
HAL Id: hal-04624238
https://hal.science/hal-04624238

Preprint submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emulation of 3Sum, 4Sum, the FMA and the FD2
instructions in rounded-to-nearest floating-point

arithmetic
Stef Graillat, Jean-Michel Muller

To cite this version:
Stef Graillat, Jean-Michel Muller. Emulation of 3Sum, 4Sum, the FMA and the FD2 instructions in
rounded-to-nearest floating-point arithmetic. 2024. �hal-04624238�

https://hal.science/hal-04624238
https://hal.archives-ouvertes.fr

Emulation of 3Sum, 4Sum, the FMA and the FD2
instructions in rounded-to-nearest floating-point

arithmetic
Stef Graillat∗ Jean-Michel Muller†

June 25, 2024

Abstract

We give high level algorithms that make it possible to compute the rounded-
to-nearest sum of 3 or 4 floating-point numbers in binary floating-point arith-
metic. They can easily be adapted to emulate the FMA (ab+ c correctly rounded)
and FD2 (ab+ cd correctly rounded) instructions.

Keywords. Floating-point arithmetic, Sum3, Sum4, FMA, fused multiply-add,
FD2, fused dot-product, Error-free transforms, double-word arithmetic.

1 Introduction
Recently, Graillat and Muller presented an “high-level” algorithm that emulates the
fused multiply-add (FMA) instruction in binary floating-point (FP) arithmetic [6]. By
“high level” we mean that their algorithm uses only floating-point instructions, and
with only one rounding function (the default one, round to nearest, ties-to-even):
there is no need to use masks and/or integer operations that would manipulate the
binary representation of the FP numbers. Since the FMA can be viewed as a partic-
ular instance of the sum of three FP numbers (ab + c is equal to σh + σℓ + c where
σh and σℓ are obtained from a and b by the means of a “2Mult” error-free transfor-
mation), a natural question is whether their algorithm can be adapted to the sum of
three arbitrary FP numbers. Lauter [14] shows that for the IEEE754 binary formats,
the correctly-rounded sum of three FP numbers can be computed using 128-bit inte-
ger operations. As we will see, using only FP operations, the adaptation of the FMA
algorithm presented in [6] is straightforward and poses no particular difficulty. A
more interesting question is whether this work can be extended to the sum of four
arbitrary FP numbers. This would allow (still using “2Mult” transformations), to em-
ulate the FD2 operation (ab + cd correctly rounded), which is of significant interest,

∗Sorbonne Université, CNRS, LIP6, Paris, France, stef.graillat@lip6.fr
†CNRS, LIP, Université de Lyon, Lyon, France, jean-michel.muller@ens-lyon.fr

1

stef.graillat@lip6.fr
jean-michel.muller@ens-lyon.fr

since this operation is central in complex multiplication and more generally in ac-
curate complex arithmetic, Fourier transforms, Givens rotations, etc. (examples are
given in [8]).

In this paper, we assume a binary, precision-p floating-point (FP) arithmetic, with
an unbounded exponent range. This means that the results presented here apply to
conventional binary IEEE 754 [1] floating-point arithmetic provided that underflow
and overflow do not occur. A FP number is therefore 0 or a number of the form
x = M · 2e, where M, e ∈ Z and 2p−1 ≤ |M | ≤ 2p− 1. The number e is the floating-
point exponent of x. We assume that the rounding function is round-to-nearest, ties-
to-even, noted RN, which is the default in IEEE 754 arithmetic [1, 2]. The unit round-
off is u = 2−p. This number u bounds the relative error due to rounding: when
an arithmetic operation x⊤y is performed (with ⊤ ∈ {+,−,×,÷}) , the computed
result z = RN(x⊤y) satisfies

(1− u) · |(x⊤y)| ≤ |z| = |RN(x⊤y)| ≤ (1 + u) · |(x⊤y)|. (1)

The unit in the last place (ulp) or a real number x is the number

ulp(x) =
{

0 if x = 0,
2⌊log2 |x|⌋−p+1 otherwise.

When x is not a FP number, ulp(x) is equal to the distance between the two FP num-
bers straddling |x|, and when x is a FP number, it is equal to the distance between |x|
and the smallest FP number larger than |x|.

The errors of “atomic calculations” (such as the computation of exp(x) or sin(x))
are often expressed in ulps (see for instance [5]), whereas the relative errors of more
complex calculations are often expressed as a function of u.

A pair (xh, xℓ) of FP numbers is a double-word1 (DW) number representing a real
number x if x = xh+xℓ and xh = RN(x). Some algorithms for manipulating double-
word numbers, presented and analyzed in [10], will serve as a starting point for the
algorithms presented in this paper.

1.1 Some classical results of floating-point arithmetic used in
this paper

In this section, we just briefly present the results needed in the sequel of the paper.
More detailed presentations and proofs can be found in [17].

1.1.1 Sterbenz’s theorem

Theorem 1.1 below is frequently called “Sterbenz Lemma” in the literature. However,
we feel that its usefulness in error analysis fully justifies the name “theorem”. For
instance, the most accurate algorithms for elementary function evaluation, and the
proof of the double-word algorithms presented in [10] heavily rely on Sterbenz’s the-
orem.

1We frequently see the name “double double” in the literature. We prefer “double word” because there
is no reason to systematically assume that the underlying format is double precision/binary64.

2

Theorem 1.1 (Sterbenz Theorem [21]). Let a, b be FP numbers. If a
2 ≤ b ≤ 2a then

a − b is an FP number. In particular, this implies that the subtraction a − b will be
performed exactly in FP arithmetic.

1.1.2 The Fast2Sum and 2Sum algorithms

One easily shows that the error of a rounded-to-nearest floating-point addition is a
FP number. Interestingly enough, that error can be computed using rather simple
algorithms, due to Moller, Dekker, and Knuth [16, 4, 12], and qualified as Error-Free
Transformations (EFT) by Ogita, Rump, and Oishi [20]

Algorithm 1 – Fast2Sum(a, b). The Fast2Sum algorithm [4].
s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)
return (s, t)

In Algorithm 1, if the floating-point exponents ea and eb of a and b are such that
ea ≥ eb then t is the error of the floating-point addition RN(a + b) (i.e., the double
word (s, t) is exactly equal to a+ b). The condition on the exponents may be difficult
to check, but it is satisfied if |a| ≥ |b|.

Algorithm 2 – 2Sum(a, b). The 2Sum algorithm [16, 12].
s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)
return (s, t)

In Algorithm 2, for all FP numbers a and b, t is the error of the floating-point
addition RN(a+ b). It is not necessary to test if |a| ≥ |b|.

1.1.3 The 2MultFMA and Dekker-Veltkamp multiplication algorithms

The error of an FP multiplication is an FP number. As in the case of the addition, it can
be computed using fairly simple EFT algorithms. If an FMA instruction is available,
then the error of an FP multiplication can be computed very easily and quickly using
Algorithm 3 below.

3

Algorithm 3 – 2MultFMA(a, b). Returns a pair (πh, πℓ) of FP numbers such that
πh = RN(ab) and πh + πℓ = ab. Requires the availability of an FMA

πh ← RN(a · b)
πℓ ← RN(a · b− πh)
return (πh, πℓ)

As one of the possible applications of our study is the evaluation of an FMA (to
find again the algorithm presented in [6]), we may have, at least in that case, to as-
sume that such an instruction is not available. In that case, we have to resort to a
more complex algorithm, Algorithm 5 below, due to Dekker and Veltkamp [4]. To
compute the product ab, we first “split” the input operands a and b into sub-operands
of precision around p/2, so that the product of two such sub-operands is computed
exactly with one floating-point multiplication. This preliminary splitting is done by
Algorithm 4. For a proof of these algorithms, see [17]. More on splitting algorithms
can be found in [9].

Algorithm 4 – Split(x, s). Veltkamp’s splitting algorithm [4]. Returns a pair (xh, xℓ)
of FP numbers such that the significand of xh fits in s − p bits, the significand of xℓ

fits in s− 1 bits, and xh + xℓ = x.
Require: K = 2s + 1
Require: 2 ≤ s ≤ p− 2
γ ← RN(K · x)
δ ← RN(x− γ)
ah ← RN(γ + δ)
aℓ ← RN(x− ah)
return (xh, xℓ)

Algorithm 5 – DekkerProd(a, b). Dekker’s product [4]. Returns a pair (πh, πℓ) of
FP numbers such that πh = RN(ab) and πh + πℓ = ab.
Require: s = ⌈p/2⌉

(ah, aℓ)← Split(a, s)
(bh, bℓ)← Split(b, s)
πh ← RN(a · b)
t1 ← RN(−πh + RN(ah · bh))
t2 ← RN(t1 + RN(ah · bℓ))
t3 ← RN(t2 + RN(aℓ · bh))
πℓ ← RN(t3 + RN(aℓ · bℓ))
return (πh, πℓ)

1.2 Contents
As we will see, guaranteeing the correct rounding of the sum of 3 or 4 floating-point
numbers will require checking whether a given “remainder” is a power of 2. An al-

4

gorithm for doing this is presented in Section 2. The computation of the rounded to
nearest sum of 3 FP numbers, RN(a + b + c), will be examined in Section 3. Inter-
estingly enough, a slight modification of the corresponding algorithm will make it
possible to compute the error of this computation, i.e., a+ b+ c−RN(a+ b+ c). This
error is expressed as the unevaluated sum of two FP numbers. This will be presented
in Section 3.6. This will make it possible, for example, to compute the error of an FMA
operation, giving an alternative to the algorithm presented in [3]. This will also allow
the computation of the correctly-rounded sum of four FP numbers, RN(a+b+c+d),
as shown in Section 4.

2 Determining if the absolute value of a FP number
is a power of 2

The algorithm presented in this section and its analysis already appear in [6]. We give
Theorem 2.1 and Algorithm 6 here for the sake of completeness.

To determine whether the absolute value of an FP number x is a power of 2 using
only “high level” FP operations, we use the following property

Theorem 2.1 ([6]). In binary, precision-p, floating-point arithmetic, assuming no un-
derflow/overflow occurs, the absolute value of the nonzero FP number x is a power of 2
if and only if

RN
[
RN

((
2p−1 + 1

)
· x

)
− 2p−1x

]
= x. (2)

The proof of Theorem 2.1 is given in [6].
From Theorem 2.1 we obtain the following algorithm

Algorithm 6 IsPowerOf2(x) [6].
Require: P = 2p−1 + 1
Require: Q = 2p−1

L← RN(P · x)
R← RN(Q · x)
∆← RN(L−R)
return (∆ = x)

We note that,

Remark 2.2. When x = 0, IsPowerOf2(x) returns true.

3 Correctly-rounded sum of 3 FP numbers
Sections 3.1 to 3.5 are a simple generalization of the work we present in [6]. Never-
theless, we give here a detailed presentation, because many details will be useful for
obtaining the error of the computation of the sum of 3 FP numbers (Section 3.6) and
for computing the correctly-rounded sum of 4 FP numbers (Section 4).

5

3.1 First step: addition of a DW and a FP number
Assume we wish to compute

Σ = RN(Σ̂), with Σ̂ = a+ b+ c,

where a, b, and c are FP numbers, using only rounded-to-nearest floating-point addi-
tions, subtractions, and comparisons. We know from Theorem 8 in [13] that an algo-
rithm that only uses rounded-to-nearest additions and subtractions cannot evaluate
Σ, hence comparisons cannot be fully avoided. Using Algorithm 2Sum (Algorithm 2)
we first compute a double-word (xh, xℓ) such that

xh + xℓ = a+ b.

We are therefore reduced to computing the sum of a double-word and an FP number.
An algorithm that computes a DW number close to the sum of a DW number and
an FP number, Algorithm 7 below, was implemented in Hida, Li and Bailey’s QD
library [7]. That algorithm will not suffice for our purpose because it will not always
return a correctly-rounded result: zh is not always equal to RN(xh + xℓ + c).

Algorithm7 –DWPlusFP(xh, xℓ, c). Computes a DW close to (xh, xℓ)+c in binary,
precision-p, floating-point arithmetic. Implemented in the QD library. The number
x = xh + xℓ is a double-word number (i.e., it satisfies xh = RN(xh + xℓ).

1: (sh, sℓ)← 2Sum(xh, c)
2: v ← RN(xℓ + sℓ)
3: (zh, zℓ)← Fast2Sum(sh, v)
4: return (zh, zℓ)

Algorithm 7 is analyzed in [10], where the following theorem is proven.

Theorem 3.1. The pair (zh, zℓ) returned by Algorithm 7 is a DW number. it safisfies:

|(zh + zℓ)− (x+ c)| ≤ 2u2 · |x+ c| . (3)

Below, following the same steps as in [6], we analyze the various cases that may
occur when trying to compute RN(xh + xℓ + c) using a modified version of Algo-
rithm 7. The calculation will be simple, unless some intermediate variable (variable w
in Algorithm 8) is a power of 2. We have already seen how that case can be detected
in Section 2. We will examine how it can be dealt with in Section 3.3.

3.2 Computing RN(xh + xℓ + c): general case
Let us modify Algorithm 7 and compute (sh, sℓ) = 2Sum(xh, c)

(vh, vℓ) = 2Sum(xℓ, sℓ)
(zh, zℓ) = Fast2Sum(sh, vh)

6

(one easily sees that vh is the variable “v” of Algorithm 7). We obviously have

zh + zℓ + vℓ = a+ b+ c = Σ̂, (4)

and Theorem 3.1 tells us that (zh, zℓ) is a double-word, i.e., zh = RN(zh + zℓ), and

|vℓ| = |(zh + zℓ)− Σ̂| ≤ 2u2|Σ̂|, (5)

so that
|Σ̂| ≤ |zh + zℓ|

1− 2u2
. (6)

Let us momentarily put aside the case a+b+c = 0. From (5), (6), and |zℓ| ≤ u|zh|,
we obtain

|vℓ| ≤ 2u2|Σ̂| ≤ 2u2(1 + u)

1− 2u2
|zh| . (7)

• If |zh| is not a power of 2 then |zℓ| ≤ 1
2ulp(zh) and, as ulp(zh) ≥ u

1−u |zh|, (7)
implies

|vℓ| ≤
2u(1− u2)

1− 2u2
ulp(zh) <

1

4
ulp(zh)

(as soon as u ≤ 1/16), so that

|zℓ + vℓ| <
3

4
ulp(zh),

which also implies (as RN is an increasing function, and 3
4ulp(zh) is a FP number

since ulp(zh) is a power of 2)

|RN(zℓ + vℓ)| ≤
3

4
ulp(zh). (8)

• If |zh| is a power of 2 then

−1

4
ulp(zh) ≤ zℓ × sign(zh) ≤

1

2
ulp(zh),

and, as ulp(zh) = 2u|zh|, (7) implies

|vℓ| ≤
u(1 + u)

1− 2u2
ulp(zh) <

1

8
ulp(zh)

(as soon as u ≤ 1/16), so that

−3

8
ulp(zh) < (zℓ + vℓ)× sign(zh) <

5

8
ulp(zh),

which also implies (as RN is an increasing function, and 5
8ulp(zh) is a FP number

since ulp(zh) is a power of 2)

−3

8
ulp(zh) ≤ RN(zℓ + vℓ)× sign(zh) ≤

5

8
ulp(zh). (9)

7

Therefore, as soon as u ≤ 1/16,

z−h < Σ̂ < z+h ,

where z−h and z+h are the floating-point predecessor and successor of zh, respectively.
When the absolute value of the number w = RN(vℓ + zℓ) is not a power of 2, the

number |vℓ + zℓ| is not a power of 2 either (otherwise it would round to itself), and
in that case |w| > 1

2ulp(zh) (resp. |w| > 1
4ulp(zh)) iff |vℓ + zℓ| > 1

2ulp(zh) (resp.
|vℓ + zℓ| > 1

4ulp(zh)). Also, note that (8) and (9) imply that

z−h < zh + w < z+h .

Therefore,
if u ≤ 1/16 then when |w| = |RN(vℓ + zℓ)| is not a power of 2, Σ is equal to

RN(zh + RN(zℓ + vℓ)).

3.3 When |RN(vℓ + zℓ)| is a power of 2
Now assume that the absolute value of w = RN(zℓ + vℓ) is a power of 2. We need to
determine if RN(zh+w) differs from RN(zh+zℓ+vℓ). An easy case is when |w| < χ,
where χ is the “critical power of 2”, defined as

• 1
2ulp(zh) if |zh| is not a power of 2; or if |zh| is a power of 2 and zh and w have
the same sign;

• 1
4ulp(zh) if |zh| is a power of 2 and zh and w have opposite signs.

Note that (8) and (9) imply |w| ≤ χ when |w| is a power of 2. Let w′ = RN
(
3
2w

)
=

3
2w. We have |w| < χ if and only if RN(zh + w′) = zh. In such a case, we are done:
the result to be returned is zh.

Figure 1 illustrates this discussion, in the general case where |zh| is not a power
of 2.

Now, when |w| = χ, we need to determine if |zℓ + vℓ| is equal to, above, or below
χ. Property 3.2 below implies that this can be done using the Fas2Sum algorithm.
More precisely, if we compute{

δ = RN(w − zℓ)
t = RN(vℓ − δ),

then w + t = zℓ + vℓ. The choice is now simple:
• if t = 0 then w = zℓ + vℓ, so that Σ = RN(zh + w);

• if t ̸= 0 and w have opposite signs, then |zℓ + vℓ| < χ, so that Σ = zh;

• if t ̸= 0 and w have the same sign, then |zℓ + vℓ| > χ. As a consequence, Σ is
the FP predecessor or successor of zh (depending on the sign of w), which can
be obtained as Σ = RN(zh + w′), using w′ = RN

(
3
2w

)
= 3

2w, as previously.
The following property, presented and proven in [6], shows that we can use the

Fast2Sum algorithm for adding zℓ and vℓ (which saves 3 operations since otherwise
we would have needed to use the 2Sum algorithm).
Property 3.2 ([6]). When |w| = χ, we have |vℓ| ≤ |zℓ| as soon as u ≤ 1/16.

8

z−h zh z+h

ulp(zh)

bound on zℓ + vℓ

bound on w

χ = max. value of w
when it is a power of 2

zh + 3
2χ rounds to z+hFor any ϵ s.t. |RN(ϵ)| < χ,

|ϵ| < χ, so that RN(zh + ϵ) = zh

Figure 1: Illustration of the discussion presented in Sections 3.2 and 3.3, in the general case
where |zh| is not a power of 2. For the sake of simplicity, we assume here that zℓ + vℓ ≥ 0.

3.4 Putting all this together: the Sum3 algorithm
Algorithm 8 below derives from the analysis given in the previous sections. In the
analysis, we put aside the case a+ b+ c = 0, but in that case, one easily checks that

zh = zℓ = vh = vℓ = w = w′ = σtemp2 = 0.

As a consequence, from Remark 2.2, the test “IsPowerOf2(w)” at Line 7 of Algorithm 8
and the test “σtemp2 = zh” at Line 12 both return true so that the algorithm returns
zh, i.e., 0, which is the right answer.

9

Algorithm 8 Sum3(a, b, c).
1: (xh, xℓ)← 2Sum(a, b)
2: (sh, sℓ)← 2Sum(xh, c)
3: (vh, vℓ)← 2Sum(xℓ, sℓ)
4: (zh, zℓ)← Fast2Sum(sh, vh)
5: w ← RN(vℓ + zℓ)
6: σtemp1 ← RN(zh + w)
7: if not IsPowerOf2(w) then
8: return σtemp1
9: else

10: w′ ← RN
(
3
2 · w

)
11: σtemp2 ← RN(zh + w′)
12: if σtemp2 = zh then
13: return zh
14: else
15: δ ← RN(w − zℓ)
16: t← RN(vℓ − δ)
17: if t = 0 then
18: return σtemp1
19: else
20: g ← RN(t · w)
21: if g < 0 then
22: return zh
23: else
24: return σtemp2
25: end if
26: end if
27: end if
28: end if

We have,

Theorem 3.3. In a binary, precision-p, floating-point arithmetic with an unbounded
exponent range, if p ≥ 4, then Algorithm 8 returns RN(a+ b+ c) for all floating-point
numbers a, b, and c.

Proof. The theorem immediately follows from the analysis of Sections 3.2 and 3.3, and
the fact that p ≥ 4 implies u ≤ 1/16.

The primary disadvantage of our algorithm is the presence of tests. In the event
that the branch prediction mechanism of the processor fails to make the correct pre-
diction, these tests may result in a significant reduction in performance. However, it
is important to note that the value of |w| is very unlikely to be a power of 2. Conse-
quently, when a large number of Sum3 are computed, the branch prediction should
function effectively, whereas when a small number of Sum3 are computed, the perfor-
mance loss is of minimal consequence. Secondly, and more importantly, tests cannot

10

be entirely avoided: the authors of [13] have shown that an algorithm that only uses
rounded-to-nearest additions and subtractions cannot evaluate RN(a+ b+ c) for all
possible FP numbers a, b, and c (Theorem 8 in [13]).

3.5 Emulation of the FMA
As Algorithm 8 is essentially an algorithm that returns the correctly-rounded sum of
a DW (xh, xℓ) and a FP number c, to obtain an algorithm that computes RN(ab+c), it
suffices to make sure that xh+xℓ = ab. This is done by replacing Line 1 of Algorithm 8
by

(xh, xℓ)← DekkerProd(a, b).

By doing this we find again the FMA emulation algorithm introduced in [6].

3.6 Computing RN(a+b+c) and the error (a+b+c)−RN(a+b+c)
at the same time

Small modifications of Algorithm 8 make it possible to obtain, at the same time,
RN(a + b + c) and the error of that addition, namely a + b + c − RN(a + b + c),
at a very small additional cost. That error (which in general does not fit in only one
FP number) is expressed as the unevaluated sum of two FP numbers. Let us detail the
analysis:

In all cases, Algorithm 8 outputs Σ = RN(zh + zℓ + vℓ), and we know that Σ ∈
{z−h , zh, z

+
h }. Hence, by Sterbenz Theorem (Theorem 1.1), the number

α = Σ− zh

is a FP number (so that it is exactly computed by a FP subtraction: α = RN(Σ− zh)).
Also, α can be zero, ±ulp(zh), or ± 1

2ulp(zh) (the last case being possible only when
zh is a power of 2 and the sign of zℓ + vℓ differs from the sign of zh).

• if Σ = zh, as a+ b+ c = zh + zℓ + vℓ, then the error is zℓ + vℓ = w + t;

• if Σ ̸= zh, we know that α has the same sign as zℓ + vℓ, i.e., the same sign as
w = RN(zℓ + vℓ). We also know that

– when (zh is not a power of 2) or (zh is a power of 2 and zℓ+vℓ has the same
sign as zh), we have |α| = ulp(zh); |w| ≥ 1

2ulp(zh) (otherwise we would
have |zℓ + vℓ| < 1

2ulp(zh) and therefore Σ = zh); and |w| ≤ ulp(zh)
(otherwise we would have |zℓ + vℓ| > ulp(zh), which is not allowed by
the analysis of Section 3.2);

– when zh is a power of 2 and the sign of zℓ + vℓ differs from the sign
of zh, we have |α| = 1

2ulp(zh); |w| ≥ 1
4ulp(zh) (otherwise we would

have |zℓ + vℓ| < 1
4ulp(zh) and therefore Σ = zh); and |w| ≤ 1

2ulp(zh)
(otherwise we would have |zℓ + vℓ| > 1

2ulp(zh), which is not allowed by
the analysis of Section 3.2).

11

Therefore we always have 1
2 |α| ≤ |w| ≤ |α| so that (as α and w have the same

sign), Sterbenz theorem implies that η = w− α is a floating-point number and
is therefore exactly computed in FP arithmetic: η = RN(w − α) = w − α. We
therefore deduce

(a+b+c)−Σ = zh+zℓ+vℓ−Σ = −α+zℓ+vℓ = −α+w+(zℓ+vℓ−w) = η+t.

Hence, in all cases, the error (a + b + c) − Σ is equal to RN(w − α) + t = η + t.
One can just output the pair (η, t). If one prefers returning a DW number, as η is a
multiple of ulp(w) and ulp(t) ≤ ulp(w) (since the pair (w, t) is a DW), one can safely
call Fast2Sum(η, t). If one only needs to know the FP number nearest the error (and
therefore the sign of the error), it suffices to return RN(η+t). This gives the following
algorithm.

12

Algorithm 9 Sum3-with-error(a, b, c).
(xh, xℓ)← 2Sum(a, b)
(sh, sℓ)← 2Sum(xh, c)
(vh, vℓ)← 2Sum(xℓ, sℓ)
(zh, zℓ)← Fast2Sum(sh, vh)
w ← RN(vℓ + zℓ)
σtemp1 ← RN(zh + w)
δ ← RN(w − zℓ)
t← RN(vℓ − δ)
if not IsPowerOf2(w) then
Σ← σtemp1

else
w′ ← RN

(
3
2 · w

)
σtemp2 ← RN(zh + w′)
if σtemp2 = zh then
Σ← zh

else
if t = 0 then

Σ← σtemp1
else
g ← RN(t · w)
if g < 0 then
Σ← zh

else
Σ← σtemp2

end if
end if

end if
end if
α← RN(Σ− zh)
η ← RN(w − α)
(η, t)← Fast2Sum(η, t) % omitted if not required that the error is a DW
% replaced by η ← RN(η + t) if we only need the FP number nearest the error
return (Σ, η, t)

Obviously, the very same adaptation as the one done in Section 3.5 will give an
algorithm that returns an FMA and the error of that FMA.

4 Computation of RN(a+ b+ c+ d) and RN(ab+ cd)

Let us now focus on the calculation of the correctly-rounded sum of two double-word
numbers: we wish to evaluate

Σ = RN
(
Σ̂
)
, with Σ̂ = xh + xℓ + yh + yℓ,

13

where (xh, xℓ) and (yh, yℓ) are DW numbers. This will allow us to evaluate the
correctly-rounded sum of four arbitrary floating-point numbers a, b, c, and d by choos-
ing (xh, xℓ) = 2Sum(a, b) and (yh, yℓ) = 2Sum(c, d). This will also allow us to eval-
uate

RN(ab+ cd),

where, again, a, b, c, and d are four arbitrary floating-point numbers, by choosing
(xh, xℓ) = 2Mult(a, b) and (yh, yℓ) = 2Mult(c, d). Here, “2Mult” is either Dekker-
Prod (Algorithm 5) if no FMA instruction is available, or the much simpler algorithm
2MultFMA (Algorithm 3, called Fast2Mult in [11, 19, 17]) if we can use an FMA in-
struction.2

To design an algorithm that evaluates Σ we will start from the following double-
word addition Algorithm, presented in [15], and analyzed in [10].

Algorithm10 –AccurateDWPlusDW(xh, xℓ, yh, yℓ). Calculation of a DW number
close to (xh, xℓ) + (yh, yℓ) in binary, precision-p, floating-point arithmetic.

1: (sh, sℓ)← 2Sum(xh, yh)
2: (th, tℓ)← 2Sum(xℓ, yℓ)
3: γ ← RN(sℓ + th)
4: (vh, vℓ)← Fast2Sum(sh, γ)
5: w ← RN(tℓ + vℓ)
6: (zh, zℓ)← Fast2Sum(vh, w)
7: return (zh, zℓ)

The authors of [10] have shown that as soon as p ≥ 3, the pair (zh, zℓ) returned
by Algorithm 10 is a DW number, and it satisfies

|(zh + zℓ)− (xh + xℓ + yh + yℓ)| ≤
3u2

1− 4u
· |xh + xℓ + yh + yℓ| . (10)

(that relative error bound becomes less than 3u2 + 13u3 as soon as p ≥ 6). A for-
mal proof of that result, and the proof that the bound is asymptotically optimal, are
presented in [18]. The two operations that are not error-free in Algorithm 10 are
the ones of lines 3 and 5. Let us replace them by a 2Sum and a Fast2Sum operations
respectively,3 and obtain

1: (sh, sℓ)← 2Sum(xh, yh)
2: (th, tℓ)← 2Sum(xℓ, yℓ)
3: (γh, γℓ)← 2Sum(sℓ, th)
4: (vh, vℓ)← Fast2Sum(sh, γh)
5: (wh, wℓ)← Fast2Sum(vℓ, tℓ)
6: (zh, zℓ)← Fast2Sum(vh, wh)

2Of course, we needed the DekkerProd algorithm in Section 3.5: as the goal was to emulate an FMA
instruction, we could not assume that that instruction was available.

3A Fast2Sum can be used at Line 5 because tℓ can be writtenK ·ulp (min{|xℓ|, |yℓ|})withK ≤ 2p−1,
and vℓ is by construction an integer multiple of ulp (min{|xℓ|, |yℓ|}).

14

Variables γh and wh are the same as variables γ and w in Algorithm 10, so that
the double-word (zh, zℓ) still satisfies (10), but we also have (as there is no longer any
inexact operation):

zh + zℓ + wℓ + γℓ = xh + xℓ + yh + yℓ.

Note that (10) implies that zh cannot be zero, unless Σ̂ = 0. Let us set this case
aside for the moment. We have

|wℓ + γℓ| ≤
3u2

1− 4u
·
∣∣∣Σ̂∣∣∣ . (11)

As (zh, zℓ) is a DW number, |zℓ| is less than or equal to

• 1
2ulp(zh) if zh is not a power of 2 or zℓ has the sign of zh;

• 1
4ulp(zh) if zh is a power of 2 and the signs of zh and zℓ differ.

Define Z = zh + zℓ. From (11) we obtain(
1− 3u2

1− 4u

)
·
∣∣∣Σ̂∣∣∣ ≤ |Z| ≤ (

1 +
3u2

1− 4u

)
·
∣∣∣Σ̂∣∣∣ ,

and therefore∣∣∣Σ̂∣∣∣ ≤ |Z|
1− 3u2

1−4u

= |Z| · 1− 4u

1− 4u− 3u2
≤ |zh| ·

(1− 4u)(1 + u)

1− 4u− 3u2

So that, combining with (11),

|wℓ + γℓ| ≤
3u2

1− 4u
· (1− 4u)(1 + u)

1− 4u− 3u2
· |zh| =

3u2 + 3u3

1− 4u− 3u2
· |zh|.

• if |zh| is not a power of 2, from ulp(zh) ≥ u
1−u |zh|, we obtain

|wℓ + γℓ| ≤
(3u+ 3u2)(1− u)

1− 4u− 3u2
· ulp(zh) =

3u− 3u3

1− 4u− 3u2
· ulp(zh),

which is ≤ 85
336ulp(zh) =

(
1
4 + 1

336

)
ulp(zh) as soon as u ≤ 1

16 ;

• if |zh| is a power of 2 then ulp(zh) = 2u|zh|, so that

|wℓ + γℓ| ≤
3u+ 3u2

2− 8u− 6u2
ulp(zh),

which is ≤ 17
126ulp(zh) =

(
1
8 + 5

504

)
ulp(zh) as soon as u ≤ 1

16 .

Combining this with the bound on |zℓ|, we therefore deduce that, as soon as u ≤
1/16 (or, equivalently, as soon as p ≥ 4),

15

• if |zh| is not a power of 2 then

|zℓ + wℓ + γℓ| <
(
1

2
+

1

4
+

1

16

)
ulp(zh),

and
|RN (zℓ + wℓ + γℓ)| ≤

(
1

2
+

1

4
+

1

16

)
ulp(zh); (12)

• if |zh| is a power of 2 and the signs of zh and zℓ differ then

|zℓ + wℓ + γℓ| <
(
1

4
+

1

8
+

1

16

)
ulp(zh),

and
|RN (zℓ + wℓ + γℓ)| ≤

(
1

4
+

1

8
+

1

16

)
ulp(zh); (13)

• if |zh| is a power of 2 and zh and zℓ have the same sign then

– bound (12) holds if zℓ + wℓ + γℓ has the same sign as zℓ;
– if the sign of zℓ + wℓ + γℓ differs from the sign of zℓ then

|zℓ + wℓ + γℓ| ≤ |wℓ + γℓ| ≤
(
1

8
+

1

16

)
ulp(zh),

and
|RN (zℓ + wℓ + γℓ)| ≤

(
1

8
+

1

16

)
ulp(zh). (14)

Hence, Σ = RN(xh + xℓ + yh + yℓ) = RN(zh + zℓ +wℓ + γℓ) and RN(zh + RN(zℓ +
wℓ + γℓ)) are either z−h , zh, or z+h . As a consequence, the very same reasoning as the
one of Section 3 can be applied. We first compute ρ = RN(zℓ+wℓ+γℓ) and the error
term τ = RN(zℓ + wℓ + γℓ − ρ) using Algorithm 9.

• if |ρ| is not a power of 2 (which is checked using Algorithm 6) then

Σ = RN(zh + ρ),

• if |ρ| is a power of 2 then (12), (13), and (14) imply that ρ cannot be larger than
the “critical” power of 2, defined as 1

2ulp(zh) if (|zh| is not a power of 2) or
(|zh| is a power of 2 and the signs of zh and zℓ +wℓ + γℓ are the same), and as
1
2ulp(zh) if (|zh| is a power of 2 and the signs of zh and zℓ+wℓ+γℓ differ). We
deduce that

– if RN
(
zh + 3

2ρ
)
= zh then ρ is strictly less than the “critical” power of 2,

and in that case, Σ = zh;

16

– otherwise, ρ is equal to the critical power of 2, and in that case,

Σ =

 RN(zh + ρ) if τ = 0,
zh if the signs of ρ and τ differ,
RN

(
zh + 3

2ρ
)

otherwise

We did put aside the case Σ̂ = 0. Let us deal with it now. In that case, xh + xℓ +
yh + yℓ = 0, i.e.,

(xh + xℓ) = −(yh + yℓ),

and therefore

RN(xh + xℓ) = RN (−(yh + yℓ)) = −RN(yh + yℓ). (15)

As (xh, xℓ) and (yh, yℓ) are DW numbers, xh = RN(xh+xℓ) and yh = RN(yh+ yℓ),
so that (15) implies xh = −yh and therefore xℓ = −yℓ. It follows that

sh = sℓ = th = tℓ = γh = γℓ = vh = vℓ = wh = wℓ = zh = zℓ = ρ = 0.

Remark 2.2 implies that in that case IsPowerOf2(ρ) returns true. Also, RN(zh +
3
2ρ) = 0 = zh. Note that in the “general case” considered before, when ρ is a power
of 2 and RN(zh + 3

2ρ) = zh, we return zh. In the case considered now, as zh = 0,
returning zh is a correct answer. Hence there is no need for a separate handling of
the case Σ = 0.

The algorithm is therefore,

17

Algorithm 11 FPNearestSumDW(xh, xℓ, yh, yℓ). Returns RN(xh + xℓ + yh + yℓ)
for all pairs (xh, xℓ), (yh, yℓ) of double-word numbers.

(sh, sℓ)← 2Sum(xh, yh)
(th, tℓ)← 2Sum(xℓ, yℓ)
(γh, γℓ)← 2Sum(sℓ, th)
(vh, vℓ)← Fast2Sum(sh, γh)
(wh, wℓ)← Fast2Sum(vℓ, tℓ)
(zh, zℓ)← Fast2Sum(vh, wh)
(ρ, τ)← Sum3-with-error(zℓ, wℓ, γℓ)
if IsPowerOf2(ρ) then
ρ′ ← RN

(
3
2ρ

)
σtemp ← RN(zh + ρ′)
if σtemp = zh then
Σ← zh

else
if τ = 0 then
Σ← RN(zh + ρ)

else
if RN(ρ · τ) ≤ 0 then
Σ← zh

else
Σ← σtemp

end if
end if

end if
else
Σ← zh

end if
return Σ

We conclude,

Theorem 4.1. In a binary, precision-p, floating-point arithmetic with an unbounded
exponent range, if p ≥ 4, then Algorithm 11 returns RN(xh+xℓ+ yh+ yℓ) for all pairs
(xh, xℓ), (yh, yℓ) of double-word numbers.

We immediately deduce the following two algorithms.

Algorithm 12 Sum4(a, b, c, d). Returns RN(a+ b+ c+ d) for all 4-tuples (a, b, c, d)
of floating-point numbers.

(xh, xℓ)← 2Sum(a, b)
(yh, yℓ)← 2Sum(c, d)
s← FPNearestSumDW(xh, xℓ, yh, yℓ)
return s

18

Algorithm 13 FD2(a, b, c, d). Returns RN(ab + cd) for all 4-tuples (a, b, c, d) of
floating-point numbers. Here, 2Mult is either DekkerProd (Algorithm 5) if no FMA
instruction is available, or 2MultFMA (Algorithm 3) if we can use an FMA.
(xh, xℓ)← 2Mult(a, b)
(yh, yℓ)← 2Mult(c, d)
π ← FPNearestSumDW(xh, xℓ, yh, yℓ)
return π

Conclusion
The algorithms presented in this paper provide robust methods for computing the
correctly-rounded sums of three or four floating-point numbers using binary floating-
point arithmetic, and for emulating the fused multiply-add (FMA) and the fused dot-
product (FD2) instructions. These algorithms ensure accurate and efficient computa-
tions without relying on additional hardware support. In fact, they rely only on con-
ditional statements and classic floating-point operations such as addition, subtraction
and multiplication. These algorithms provide building blocks for accurate computa-
tion in complex floating-point arithmetic and can be used in many applications, such
as Fast Fourier Transforms.

Acknowledgement
This work was partly supported by the NuSCAP (ANR-20-CE48-0014) project and the
InterFLOP (ANR-20-CE46-0009) project of the French National Agency for Research
(ANR).

References
[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE

754-2008), pages 1–84, July 2019.

[2] Sylvie Boldo, Claude-Pierre Jeannerod, Guillaume Melquiond, and Jean-Michel
Muller. Floating-point arithmetic. Acta Numerica, 32:203–290, 2023.

[3] Sylvie Boldo and Jean-Michel Muller. Exact and approximated error of the FMA.
IEEE Transactions on Computers, 60(2):157–164, 2011.

[4] T. J. Dekker. A floating-point technique for extending the available precision.
Numerische Mathematik, 18(3):224–242, 1971.

[5] Brian Gladman, Vincenzo Innocente, John Mather, and Paul Zimmermann.
Accuracy of mathematical functions in single, double, extended double and
quadruple precision. Working paper or preprint, available at https://hal.
inria.fr/hal-03141101, 2024.

19

https://hal.inria.fr/hal-03141101
https://hal.inria.fr/hal-03141101

[6] Stef Graillat and Jean-Michel Muller. Emulation of the FMA in rounded-to-
nearest floating-point arithmetic. Research report hal-04575249, available at
https://hal.science/hal-04575249, May 2024.

[7] Y. Hida, X. S. Li, and D. H. Bailey. C++/fortran-90 double-double and quad-
double package, release 2.3.17, March 2012. Accessible electronically at http:
//crd-legacy.lbl.gov/dhbailey/mpdist/.

[8] Tom Hubrecht, Claude-Pierre Jeannerod, and Jean-Michel Muller. Useful ap-
plications of correctly-rounded operators of the form ab + cd + e. In IEEE 31st
Symposium on Computer Arithmetic (ARITH 2024), volume IEEE 31st Symposium
on Computer Arithmetic (ARITH), Málaga, Spain, June 2024.

[9] Claude-Pierre Jeannerod, Jean-Michel Muller, and Paul Zimmermann. On var-
ious ways to split a floating-point number. In 2018 IEEE 25th Symposium on
Computer Arithmetic (ARITH), pages 53–60, 2018.

[10] Mioara Joldeş, Jean-Michel Muller, and Valentina Popescu. Tight and rigourous
error bounds for basic building blocks of double-word arithmetic. ACM Trans-
actions on Mathematical Software, 44(2), 2017.

[11] W. Kahan. Lecture notes on the status of IEEE-754. Available athttp://www.
cs.berkeley.edu/wkahan/ieee754status/IEEE754.PDF,
1997.

[12] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

[13] Peter Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller. On the computation of
correctly-rounded sums. IEEE Transactions on Computers, 61(2):289–298, March
2012.

[14] Christoph Lauter. An efficient software implementation of correctly rounded
operations extending FMA: a+ b+ c and a× b+ c× d. In ACSSC Proc., 2017.

[15] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Ka-
pur, M. Martin, T. Tung, and D. J. Yoo. Design, implementation and testing of
extended and mixed precision BLAS. ACM Transactions on Mathematical Soft-
ware, 28(2):152–205, 2002.

[16] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.

[17] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jean-
nerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
and Serge Torres. Handbook of Floating-Point Arithmetic, 2nd edition. Birkhäuser
Boston, 2018.

[18] Jean-Michel Muller and Laurence Rideau. Formalization of double-word arith-
metic, and comments on “Tight and rigorous error bounds for basic building
blocks of double-word arithmetic”. ACM Transactions on Mathematical Software,
48(2):1–24, 2022.

20

https://hal.science/hal-04575249
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

[19] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-point ma-
trix arithmetic provably accurate to the penultimate digit. ACM Transactions on
Mathematical Software, 29(1):27–48, 2003.

[20] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot
product. SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

[21] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood Cliffs, NJ,
1974.

21

	Introduction
	Some classical results of floating-point arithmetic used in this paper
	Sterbenz's theorem
	The Fast2Sum and 2Sum algorithms
	The 2MultFMA and Dekker-Veltkamp multiplication algorithms

	Contents

	Determining if the absolute value of a FP number is a power of 2
	Correctly-rounded sum of 3 FP numbers
	First step: addition of a DW and a FP number
	Computing RN(xh+x+c): general case
	When |RN(v+ z)| is a power of 2
	Putting all this together: the Sum3 algorithm
	Emulation of the FMA
	Computing RN(a+b+c) and the error (a+b+c)-RN(a+b+c) at the same time

	Computation of RN(a+b+c+d) and RN(ab+cd)

