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Abstract
In magnetic confinement fusion devices close to axisymmetry, such as tokamaks, a key element is the winding profile of the
magnetic field lines, or its inverse, the safety profile q = qB. A corresponding profile, qJ, can be defined for the current
density field lines. Ampère’s law relates any mode of current perturbation δJm,n with a mode of magnetic perturbation δBm,n.
It is shown that the knowledge of the pair (qB, qJ) allows then to characterize the resonant, or non-resonant, nature of the
modes for both the magnetic and current density field lines. The expression of qJ in flux coordinate is derived. Including
this calculation in the real-time Grad-Shafranov equilibrium reconstruction codes would yield a comprehensive view of the
magnetics. The monitoring of the pair (qB, qJ) would then allow investigating the role played by the resonant modes for the
current density, that are current filamentary modes, in the plasma small-scale turbulence. By driving the magnetic and current
density profiles apart so that the images of qB and qJ are disjoint, these filamentary modes would not impact the magnetic field
topology, being not associated to magnetic islands but to non-resonant magnetic modes. It remains to be explored to which
extent such a configuration, where the spectrum of tiny current density filaments produces a spectrum of magnetic modes that
has practically no effect on heat transport, is beneficial.

1 Introduction
In a magnetic confinement fusion (MCF) plasma, alpha particles produced from fusion reactions will be confined by the
magnetic field and heat back the plasma species, and primarily electrons, through collisions. To ignite the plasma, the rate
of alpha heating must exceed (and at least match) the rate at which plasma loses energy. Finding scenarios that minimize
plasma losses is thus crucial for optimizing the achievement of the conditions necessary for fusion and sustained ignition. A
well-known prime reservoir for the minimization of plasma losses lies in the electron energy channel since the electron heat
transport is anomalous. This arises from the fact that being the least massive charged particles, electrons are also the most
magnetized and thus the most sensitive to the non-regularity of magnetic field lines. Understanding, controlling and ideally
reducing electron heat transport has thus been a major objective of MCF research so far.

A picture that emerged long ago is that the magnetic topology impacts then the electron collective behaviour. Ideally, the
magnetic field within a tokamak should be axisymmetric with smooth magnetic field lines spiralling about the magnetic axis.
Yet, departures from axisymmetry caused by 3D effects manifesting through the overlap of magnetic resonances break the
smoothness of the magnetic field lines and introduce, at least locally, some stochasticity. Although a rigorously exact self-
consistent analysis of electron heat transport may still be mathematically out-of-reach, some relevant estimates obtained using
simplifying assumptions exist for long. A significant breakthrough occurred when Rechester and Rosenbluth [1] showed that,
because electrons are strongly magnetized, even a slight braiding of magnetic field lines could result in a noticeable increase
in perpendicular heat transport. This means that the magnetic field lines diffusivity transfers to the electron thermal diffusivity.
This derivation was done under the assumption of stationary magnetic fluctuations and prompted numerous theoretical studies
aiming to clarify its application regime. Later, Isichenko notably included the decorrelation effects produced by time-varying
magnetic perturbations [2, 3]. It emerges from this careful analysis that, except for the extreme case of quick decorrelation
where the characteristic frequency of magnetic turbulence would be much greater than the ratio of the electron thermal velocity,
ve, to the magnetic exponentiation length, the electron thermal diffusivity is proportional to the magnetic line diffusivity Dm.
Furthermore, in the collisionless limit, it approximates to veDm.

Critical to the anomalous electron transport is thus the existence of resonant magnetic perturbations. This calls for an
examination of the source of these resonant magnetic perturbations. In addition to some possible curl-free magnetic perturba-
tions coming from external sources, e.g. due to ripple effects, the magnetic perturbations are associated by Ampère’s law to
plasma current density perturbations. This naturally introduces a plasma current density approach that has been left apart up
to now. Indeed, in a tokamak plasma, the displacement current is largely negligible in front of the plasma current so that the

1



plasma current density, J, can be approximated as a divergence-free field satisfying

J =µ−1
0 ∇ × B. (1)

Equation (1), together with the Maxwell-flux equation

∇ · B =0, (2)

form then a closed set of equations. It is the aim of the present Letter to explore the implications of the divergence-free nature
of the magnetic and current density fields linked by Ampère’s law (1) in driven MCF ideally-axisymmetric devices such as
tokamaks.

2 Hamiltonian representation of divergence-free field fieldlines
At each given time, Eq. (2) is universally valid and Eq. (1) is a strongly relevant approximation in tokamak plasmas since the
magnitude of the displacement current density Jd = c−2∂tE is at least eleven orders smaller than that of the plasma current
density [4]. Yet, the field lines of any solenoidal (i.e. divergence-free) field can be identified to the trajectories of a one-and-
a-half degrees of freedom Hamiltonian system. Here, this means that, at each given time t, magnetic and current density field
lines are the respective trajectories of two Hamiltonian systems Ht

B and Ht
J depending on three space coordinates. In a simple

toroid, the divergence-free vector fields B and J may be represented in the general canonical forms [5–7]

B = ∇ψB × ∇θ + ∇φ × ∇Ht
B, (3)

J = ∇ψJ × ∇θ + ∇φ × ∇Ht
J, (4)

where θ and φ are independent appropriate poloidal and toroidal angles. The differential equations to solve to obtain the
magnetic field lines are

dψB

dφ
=

B · ∇ψB

B · ∇φ
= −

∂Ht
B

∂θ
,

dθ
dφ

=
B · ∇θ
B · ∇φ

=
∂Ht

B

∂ψB
,

with similar equations for J-field lines. Generically, the Hamiltonian Ht
B(ψB, θ, φ) can be Fourier decomposed into an axisym-

metric equilibrium part depending on the flux function ψB and a non-axisymmetric perturbation part such that

Ht
B(ψB, θ, φ) = Ht

B0(ψB) +
∑

(m,n),(0,0)

ht
Bmn(ψB) cos

(
mθ − nφ + χt

Bmn

)
. (5)

For simplicity’s sake, the time t index will be dropped in the following. The axisymmetric contribution is dominant in tokamak
plasmas and yields integrable magnetic and density field lines spiraling on flux surfaces given by

ψB = const,
dθ
dφ
=

dHB0

dψB
≡ q−1

B (ψB),

ψJ = const,
dθ
dφ
=

dHJ0

dψJ
≡ q−1

J (ψJ).

defining the magnetic and current density ”safety factor” functions qB = q and qJ. Let us note here that, under the usual
assumption that the Grad-Shafranov equation holds at equilibrium, both magnetic and current density flux surfaces are constant
pressure surfaces which allows to construct a common set of canonical coordinates to express B and J, such as Hamada
coordinates [8, 9]. For the present analysis, it is sufficient that the same poloidal and toroidal coordinates be shared by B and
J canonical descriptions. Let us note also that, in fusion-relevant tokamaks, diamagnetic effects ensure that qJ is not trivial.

3 Topology and classification of modes
Let us consider a perturbation to the axisymmetric state by a single mode (m0, n0). The generic form of the Hamiltonian, for
the B- or J-field lines, is then

H(ψ, θ, φ) = H0(ψ) + εh(ψ) cos(m0θ − n0φ + χ0). (6)
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Figure 1: Left) Example of two arbitrary magnetic and current density safety factor profiles as a function of resp. normalized
flux coordinates ψ̂B and ψ̂J. Right) Each dot represents an (m, n) mode. It is a resonant mode for B if it is in the blue cone
bounded by the lines y = qB minx and y = qB maxx and/or for J if it is in the red cone bounded by the lines y = qJ minx and
y = qJ maxx. The violet intersection cone contains modes that are both resonant to B and J. The white cone contains modes
that are non-resonant to B and non-resonant to J.

Resonance occurs when the insertion of the O(ε0) axisymmetric solution produces a secular forcing resulting in a linear
increase of ψ with φ. This happens when there exists some ψ∗ such that q(ψ∗) = m0/n0. Figure 1 considers an instantaneous
axisymmetric plasma state with arbitrary magnetic and current density safety profiles. The plot on the right highlights the
possible resonant modes for B (in blue) and for J (in red). On this example, there are modes that are both resonant for B and J
in the overlapping (violet) cone. By virtue of the linearity of Ampère’s equation (1), some (m0, n0) current perturbation δJm0,n0

is associated to some (m0, n0) magnetic perturbation δBm0,n0 . Reciprocally, there could exist vacuum magnetic perturbations
that have no manifestation on the current density. Since our interest lies in the magnetic perturbations originating from plasma
current density perturbations, we focus on the current density modes.

Any mode of a divergence-free vector field with a rotational transform is either resonant or non-resonant. Considering the
current density field J, a mode (m0, n0) is resonant if there exists some ψ∗J such that q(ψ∗J) = m0/n0; if not, it is non-resonant.
In the first case, a poloidal cross-section cut of the current density field lines reveals that, around the current flux surface ψ∗J,
even a tiny amplitude (m0, n0) perturbation produces a change in the topology of current density field lines with the apparition
of a vortex (island). In 3D, such a resonant mode for the current density exhibits then a filamentary structure such as in the
example of Figure 2. On the contrary, a non-resonant mode manifests only through smooth deformations of flux contours. To
be more specific, a resonant mode (m0, n0) for B originating from a current density perturbation can have for source either a
J-resonant filament-like mode if there exists some ψ∗J such that q(ψ∗J) = m0/n0 (this is the case for modes in the violet cone
of Fig. 1), either a non-resonant J mode if not (this is the case for modes in the blue region of Fig. 1). Non-resonant modes
include collective modes of deformation of the current density radial contours.

4 Illustration in cylindrical geometry of the interplay between magnetic and cur-
rent density field topologies

Let us examine this further by deriving the magnetic and current density field lines corresponding to some axisymmetric state,
defined by given qB and qJ, perturbed by a single mode with poloidal mode number m0 and toroidal mode number n0. Here we
shall consider a cylinder configuration with length 2πR with periodic boundary conditions (z = Rφ) to simplify calculations
without affecting the conclusions. One simplification of cylindrical geometry is that the action variable ψ only depends on the
radius r so that we can directly use r to compare qB and qJ.

The axisymmetric axial component of the magnetic field is denoted by B0(r) and B0(0) ≡ B0. The total magnetic field
amounts to B = Bθ(r)eθ + B0(r)ez + δB(r, θ, z) with δB(r, θ, z) = ∇ × δA with δA = εm0,n0 f (r) cos(m0θ − n0φ)ez, for some
waveform f (r). The total current density field is obtained from Ampère’s law (1). The equations of the magnetic field lines
derive from B×dOM = 0 with dOM = drer+rdθeθ+dzez and similarly for the current density field lines. For the equilibrium
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Figure 2: When there exists some ψ∗J such that q(ψ∗J) = m0/n0, i.e. the mode (m0, n0) is resonant for J, then a current filament
flows within the current ”flux tubes” attached to elliptic surfaces. In the representation, m0 = 5 and n0 = 3.

axisymmetric part, one obtains the expressions of qB and qJ as functions of the magnetic field components

qB(r) =
rB0(r)
RBθ(r)

, (7)

qJ(r) = −
Bθ(r) + rB′θ(r)

RB0(r)
. (8)

Considering given radial profiles qB(r) and qJ(r), the system (7)-(8) allows to obtain the axisymmetric magnetic field compo-
nents as Bθ(r) = rB0(r)/(RqB(r)) with the axial component B0(r) solving a first order differential equation as

B0(r) = B0 exp
∫ r

0

x2q′B(x) − 2xqB(x)

R2q2
B(x)qJ(x) + x2qB(x)

dx
 . (9)

The winding properties of the axisymmetric equilibrium magnetic and current density fields are specified by the pair (qB, qJ).
In Figure 3, a safety profile qB has been chosen. We consider the effect of a small perturbation having m0 = 5 and n0 = 3 that
is resonant for the magnetic field because there exists some minor radius at which qB = 5/3. This determines the Poincaré plot
of magnetic field lines, shown in blue on Figure 3c). The Poincaré plots of the current density field lines are plotted in red and
vary according to the qJ profile. For each qJ, the components of the magnetic field (normalized to B0) are fully known and are
plotted for the sake of completeness in Fig. 3b). Depending on qJ, the magnetic island is associated either to a current density
island (or filamentation mode), if there exists one radial coordinate at which qJ = m0/n0 (case qJ1) or more than one (case qJ2).
Let us note that the radial locations of the magnetic and current density islands differ when qB and qJ do not coincide, which
is the case considered here. Alternatively, the magnetic island may be associated to a non-resonant current density mode when
qJ does not take the value m0/n0 (cases 3 and 5). The case 4 corresponds to a limiting case when qJ reaches the value m0/n0
at the border.

It has been shown that providing the pair (qB, qJ) allows for a comprehensive characterization of the modes. This requires
to reconstruct in real time not only the safety profile, qB, but also qJ. To facilitate this in the realistic toroidal geometry, their
expression in flux coordinates are derived now.
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Figure 3: Examples of the impact on magnetic and current density field lines of a small 3D perturbation, having here poloidal
m0 = 5 and toroidal n0 = 3 mode numbers. The arbitrarily chosen safety profile qB is plotted in blue in a). The Poincaré’s
plot of the magnetic field lines is shown in c) and shows that the perturbation is magnetically-resonant. One considers five
arbitrary qJ-profiles, noted qJ1 to qJ5, plotted in red in a). The corresponding current density field lines are plotted in d), e),
f), g) and h). Knowing qB and qJ provides the full axisymmetric magnetic configuration b) (normalized to B0). r̂ denotes the
radial variable normalized to the minor radius.

5 Analytic expressions of the magnetic (qB) and current density (qJ) profiles in
flux coordinates

In the Hamada set of variables (v, θ, ζ), with v the volume enclosed by the flux surface, and ζ and θ the toroidal and poloidal
coordinates (chosen here to have period 1, not 2π), both equilibrium magnetic and current density field lines are straigth with

qB(v) =
B.∇ζ
B.∇θ

,

qJ(v) =
J.∇ζ
J.∇θ

.

This is a canonical set of variables for both the magnetic and current density field lines. It is however not easy to accomodate
because the toroidal and poloidal coordinates are not the usual geometrical angles. Nevertheless, the previous illustration
(in Fig. 3) as well as the diagramm (in Fig. 1) show that, in order to classify modes, we essentially need to compare the
equilibrium windings of the magnetic field and the current density field. Using the explicit transformation between Hamada
coordinates (v, θ, ζ) and the flux coordinates

(
ψ, θg, φg

)
, where θg and φg are respectively the poloidal and toroidal geometrical

angles, it was shown in [10] that qB(v) is the usual safety factor, namely

qB(v) =
1

2π

∮
ψ

B.∇φg

B.∇θg
dθg = qB(ψ). (10)

Moreover, using B =F(ψ)∇φg+∇ψ×∇φg [signe] where F(ψ) = RBφg is the diamagnetic function, and defining the flux surface
average

⟨X⟩ �
(∮

ψ

dθ′g
B.∇θ′g

)−1 ∮
ψ

Xdθ′g
B.∇θ′g

=
∂

∂v

∫
V

Xdv′, (11)

yields

qB(v) =
F(ψ)
2π

∮
R−2 dθg

B.∇θg
=

F(ψ)
4π2

〈
R−2

〉
v′(ψ). (12)
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Now let us also consider here qJ. We have

J.∇ζ =
1

2π
J.∇φg +

F(ψ)
2π

(〈
R−2

〉
− R−2

) J.∇θg

B.∇θg
,

J.∇θ =
B.∇θ
B.∇θg

J.∇θg.

Moreover,

θ
(
ψ, θg

)
=

(∮ dθ′g
B.∇θ′g

)−1 ∫ θg

0

dθ′g
B.∇θ′g

, (13)

implying
∂θg

∂θ
=

(∮ dθ′g
B.∇θ′g

)
B.∇θg. (14)

We have, from Eq. (13) and (13),

qJ(v) =
J.∇ζ
J.∇θ

=
1

2π
J.∇φg

J.∇θg

B.∇θg

B.∇θ
+

F (ψ)
2π

〈
R−2

〉
− R−2

B.∇θ
. (15)

Let us use the fact that we can average ”for free” this function on θ as it only depends on v. We have, for the first member of
the right hand side ∮

1
2π

J.∇φg

J.∇θg

B.∇θg

B.∇θ
dθ =

∮
1

2π
J.∇φg

J.∇θg
dθg. (16)

For the second member of the right hand side, we have∮
F (ψ)

2π

〈
R−2

〉
− R−2

B.∇θ
dθ =

∮
F (ψ)

2π

〈
R−2

〉
− R−2

B.∇θg
dθg = 0 (17)

by definition of the flux surface average (11). This gives the result

qJ(v) =
1

2π

∮ J.∇φg

J.∇θg
dθg. (18)

Let us now use the Grad-Shafranov equation to get an explicit expression. This gives

J.∇φg =
dp
dψ
+

1
µ0R2 F

dF
dψ

. (19)

From µ0J.∇θg =
(
∇F × ∇φg

)
.∇θg, B.∇θg =

(
∇ψ × ∇φg

)
.∇θg and ∇F = F′(ψ)∇ψ, one gets J.∇θg = µ

−1
0 F′(ψ)B.∇θg. Conse-

quently,

qJ(v) =
1

2π

∮
µ0 p′ (ψ) + FF′(ψ)

R2

F′(ψ)B.∇θg
dθg

=
1

2π

∮
µ0 p′ (ψ)

F′(ψ)B.∇θg
dθg +

1
2π

∮
F(ψ)

R2B.∇θg
dθg

=
µ0 p′ (ψ)

F′(ψ)
1

2π

∮
dθg

B.∇θg
+ qB(v).

This yields from (11) and (12)

qJ(v) − qB(v) =
µ0

4π2

p′ (ψ) v′(ψ)
F′(ψ)

(20)

that is, choosing the flux label ψ instead of v,

qJ(ψ) = qB(ψ)
[
1 +

µ0 p′ (ψ)〈
R−2〉 FF′ (ψ)

]
. (21)

To the author’s knowledge, this is the first expression of the qJ profile in flux coordinates. We are indeed in the same situation
as in the previous cylindrical illustration where the action variable depends only on the radius r: Here, the action variable v
in the Hamada’s set depends only on ψ (v = v(ψ)). One can then do the comparison between the qB and qJ profiles with flux
coordinates. This can serve to figure out whether the modes resonant to the current density, namely the current filamentary
modes, produce magnetic perturbations that are resonant to the magnetic field.
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6 Implications, perspectives and conclusions
In the case of a zero-β (constant zero pressure) plasma, Eq. (21) shows that qB and qJ coincide. In this special case, (m, n)
current filaments flow within (m, n) magnetic islands. This case is not relevant to fusion conditions. Indeed, in ITER, to attain
Q ≃ 10, plasmas will need to have a normalized beta βN > 1.8 with βN = β/I/aB, I the plasma current, a the minor radius
and β ≡ p/B2/(2µ0) [11]. Consequently, the qJ profile will be somehow separated from the qB profile according to Eq. (21).
In view of the one-and-a-half Hamiltonian picture of the field lines, this means that a MCF device needs to drive the magnetic
and current density channels apart. The present study should thus have important implications:

i. Add the calculation of qJ to equilibrium reconstruction codes to diagnose the separation of the magnetic and current
density channels.

The kinetic equilibrium reconstruction codes presently serve to monitor in real time the magnetics in modern tokamaks.
This involves the resolution of the elliptic nonlinear Grad-Shafranov differential equation to determine the magnetic
equilibrium configuration from the measurement data. This has been a challenging and fundamental MCF research topic
for around four decades, involving the collaborative contributions of physicists, mathematicians and computer scientists
[12–24], with recent contributions from fast-parallel computing [25], artificial intelligence and neural networks [26–30].

One outcome of these codes is the real-time computation of the safety factor profile q (that is qB). The analysis presented
here highlights the value of including the computation of the current density qJ profile. It is shown by Eq. (21) that
this amounts to add just a line to existing codes. Then, the knowledge of the pair (qB, qJ) will enable the complete
identification of the electromagnetic, not purely electrostatic, modes, both in terms of their magnetic contribution and
their contribution to the current density, as exemplified in Figure 1.

Let us here note that the expression for qJ in Eq. (21) has been obtained under the usual assumption that the plasma
equilibrium is governed by the Grad-Shafranov equation. This derives from the steady-state Navier-Stokes equation
in which one neglects the plasma velocity field. If this steady-state plasma velocity field happens to be non negligible
then plasma rotation could also contribute to separate the magnetic and current density channels. Nevertheless, one can
reasonably expect the Grad-Shafranov equation to give the dominant contribution to qJ.

ii. Investigate the relationship between the interplay of the qB and qJ profiles and the confinement properties.

Any experimentally-unavoidable perturbation to the axisymmetric current density gives rise, through Fourier mode
decomposition, to a spectrum of current density modes. In particular, there exists, at any time, a spectrum of tiny
filamentation modes, that are modes for which qJ is rational. Obviously, linear theory may favor some specific modes.
The point here is just to stress that there should exist at all times a spectrum of non-vanishing current density filaments
that comes up, by the virtue of Ampère’s law, with a spectrum of magnetic perturbations.

Let us consider, for example, a situation where the images of the functions qB and qJ are disjoint. Then, the resonant
modes for the current density (i.e. the filamentary modes) do not impact the magnetic field topology. They are not
associated to magnetic islands, but to non-resonant magnetic modes. In this case, only collective modes of deformation
of the current density, that do not change the topology of the current density field lines, can be associated to magnetic
islands. It remains to be explored to which extent such a configuration, where the spectrum of tiny current density
filaments produces a spectrum of magnetic modes that has practically no effect on heat transport, is beneficial.

iii. Explore the possibility of controlling the current transport and preventing disruptions by playing on the current density
profile.

In MCF devices such as tokamaks, apart from magnetic perturbations due to the vacuum configuration, such as the
ripple-induced magnetic disturbances, one can consider the current density channel as the driver for magnetic pertur-
bations. By separating the qB and qJ profiles, one can prevent the magnetic perturbations due to the aforementioned
tiny current filaments to contribute to magnetic diffusivity. Ultimately, the current path might also be controlled by
monitoring and playing on the shear of the qJ profile with potentially important implications.

In conclusion, this Letter points to the benefits of monitoring both the qB and qJ profiles to get a full, real-time, picture
of the magnetic and current density channels in MCF devices. Some reconstruction of the qJ profile from experimental
data will be presented and analysed in a forthcoming study.
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