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Abstract

Recent studies in active learning, particularly in uncertainty sampling, have
focused on the decomposition of model uncertainty into reducible and irreducible
uncertainties. In this paper, the aim is to simplify the computational process while
eliminating the dependence on observations. Crucially, the inherent uncertainty in
the labels is considered, i.e. the uncertainty of the oracles. Two strategies are pro-
posed, sampling by Klir uncertainty, which tackles the exploration-exploitation
dilemma, and sampling by evidential epistemic uncertainty, which extends the
concept of reducible uncertainty within the evidential framework, both using the
theory of belief functions. Experimental results in active learning demonstrate
that our proposed method can outperform uncertainty sampling.

Keywords: Active Learning, Uncertainty sampling, Belief Functions

1 Introduction

Active Learning (AL) - For reasons of efficiency, cost or energy reduction in machine
learning or deep learning, one of the important issues is related to the amount of data
and in some cases, to the amount of labeled data. Active learning (Settles, 2009) is a
part of machine learning in which the learner can choose which observation to label
in order to work with only a fraction of the labeled dataset to reduce the labeling
cost. While primarily used for cost reduction (Hacohen et al, 2022), active learning
finds application in various domains like anomaly detection, as seen in (Abe et al,
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2006) and (Martens et al, 2023). The essence of active learning lies in empowering the
learner to strategically label selected observations. Among all the proposed strategies
in the literature (Settles, 2009; Aggarwal et al, 2014), one of the most recognized is
uncertainty sampling (Lewis and Gale, 1994; Nguyen et al, 2022).

Uncertainty Quantification (UQ) - finds applications across various fields, including
medical image analysis, as discussed in a review by (Huang et al, 2023), and in-
depth exploration of deep learning applications and techniques (Abdar et al, 2021),
such as recent evidential deep learning (Sensoy et al, 2018). Concerning frameworks
for uncertainty, numerous methods exist for quantifying uncertainty, with many
applied to credal sets as reviewed by (Hüllermeier et al, 2022), or evidential entropies
(Deng, 2020). Despite being described several years ago (Hora, 1996), recent litera-
ture (Hüllermeier and Waegeman, 2021; Kendall and Gal, 2017; Senge et al, 2014;
Charpentier et al, 2020) distinguishes two main types of uncertainty: epistemic and
aleatoric. Aleatoric uncertainty arises from the stochastic property of the event and
is therefore not reducible, whereas epistemic uncertainty is related to a lack of knowl-
edge and can be reduced. Most proposed calculations hinge not only on the model
predictions but also on parameter estimations derived directly from the observations
themselves.

(AL) ∪ (UQ) - What is the issue? - In uncertainty sampling, the learner selects the
instances for which it is most uncertain. Until recently, the literature has mostly pro-
posed measures to quantify this uncertainty, such as entropy, in a probabilistic form.
But this kind of uncertainty cannot exploit and capture the difference between a label
given by someone who has hesitated for a long time and a label given by someone who
has no doubt, and therefore uncertainty that may already exist in the labels. In this
paper, we propose to use evidential reasoning within the context of active learning.
Moreover we propose eliminating direct dependence on the observations and advocat-
ing for solely utilizing the model output to achieve a comparable decomposition (i.e
epistemic-aleatoric) of uncertainty. This also tackles the exploration-exploitation issue
in active learning, with the possibility of choosing one or the other, or even a com-
promise as suggested by (Bondu et al, 2010). This paper will use the theory of belief
functions that generalises probabilities and will use it in the context of active learning.

Note on Exploration-Exploitation Dilemma - In Figure 1, we present a visual depic-
tion of the exploration-exploitation dilemma. In a 2D classification task, the left
panel portrays a scenario where all observations are labeled, while the right panel
reflects the outcome after iterative labeling rounds, resulting in sparse observations.
Should the sampling strategy heavily favor exploitation, as denoted by the blue line
representing the classifier, it is evident that the classifier will neglect further investi-
gation into the top left corner. Consequently, upon encountering the red examples in
this unexplored territory later in the process, the classifier’s performance undergoes
a significant decline, necessitating extensive parameter adjustments. Conversely, a
purely exploratory strategy prolongs the duration required to unveil critical patterns,

2



Fig. 1: Illustrating the exploration-exploitation dilemma in active learning: complete
dataset vs. active learning iterations.

including the “two red patterns” mentioned. Thus, an optimal strategy must deli-
cately balance exploration and exploitation to navigate this trade-off effectively.

Contributions of this paper - The primary goal of this paper is to consider the uncer-
tainty inherent in the labels (introduced by the entities labeling observations, referred
to as ”Oracles” in active learning), and to address the exploration-exploitation
dilemma, during sampling. To this end we propose two uncertainty sampling strate-
gies capable of representing a decomposition of the model uncertainties with regard
to the uncertainty already present in the labels: (i) a first strategy which is based
upon two different uncertainties, discord - how self-conflicting the information is - and
non-specificity - how imprecise the information is - in the model output; and (ii) a
second strategy which extends the epistemic uncertainty to the evidential framework
and to several classes, thus simplifying the computation. To succeed in this challenge
we use evidential models able to handle such uncertain labels, such as (Denœux,
1995; Elouedi et al, 2001; Denoeux and Bjanger, 2000; Yuan et al, 2020). By doing
this, one can effectively distinguish and account for the difference between a label
provided by someone who has hesitated extensively and a label given by someone
who has no doubts. As a result, we can identify and quantify the uncertainty inherent
in the labels themselves.

Organization - The paper is organized as follows: section 2 introduces some important
notions of imperfect labeling and the modeling of these richer labels using the theory
of belief functions. The conventional uncertainty sampling approach is also recalled
and section 3 describes the separation between aleatoric and epistemic uncertainties.
Section 4 introduces the two new proposed strategies and section 5 presents the
experiments1, first on a real world dataset with rich labels and then in active learning
to highlight the relevance and efficacy of the proposed method. Section 6 discusses
the encountered limits and section 7 concludes the article.

1For details on experiments conducted in theoretical sections, visit: https://anonymous.4open.science/r/
evidential-uncertainty-sampling-D453
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2 Preliminaries

In this section, we provide foundational knowledge essential for understanding the
rest of the paper, beginning with rich labels, which are characterized by the theory of
belief functions, and concluding with the classical method of uncertainty sampling.

2.1 Imperfect labeling

Most of the datasets used for classification consider hard labels, with a binary mem-
bership where the observation is either a member of the class or not. In this paper,
we refer as rich labels the elements of response provided by a source that may include
several degrees of imprecision (i.e. “This might be a cat”, “I don’t know” or “I am hes-
itating between dog and cat, with a slight preference for cat)”. Such datasets, offering
uncertainty already present in the labels, exist (Thierry et al, 2022) but are not numer-
ous. These labels are called rich in this paper since they provide more information
than hard labels and can be modeled using the theory of belief functions.

2.2 Theory of belief functions

The theory of belief functions introduced by (Dempster, 1967) and (Shafer, 1976), is
used in this study to model uncertainty and imprecision for labeling and prediction.
Let Ω = {ω1, . . . , ωM} be the frame of discernment for M exclusive and exhaustive
hypotheses. In supervised learning, this refers to the labels (i.e., classes), or the output
space. It is assumed that only one element of Ω is true (closed-world assumption (Smets
and Kennes, 1994)). The power set 2Ω is the set of all subsets of Ω. A mass function
assigns the belief that a source may have about the elements of the power set of Ω,
such that the sum of all masses is equal to 1.

m : 2Ω → [0, 1],
∑
A∈2Ω

m(A) = 1. (1)

Each subset A ∈ 2Ω such as m(A) > 0 is called a focal element of m. The uncer-
tainty is therefore represented by a mass m(A) < 1 on a focal element A and the
imprecision is represented by a non-null mass m(A) > 0 on a focal element A such
that |A| > 1.

A mass function m is called categorical mass function when it has only one focal
element such that m(A) = 1. In the case where A is a set of several elements, the
knowledge is certain but imprecise. For |A| = 1, the knowledge is certain and precise.

On decision level, the pignistic probability BetP of (Smets and Kennes, 1994) helps
decision making on singletons:

BetP (ω) =
∑

A∈2Ω, ω∈A

m(A)

|A|
. (2)
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It is also possible to combine several mass functions (beliefs from different sources)
into a single body of evidence. If the labels and therefore the masses are not inde-
pendent, a simple average of the mass functions mj derived from N sources can be
defined as follows:

m(A) =
1

N

N∑
j=1

mj(A), A ∈ 2Ω. (3)

There are other possible combinations that are more common than the mean, many
of which are listed by (Martin, 2019).
Example 1. Let Ω = {Cat,Dog} be a frame of discernment. An observation labeled
“Cat” by a source can be modeled in the framework of belief functions by the mass
function m1 such as: m1({Cat}) = 1 and m1(A) = 0, ∀A ∈ 2Ω\{Cat}.
Example 2. An observation labeled “Cat or Dog” by a source can be modeled by the
mass function m2 such as: m2({Cat,Dog}) = 1 and m2(A) = 0, ∀A ∈ 2Ω\{Cat,Dog}.
Example 3. The average mass function m̄ of m1 and m2 is: m̄({Cat}) = 0.5,
m̄({Cat,Dog}) = 0.5 and m̄(A) = 0 for all other subsets A in 2Ω. Its pignistic prob-
ability BetP , used for decision making, is given as follows: BetP ({Cat}) = 0.75 and
BetP ({Dog}) = 0.25.

2.3 Uncertainty sampling

Active learning iteratively builds a training set by selecting the best instances to label.
The principle is to label as few observations as possible for a given performance or to
achieve the best possible performance within a given budget. Among all the strategies
proposed in the literature (Settles, 2009) one of the best known methods is uncertainty
sampling (Lewis and Gale, 1994), where the function that defines the instances to be
labeled maximizes the uncertainty related to the model prediction as described below.

Let U be the uncertainty to label a new observation x for a given model and Ω =
{ω1, . . . , ωM} the set of the M possible classes. The uncertainty U can be calculated
in several ways, a classical approach is to use Shannon’s entropy:

U(x) = −
∑
ω∈Ω

p(ω|x)log[p(ω|x)], (4)

with p(ω|x) the probability for x to belong to the class ω, given by the model. Other
common uncertainty criteria include the least confidence measure:

U(x) = 1−max
ω∈Ω

[p(ω|x)]. (5)

Measuring the uncertainty of a model to predict the class of some observations can be
useful to identify the areas of uncertainty in a space.

Figure 2 represents three two-dimensional datasets, the classes are perfectly sep-
arated. Given the model and one of the uncertainty criteria2, we can compute the

2From now on, the model used is K-NN (K-Nearest Neighbors), with a probabilistic output and on the
distance-weighted version available with scikit-learn (Pedregosa et al, 2011), every other parameters are
scikit-learn default parameters. The uncertainty used is the least confidence measure given in equation (5).
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(a) (b) (c)

Fig. 2: Visualization of uncertainty areas in two-dimensional datasets.

uncertainty of any point in space. For each dataset, the areas of uncertainty of the
model are represented, with more red for more uncertainty. It is remarkable that these
uncertainty areas can be compared to the decision boundaries of the model. Often,
the closer the observation is to the decision boundary, the less confident the model is
about its prediction.

Uncertainty sampling consists of choosing the observation for which the model is
the least certain of its prediction. This is one of the basis of active learning, however,
other methods allow to extract more information about this uncertainty which leads
to the decomposition into epistemic and aleatoric uncertainties.

3 On the interest and limits of epistemic and
aleatoric uncertainties for active learning

In this section, we introduce additional elements to decompose the uncertainty of the
model so it can focus, in active learning, on the observations that will make it rapidly
gain in performance.

The uncertainty U(x) can be divided into two types, as outlined by (Hora, 1996):
one is reducible, and the other is irreducible. The example provided in Figure 3 illus-
trates these distinctions. In Fig. 3a, the outcome of a coin toss is uncertain, and it
is impossible to gain further knowledge to predict whether the coin will land heads
or tails. This lack of knowledge is referred to as aleatoric uncertainty. On the other
hand, in Fig. 3b, a word in Finnish3 representing either heads or tails is shown. This
uncertainty can be resolved by learning the language, making it epistemic uncertainty.

Being able to model these two uncertainties can help to delimit where it is more
interesting to provide knowledge and where it is useless. The total uncertainty U(x)
is often represented as the sum of the epistemic uncertainty Ue(x) and the aleatoric
uncertainty Ua(x): U(x) = Ue(x) + Ua(x).

3In the example, the word “tails” is written in Finnish, the word “heads” is called Kruuna.
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(a) Aleatoric uncertainty (b) Epistemic uncertainty

Fig. 3: Illustration of reducible and irreducible uncertainties in a coin toss experiment
(and a Finnish word representation).

In a two-class problem where Ω = {0, 1}, it is suggested by (Senge et al, 2014) to
model this uncertainty, here under the formalism of (Nguyen et al, 2022), by computing
the plausibility π of belonging to each of the two classes with the following formula,
based on a probabilistic model θ:

π(1|x) = sup
θ∈Θ

min[πΘ(θ), pθ(1|x)− pθ(0|x)],

π(0|x) = sup
θ∈Θ

min[πΘ(θ), pθ(0|x)− pθ(1|x)],
(6)

with πΘ(θ) depending on the likelihood L(θ) and the maximum likelihood L(θ̂):

πΘ(θ) =
L(θ)

L(θ̂)
. (7)

The epistemic uncertainty is then high when the two classes are very plausible4

while the aleatoric uncertainty is high when the two classes are implausible:

Ue(x) = min[π(1|x), π(0|x)],
Ua(x) = 1−max[π(1|x), π(0|x)].

(8)

This calculation depends not only on the prediction of the model but also on the
observations. To summarize, the fewer observations there are in a region, or the fewer
decision elements there are to strongly predict a class, the higher the plausibility of
the two classes, and the more reducible (and thus epistemic) the uncertainty is by
adding knowledge.

An example is shown in Figure 4, a two-class dataset is shown in Fig. 4a and the
areas of model uncertainty are shown in Fig. 4b according to the uncertainty sampling
presented in the previous section.

An horizontal line can be distinguished where the model uncertainty is the highest.
However, the sample represented in Fig. 4a, shows that part of the uncertainty can
be removed more easily by adding observations. In the same figure, three different
datasets show how the sample can evolve by adding observations. Whatever the final

4The notion of plausibility within the theory of belief functions used in the proposed methods differs
from the one presented here and will be discussed in greater detail in section 4.
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(a) Sample (b) Uncertainty

Fig. 4: Visualization of model uncertainty and sample evolution in two-class datasets.

(a) Aleatoric: Ua (b) Epistemic: Ue (c) Total: U

Fig. 5: Representation of aleatoric and epistemic uncertainties in model predictions
according to Fig. 4a.

distribution is, the uncertainty on the left is not very reducible, while the uncertainty
on the right can be modified by adding knowledge.

These two uncertainties can be calculated using equation (8), and are shown in
Figure 5. The aleatoric uncertainty, and therefore irreducible, is represented in Fig. 5a
and the epistemic uncertainty, reducible, is represented in Fig. 5b. The total uncer-
tainty is then the sum of the two, Fig. 5c. Here the goal is to only use the epistemic
uncertainty, to know the areas where the model can learn new knowledge and where
it will have more impact.

Using epistemic uncertainty as a sampling strategy is not reductive since it theo-
retically provides similar areas of uncertainty to those used previously when epistemic
and aleatoric uncertainties are indistinguishable. But this statement is based on the
sum decomposition of total uncertainty, which has recently been questioned.

This information is valuable for identifying areas of reducible uncertainty. However,
it is not compatible with richer labels containing uncertainty. Computing this epistemic
uncertainty also relies on observations in addition to the model. Essentially, the model
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defines its zones of uncertainty and seeks locations with the fewest observations to
define the reducible uncertainty. Moreover, the exploration-exploitation problem is
not fully addressed. This leads to the next section where two uncertainty sampling
strategies for rich labels are proposed, extending to multiple classes.

4 Richer labels and multiple classes

In this section, we propose two uncertainty sampling strategies with a simplified calcu-
lation phase, capable of handling richer labels. These strategies are no longer directly
dependent on observations but only on the model prediction5. We also propose a nat-
ural extension for a number of classes higher than two. The first method uses discord
and non-specificity to map uncertainty in order to address the exploration-exploitation
problem. The second method extends the epistemic and aleatoric uncertainties to rich
labels, also simplifying the computation phase.

From there, a label can be uncertain and imprecise, which means that additional
information on ignorance is represented. Figure 6 illustrates how labels are represented
in this document: the darker the dot, the less ignorance the label contains (e.g., I’m
sure this is a dog); the lighter the dot, the more ignorance it contains (e.g., I have no
idea between dog and cat). It is important to note that labels are no longer “hard”,
but modeled by a belief function, which allows such a representation.

Fig. 6: Rich label representation: observations on two dimensions with varying igno-
rance.

4.1 Discord and non-specificity: Klir uncertainty

In the framework of belief functions, discord and non-specificity are tools that allow
to model uncertainty, we propose to use (Klir and Wierman, 1998)’s representa-
tion for uncertainty sampling, with potential connections to epistemic and aleatoric
uncertainty.

Discord

It is here applied to the output of a model capable of making an uncertain and
imprecise prediction6. Discord represents the amount of conflicting information in the

5The uncertainty no longer depends on observations, but the model does.
6From now, the Evidential K-nearest Neighbors model of (Denœux, 1995) is considered.
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model’s prediction. It is, for most models, at its maximum closest to the decision
boundary and is calculated using the following formula:

D(m) = −
∑
A⊆Ω

m(A) log2(BetP (A)), (9)

with m a mass function, or the output of the model (see section 2.2).

(a) High discord (b) Low discord (c) No discord

(d) Low non-spec. (e) High non-spec. (f) High non-spec.

Fig. 7: Quantifying discord and non-specificity in model uncertainty at the central
point.

Figure 7 illustrates three different cases where discord varies: from high discor-
dance, where labels around the central point (the observation to label) highly disagree
in Fig. 7a, to low discordance, where each label is in agreement in Fig. 7c.

Non-Specificity

Non-Specificity quantifies the degree of imprecision of the model (Dubois and Prade,
1987). This information may be inferred because the model lacks data or because the
oracle labeling the instances is itself ignorant. The higher it is, the more imprecise the
model’s response, it is calculated with:

N(m) =
∑
A⊆Ω

m(A) log2(|A|). (10)

The same Figure 7 also represents three different cases of non-specificity, in Fig. 7d
the non-specificity is low as there are relevant sources of information next to the
observation to be labeled, in Fig. 7e the non-specificity increases the further away
the elements are from the observation and in Fig. 7f the non-specificity is also high
because the nearby sources of information are themselves ignorant.
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Klir uncertainty

This uncertainty is derived from discord and non-specificity, it is used here for
uncertainty sampling by adding the two previous formulas:

Um(x) = N(x) +D(x), (11)

with N(x) and D(x) respectively the non-specificity and discord of the model in
x. (Klir and Wierman, 1998) propose to use the same weight for discord and non-
specificity, but (Denoeux and Bjanger, 2000) introduce a parameter λ ∈ [0, 1]
that allows to bring more weight to non-specificity (we propose to use it for more
exploration) or to discord (for more exploitation):

Um(x) = λN(x) + (1− λ)D(x). (12)

Note that this uncertainty is naturally extended to |Ω| ≥ 2 classes.
This formula has the advantage of identifying the total uncertainty as well as

the reducible one, but also of taking into account the uncertainty already present
in the labels and of being adjustable for more exploration or exploitation. Figure 8
depicts a dataset with two areas of uncertainty: on the right, an area with a lack
of data, and on the left, an area where labels are more ignorant. The uncertainty
sampling, using Shannon’s entropy (4) or the least confidence measure (5) is not able
to see either of these two areas, Fig. 8b. The epistemic uncertainty (8) is able to
distinguish the uncertainty related to the arrangement of the observations in space
(i.e. the uncertainty on the right) but not the uncertainty related to the ignorance of
the sources, Fig. 8c.

The proposal of using Klir uncertainty for sampling (discord and non-specificity)
allows to represent each of these uncertainties. The second line shows the areas of
non-specificity Fig. 8d, of discord Fig. 8e and Klir uncertainty Fig. 8f.

Klir uncertainty can then be used for uncertainty sampling in active learning,
it is also possible to vary the result for more exploration or more exploitation by
modifying λ. The last line shows the areas of uncertainty for different values of λ,
more discord on the left Fig. 8g to more non-specificity on the right Fig. 8i.

We have proposed here to use Klir’s uncertainty in sampling, which allows to rep-
resent some uncertainties areas in active learning related to rich labels. The method is
no longer dependent on the observations, but only on the prediction of the model and
the exploration-exploitation problem is addressed thanks to the λ parameter. Even
though discord may recall aleatoric uncertainty (non-reducible) and non-specificity
may recall epistemic uncertainty (reducible), these notions are not equivalent. There-
fore, in the following section we also propose an extension of epistemic (and aleatoric)
uncertainty for rich labels and for several classes.

4.2 Evidential epistemic uncertainty

We propose here to extend the notion of epistemic uncertainty (c.f. section 3) to rich
labels (c.f. section 2.1), by removing the dependence on observations, simplifying the
computational phase, and allowing the model to detect new areas of uncertainty.
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(a) Dataset (b) Uncertainty (c) Epistemic

(d) Non-specificity (e) Discord (f) Klir

(g) + Exploitation (h) Compromise (i) + Exploration

Fig. 8: An imperfectly labeled dataset: exploring uncertainty areas through sampling
strategies, epistemic uncertainty, and proposed non-specificity, discord, and total Klir
uncertainty, alongside the potential for exploration-exploitation compromise.

The epistemic uncertainty can be extended to rich labels by using the notion of
plausibility within the framework of belief functions (which differs here from the one
presented in section 3). It represents the total evidence that does not support the
complementary event for a class ω or more generally for an element A ∈ 2Ω. The
plausibility Pl defines the belief that could be allocated to A:

Pl(A) =
∑

A∩B ̸=∅

m(B). (13)

The plausibility being the consistent evidence, the belief function Bel defines the total
evidence directly supporting A:

Bel(A) =
∑

B⊆A,B ̸=∅

m(B). (14)
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We have Pl(A) = 1−Bel(Ā). For example, suppose the only reliable evidence is that
a picture depicts an animal, and a Dog is an animal. In this scenario, it is entirely
plausible that the picture is a Dog (plausibility is 1), yet there is no direct belief
that the picture is a Dog (belief is 0). Analogous to equation (8) and for two classes
Ω = {0, 1} the epistemic uncertainty is maximal when both classes are highly plausible.
The proposed evidential epistemic and aleatoric uncertainties are defined as follows:

Ue(x) = min[Pl(1|x), P l(0|x)],
Ua(x) = 1−max[Pl(1|x), P l(0|x)].

(15)

The equation for the aleatoric uncertainty can be rewritten depending on the belief
Bel:

Ua(x) = min[Bel(1|x), Bel(0|x)]. (16)

The sum of the epistemic and aleatoric uncertainties is then the total evidential
uncertainty: U(x) = Ue(x) + Ua(x). However, when the number of classes exceeds 2
the equation of the epistemic uncertainty cannot be simplified by the minimum
plausibility:

Ue(x) ̸= min([Pl(ω|x)|ω ∈ Ω]),

Ua(x) ̸= 1−max([Pl(ω|x)|ω ∈ Ω]).
(17)

It is preferable to first define the uncertainty related to one of the classes ω,
rewritten with the belief Bel to avoid having to manipulate ω̄:

Ue(ω|x) = min[Pl(ω|x), P l(ω̄|x)]
= min[Pl(ω|x), 1−Bel(ω|x)].

(18)

The evidential extension of the epistemic and aleatoric uncertainties for |Ω| ≥ 2 classes
is then:

Ue(x) =
∑
ω∈Ω

min[Pl(ω|x), 1−Bel(ω|x)],

Ua(x) =
∑
ω∈Ω

min[Bel(ω|x), 1− Pl(ω|x)].
(19)

The example in Figure 9 shows a dataset of three classes with a zone of impre-
cision for some labels (between the green and red classes). Probabilistic (4)-(5) and
epistemic (8) uncertainties cannot model the imprecision present in the labels, this
less complete uncertainty zone is represented in Fig. 9b.

The previous uncertainty resulting from the sum of the discord and the non-
specificity is also presented. It manages both exploration, Fig. 9c, and exploitation,
Fig. 9d, to give a better representation of the uncertainty, Fig. 9e.

The extension of the epistemic uncertainty, also introduced in this paper, is pre-
sented in the same figure. First, the evidential epistemic areas of uncertainties for each
of the three classes are presented in Fig. 9f, Fig. 9g and Fig. 9h. Then, the resulting
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(a) Dataset (b) Uncertainty

(c) Non-specificity (d) Discord (e) Klir

(f) Green class (g) Red class (h) Blue class

(i) Ev. aleatoric (j) Ev. epistemic (k) Ev. total

Fig. 9: A three-class dataset: representing label imprecision and uncertainty zones.

evidential epistemic uncertainty of the model is deducted from equation (19) in Fig. 9j
along with the evidential aleatoric and total uncertainties.

5 Experiments

In this section, we conduct two types of experiments. The first is more theoretical,
applying the two proposed methods to a dataset with real rich labels. The second
is more traditional in active learning, comparing one of the methods with uncer-
tainty sampling on several real-world datasets. The exploration-exploitation dilemma
is addressed in this second part.
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This aim of the first exploratory and non-comparative experiment is to demon-
strates how information is mapped by the model. The second experiment offers a
more traditional metric-based approach in active learning, allowing for a tangible
comparison of methods using classical metrics used in this domain (Kottke et al, 2017).

5.1 Sampling on real world dataset

In this section we use datasets for which we have access to truly imperfectly labeled
data with rich labels. This part is exploratory in nature and does not endorse the
superiority of any method. Moreover, conventional methods for computing model
uncertainty do not take into account the degrees of imprecision of these rich labels and
only have access to hard labels. This paper proposes two methods capable of address-
ing this gap. They are illustrated on Credal Dog-2, a dataset labeled uncertainly and
imprecisely by users during crowdsourcing campaigns (Hoarau et al, 2023b). Figure 10
shows the dataset, on the two first components of a Principal Component Analysis
to represent this 42-variable dataset in 2D. This is a two-class dataset represented in
Fig. 10a with true classes and in Fig. 10b with uncertain and imprecise rich labels
given by contributors. Darker dots indicate higher certainty, and vice versa.

The first proposed method, sampling by Klir uncertainty, is demonstrated on the
dataset with rich labels, Fig. 10b. The non-specificity is presented in Fig. 10d, and
can be interpreted as the zones of imprecision of the model, either because it has
not had enough access to information (lack of data) or because the users who labeled
these instances are themselves ignorant. Discord is also represented in Fig. 10c, these
are the areas where the model’s prediction is conflicting, meaning it is closest to its
decision boundary. The total uncertainty in Fig. 10e is the sum of the two, it is this
latter information that is used to sample on the model uncertainty.

The second proposed method extends epistemic uncertainty, which is a reducible
uncertainty applied to evidential reasoning. The irreducible aleatoric evidential uncer-
tainty in Fig. 10f is presented along with the reducible epistemic evidential uncertainty
in Fig. 10g. The total uncertainty in Fig. 10h is the sum of the reducible and irre-
ducible uncertainties. For active learning, it is not the total uncertainty, but the
epistemic reducible uncertainty that is used. Similarities can be noted between dis-
cord and aleatoric uncertainty and between non-specificity and epistemic uncertainty.
Additionally, the areas of total uncertainty are also similar.

One advantage of the methods proposed in this paper is their ability to account
for the uncertainty already present in the labels (i.e. the uncertainty of the oracles).
During labeling by human7 (as in the Cedal Dog-2 dataset), a user may hesitate
between class 1 and 2. In such cases, it is preferable to model their uncertainty rather
than forcing them to provide a wrong label for one of the classes, which would introduce
noise into the dataset. The advantage of belief functions is that for multiple classes, the
user can respond with various degrees of ignorance. For instance, they may indicate
that they are uncertain about the true class but are relatively confident that it is not
class 4 or 2. Therefore, being able to represent the imperfections of the oracle can
also lead to improved results in machine learning. Unfortunately, extremely expressive
visual results are hard to obtain (and interpret) since these datasets are rare, difficult to

7This representation also applies to labeling performed by a machine.
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(a) True labels (b) Rich labels

(c) Discord (d) Non-specificity (e) Klir

(f) Ev. aleatoric (g) Ev. epistemic (h) Ev. total

Fig. 10: Ignorance mapping in the Credal Dog-2 dataset: Brittany breed (green) and
Beagle breed (red).

collect, and very noisy. However, the following experiment, in section 5.2, demonstrates
that the proposed methods perform very significantly on this dataset.

5.2 Application to active learning

Sampling by Klir uncertainty was chosen for this series of experiments, and the only
parameter λ in the proposed method is at the heart of this study. A λ that tends
towards 0 implies more exploitation, whereas a λ that tends towards 1 implies more
exploration. For these experiments, we set λ to 0.2, which means that the model will
opt for more exploitation than exploration (this choice is motivated in section 6).
Below, the results are compared with random sampling (the baseline) and the very
popular uncertainty sampling (5).

The experiments8 have been carried out on datasets containing between 2 and 8
classes with a number of observations in different ranges. We used well-known datasets
available on the UCI Machine Learning Repository (Dua and Graff, 2017), and very

8Experiments where conducted according to the following code: https://anonymous.4open.science/r/
evidential-active-learning-B266
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often used in active learning, as well as Dog-2, the dataset presented in the previ-
ous section. Table 1 describes these datasets, with the number of observations (or
instances), the number of classes, the number of features, and the entropy for the
distribution of classes9.

Table 1: Datasets description, with number of obser-
vations, classes, features and class distribution entropy.

Dataset Observations Classes Features Entropy

Bank 1372 2 4 0.99
Qsar 1055 2 41 0.92
Blod 748 2 4 0.79
Breast Cancer 569 2 30 0.95
Ionosphere 351 2 34 0.94
Heart 303 2 7 1.00
Liver 345 2 6 0.98
Sonar 208 2 60 1.00
Parkinson 195 2 22 0.81
Dog-2 200 2 42 1.00
Seeds 210 3 7 1.00
Iris 150 3 4 1.00
Wine 178 3 13 0.99
Glass 214 6 9 0.83
Ecoli 336 8 7 0.73

Since the goal of active learning is to reduce the cost of labeling, one experiment
involves evaluating the model’s performance as observations are progressively labeled.
Experiments are arbitrarily stopped once the dataset has been labeled at 60% (it will
be clear from the graphs that there is no point in going any further). The model is the
same for each method, the Evidential K-Nearest Neighbors of (Denœux, 1995), with
K = 7 neighbours (see (Hoarau et al, 2022) for parameter selection). Each experiment
is performed 100 times to obtain an estimation of the actual mean accuracy of the
model for each dataset. Several criteria are used to compare the results, including
accuracy, the area under the accuracy curve (AUAC) and the rank obtained for each
dataset. For evaluation, several statistical tests are conducted, including Student’s t-
test for AUACs, Friedman’s test, and the Wilcoxon-Holm method for critical difference
diagrams (Demšar, 2006).

Figure 11 shows 6 of the 15 datasets where the proposed method offers the most
significant performance, the final performance on the full labeled dataset (i.e. if there is
no active learning) is represented by the dotted curve and the dashed curve represents
the proposed method with λ = 0.2. In each graph, the superiority of the proposed
method over uncertainty sampling is evident, particularly in terms of AUAC. Notably,
for the Sonar and Heart datasets, this superiority is only temporary, observed mainly
at the beginning of active learning for Sonar and in the middle for Heart. Nevertheless,
it will be demonstrated that this domination is not always statistically confirmed,

9An entropy of 1 means that the classes are perfectly equidistributed and an entropy of 0 would indicate
the total over-representation of one of the classes.
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(a) Dog-2 (b) Ionosphere (c) Parkinson

(d) Ecoli (e) Sonar (f) Heart

Fig. 11: Mean accuracy vs. number of labeled instances for Random Sampling, Uncer-
tainty Sampling, and the proposed method with λ = 0.2 for 6 datasets.

especially for the Parkinson dataset. Assuming an identical labelling cost for each
observation, some insights can be reported below.

Some active learning insights on Figure 11

• On Dog-2: When reaching 99% of the full dataset performance, uncertainty sam-
pling manages to reduce labeling cost by 62% whereas the proposed method
manages to reduce the cost by 82%.

• On Ionosphere: Using the proposed method, the labeling costs can be reduced by
a factor of 9 with 0% of accuracy loss with respect to the full dataset, whereas
with uncertainty sampling, to allow labeling 9 times cheaper, the model would
loose 6% of accuracy (for this dataset, the reduction in labeling cost can improve
the performance of the model, a phenomenon which sometimes occurs in active
learning, represented by the active learning curve which exceeds the full dataset
performance horizontal line).

• On Ecoli: It takes 10 steps for uncertainty sampling to reach the performance of
the proposed method after only 3 steps.

Even on datasets where the performance of the proposed method is lower, the gap
is not always wide. Figure 12 shows two such datasets where the method performs less
well. The difference is slightly greater between the proposed method and uncertainty
sampling on the Iris dataset.
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(a) Iris (b) Wine

Fig. 12: Mean accuracy vs. number of labeled instances for Random Sampling, Uncer-
tainty Sampling, and the proposed method with λ = 0.2 for Iris and Wine.

Since the objective here is to minimize labeling costs10, one can set a performance
threshold and focus on the actual reduction in costs. By accepting a 2% loss in perfor-
mance (threshold of 98% performance on the full dataset), conventional uncertainty
sampling reduces the number of labels in the Dog-2, Ionosphere, and Heart datasets by
76%, 86%, and 43% respectively. In contrast, the proposed method reduces the num-
ber of labels in the respective datasets by 88%, 91%, and 83%. However, a performance
threshold has been set, which is why the area under the curve is a good indicator, as
it captures the reduction in costs for all possible thresholds. Table 2 shows the mean
areas under the curve for the three methods studied and for each dataset. A statisti-
cal t-test is also performed between the first and second best methods for each values.
Random sampling performs best on the Liver dataset, uncertainty sampling performs
best on Seeds, Iris and Wine and the proposed method performs best on the other 10
datasets, except Blod where there is a tie.

To statistically find the best model, a critical difference diagram is drawn up. The
first diagram in Figure 13a is a comparison of the proposed method with different
values of λ. On all datasets, λ = 0.2 ranks on average at position 2.13 out of 4 and
λ = 0.5 (which is equivalent to as much exploration as exploitation) ranks on average
at position 3.47. If a line connects two methods, this means that despite the better
performance of one, the methods are not statistically differentiable. In the example,
λ = 0.2, λ = 0.3 and λ = 0.4 are not statistically different. Now, Figure 13b is
obtained by comparing the proposed method with random sampling and sampling by
uncertainty. In average, the proposed method ranks 1.33 out of 3 and the significance
of this result is demonstrated by the absence of a line linking the methods. It may
also be interesting to note that uncertainty sampling and random sampling are not
connected by a line either.

6 Discussion

Calculating epistemic uncertainty (non-evidential) is demanding and not always
accessible. It depends on the observations, requiring several phases of computation,
including likelihood estimation, maximum likelihood, and optimization.

10Although it can also be to maximize performance given a cost
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Table 2: Mean AUAC for random sampling, uncertainty sampling and the proposed
method with λ = 0.2 on each dataset. Student’s t-test is also performed to determine
the significance of the best method.

Method t-test

Dataset Random Uncertainty λ = 0.2 statistic p-value

Bank 81.17 81.49 82.23 2.74 0.0067
Qsar 97.69 99.15 99.16 0.35 0.7271
Blod 76.09 76.85 76.85 0.00 0.9965
Breast Cancer 93.87 94.96 95.31 1.84 0.0669
Ionosphere 75.77 81.06 82.40 2.33 0.0210
Heart 67.89 67.72 68.08 0.29 0.7741
Liver 58.07 57.37 58.02 0.07 0.9415
Sonar 67.79 70.67 70.94 0.37 0.7089
Parkinson 80.60 83.93 84.85 1.64 0.1034
Dog-2 90.94 93.06 94.10 3.24 0.0014
Seeds 88.70 89.93 89.48 0.84 0.4010
Iris 88.22 91.23 90.60 1.19 0.2373
Wine 91.66 93.55 93.27 0.86 0.3920
Glass 57.33 58.32 59.05 0.87 0.3829
Ecoli 78.59 80.89 81.98 2.19 0.0300

(a) (b)

Fig. 13: Critical difference diagrams for different values of λ on the proposed
method 13a and for random sampling, uncertainty sampling and the proposed
method 13b.

The two proposed methods offer simplicity, but there is a counterpart: the model
must be capable of delivering a mass function to represent uncertainty and imprecision
in the output. Such models exist but are not abundant. Among them are Evidential
K-Nearest Neighbors (Denœux, 1995), Evidential Decision Trees (Elouedi et al, 2001;
Denoeux and Bjanger, 2000), Evidential Random Forests (Hoarau et al, 2023a), and
even Evidential Neural Networks (Yuan et al, 2020). The proposed methods are com-
patible with probabilistic models (since a probability is a special belief function), but
they may not capture the full depth of evidence modeling.

In the experiments above, λ was set at 0.2, meaning that the model prioritizes
exploitation over exploration. This is a value that gives good results. Our studies to
determine when one is more relevant than the other are illustrated in Figure 13a.
The results indicate that several lambda values yield fairly similar outcomes. The
value of 0.2 is the one that gives the best performance in general: for the majority of
datasets, it is more interesting to do more exploitation, without exceeding a certain
limit, otherwise model performance will drop. For future work, it would be interesting
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to modify the value of λ as the labeling process progresses. This adjustment could
lead to a more powerful model capable of dynamically balancing between exploration
and exploitation.

7 Conclusion

This paper introduces two new uncertainty sampling strategies and a novel represen-
tation method for them. These two methods use Klir uncertainty and an extended
evidential epistemic uncertainty. A straightforward calculation on the model output
enables the extraction of uncertainties. The objective is to also take into account
the uncertainty present in richer labels, which was not possible up to now. The first
strategy is based on Klir’s uncertainty, combining discord (how self-conflicting the
information is) and non-specificity (how imprecise the information is) in the model out-
put. The second strategy extends epistemic (reducible) uncertainty to the evidential
framework and to several classes, simplifying the computational phase.

The proposed Klir uncertainty sampling is chosen for its competitiveness in active
learning. Its superiority over uncertainty sampling is statistically validated across the
datasets examined in the experiments. The novelty of this work lies in representing
new information for uncertainty sampling, which also yields significant performance
improvements in traditional active learning. The next step is to control exploration
and exploitation (represented here as the λ parameter) and to determine, for each
dataset, when exploration or exploitation is more advantageous. The ability of the
model to define areas of uncertainty, and to categorize these uncertainties, is then
relevant information.
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