison of the present simulation data obtained using the
suspension modelling developed by Badia et al. 1 , with the
experimental measurements of Subia et al. 2 shows fair agree-
ment.

Finally, a 3D study of viscous resuspension in a Couette
geometry was conducted, allowing to understand the non-
horizontal sediment surfaces observed in some resuspension
experiments. First, a study in a centred geometry was per-
formed to evaluate the ability of the suspension modelling and
its implementation to handle this type of flow. Then, the study
of an eccentric Couette permitted to demonstrate that the ec-
centricity causes variations of the resuspension height in the
radial and azimuthal directions. It also increases the average
resuspension height compared to a centred geometry. The nu-
merical computations are in qualitative agreement with the ex-
periments. Finally, we have established that the equation used
in experiments to compute the particle normal stress in the
vorticity direction from the measurement of the vertical vol-
ume fraction profile, may yield somewhat inaccurate results
in the eccentric case at low volume fraction due to significant
convective flux. In that particular case, the complete particle
volume conservation equation should be considered instead of
the approximated 1D equation.

More generally, as mentioned at the beginning of Section
IV, the eccentric Couette flow of non-Brownian suspensions is
controlled by 8 dimensionless numbers, so that it is expected
to constitute a complicated issue. The present study is rather
descriptive, and is based on the parameters of recent experi-
ments of D’Ambrosio, Blanc, and Lemaire 4 and Saint-Michel
et al. 3 . This first study may then be complemented by a more
comprehensive work in the future.
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(a) γ̇ = 25 s−1 (b) γ̇ = 50 s−1

(c) γ̇ = 100 s−1 (d) γ̇ = 250 s−1

FIG. 26. Normalized contact stress in the vorticity direction for the centered Couette: (a) γ̇ = 25 s−1, (b) γ̇ = 50 s−1, (c) γ̇ = 100 s−1 and (d)
γ̇ = 250 s−1. The blue curve represents the expression of −ηsΣ̂

c
33

1, while the orange points correspond to the stress calculated by integrating
the vertical volume fraction profile (Eq. (11)). The calculation is performed at the center of the gap, i.e. on the cylinder of center Oi and radius
(Rout +Rin)/2.

(a) γ̇ = 25 s−1 (b) γ̇ = 50 s−1

(c) γ̇ = 100 s−1 (d) γ̇ = 250 s−1

FIG. 27. Normalized contact stress in the vorticity direction for the eccentric Couette (ε = 0.05): (a) γ̇ = 25 s−1, (b) γ̇ = 50 s−1, (c) γ̇ = 100 s−1

and (d) γ̇ = 250 s−1. The blue curve represents the expression of −ηsΣ̂
c
33

1, while the points correspond to the stress calculated by integrating
the vertical volume fraction profile (Eq. (11)). The calculation is performed at the center of the gap, i.e. on the cylinder of center Oi and radius
(Rout +Rin)/2. The different colors of the points correspond to different values of the θ angle.
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(a)

(b)

FIG. 28. Vertical profile of the divergence of migration flux, sedi-
mentation flux and convection flux for a centered (a) and eccentric
(b) Couette. This profile is determined for the shear rate γ̇ = 25 s−1.
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Appendix A: Dimensionless equations

The purpose of the present section is to exhibit the relevant
dimensionless numbers that are sufficient to properly define
the excentric Couette flow. For the sake of simplicity, we first
make the equations dimensionless, in the simpler case where
only one typical length is involved. Let us denote by U and L

the relevant velocity and length of the flow. The dimensionless
variables are defined as follows:

ũ = u
U

; t̃ = tU
L
= t γ̇c; ∇̃= L∇; ã = a

L

ρ̃m = ρm

ρ f
; p̃ = pL

η f U
= p

η f γ̇c
; ˜̇γ = γ̇L

U
= γ̇

γ̇c
; g̃ = gL

U2

where γ̇c =U/L. Eqs. (1)-(3) write:

∇̃.ũ = 0 (A1a)

TABLE III. Values of all 8 dimensionless numbers for the experiment
by D’Ambrosio, Blanc, and Lemaire 4 (Section IV B).

ε A Re ω2Rin

g

ρp

ρ f

a
Rout−Rin

Rin

Rout

Rin

h0

0 1.345 1.86 0.076 1.12 0.0268 0.79 0.89
0.01 1.345 1.86 0.076 1.12 0.0268 0.79 0.89
0.05 1.345 1.86 0.076 1.12 0.0268 0.79 0.89
0.1 1.345 1.86 0.076 1.12 0.0268 0.79 0.89

Re

(

∂ ρ̃mũ

∂ t̃
+ ∇̃.(ρ̃mũ⊗ ũ)

)

−∇̃.
(

ηs

(

∇̃ũ+∇̃ũT
))

=

−∇̃ p̃+Re ρ̃mg̃+∇̃.(ηs
˜̇γΣ̂)(A1b)

∂φ

∂ t̃
+∇̃.(φ ũ)+

1
A
∇̃.

(

ã2φ f (φ)×
[

g

‖g‖ −
Dũ
Dt̃

g̃

])

=

−∇̃.

(

2ã2 f (φ)

9
×∇̃.

(

ηs
˜̇γΣ̂c
)

)

(A1c)

where ρ̃m = (1−φ)+φρp/ρ f and Σ̂=Σ/ηSη f γ̇c.
As a consequence, there are 5 dimensionless numbers: the

Reynolds number Re = ρ fUL/η f , the Shields number A =

9/2 η f γ̇c/
(

‖g‖
(

ρp −ρ f

)

L
)

, the ratio of the densities ρp/ρ f ,
the reduced particle radius ã = a/L, and the inverse of the
squared Froude number g̃ = gL/U2. However, only 4 param-
eters are independent since 2/9Re(ρp/ρ f −1)Ag̃ = 1.

In the case of particle resuspension in an eccentric Cou-
ette flow, instead of one single characteristic length, the flow
depends on 4 different lengths, namely the inner and outer
radii Rin and Rout , the eccentricity e and the initial height of
the sediment h0. As a consequence, 8 dimensionless numbers
may be defined, among which 7 may be varied independently.
We chose to compute the following numbers in the case of the
two considered experiments:

• Re = (Rout −Rin)Rinωρ f /η f the Reynolds number

• A = 9/2η f ωRin/
(

(Rout −Rin)g
(

ρp −ρ f

)

h0
)

the
Shields number

• 1/g̃ = ω2Rin/g the squared Froude number

• a/(Rout −Rin) the reduced particle radius that drives the
time scale for particle migration in the radial direction

• ε = e/(Rout −Rin) the reduced eccentricity that drives
recirculation

• ρp/ρ f , Rin/Rout , Rin/h0

In Tables III and IV are displayed the values of all 8
dimensionless numbers in the case of the experiments by
D’Ambrosio 63 and Saint-Michel et al. 3 .
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