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Abstract: This study introduces a novel wearable Inertial Measurement Unit (IMU)-based system for
an objective and comprehensive assessment of Work-Related Musculoskeletal Disorders (WMSDs),
thus enhancing workplace safety. The system integrates wearable technology with a user-friendly in-
terface, providing magnetometer-free orientation estimation, joint angle measurements, and WMSDs
risk evaluation. Tested in a cable manufacturing facility, the system was evaluated with ten female
employees. The evaluation involved work cycle identification, inter-subject comparisons, and bench-
marking against standard WMSD risk assessments like RULA, REBA, Strain Index, and Rodgers
Muscle Fatigue Analysis. The evaluation demonstrated uniform joint patterns across participants
(ICC = 0.72 ± 0.23) and revealed a higher occurrence of postures warranting further investigation,
which is not easily detected by traditional methods such as RULA. The experimental results showed
that the proposed system’s risk assessments closely aligned with the established methods and enabled
detailed and targeted risk assessments, pinpointing specific bodily areas for immediate ergonomic
interventions. This approach not only enhances the detection of ergonomic risks but also supports
the development of personalized intervention strategies, addressing common workplace issues such
as tendinitis, low back pain, and carpal tunnel syndrome. The outcomes highlight the system’s
sensitivity and specificity in identifying ergonomic hazards. Future efforts should focus on broader
validation and exploring the relative influence of various WMSDs risk factors to refine risk assessment
and intervention strategies for improved applicability in occupational health.

Keywords: WMSDs risk assessment; wearable technology; inertial measurement units

1. Introduction

Work-related musculoskeletal disorders (WMSDs) present a critical issue within vari-
ous industries, leading to considerable pain, disability, and financial strains. The global
prevalence of these conditions in 2017 was reported at 1.3 billion cases, causing 121.3 thou-
sand deaths and resulting in 138.7 million disability-adjusted life years [1]. Beyond their
harmful health effects, WMSDs significantly contribute to reduced productivity and in-
creased healthcare expenses. Indeed, the economic burden of these disorders is profound
and widespread. In the United States, for instance, the healthcare expenses associated with
WMSDs reached $380.9 billion, amounting to 2% of the GDP in 2016 [2]. The European
region showed similar challenges, with costs amounting to €240 billion (2% of GDP) in
2015, attributed to healthcare and productivity losses [3]. This economic strain extends
into developing countries as well, where the impact of WMSDs can be particularly acute
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relative to their worker-based industries and economic capacities. For example, in Tunisia,
the costs associated with these disorders represented 0.11% of the country’s GDP in 2021,
amounting to 127.8 million TND [4].

Amidst the significant health and economic challenges caused by WMSDs, a range of
preventive measures and solutions have been identified and implemented. Traditionally,
observation-based and quantitative approaches are commonly used for assessing WMSDs.

Observation-based approaches evaluate ergonomic and health risks by directly ob-
serving and gathering self-reported data on workers’ interactions within their work en-
vironment. Two commonly used tools are the Rapid Upper Limb Assessment (RULA)
and the Rapid Entire Body Assessment (REBA). Both assign scores based on these factors
to categorize risk levels and guide intervention needs. Another approach is the Strain
Index, which calculates a score based on posture and force to estimate muscle fatigue risk.
Additionally, the Rodgers Muscle Fatigue Analysis method focuses on specific risk factors
like effort level, how long that effort is sustained, and how frequently it is repeated, provid-
ing another lens for evaluating ergonomic risk [5,6]. Meanwhile, quantitative approaches
use objective metrics to evaluate ergonomic risks and musculoskeletal disorder hazards,
focusing on specific workplace tasks. For instance, the NIOSH Lifting Equation, Manual
Handling Assessment Charts (MAC), and Assessment of Repetitive Tasks (ART) are tools
designed to measure the physical demands of upper limb tasks.

While traditional methods are valuable, they face several limitations. For example,
RULA and REBA might not fully consider factors such as task duration, and recovery times,
potentially compromising the accuracy of their scoring systems [7]. Similarly, the Strain
Index, despite moderate reliability, raises concerns about consistency in classifying WMSD
risks [8]. The Rodgers Muscle Fatigue Analysis method, while ideal for extended tasks,
may overlook shorter but impactful fatigue periods [5,6]. The NIOSH Lifting Equation is
limited to lifting tasks and assumes ideal conditions [9]. Finally, MAC might necessitate
expert analysis for effective interpretation, and ART faces inconsistencies in reliability,
especially concerning the evaluation of hand/wrist postures [10,11].

The NIOSH Lifting Equation, focused exclusively on lifting tasks, assumes ideal con-
ditions [9]. The MAC might necessitate expert analysis for effective interpretation, and the
ART faces inconsistencies in reliability, especially concerning the evaluation of hand/wrist
postures [10,11]. Acknowledging the limitations of the traditional methods, researchers
have shifted focus towards integrating advanced technologies. Notably, camera-based
systems stand out for their use of video capture and analysis to observe and evaluate
human movement and posture for ergonomic risk evaluation. These systems are broadly
categorized into two types: marker-based, which requires physical markers for motion
tracking, and markerless, which relies on computer vision algorithms for tracking without
markers. These systems, while proficient in controlled environments [12,13], exhibit certain
limitations. Marker-based systems, despite their precision, require setup and could po-
tentially hinder natural movement [14,15]. In addition, despite the evolution of computer
vision algorithms [16–19], markerless systems often lack the precision required for detailed
biomechanical analysis [20–22].

Wearable systems, worn directly by individuals, are designed to collect data on human
movement, posture, and physiological parameters, for long-term exposure assessment and
work training [23]. This technology enables the quantification of angular changes as one
body part moves relative to another [24–26]. Similarly, innovations in e-textile technology
integrated sensory components and conductive fibers within fabric materials, allowing the
unobtrusive monitoring of physiological and biomechanical metrics [27,28].

These solutions still face challenges such as user accessibility, data interpretation
complexity, and the development of comprehensive risk models [23]. These challenges
include constrained application of goniometers [29,30] and scalability/sensor precision
challenges in e-textiles [28,31–34], emphasizing the need for more adaptable, accurate,
and user-friendly technologies.
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To face these challenges, IMU-based systems emerged as a prevalent choice for the
monitoring of human movement and posture. For instance, Alvarez et al. (2015) have
successfully applied IMUs for the accurate measurement of upper limb joint angles during
occupational tasks, further validating the efficacy of IMUs in ergonomic assessments [35].
Additionally, Zhao et al. (2021) developed an IMU-based system tailored for construction
workers, facilitating early identification of WMSD risk factors through comprehensive
posture assessment [36].

Despite their advantages, IMU-based systems require the precise calibration and
interpretation of raw sensor data for accuracy [37–41]. Environmental and personal factors,
such as electromagnetic interference, pose challenges to data quality and joint monitoring
accuracy, requiring thorough consideration during implementation [42–44].

This paper introduces a wearable IMU-based system aimed at objectively assessing
WMSDs, capturing three-dimensional upper body movement and orientation data via eight
IMUs. This approach avoids the need for magnetometer readings by incorporating calibra-
tion strategies and algorithms for orientation data based on gyroscopes and accelerometers.
Furthermore, analytical algorithms were developed to identify ergonomic risks from data
patterns, offering objective metrics and visualizations for precise risk identification and in-
tervention assessment. Emphasizing user-friendliness and adaptability, the system ensures
minimal interference with workers’ activities and comfort, complemented by an interface
that simplifies monitoring and analysis processes for medical experts.

2. IMU-Based Monitoring System
2.1. System Design

The wearable system is designed using eight IMU sensors (MPU9250) (Figure 1a)
wired to a microcontroller (ESP8266) through an I2C communication protocol expander
(Figure 1b) [45].

…
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Figure 1. IMU-based Wearable WMSDs Risk Assessment System: (a) System Overview, (b) Inter-
Component Data Circulation, (c) Data Flow Between Components and Computer.

This system acquires data from the sensors at a rate of 10 Hz. The microcontroller
system acts as a server for the sensors, communicating wirelessly via an asynchronous web
server with a client microcontroller (ESP8266) linked to a secure computer (Figure 1c). This
enables efficient, non-blocking communication, allowing the server to handle real-time
data from multiple sensors simultaneously [46].
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The eight IMU sensors were placed on the wearer’s upper arms, forearms, hands,
upper back, and lower back, aligning with anatomical axes for optimal data capture [47,48].
Neoprene straps and scratch were used to comfortably secure the IMUs to the upper
limbs, while a custom-designed vest-like tank with specific attachment points housed the
lower back IMUs, the integrated circuit board, and the power source. This ensured both
participant comfort and data collection accuracy.

This study solely focuses on gyroscope and accelerometer measurements to overcome
potential magnetic interference from machinery [44]. The IMU sensor data, including
elapsed time, acceleration, and gyroscope readings, were collected at a 10 Hz sampling
rate using a custom-built Matlab application. The management of the system is facilitated
through a user-friendly interface that features various tools including reporting participant
information, recording data in real-time, and calibrating sensors. Additionally, it pro-
vides functionalities for estimating sensor orientation, calculating upper-limb joint angles,
and estimating effective WMSD risk, enhancing the system’s applicability and efficiency in
data processing.

2.2. Sensor Calibration and Fusion for Orientation Estimation

Before being tested, each sensor was calibrated with initial gyroscope and accelerome-
ter biases. A tilt correction was also applied to the sensor output to account for inaccuracies
in the orientation of each sensor node relative to the global frame, particularly the earth
frame where z-axis is represented by the gravity vector g. Leveraging Earth’s gravity vector
as a reference (earth frame) [49], research has shown the feasibility of estimating orientation
using accelerometer data alone [50,51]. This estimation relies on a correction factor that
accounts for the relative orientation between the measured accelerometer readings and
the gravitational vector established through a static position. In this context, the orienta-
tions with respect to the X-axis (θa), Y-axis (ψa), and Z-axis (ϕa) can be determined using
Equations (1)–(3) .

θa = tan−1

 Aref,x√
A2

ref,y + A2
ref,z

 (1)

ψa = tan−1

 Aref,y√
A2

ref,x + A2
ref,z

 (2)

ϕa = tan−1


√

A2
ref,x + A2

ref,y

Aref,z

 (3)

A Kalman Filter for sensor fusion of gyroscope and accelerometer data is implemented.
The filter was developed internally and utilizes correction matrices that are identified and
adapted specifically for our system. The filter initializes with sensor data and noise models
and then progresses through prediction and correction stages. In prediction, gyroscope
data forecast orientation changes, and the state is updated using transition models. The cor-
rection stage refines these predictions by incorporating accelerometer measurements.

2.3. Joint Angles Estimation

As shown in Figure 2, the upper body’s movement can be modeled as a combination
of 10 degrees of freedom (DOF): 3 DOF in the trunk (flexion/extension, lateral rotation,
and rotation), 3 DOF in the shoulder (flexion/extension, adduction/abduction, and in-
ternal/external rotation), 1 DOF in the elbow (flexion/extension), 1 DOF in the forearm
(pronation/supination), and 2 DOF in the wrist (flexion/extension and radial/ulnar deviation).
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Figure 2. Representation of Upper Body Joint Angles with Local Anatomical Coordinate Systems
Defined by Bony Landmarks Coinciding with IMU Sensor Frames Aligned with the Earth Frame.

In this study, quaternions were employed to estimate the joint angles and to prevent
the problem of gimbal lock [52–54]. For each IMU, the orientation is represented as a
quaternion q. These quaternions are expressed in the earth frame and are denoted as
follows: qE

LB for the lower back, qE
TR for the trunk, qE

A for the upper arm, qE
F for the forearm,

and qE
H for the hands.

The relative orientation qrelative between two IMUs, representing adjacent body seg-
ments, is computed using quaternion multiplication to derive joint angles, as shown in
Equation (4). Here, qIMU1 and qIMU2 are the quaternions representing the orientations of
the two adjacent IMUs, and q−1

IMU1 is the inverse of qIMU1.

qrelative = qIMU2 × q−1
IMU1 (4)

To convert the quaternion representation to more interpretable joint angles, the Euler
representation is used. The conversion prioritizes the joint with the expected largest range
of motion (ROM) for improved numerical stability [53]. Typically, the most significant
range of motion for upper body joints occurs during flexion and extension movements [55].
Nevertheless, the shoulder joint may exhibit its largest range of motion during abduction
or adduction [55]. Consequently, the calculation of joint angles was conducted adhering to
these considerations, as depicted in Table 1, where qB

A is the inverse of qA
B .

Following the Euler sequences defined in Table 1, the relative quaternions are converted
into joint angles. For example, the trunk has a relative quaternion qTR

LB = [qx, qy, qz, qw] and
follows an XYZ sequence. Therefore, the trunk joint angles θ1, θ2, and θ3 are calculated as
given by Equations (5), (6), and (7), respectively.

θ1 = arctan 2(2(qwqx + qyqz), 1 − 2(q2
x + q2

y)) (5)

θ2 = arcsin(2(qwqy − qzqx)) (6)

θ3 = arctan 2(2(qwqz + qxqy), 1 − 2(q2
y + q2

z)) (7)
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Table 1. IMU-based upper body joint angles estimation using quaternion.

Sensor w.r.t. Formula Euler Sequence Joint Angles

Trunk Lower
Back qTR

LB = qE
LBqTR

E

X
Y
Z

θ1
θ2
θ3

Trunk Flexion-Extension
Trunk lateral Flexion
Trunk Rotation

Arm Trunk qA
TR = qE

TRqA
E

Y
X
Z

θ4
θ5
θ6

Shoulder Flexion and Extension
Shoulder Adduction and Abduction
Shoulder int. rot.

Forearm Arm qF
A = qE

AqF
E

X
Z
Y

θ7
-

θ8

Elbow Flexion and Extension
Off-axis error
Forearm pronation and supination

Hand Forearm qH
F = qE

FqH
E

X
Y
Z

θ9
-

θ10

Wrist Flexion-Extension
Off-axis error
Wrist radial-ulnar deviation

3. Quantitative Modeling of WMSDs Risks Based on IMU Data
3.1. Risk Factors Evaluation

This study investigates three principal risk factors contributing to WMSDs in modern
work environments: exertion exposure, postural load, and exertion level, as identified by
Kumar’s foundational work [56,57]. The exertion exposure includes the duration, frequency,
and recovery time associated with static and dynamic postures; postural load relates to
the body’s positioning during tasks, and the exertion level corresponds to the physical
effort demanded by the task. These risk factors are evaluated using a combination of data
collected from the wearable IMU system and participant self-reporting.

Exertion exposure and postural load are quantified with the IMU system. Static
postures, assumed in this study as joint angles not varying more than 20% of the joint range
of motion from a maintained position, are assessed by comparing their Constant Work
Duration (CWD) to the Endurance Time (ET), defined by international standards [56–60].

Job frequency is determined by counting job cycle repetitions within a set period
and assessing their duration, using Constant Frequency (CF) from the IMU-based system,
Preferred Job Frequency (PF), and Maximum Frequency (MF), with ergonomic guidelines
suggesting frequency >10 repetitions/min or job cycle duration <30 s as high, recommend-
ing two repetitions/min as optimal [56,57,59,61–63].

Postural load is determined using IMU data reflecting upper body Motion Require-
ments (MRQ) during tasks. Postural load, evaluated through the IMU system, compares
the observed Motion Requirements (MRQ) with safe Mid-Range Values (MDR) and joint
limits denoted by Extreme motion values (E), based on ergonomic standards [58,59,64].

Conversely, exertion level and recovery time assessments rely on participant self-
reports. Exertion levels are gauged using the BORG CR10 scale, comparing reported
Constant Work Levels (CWL) with the research-defined Preferred Work Level (PWL)
(≈3–4 on BORG CR10) and Maximal Voluntary Contraction (MVC) [56,57,65,66].

Recovery time is assessed by comparing the Allowed Rest (AR) recorded from par-
ticipant responses and work schedules, to Required Rest (RR) (10–20% of work time or
5–10 min/h) which is the minimum rest for low risk [67–69].

3.2. Linking Risk Factors to WMSDs Risk Scores

Building on the collected IMU data and self-reported information, risk models were
developed to link the aforementioned risk factors to their respective risk scores. For
instance, static postures are known to lead to muscle fatigue and discomfort the longer
they are held [70–74]. In our study, the risk associated with static posture duration (R1) is
quantified using Equation (8).

R1 =

{
CWD

ET , if CWD ∈ [0, ET] and ET > 0
1, if CWD > ET or ET = 0

(8)
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Similarly, tasks performed at high frequencies elevate the risk of WMSDs [56,57,59,61–63].
The risk related to job frequency (R2) is expressed using Equation (9).

R2 =


0, if CF < PF
CF−PF
MF−PF , if CF ∈ [0, MF]
1, if Cycle duration ≤ 30 s, or CF > MF

(9)

Furthermore, maintaining proper posture is crucial for musculoskeletal health, as ev-
idenced by established “comfort angles” and ranges [58,59,64]. Deviating from these
comfortable postures increases the likelihood of WMSDs, underscoring the importance of
maintaining mid-range joint angles [56,57]. Our study quantifies the risk associated with
postural load (R3) through Equation (10).

R3 =


MDR−MRQ

MDR−E , if MRQ < 0
0, if MRQ ∈ mid range
MRQ−MDR

E−MDR , if MRQ > 0

(10)

Additionally, the existing literature highlights a direct link between workers’ perceived
exertion and job stress, affecting the “overexertion safety margin”. Exceeding optimal
exertion levels increases the risk of WMSDs [56,57,65,66]. In our investigation, the risk
related to exertion level (R4) is captured by Equation (11).

R4 =

{
0, if CWL ∈ [0, PWL]
CWL−PWL
MVC−PWL , if CWL ∈ [PWL, MVC]

(11)

Lastly, adequate recovery time between tasks is essential to prevent WMSDs, as con-
tinuous repetitive motions and insufficient rest increase the risk [70,71]. To quantify this
aspect, the risk related to recovery time (R5) is given by Equation (12).

R5 =

{
RR−AR

RR , if AR ≤ RR
0, if AR > RR

(12)

3.3. Overall Contribution of Risk Factors to WMSDs

During work activity, risk factors combine contributing to the occurrence of WMSDs.
This relationship is modeled in this study as stated by Equation (13) and Figure 3, assuming
a perfect linearity between job safety and risk factors [56,57]. Alpha parameters (αi, i = 1:5)
are constants used to adjust the influence of specific components of the model on the
overall risk assessment. To our knowledge, limited to no prior research has studied the
contribution of individual risk factors to the onset of WMSDs. Therefore, all risk factors are
assumed to contribute equally to the development of overexertion and WMSDs (αi = 0.2,
i= 1:5).

R = α1R1 + α2R2 + α3R3 + α4R4 + α5R5 (13)

The results from the risk assessment models are presented in our proposed system’s
user interface. This interface incorporates data visualization tools, such as pie charts and
graphs, to illustrate the identified risks and their associated factors.
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Level of Exertion
WMSD Risk Model

x
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Figure 3. Simplified Illustration of the WMSDs Risk Model Proposed in this Study.

4. A Use Case for a Data-Driven WSMDs Risk Assessment Framework in Cable
Manufacturing Industry
4.1. Experimental Setup

To evaluate the performance of our proposed system and risk assessment model,
this study was carried out at a cable manufacturing facility, specifically at the final fixed
workstation. The workstation mainly involves cable wrapping and securing (Figure 4a,b).
Cable wrapping tape and a snap-on tool are used for these respective processes.

Figure 4. Real photos of the workstation main tasks: (a) Cable wrapping, and (b) Cable securing.

The workstation was located within a well-lit production area with moderate back-
ground noise from surrounding machinery. The work surface was a metal table with
a conveyor belt for cable delivery. The ambient temperature was controlled at approxi-
mately 22 °C. The workstation incorporates an anti-fatigue mat. This cushioned platform
is designed to alleviate stress exerted on the worker’s feet, legs, and lower back, thereby
enhancing comfort and potentially mitigating the risk of WMSDs in the lower limbs. Re-
gardless, this specific workstation has a high incidence of reported WMSDs. These reported
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WMSDs predominantly affect the upper limb joints, specifically manifesting as tendinitis of
the shoulder, low back pain, and Carpal Tunnel Syndrome affecting the hands and wrists.

4.2. Participants and Data Collection Procedure

The research involved full-time workers at a cable manufacturing facility who had
been assigned to the final fixed workstation for at least one year. The study included
10 female participants who were free of musculoskeletal disorders in the past six months
and had no neurological or orthopedic conditions that could limit upper body mobility.
Table 2 provides the demographic details of the participants.

Table 2. Demographic Details of Participant Workers at a Cable Manufacturing Facility.

Attribute Value

Sex Female
Mean Age (years) 29.3 ± 4.8
Mean Height (cm) 161.7 ± 6.3
Mean Weight (kg) 61.4 ± 13.1
Average Experience (years) 2.1 ± 1

After a brief overview of the study and signing a written consent, participants were
equipped with IMU sensors, ensuring proper placement and attachment. Then, they were
given brief training to practice the taping and securing tasks while wearing the sensors
to ensure comfort with the equipment and task execution. Participants were instructed
to perform 10 repetitions of their regular cable taping and securing tasks while wearing
IMU sensors and to work at their normal pace and to maintain their typical work practices.
The tasks involved standing in a still posture, repetitive upper limb movements for tape
application, and frequent use of the snap-on tool to secure cable ends. Cables had the same
thickness and weight, with an average taping and securing cycle lasting approximately
120 s. Data collection commenced at the start of the first cycle and continued until all cycles
were performed.

The collected IMU sensor data were transferred in real-time to a secure computer for
further processing and analysis. Simultaneously, videos have been recorded for visual
reference. All recording sessions were performed at the same workstation to maintain
consistency across the experiment. Upon the completion of the 10 cycles, sensors were
carefully removed from participants. Participants were then given a brief debriefing,
providing any additional information or instructions.

The study’s protocol was approved by the ISBM Ethics Committee (CERSVS/ISBM
018/2023) to ensure participant well-being and privacy.

4.3. Data Analysis and Interpretation

To assess the efficiency of the developed system for evaluating work cycle similarity
and WMSD risk, a multi-step approach was employed. First, work cycles were first
identified and stored within datasets. This facilitated inter-subject comparisons through
calculations of standard deviation between a chosen representative cycle and the remaining
cycles. Subsequently, an analysis of the inter-correlation between recorded samples was
statistically performed using the intra-class correlation (ICC) across all joints and cycles.

Standard WMSD risk assessments, including RULA, REBA, Strain Index, and Rodgers
Muscle Fatigue Analysis methods, were conducted alongside the proposed system. RULA
provided frame-by-frame risk analysis at intervals of 3.5 s from work cycle videos, while
REBA and Strain Index focused on task-level risks. Rodgers assessments identified joint-
specific WMSD risks. The Rodgers Muscle Fatigue Analysis assigns a color-coded, three-
digit score to specific joints. Each digit reflects effort level, duration, and frequency of
movement, with higher scores indicating a greater risk of WMSDs.
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The evaluation of these standard assessments was conducted using Ergofellow soft-
ware 3.0 in collaboration with facility ergonomists to address subjectivity and ensure
comparability of results. Risk scores were categorized into four action levels for compari-
son between the proposed method and the standard methods (Table 3).

The comparison between the system’s results and RULA involved the calculation
of action-level distributions for statistical analysis. Subsequently, the results were down-
sampled to 0.29 Hz (3.5 s per sample) to visualize similarities and differences with RULA.
Following this, the joint-specific risks identified by the proposed method were compared
with the Rodgers Muscle Fatigue Analysis method. Lastly, the risk scores for cable place-
ment, removal, wrapping, and securing tasks were calculated using the proposed method
and were compared to REBA scores and the Strain Index.

Table 3. Risk Score Ranges, Corresponding Action Levels, and Implications for RULA, REBA, Strain
Index, Rodgers, and Proposed WMSDs Risk Assessment Methods.

Risk Assessment Action Level
Method 1 2 3 4

RULA 1–2 3–4 5–6 7

REBA 1–3 4–7 8–10 11–15

Strain Index ≤3 ]3–5] ]5–7] >7
Rodgers
Proposed Method ≤20% ]20%–40%] ]40%–60%] >60%

Implications No immediate
action required

Further
investigation

needed

Changes may be
required soon

Immediate action
required

Note: The colors in the table correspond to the risk levels based on Rodgers Muscle Fatigue Analysis : Purple
indicates very high risk, Red indicates high risk, Yellow medium risk, and Green low risk, based on the three-digit
scores which reflect effort level, duration, and frequency of movement.

5. Results

Figure 5 illustrates a representative sample of joint angles observed during a single
cable wrapping and securing cycle at the trunk, shoulder, forearm, and wrist joints. These
data are part of a larger dataset of 100 cycles collected from 10 subjects. Figure 5a shows
that the work task is distributed as 57% cable wrapping, 25% cable securing, and 18%
cable placement and removal. To understand the variability in joint angles across all cycles,
the standard deviation is calculated for each instance and shown in Figure 5b (shaded
grey area). The participants exhibited similar joint patterns with few posture disparities,
confirmed by an ICC = 0.72 ± 0.23. This suggests that, despite individual differences,
the overall task demands exerted similar postural stresses on the musculoskeletal system.
Photos corresponding to the marked timestamps in Figure 5a are shown in Figure 5c.

To evaluate the efficiency of the developed system in risk assessment compared to the
standard RULA method, the time required for each approach was measured. The RULA
analysis on a 120.5-s video resulted in approximately 35 observations and a completion
time of 70 min. In contrast, the proposed system streamlined data processing and results
generation, completing this step in approximately 2 min. Figure 6 compares risk assess-
ments from both methods. The RULA scores in Figure 6b show 11% at action level 1, 86%
at level 2, 3% at level 3, and 0% at level 4. Our system’s risk estimation demonstrates a
similar distribution, with 11% at level 1, 88% at level 2, 1% at level 3, and 0% at level 4
(Figure 6c). As observed in Figure 6, results indicate that the majority of instances fall into
action level 2. However, our approach showed a slightly higher percentage at this level
(88% vs. 86%) and a slightly lower percentage at action level 3 (1% vs. 3%) compared to the
RULA assessment. Notably, both methods found no instances at action level 4, indicating
no immediate intervention is required for the studied tasks.
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Figure 5. Fixed Workstation Work Cycle Analysis in Cable Industry (a) Tasks Distribution, (b) Joint
Angles of Trunk, Shoulder, Elbow, and Wrist Flexions, (c) Observed Postures at Marked Timestamps.

The presence of instances at action levels 2 and 3 necessitates further investigation
and potential interventions to mitigate the risk of WMSDs. In this context, Table 4 shows
the overall risks estimated by our proposed method averaged across all subjects.

Table 4. Overview of the Risk Scores from the WMSDs Risk Assessment Proposed Method.

Risk Description Mean% (Std)

R1 WMSDs Risk related to Static Postures Duration 25 (7.3)
R2 WMSDs Risk related to Job Frequency 0 (0)
R3 WMSDs Risk related to Postural load 14.1 (2.6)
R4 WMSDs Risk related to Level of exertion 35 (10.2)
R5 WMSDs Risk related to Recovery Time 60 (0)
R Overall Risk of WMSDs 27.3 (2.4)
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Figure 6. Cable Wrapping Action Levels: (a) Proposed vs. RULA, (b) RULA Distribution, (c) Proposed
Method Distribution.

Although the overall risk of WMSDs for the studied tasks is considered moderate
27.3 ± 2.4%, our method reveals moderate risks associated with prolonged static postures
(R1 = 25 ± 7.3%) and postural load (R3 = 14.1 ± 2.6%), as well as significant regard-
ing perceived exertion levels (R4 = 35 ± 10.2%) and limited recovery time (R5 = 60%).
Despite these findings, the task’s frequency (0.49 ± 0.04 cycles/min) and cycle duration
(122.4 ± 20 s) initially appear low-risk (R2 = 0%).

To understand risk distribution across upper body regions, Table 5 reveals that the
trunk exhibits the highest overall risk (35.6% ± 4.4%), likely due to prolonged static postures
(71.3% ± 22%). This suggests a high potential for muscle fatigue and discomfort in this
region. Elbows and forearms have substantial risk (30–34%), highlighting the impact of
both static and awkward postures. Shoulders and Wrists show moderate risks, influenced
by static postures (12–18%) and Postural Load Risk (19–22%), respectively.

Table 5. Joint-Specific WMSDs Risk Assessment Results for Proposed Method during a Cable
Industry Task.

Joint
Overall Risk (R) Static Posture Risk (R1) Postural Load Risk (R3)

Mean %
(Std)

Action
Level

Mean %
(Std)

Action
Level

Mean %
(Std)

Action
Level

Trunk 35.6 (4.4) 2 71.3 (22) 4 5.7 (3.4) 1
Right Shoulder 21.7 (3) 2 17.8 (12) 1 5 (1.7) 1
Left Shoulder 22.3 (3.4) 2 11.8 (8.14) 1 6.9 (3.8) 1
Right Elbow 33.9 (4.9) 2 33.6 (20.2) 2 31.4 (3) 2
Left Elbow 29.6 (3.8) 2 27.1 (18) 2 24.7 (7.5) 2
Right Wrist 24.1 (3.4) 2 5.3 (2.4) 1 19.9 (5.2) 1
Left wrist 24.7 (4.3) 2 7.1 (1.7) 1 22.3 (11) 2
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To evaluate the effectiveness of our system, joint-specific WMSD risk assessment
results were compared to those obtained from the Rodgers Muscle Fatigue Analysis, which
identifies the most at-risk joints. As indicated in Table 6, the trunk is identified as the
most critical joint with a score of 241 (action level 4), necessitating immediate intervention.
Notably, the ergonomic expert assigned the highest risk value to the second digit (associated
with duration of exertion) in the Rodgers Muscle Fatigue Analysis score. This aligns well
with the high static posture risk (71.3% ± 22%) identified by our proposed method in
Table 5. Interestingly, the Rodgers analysis assigns moderate risk (action level 2) to the
remaining joints, which is consistent with the overall risk levels observed in Table 5.

Table 6. Results of the Joint-specific Rodgers Muscle Fatigue Analysis during a Cable Industry Task.

Joint Rodger Score Corresponding Color Action Level
Trunk 241 4
Right Shoulder 212 2
Left Shoulder 212 2
Right Elbow 232 2
Left Elbow 232 2
Right Wrist 212 2
Left wrist 212 2

Regarding the task-specific risk assessment, Table 7 summarizes the results provided
by our method compared to the REBA and Strain Index. Across different methods, similar
action-level classifications were observed for cable placement/removal and wrapping.
Nevertheless, the results differed for cable securing, where our method assigns a lower
action level (level 2) compared to the REBA and Strain Index that indicate level 3 with
respective risk scores of 8 and 6.

Table 7. Comparison of Task-specific WMSDs Risk Assessment for Proposed Method, REBA,
and Strain Index during Cable Placement/Removal, Wrapping, and Securing.

Task
Proposed Method REBA Strain Index

Mean
Score

Action
Level Score Action

Level Score Action
Level

Cable placement/removal 25.6 % 2 4 2 3.5 2
Cable wrapping 36.4 % 2 5 2 4.25 2
Cable securing 38.2 % 2 8 3 6 3

Within the user interface of our proposed wearable system, identified risks and their
contributing factors are clearly highlighted, enhancing communication for ergonomic
assessments, as illustrated in Figure 7.

Figure 7. Illustration of the User-Interface Reporting WMSDs Risk Levels.
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6. Discussion

This study proposed a wearable IMU-based system for WMSD risk assessment in
the upper body. Designed for industrial environments, this system utilizes IMU data to
function independently of magnetic distortions. By optimizing sensor orientations and
angle estimation algorithms, the system ensures data accuracy, resulting in a WMSD risk
factors assessment well-suited for the demanding conditions of industrial settings. The sys-
tem incorporates a user-friendly interface that facilitates seamless data collection, analysis,
and visualization. This aligns with existing research emphasizing the importance of user
interfaces in health monitoring systems, promoting user engagement and empowering
healthcare professionals with objective insights for informed decision-making [75,76].

Based on motion capture technology, our system captures detailed biomechanical
data on posture and joint angles throughout the work cycle. This approach provides
a richer dataset compared to traditional observational methods like RULA, while also
significantly reducing the time required for risk assessment. This difference likely explains
the observed variations in risk scores between these methods [77,78]. While traditional
methods have the advantage of not requiring specialized equipment, our method offers a
deeper understanding of musculoskeletal stress through detailed biomechanical analysis.

Additionally, our method offers a comprehensive approach to workplace posture as-
sessment compared to traditional methods. While it may identify fewer postures requiring
immediate intervention due to its focus on detailed biomechanics, it highlights a significant
prevalence of potentially risky postures that warrant attention. This proactive identification
facilitated by our system allows for early intervention and the development of mitigation
strategies, potentially preventing the onset of WMSDs in the long term.

Moreover, our method underscores the critical value of a multi-faceted approach that
combines objective data, like average cycle duration and job frequency, with subjective
worker feedback. This aligns with existing research highlighting the significance of ad-
dressing both the physical and perceived aspects of work to accurately assess and mitigate
WMSD risks [79].

The findings of our study case specifically highlight the system’s effectiveness in
ensuring targeted interventions in high-risk areas, such as the trunk, which is prone to
prolonged static postures. The consistency between the proposed method and the Rodgers
Muscle Fatigue Analysis reinforces the reliability of our risk assessment method. This
leads to actionable recommendations like task redesign, adjustable workstations, or back
supports to reduce identified risks [80–83]. Additionally, the analysis emphasizes the
need for focusing on elbows, forearms, and wrists, prompting the adoption of ergonomic
tools and adjustments in hand positions to mitigate the effects of static and awkward
postures [81,84]. The moderate risk associated with wrist postures further underscores the
importance of preventive measures like proper training and wrist rests [85,86].

By pinpointing joint-specific WMSD risks associated with each task, the proposed
method allows for the development of customized interventions. For example, the system
can identify the increased risk of shoulder tendinitis due to repetitive movements and
awkward postures observed during cable wrapping tasks [87]. Similarly, it can highlight
the link between prolonged standing, static trunk postures, and low back pain [88], along-
side the association between repetitive hand and wrist movements with carpal tunnel
syndrome [89]. This highlights the system’s potential for preventing WMSDs through early
risk factor identification.

The task-specific risk assessment results suggest a general agreement between the
proposed method, REBA, and the Strain Index for cable placement/removal and cable
wrapping tasks. This indicates the effectiveness of the proposed method in these scenarios.
However, for the cable securing task, the proposed method assigned a lower action level
compared to the established methods. This difference suggests a potential underestimation
of risk in the proposed method for this specific task.

A similar observation can be made regarding the overall risk level for the trunk in
the joint-specific risk assessment. The proposed method appears to underestimate risk
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compared to the Rodgers Muscle Fatigue Analysis. This underestimation might be due to
the equal weighting of all risk factors in the proposed method. For instance, assigning a
higher weight to the duration of static posture could result in a higher risk score, potentially
reducing the discrepancy between our method and the standard methods. This highlights
the need for further research to refine the weighting of risk factors in relation to WMSD risks.

The study’s limitations, including the small sample size and focus on a single industry
task, necessitate additional research with larger, diverse populations and various job
settings to ensure robustness and generalizability. Future studies should also aim to
enhance data precision and capture a wider range of movements, potentially integrating
machine learning and decision-making algorithms to improve risk assessment accuracy
and intervention strategies.

7. Conclusions

This research introduced a novel IMU-based system specifically tailored for assessing
and managing Work-related Musculoskeletal Disorders (WMSDs). Utilizing advanced
IMU technology, this system provides in-depth tracking and evaluation of movements and
postures contributing to WMSDs, without relying on magnetometer inputs, ensuring its
suitability for industrial settings where magnetic interference is common. Additionally, our
system does not neglect the subjective assessment of the work situation, ensuring a com-
prehensive evaluation by combining objective data with workers’ personal experiences and
perceptions. The implementation of a user-friendly interface streamlines the operational
workflow, allowing for quick and efficient data collection, processing, and interpretation.
This approach not only highlights the importance of merging ergonomic assessments with
real-time biomechanical data but also significantly reduces the time required for analysis
compared to traditional methods. The real-world application of our system in a cable manu-
facturing environment has proven its efficacy in identifying key motion and posture-related
risk factors. Notably, our system pinpointed the specific risk factors that contribute to the
previously reported WMSDs at the workstation, affirming and extending the findings of
prior studies. This validation underscores the critical areas, particularly concerning trunk
and upper limb postures, where workers are at an elevated risk of WMSDs, offering insights
that surpass the depth provided by traditional assessment methods like RULA. Future
efforts should focus on broader validation of this novel wearable IMU-based system across
different work settings and populations to further establish its effectiveness and broaden
its applicability in the field of occupational health. Additionally, exploring the relative
influence of various WMSD risk factors could help refine the system’s risk assessment and
intervention strategies for improved accuracy, enabling more targeted and personalized
ergonomic interventions.
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