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Purpose: The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also
known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second
cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immuno-
therapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and
analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their
cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that
addresses these limitations.
Methods and Materials: For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment
planning system, and the patient’s anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and
performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-
body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was
split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square
deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric.
Results: Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respec-
tively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator,
Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively.
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Conclusions: This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented gener-
alizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine.
� 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/)
Introduction
In external beam radiation therapy (RT) with photons, non-
zero doses are inevitably delivered outside the treatment field;
this is often referred to as out-of-field or peripheral dose. The
5% isodose of the prescribed dose is the most commonly
used threshold to differentiate between in-field and out-of-
field regions.1-6 Although the out-of-field dose is mostly less
than 4 Gy, questions remain about the potential association
between this low dose exposure and adverse events such as
second malignant neoplasms,7 immunologic dysfunction,8,9

cardiovascular disease,10 and neurologic effects.11 In particu-
lar, it has recently been shown that even very low dose expo-
sures from computed tomography (CT) scans have been
associated with the development of subsequent cancer.12 In
RT, this topic is currently experiencing renewed interest, par-
ticularly as modulated treatments (such as volumetric modu-
lated arc therapy and intensity modulated RT) are now
routinely used in clinical care and tend to result in higher
peripheral doses because of longer beam-on times and larger
irradiated volumes compared with 3D conformal RT.13-16

Recent studies have yielded inconsistent results, with varying
effects observed across different populations, and these are
largely limited by too short duration of follow-up to detect
any effect of advances in RT on the risk of radiation-related
second cancers, which are typically reported after decades of
latency times.17-22 In a very different context, the assessment
of out-of-field doses seems increasingly crucial for optimizing
RT treatments in the near future. The recent awareness of the
immunomodulatory role of RT, coupled with the observation
of a link between radiation-induced lymphopenia and patient
response to treatment in several solid tumor sites, suggests
the need to spare lymphocyte-rich structures as much as
possible.23,24 Indeed, the fact that the lethal doses reported by
several independent groups are of the order of a few gray25-27

is a strong argument for the need to characterize the dose in
the periphery to the primary field.

Treatment planning systems are used in clinical routine to
estimate in-field dose distribution but have been shown to
systematically underestimate out-of-field dose for 3-dimen-
sional (3D) conformal RT, intensity modulated RT, volumet-
ric modulated arc therapy, and CyberKnife treatments
(Accuray).2,13,28-30 Thus, despite clear clinical potential, the
out-of-field dose computation is currently not available in
clinical practice. Two methods are currently used in the liter-
ature for out-of-field dose estimation for research purposes:
Monte Carlo (MC) simulations, which are based on a sto-
chastic approach and aim to estimate the average dose per
voxel and its associated variance by simulating the tracking
path of millions of incident particles knowing cross-sections
of particle-matter interaction, and analytical approaches,
which mathematically model the out-of-field dose, either
based on physical or empirical models.31 MC simulations
and analytical methods can provide accurate out-of-field
dose estimation29 but are today inappropriate for clinical
routine implementation. On the one hand, MC simulations
are hardware- and time-intensive, especially when it con-
cerns the evaluation of low doses, and require detailed
modeling of the irradiator, which can be tedious when the
technical drawing of the device is not available. On the other
hand, analytical models, which most of the time require new
experimental measurements to adjust intrinsic parameters,
are not suitable for large retrospective studies, which often
legacy linear accelerators (LINACS) or cobalt irradiators that
are no longer available for experimental measurements.

In recent years, artificial intelligence, especially technol-
ogy rooted in deep learning, has drastically changed the
clinical practice of RT through the automation of several
time-consuming tasks such as segmentation,32 treatment
planning,33 and generation of virtual images (synthetic
CT34). These examples demonstrate that deep learning can
identify complex hierarchical features from spatially struc-
tured data,35 a capability that might also be exploited for
estimation of out-of-field dose. Out-of-field dose consists of
3 main components: the patient scatter component, which
corresponds to secondary photons resulting from a Comp-
ton interaction in the treatment field of primary photons,
depositing their energy in the area outside the treatment
field; the collimator scatter (or head scatter) component,
which results in doses deposited outside the treatment field
by particles that have interacted with the collimator or other
parts of the irradiating device head; and the leakage compo-
nent, which is made up of primary particles that have not
been intercepted by collimation parts. The patient scatter
component depends mainly on the size of the irradiated vol-
ume and the beam spectrum and is the largest component
close to the field.36 The 2 other components depend mostly
on the geometry of the irradiation device and its configura-
tion during the treatment. The leakage component appears
to be the dominant component far from the field,36 and its
amplitude is strongly dependent on the distance from the
isocenter, as it depends on the angular shielding properties
of the machine in a general way, that is, integrating the
attenuation properties of the jaws and the multileaf collima-
tor. Although it is obvious that the information relating to
the patient scattering component is included in the in-field
area, the absorbed dose generated by the head scattering
component also generates signal in the field as the photons
resulting from the Compton interaction are scattered
throughout the volume.37 The leakage component is
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ultimately a signature of the irradiation device, making the
task undoubtedly more complex for a neural network. Based
on the assumption that the in-field dose map associated
with the patient’s anatomy contains most of the information
needed to calculate the out-of-field dose, our objective was
to evaluate the ability of a single algorithm based on deep
learning to adapt to a wide variety of configurations, bring-
ing an answer to the problems of computation time, infor-
mation extraction, and versatility. Major publications
providing out-of-field dose data for specific treatment
modalities are available and have been of great interest for
this research topic,38 and artificial intelligence via its gener-
alization capabilities seems to us to be a promising field. On
the one hand, it can propose a solution that is not limited to
the treatment configurations presented in the data tables
and, on the other hand, it can make it possible to predict the
out-of-field dose map specific to each LINAC and to the
patient’s anatomy, thanks to information extracted from the
in-field dose map and the 3D representation of the patient.
In this paper, we present a proof of concept applied to high-
energy photon irradiations.
Methods and Materials
Description of the data set

The French Childhood Cancer Survivor Study (FCCSS)
cohort, whose primary aim is to study long-term effects of
treatments for cancer on children and adolescents, was used
in this work. More than 7000 patients under 21 years of age
treated in 5 French centers between 1945 and 2000 for solid
cancer or lymphoma composed this cohort. With the goal to
develop a deep learning model for out-of-field dose estima-
tion suitable for high-energy photon irradiation, the follow-
ing inclusion criteria were considered: (1) patients treated
with a photon beam and (2) treatments using LINACS with
a high voltage >1 MV or cobalt irradiators. A total of 3310
patients were selected at this stage. For all cohort members,
whole-body dose map was reconstructed using an analytical
method originally developed for bone marrow dose analy-
sis39. This empirical method concatenated the 3D dose map
as estimated by the Isogray TPS (Dosisoft) in in-field areas;
each treatment plan was resimulated by an experienced oper-
ator based on the treatment details to an out-of-field dose
estimation obtained device-wise. Out-of-field doses were
estimated using reference percentage of depth dose values
(known in function of depth in tissue, field size, and source
to skin distance)40 extended to off axis ratio area by in-water
phantom measurements performed and gathered since the
mid-1980s41,42 and the absorbed dose on the beam central
axis at maximum dose depth for reference source to skin dis-
tance and field size. Comprehensive description with mathe-
matical support of the model can be found in 39.
Experimental measurement campaigns have been exhaus-
tively carried out since the mid-1980s on all the devices listed
in the cohort (see Table E1). Each measure was used to fit the
analytical model under different specific characteristics of the
device studied.41−43 In the present work, we did not carry
out new measurements to validate the analytical dose maps,
as the data have already been validated and used extensively
in a large number of previous publications.44−48 The process
of dose reconstructions considered various factors such as
patient gender, age, height, weight, thickness at the target
volume level, treatment position, treatment machine type,
beam energy, irradiation technique, field size and shape, gan-
try angle, collimator angle, presence of accessories like
wedges, target volume location, and the actual dose adminis-
tered to the target volume. All 3D whole-body dose maps
had voxel dimensions of 2� 2� 2 mm3. The exclusion cri-
teria applied to these whole-body dose maps were as follows:
(1) outlier dose maps, that is, maps presenting local doses
higher than 100 Gy, which had no physical justification in
view of the doses prescribed (N = 104) were deleted49 and
(2) corrupted dose maps (N = 2) were removed. At the end,
data from 3151 patients were kept for this study. Table 1
summarizes the distribution by center of these patients.
Twenty-five irradiation devices were grouped into 3 catego-
ries: standard LINACS, cobalt units, and betatron units. The
subset included 38 different pathologies, of which the most
represented were nephroblastoma and other nonepithelial
renal tumors (695 patients), Hodgkin lymphomas (449
patients), and astrocytomas (235 patients).
Data preprocessing

Several preprocessing steps were applied to the analytical
dose maps to make them deep-learning compliant. These
included: (1) padding into [370, 242, 1131] matrix sizes, (2)
resampling of padded files (originally in Statistical Analysis
System format) to [128, 128, 512] sizes, (3) extraction of in-
field and out-of-field dose maps from whole-body dose
maps (a 5% isodose threshold was chosen considering the
maximum dose per patient as the reference dose), and (4)
creation of binary masks from the whole-body dose maps
by a thresholding method separating the background from
the foreground. An on-the-fly preprocessing pipeline was
then applied using the Medical Open Network for Artificial
Intelligence (MONAI 0.8.0)50 in this order: loading, normal-
ization, resampling, and concatenation. During the normali-
zation step, 3D dose map intensities were normalized by 100
Gy, to provide the neural network with values within ½0; 1�:
The on-the-fly resampling step was implemented to test the
effect of batch size as a function of available video random-
access memory. A nearest neighbor interpolation strategy
was used for the resampling step.

Finally, an adjustment of data was implemented to align
with the input parameters required by the neural network.
This adjustment involved transforming the data to fit a mul-
tidimensional structure denoted as B £ 2 £ H £W £ D. In
this expression, B refers to the batch size used during the
training phase of the process. C indicates the number of



Table 1 Characteristics of the patients selected in this work from the FCCSS cohort described by center

Center
Gustave
Roussy,
Villejuif

Institut
Curie,
Paris

Institut
Claudius-Regaud,

Toulouse

Institut
Godinot,
Reims

Centre Antoine
Lacassagne,

Nice Total

Number of patients 2662 198 199 68 24 3151

Male
Female

1439
1223

112
86

121
78

43
25

17
7

1732
1419

Mean age ± STD [years] 7.3 ± 4.9 6.3 ± 5.0 7.2 ± 4.7 7.9 ± 5.0 6.8 ± 4.7 7.2 ± 4.9

Irradiation device
(number of patients/
number of devices/

high voltage
range or mean energy)

LINAC
1040/12
4-25 MV

110/4
6-25 MV

25/2
20-25 MV

32/2
16-25 MV

0/0
NA

1207/14
4-25 MV

Cobalt irradiator
1532/5

1.25 MeV
86/7

1.25 MeV
174/4

1.25 MeV
36/2

1.25 MeV
24/3

1.25 MeV
1852/10
1.25 MeV

Betatron
90/1

1.25 MV
2/1

1.25 MV
0/0
NA

0/0
NA

0/0
NA

92/1
1.25 MV

Abbreviation: LINAC = linear accelerator.
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channels present, and H, W, and D correspond to the
height, width, and depth of the matrix, respectively. The
channel, distinguished by its 2-dimensional structure,
encompasses the conjoined data from the whole-body
binary masks and the in-field dose maps. Figure 1 summa-
rizes the preprocessing pipeline.
Padding
/thresholding

above 5%
max dose

Padding
/thresholding

below 5%
max dose

Padding
/binary

thresholding

Loading
/normalization
/resampling

Concatenation
In-field dose map

2

64
2 × 256

32
2 × 128

16
2 × 64

8
2 × 32

8
2 × 32

16
2 × 64

16
2 × 64

32
2 × 128

32
2 × 128

64
2 × 256

64
2 × 256

32

64

128 128

2

64

32

Out-of-field dose
map

Whole-body
dose map

Whole-body
binary mask

Loading
/resampling

Fig. 1. Dose map preprocessing pipeline and comprehensive de
using logarithmic scale.
Neural network training

A conventional 3D U-Net,51−53 composed of 4 down-
sampling blocks followed by 4 up-sampling blocks, was
implemented (Fig. 1). The mean square error ðsee
equation 1) evaluated only on the foreground voxels
Loading
/normalization
/resampling

Predicted out-of-field
dose map

3D U-Net

Ground truth out-of-
field dose map

convolution 3×3, leaky ReLU

4
2 × 16

4
2 × 16

4
2 × 16

8
2 × 32

8
2 × 32

8
2 × 32

8
2 × 32

16
2 × 64

16
2 × 64

16
2 × 256

16
2 × 64

64
2 × 256

64
2 × 256

64
2 × 256

32
2 × 128

32
2 × 128

32
2 × 128

56 256 512

256

64

128

128

96 32

1

32

256

512

max pooling (kernel 2)
up-convolution (scale factor 2)
crop and concatenate
convolution 1×1

sign of the implemented 3D U-Net. Dose maps are displayed
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outside the 5% isodose, that is, only in the region consid-
ered in this paper as the out-of-field dose, was selected as
loss function.

MSE ¼ 1
n

Xn
i¼ 1

Dnn;i � Dgt;i
� �2 ð1Þ

With Dnn;i and Dgt;i the normalized doses to the voxel i
estimated respectively, with the neural network and from
the ground truth analytical method, and n the number of
voxels considered.

Learning rate and weight decay were considered in the
ranges ½1e� 7; 1e� 3� and ½1e� 8; 1e� 4�; respectively,
with 1e-4 and 1e-6 providing the optimal results. The Adam
optimizer was used to update the network parameters.
Instance normalization was preferred. Batch size of 20 cor-
responding to a resampled size of 64� 64� 256 was
selected. The 3D U-Net was trained for 600 epochs (»50
hours) on a Nvidia RTX A6000. No early stopping was
used. Weights based on best performance on validation loss
were saved.

The data set of 3151 patients was conventionally split
into training (N = 2213), validation (N = 505), and test
cohorts (N = 433), as shown in Table 2. As one of our main
objectives was to test the hypothesis of generalization of the
trained network to unseen machines, data splitting was per-
formed in a controlled manner. Thus, the data were strati-
fied so that 18 different irradiation devices formed the
training set (including classic LINACS and cobalt irradia-
tors), and 2 unseen machines were part of the validation set
exclusively (1 cobalt irradiator and 1 Sagittaire LINAC oper-
ating at 25 MV). For the validation, we chose to select 2
devices: a conventional LINAC and a cobalt irradiator, each
associated with more than 100 patients treated, with the aim
of monitoring the performance of the neural network on a
large selection of patients for 2 different technologies in the
training set. On the basis of these observations, we chose the
Sagittaire LINAC as it is the accelerator operating at the
highest energy in our database and enabled us to test the
generalizability of our approach in this energy range and
also arbitrarily chose a cobalt irradiator. The test set was
divided into 5 subcohorts, including 2 classic LINACS
(names of accelerator model unavailable) operating at 6 MV
Table 2 Distribution of patients and devices included in training

Total Training Validation
Subtest
1 6 MV
Neptune

LINAC 1207 683 365 103

Cobalt irradiator 1852 1530 140 0

Betatron 92 0 0 0

Subtotal 3151 2213 505

Abbreviation: LINAC = linear accelerator.
and 16 MV, 2 cobalt irradiators (called Alcyon and Mobile-
tron), and finally a betatron operating at 1.25 MV. All
patients treated with betatron devices were voluntarily kept
in the test set because of its very specific design compared
with a conventional LINAC or a cobalt unit. No stratifica-
tion on clinical data was applied. Table E1 provides a full
description of the data set.

We also carried out 2 additional deep learning experi-
ments. The first was aimed at evaluating if the inclusion of
betatron-treated patients in the training set could improve
performance for a subgroup of 46 patients, here considered
as a new subtest set (the 46 patients were randomly selected
from the test set 5 comprising 92 patients). Inference of the
previously trained neural network on these 46 identified
patients was considered as a benchmark. We then per-
formed network retraining from scratch using the already
identified hyperparameters on the original training data, to
which were added the other 46 betatron patients not used
for the benchmark, and tested the performance of this new
network on the 46 patients kept aside from the training. The
second additional deep learning experiment aimed to study
the benefits of a custom model, compared with the use of a
generalized model. For this, we selected 100 of the 128
patients treated with an Alcyon cobalt irradiator (test set 3)
and trained the 3D U-Net from scratch considering only
these data. The training was carried out during 2000 epochs,
using the same hyperparameters as for training the original
generalized model, with the exception of a batch of 4. We
then tested the performance of this custom model on the 28
remaining Alcyon patients. We compared these results with
the inference performance of the original generalized model
for the same 28 patients (considered here as our bench-
mark). Finally, as a last deep learning experiment, we fine-
tuned the original model using the 100 Alcyon cobalt irradi-
ator training patients for 2000 epochs and tested the perfor-
mance of this fine-tuned model on the 28 Alcyon cobalt
irradiator patients included in the test set.

Because the root mean square deviation (RMSD; equa-
tion 2) is used as a performance evaluation metric by a lot
of research teams developing analytical models for out-of-
field dose estimation,16,31,54−58 this measure was selected for
the reporting of the results. To study the effect of the field
size on the neural network performance, the results were
, validation, and testing processes

Test

Subtest
2 16 MV

Subtest 3
Alcyon cobalt
irradiator

Subtest 4
Mobiletron cobalt

irradiator
Subtest 5
Betatron

56 0 0 0

0 128 54 0

0 0 0 92

433
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also analyzed in subgroups, for which the threshold corre-
sponded to the median size of the in-field volumes in the
training set (3767 cm3). Similarly, RMSD values were com-
puted in 2 different zones: we differentiated the area outside
the radiation field into a near-field area and a far-field area.
The 1% isodose was chosen to distinguish these 2 zones.
Finally, the mean absolute dose differences between the pre-
dictions and the ground truth were estimated per patient.
Medians and min-max ranges were computed for the vali-
dation and test sets, also distinguishing between the near-
field zone and the far-field zone.

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼ 1

Dnn;i � Dgt;i
� �2

vuut ð2Þ

All manipulations on data were implemented in Python
3.7.7.
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Best performances were achieved at epoch 467/600. Learn-
ing curves for the training and validation sets are presented
in Figure E1. Table 3 presents theRMSD results obtained on
training, validation, and test sets for hyperparameters pre-
sented in the Methods and Materials section. Table 4 sum-
marizes the median of absolute dose differences per patient
on validation and test sets.

RMSDs of 0.28 § 0.08 and 0.41 § 0.26 cGy/Gy were
obtained for the training and validation data sets, respec-
tively. Values of 0.27 § 0.06, 0.26 § 0.07, 0.28 § 0.06, 0.30
§ 0.12, and 0.45 § 0.25 cGy/Gy were achieved for the 6
MV LINAC, 16 MV LINAC, Alcyon cobalt irradiator,
Mobiletron cobalt irradiator, and betatron devices test sets,
respectively, demonstrating overall performance similar to
or better than that of the validation set, except for the fifth
test set, corresponding to the betatron device. The same
observations were obtained by analyzing the medians of the
dose differences per patient with values of 0.31, 0.27, 0.23,
0.27, 0.30, and 0.33 Gy obtained for the validation sets,
LINAC 6 MV, LINAC 16 MV, Alcyon cobalt irradiator,
Mobiletron cobalt irradiator, and betatron devices, respec-
tively (Table 4). Similarly, betatron is associated with the
highest maximum dose difference of the test sets (maximum
value equal to 1.07 Gy). The results observed in the valida-
tion and test sets as a function of distance from the irradia-
tion field show better RMSD values far from the field than
close to it, except for the fourth (corresponding to the Mobi-
letron cobalt irradiator). For example, far from the field
RMSD values of 0.22 § 0.12 and 0.25 § 0.08 cGy/Gy are
reported for, respectively, the validation and the test sets,
and 0.49 § 0.29 and 0.40 § 0.20 cGy/Gy are reported for
the area close to the field. Finally, the results of the valida-
tion set comparing dose maps for large fields and small
fields suggest that the neural network performs better for
large irradiation fields (0.37 § 0.23 cGy/Gy compared with
0.43 § 0.28 cGy/Gy), but this difference is less pronounced
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than the differences observed in the previous results
between areas close to the field and areas far from the field,
especially when taking into account SD of RMSD results.
This trend is also observed in the fifth test set (0.39 §
0.13 cGy/Gy compared with 0.46 § 0.26 cGy/Gy), while
the other 4 test sets showed fairly similar results between
large and small irradiation fields. The same observation
can be seen for absolute dose differences, with higher val-
ues obtained for the near-field zone for both the validation
and test sets (median dose differences equal to 0.33 and
0.24 Gy for the test set in the near-field and far-field zones,
respectively). Based on this metric, the subset of patients
treated with the Mobiletron cobalt irradiator obtained the
poorest results in the far-field zone, and this was associated
with the highest maximum dose difference (0.85 Gy).

Histograms of the RMSD metric computed patient-wise
on the validation set (Fig. 2a) and on test sets (Fig. 2b)
were plotted, leading to heavy-tailed distributions and
more specifically to log-normal distributions. On the
basis of these figures, an RMSD threshold value of
0.6 cGy/Gy was considered to separate good from poor
out-of-field dose reconstructions. Eighty-seven out of
505 patients showed weaker performances in the valida-
tion set. Eighty-five of these were treated with a single
device, a Sagittaire LINAC operating at 25 MV. This
value was equal to 24 (out of 433 patients) in the test
set, with 21 of the 24 patients identified having been
treated with the betatron accelerator.

Figure 3 shows the out-of-field dose maps obtained for 3
representative patients from the testing sets: 1 with good
performance (patient a, RMSD ¼ 0.16 cGy/Gy), 1 with
median performance (patient b, RMSD ¼ 0.29 cGy/Gy),
and 1 with poor performance (patient c, RMSD ¼ 1.00 cGy/
Gy). Associated axial dose profiles are presented in Figure 4.
Applying our entire preprocessing pipeline including data
loading, neural network application, and data saving takes
an average computation time of 2.59 § 0.09 seconds, 0.047
§ 0.008 seconds being necessary for the out-of-field dose
calculation itself.

For patients a and b, doses are well predicted in the near-
field dose gradient, with mean relative dose differences,
evaluated along the profiles (Fig. 4), equal to 23.1% and
26.3% up to 20 cm from the edge of the field. For
patient a, the continuous component far from the field
was correctly reconstructed (average dose of 0.23 Gy for
the ground truth compared with 0.26 Gy for the predic-
tion by the network between 20 and 155 cm), but with a
jump in dose that was not correctly predicted. For
patient b, the continuous component far from the field
was not predicted either (average dose of 0.06 Gy for
ground truth compared with 0.30 Gy for network predic-
tion between 20 and 153 cm). For patient c, treated on a
betatron machine, we note that the neural network has
weaknesses in dose prediction not only in areas close to
the field but also in more distant areas, where, for exam-
ple, it fails to predict the local increase in dose on the
patient’s legs associated with this specific LINAC.
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Finally, Figure 5 establishes a link between the doses pre-
dicted by the network and the ground truth doses for each of
the 3 patients, the objective being a linear curve passing
through 0 with a slope of 1. The visualization confirms the
observations made earlier from the profiles. In particular, for
patient a, the points corresponding to lower dose values show
3D U-Net
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Abbreviation: RMSD = root mean square deviation.
greater clustering around the linear trend than for the other
patients. Figure 5b clearly illustrates the overestimation of
doses far from the field. Figure 5c shows a more scattered dis-
tribution of the points, in line with previous observations.

In additional deep learning experiments, we sought to
evaluate the benefits of adding betatron data to the training
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set, to test its influence on the model’s performance on other
betatron data, and to test the development of a machine-
specific method. For the first deep learning experiment, a
mean RMSD of 0.26 § 0.11 cGy/Gy was obtained on the 46
betatron test patients as a benchmark value. The model
retrained on the original patient training set plus the 46
betatron patients kept aside resulted in a mean RMSD of
0.64 § 0.41 cGy/Gy. For the second deep learning experi-
ment, mean RMSDs of 0.16 § 0.01, 0.53 § 0.22, and 0.13 §
0.05 cGy/Gy were obtained for the benchmark configura-
tion, configuration considering training with only the 100
Alcyon cobalt irradiator training set patients, and configura-
tion considering the original model fine-tuned with the 100
Alcyon cobalt irradiator training set patients, respectively.
Discussion
Our aim in this proof of concept was to demonstrate the fea-
sibility of out-of-field dose prediction for high-energy pho-
ton irradiations using a deep learning neural network, while
demonstrating that this approach is an appropriate response
to the limitations in terms of computing time, difficulties in
accessing experimental measurements, and the lack of versa-
tility inherent in analytical and MC methods, which
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ultimately limit access to out-of-field dose maps for routine
clinical use.

First, the results were analyzed in terms of RMSD, which
is the most used metric for assessing out-of-field doses.31

Conventionally, RMSD values were calculated in the train-
ing, validation, and test sets, to assess the ability of the algo-
rithm to generalize to the anatomy of new patients, new
tumor locations, and new irradiation geometries, for new
irradiation devices. The results are rather encouraging, with
RMSD values of the same order of magnitude in the test sets
(mean value of 0.32 § 0.15 cGy/Gy in the test set) as in the
validation set (0.41 § 0.26 cGy/Gy) or the training set (0.28
§ 0.08 cGy/Gy; Table 3), suggesting that the neural network
has acquired a strong degree of robustness and generaliza-
tion. However, a closer look at the results for the different
test sets shows that significantly lower results were observed
for test set 5, which corresponds to the betatron accelerator.
The same observation applies by examining the differences
in median absolute doses (Table 4) per patient, where the
betatron test set was associated with the highest median
absolute error (0.33 Gy). In addition, most of the poorest
results in the validation set concerned patients treated with
the Sagittaire accelerator operating at 25 MV. As a
reminder, the highest voltage of the LINACS considered in
the training set was equal to 20 MV (Table E1). These
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results logically highlight the fact that the generalization
capabilities of the neural network cannot be extended to
nonconventional or highly atypical LINACS if they have not
been considered during the training phase, that is, with dif-
ferent shielding properties and internal geometries. Simi-
larly, the ability to generalize is limited at very high voltages,
as this implies in particular an increase in the pair produc-
tion cross-section. For example, the betatron device, which
more closely resembles cyclotron systems than conventional
devices, and the unique very high-voltage operation of the
Sagittaire facility in our data set contribute to this limited
generalization capability.

The first additional deep learning experiment shows that
adding betatron patients to the training set resulted in an
unexpected decline in performance for the betatron device
(0.26 § 0.11 cGy/Gy for the benchmark compared with
0.63 § 0.41 cGy/Gy when considering betatron patients in
the training set). We hypothesize that the small number of
betatron dose maps in the training set was insufficient to
allow the neural network to converge toward a solution tai-
lored to these accelerators and that these accelerators may
be too unusual and confuse the network. The results
obtained from the second additional deep learning experi-
ment demonstrated that the model developed from 100
Alcyon cobalt irradiator patients showed poorer averaged
performance on the 28 Alcyon cobalt irradiator test patients
than the original model, trained without any Alcyon cobalt
irradiator data but on more than 2000 patients (0.53 §
0.22 cGy/Gy for the custom model vs 0.16 § 0.01 cGy/Gy
for the benchmark). This suggests that the inclusion of a
wider variety of patient anatomies and irradiation configu-
rations allows the network to better predict out-of-field dose
distributions than focusing on a model that has been trained
on data from a single irradiation device but with a smaller
number of patient cases and diversity of treatment condi-
tions. The results of the fine-tuned model nevertheless dem-
onstrate the benefits of specializing the model to a certain
extent. Indeed, the fine-tuned model makes it possible to
achieve hitherto unequalled performance (0.13 § 0.05 cGy/
Gy). This approach appears to be the most promising
because it enables both optimizing performance on a partic-
ular machine of interest and using the vast diversity of treat-
ment conditions found in the original database.

Despite achieving better RMSD results in areas distant
from the field compared with those near the field (Table 3),
the neural network does not seem to correctly recover very
low dose values, as depicted in Figures 3, 4, and 5. This con-
sistent pattern observed in all dose maps generated by the
neural network can be explained by 2 factors. First, the cho-
sen loss function (mean square error) tends to minimize the
absolute differences in dose between the predicted values
and the ground truth. Although some dose differences close
to the field can be tolerated because they are moderate in
terms of relative differences, these same differences become
more problematic when it comes to predicting very low
doses far from the field. Second, it is reasonable to assume
that near-field doses, mainly influenced by the patient
scatter component, are comparatively easier to predict for
the network than the other components. In fact, this compo-
nent depends mainly on the dose within the irradiation field
and the irradiated volume, which is information readily
available in the in-field dose map. On the other hand, very
low doses in remote regions are mainly influenced by the
leakage component, which is certainly only very partially
present in the input data, apart from the fact that it is a sig-
nature of the irradiation device. This observation also
explains the association between larger irradiation fields and
improved values (Table 3), thanks to more usable informa-
tion available.

Some publications using analytical models for out-of-
field dose estimation reported RMSD results similar to
the performance achieved by our neural network (such as
0.91 and 1.67 cGy/Gy,58 0.75 cGy/Gy,55 4.1, 5.6, 4.6, and
6.5 cGy/Gy,54 1.04 cGy/Gy,56 3.7 mGy/Gy,59 and 0.094,
0.279, and 0.410 cGy/MU,57). We note that our average
test result (0.32 § 0.15 cGy/Gy) is in the middle of the per-
formance range. However, making a direct comparison
may be complex. Indeed, apart from the differences in the
normalization process employed, which is a general prob-
lem in the context of out-of-field dose evaluation,31 our
analysis involves comparing the predictions of a deep
learning neural network to out-of-field dose maps obtained
from analytical computation, while the studies previously
mentioned compared the predictions of analytical models
with experimental measurements or MC simulation. The
next stage of our work will therefore be to carry out experi-
mental measurements to compare them with the predic-
tions of the network.

Admittedly, in this work, the analysis of the aleatoric and
epistemic uncertainties of the neural network has not been
undertaken.60 Indeed, given that our learning database is
based on analytical computations derived from experimen-
tal measurements, it is reasonable to assume that the uncer-
tainties associated with these experimental measurements
will have the most effect on the uncertainty associated with
dose predictions. According to V~u Bezin et al,61 the mini-
mum overall uncertainty in out-of-field dose measurements,
whatever the detector used, is of the order of 15%. A future
study will involve combining the uncertainties associated
with the ground-truth databases with the uncertainties of
the network itself, to be able to associate final uncertainties
with the presented results.

To further enhance the capabilities of the neural net-
work, it would be advantageous to have a database that
encompasses even more diverse data, including informa-
tion from recent RT treatments involving recent LINACS
and intensity modulation irradiation techniques. Indeed,
a first limitation of this work is that the database used
only contains patients treated with older techniques and
irradiation devices, not representative of current patient
care. Also, the analytical method used to estimate the
whole-body dose maps used as ground truth could also
be refined, given that analytical methods have evolved
since then, especially recently.31 The use of MC
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simulation with our modern hardware capabilities also
now seems to be a good candidate for the generation of
a learning database. Finally, even if simple estimation of
out-of-field dose is sufficient when studying integral dose
trend, a local and more precise estimation is needed.
Indeed, the significance of a high resolution required by
an out-of-field dose estimation tool is contingent upon
the specific medical question at hand, as for instance
when studying apparition and severity of radio-induced
lymphopenia and dose to lymph nodes closest to the
treatment field. For instance, advancements in neural
network strategies beyond our current architecture, such
as adversarial auto-encoder, successfully used for exten-
sion of anatomopathologic whole slide images,62 hold
potential for further refining our approach.
Conclusion
Based on this proof of concept, we have shown that deep
learning is a relevant tool for addressing the limitations of
analytical methods or MC simulation for out-of-field dose
estimation. Thanks to its generalization capabilities and
short inference times of just a few seconds, this tool should
make it possible to move forward for routine clinical appli-
cation and mass application in retrospective studies. We are
convinced that a tool for estimating out-of-field dose in clin-
ical routine would be a powerful aid in optimizing modern
RT treatments.
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