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Abstract
Head and Neck Cancers (HNC) significantly impact patients’
ability to speak, affecting their quality of life. Commonly
used metrics for assessing pathological speech are subjective,
prompting the need for automated and unbiased evaluation
methods. This study proposes a self-supervised Wav2Vec2-
based model for phone classification with HNC patients, to en-
hance accuracy and improve the discrimination of phonetic fea-
tures for subsequent interpretability purpose. The impact of
pre-training datasets, model size, and fine-tuning datasets and
parameters are explored. Evaluation on diverse corpora reveals
the effectiveness of the Wav2Vec2 architecture, outperform-
ing a CNN-based approach, used in previous work. Correla-
tion with perceptual measures also affirms the model relevance
for impaired speech analysis. This work paves the way for
better understanding of pathological speech with interpretable
approaches for clinicians, by leveraging complex self-learnt
speech representations.
Index Terms: speech disorders, Head and Neck Cancer, deep
learning, phone classification, intelligibility, interpretability

1. Introduction
Head and Neck Cancers (HNCs) affect the upper respiratory and
digestive tracts, including the oral cavity, pharynx, larynx, nasal
cavity and salivary glands. Treatment of this cancer, either by
radio-therapy, chemotherapy and/or surgery, can significantly
impact the speech of HNC patients. Difficulties in communica-
tion with others negatively impacts the patients’ quality of life.
It is essential to correctly assess their speech production, identi-
fying its level of impairment and what makes it atypical, so that
they can benefit from the best possible care during rehabilitation
sessions or for evaluating the efficacy of a prosthesis following
a surgical procedure. Unfortunately, commonly used metrics
such as severity or intelligibility measures are subjective, and
prone to misjudgments, even by experts [1]. Furthermore, these
metrics provide no information, other than a score, on the nature
of the measured degradations. This highlights the crucial need
for an automated, objective method of speech assessment that
offers not only accurate results but also interpretable insights
into the specific speech characteristics affected. Some papers
investigated the assessment of HNCs patients’ speech intelligi-
bility and/or severity with relatively simple networks [2, 3, 4, 5],
as well as using deep neural networks [6, 7, 8].

Recently, self-supervised learning (SSL) models have
shown to be successful in capturing phonetic patterns and vari-
ous speech features. In [9], authors have shown that Wav2Vec2
models [10] can learn certain phonetic concepts, and that they
correctly preserve the manner and place of articulation. [11, 12]
have also shown that phonetic information is contained in the

representations built by these models. Some research has
been focused on using these models to automatically assess
the speech severity level [13, 14, 15]. Other studies analysed
how well diseases can be predicted by these models. For in-
stance, A. Favaro et al. [16] compared interpretable speech
features to embeddings produced by SSL models on predict-
ing the presence of Parkinson’s disease. They showed that
using embeddings provides better detection accuracies at the
cost of losing the insight into speech and language deteriora-
tion given by interpretable features. While being able to de-
tect a disease and assess its severity is important, we believe it
is as important to interpret the output of these models, in or-
der to enhance trust that clinicians can have in these systems.
So far, only a limited number of studies focused on interpret-
ing these model outputs. In [17], a model was trained to pre-
dict dysarthric speech severity, by adding a bottleneck layer in
a feed-forward fully-connected neural network to improve in-
terpretability. Indeed, they relied on transfer learning to learn
clinically interpretable labels taken from the Darley classifi-
cation [18]. Their results show an accuracy improvement in
dysarthria speech evaluation, along with justifications based on
interpretable characteristics. An extension of this work in [19]
avoided perceptual labels (which require costly annotation by
experts, and is expensive in terms of recording amount required
to train and evaluate models) by shaping the interpretable layer
around four automatically-extracted acoustic features character-
izing four dysarthria aspects, very close to the previous work.
By using a SHapley Additive exPlanations [20], they analysed
the contribution of each acoustic feature on the final predic-
tion. Yeo et al. have also shown the efficacy of leveraging
the Goodness of Pronunciation metric, by using the pre-trained
multi-layer convolutional neural network part – frozen – of the
Wav2Vec2 model, followed by a phone classifier [21]. Their ap-
proach shows the relative impact of each phone on the predicted
severity score. Another methodology was used in [8] by using
a convolutional neural network (CNN) for a phone classifica-
tion task. The NCD method (Neuro-Concept Detector) along
with the ANPS metric (Artificial Neuron-based Phonological
Similarity) proposed in this work enables predicted severity and
intelligibility scores to be interpreted in terms of alterations in
the speech produced by patients, by associating the behaviour
of neurons from the classifier with the phonetic feature they de-
tect.

The work presented in this paper aims to revisit the over-
all framework proposed in [8] by replacing the CNN with an
SSL model based on the complete Wav2Vec2 architecture. This
modification is anticipated to provide not only higher accuracy,
but also to bring later on a more nuanced and richer descrip-
tion of the phonetic features of pathological speech. In addi-
tion to the change of model architecture, this work will explore



how pre-training corpora, model size, the fine-tuning stage, and
datasets associated with this stage affect the choice of a publicly
available pre-trained Wav2Vec2 model for phone classification.
This exploration is pivotal for optimizing the performance of
the model across diverse datasets, contributing to the robustness
and generalizability of our approach. Thus, a detailed analysis
of phone confusions is conducted, to ensure the generalization
ability of our models on other datasets. Subsequently, we anal-
yse how phone classification accuracies correlate with percep-
tual measures obtained from domain experts on speech from
patients who have benefited from care following a HNC. This
multidimensional evaluation approach will provide a compre-
hensive assessment of the proposed SSL model, shedding light
on its potential for an accurate and clinically relevant patholog-
ical speech analysis, required for Step 2 and 3 of the targeted
overall framework [8].

2. Corpora
To train and evaluate our models during training, we relied on
subsets of BREF [22] and Common Phone [23]. To test our
models, we relied on BREF-Int and C2SI [1].

The BREF corpus is composed of 120 French speakers
reading extracts from the newspaper Le Monde. Recordings
took place in the 90s, with people recruited in the Paris area.
A phone-balanced subset of this corpus was created to ensure
that the subsequently fine-tuned models are not showing bias
towards a specific phone. It is composed of more than 3 million
frames of 127ms, each aligned on a French phone or silence.
We also use the BREF-Int dataset, a phone-balanced subset of
the BREF test dataset. These datasets are identical to the ones
used in [8].

The Common Phone corpus is a gender-balanced, multi-
lingual and phonetically-aligned corpus derived from Mozilla’s
Common Voice project. Only French recordings were used in
this work, including speech from Belgium, Tunisian and Cana-
dian speakers, amongst others. This dataset is also balanced
in terms of phones and genders to ensure the phone-wise and
gender-wise impartiality of the models.

The C2SI corpus consists of 87 patients who have been
treated for oral or oropharyngeal cancer, as well as 41 healthy
controls (HC). Patients and HC were recorded at the IUCT On-
copole, in Toulouse, France. Patients were faced with multiple
tasks: sustained /a/, sentence reading, image description (DES),
short text reading (LEC), pseudo-words production (DAP) as
well as various other prosodic tasks. Based on the image de-
scription task, six experts evaluated the severity (degree of al-
teration of the speech signal) and intelligibility of the patients’
speech on a scale from 0 – strong alterations – to 10 – perfect
speech; the intelligibility being defined here as the “the perfor-
mance by a listener to recognize the words and/or the sounds
of the speech produced by the speaker” [1]. Recordings from
both tasks LEC and DAP are used for testing our models. They
will be referred here as C2SI-LEC and C2SI-DAP. To match
the selection that has been made in a previous work, we will
test our models on 24 HC (amongst all available speakers, some
of whom have not completed the two LEC and DAP tasks) all
recorded under the same conditions. We will compare our re-
sults with perceptual evaluations of 81 patients – 6 patients were
not evaluated by experts.

All the aforementioned corpora are phonetically aligned
with 31 phones and silence. These 31 phones include four archi-
phones: /Ê/ = {e, E}, /Û/ = {œ, ø}, /Ô/ = {o, O}, and /µ/ = {œ̃,
Ẽ}. The use of these archi-phones neutralizes true-mid vowel

oppositions. Table 1 details the amount of phone-aligned frames
used from each corpus, as well as the number of hours they rep-
resent. Because some frames overlap each other, this number of
hours is higher than the sum of recordings lengths. However, it
still reflects what the model sees as input.

Table 1: Usage, number of frames, and global duration of audio
data for each corpus used in this work.

Corpus Usage #frames #hours

BREF train, validation 3,118k 110h
Common Phone train, validation 236k 8.3h
BREF-Int test 85k 3h
C2SI-LEC (HC) test 43k 1.5h
C2SI-DAP (HC) test 73k 2.5h

3. Model architectures
The CNN model has been previously trained for phone classi-
fication in [8] on the BREF dataset described in section 2. It
is composed of two convolution layers combined with maxi-
mum pooling layers. The model input is a sliding window of
11 acoustic frames of 20ms, 10ms-spaced, where each frame
is characterized by 40 Mel-Filter bank feature extracted from
audio signal, along with their first and second derivatives. The
model thus has a 120ms-window centred on the phone to be
predicted. Once the CNN has been applied, the output is then
flattened before being fed to three fully connected layers, de-
tailed below. This model output is considered as the baseline
later in the paper.

Regarding the Wav2Vec2 architecture, models from
LeBenchmark2.0 [24] are used. As we will apply these mod-
els on French pathological speech in further works, we tar-
geted Wav2Vec2 models pre-trained exclusively on French
speech. Indeed, combining phones from multiple languages
could complicate the analysis between healthy and pathological
speech (meaning between typical and atypical French phones).
LeBenchmark models come in different architectures (6, 12, 24,
or 48 hidden layers) as well as with different pre-training cor-
pora sizes. In this work, we will compare results obtained with
models containing 6, 12, or 24 hidden layers, respectively re-
ferred to as light, base, and large, as well as being pre-trained
on 3k or 14k hours of French speech. Wav2Vec2 works with
25ms-windows, which approximately start every 20ms, which
implies an overlap of about 5ms. In order to emulate the CNN
120ms-window, the input of Wav2Vec2 will consist here of au-
dio extracts of six padded-windows of 25ms. Such an archi-
tecture gives us an approximate 127ms-window, which is very
close to the length of the context used for the CNN.

The output of either the CNN or the Wav2Vec2 model, once
flattened, are passed through three 1024-dimension fully con-
nected layers, dedicated to the phone classification task. The
size of the flattening layer depends on the output size of the
encoder used (CNN or Wav2Vec2, and the size of Wav2Vec2).
Then, the output phone is chosen using a softmax on the 32
output values.

Datasets used for the training phase were randomly split
into two phone-balanced subset: train (90% of data) and vali-
dation (10% left). All of our models were fine-tuned using the
SpeechBrain toolkit for 15 epochs, with a training time of ap-
proximately one day on a Tesla P100 GPU. The model present-
ing the best phone error rate on the validation set was chosen
for inference on test datasets. The classifier uses an Adadelta



Table 2: Phone-balanced accuracies (in %) obtained on each
test dataset. Confidence intervals were computed with the boot-
strapping approach2. Results for the CNN are taken from [8]
and did not include confidence intervals. Best results are high-
lighted in bold. *The CNN model was trained from scratch us-
ing BREF.

Model Fine-tuning
datasets BREF-Int ↑ C2SI-LEC ↑

(HC speakers)
C2SI-DAP ↑

(HC speakers)

CNN, Baseline BREF* 81.4 72.2 69.2

14k-large Frozen BREF 83.5±0.2 66.9±0.6 66.9±0.4
14k-large BREF 87.6±0.2 70.2±0.6 70.6±0.4
14k-light BREF 81.8±0.2 57.0±0.6 57.3±0.4

3k-large BREF 88.3±0.2 70.6±0.6 71.3±0.4
3k-base BREF 84.5±0.2 48.1±0.6 50.1±0.4

14k-large BREF, CP 87.4±0.2 72.1±0.5 73.3±0.4
14k-light BREF, CP 82.9±0.3 64.1±0.6 63.7±0.4
3k-large BREF, CP 88.3±0.2 72.6±0.6 73.9±0.4
3k-base BREF, CP 84.9±0.2 61.4±0.6 62.5±0.4

optimizer with an initial learning rate of 0.9, to improve a cross-
entropy loss applied on the phone classification. The Wav2Vec2
architecture – when fine-tuned – relies on an Adam optimizer
with an initial learning rate of 1.10−4. Source code containing
SpeechBrain recipes is made available on a Github repository1.

4. Experimental results
4.1. Comparison of Wav2Vec2 models

Experiments were run to investigate the impact of the following
factors: (1) fine-tuning Wav2Vec2, (2) pre-training datasets,
(3) model size, and (4) fine-tuning datasets. Table 2 sums up
accuracies obtained for each fine-tuned model. Given that the
phone distribution is not balanced in C2SI datasets, accuracies
are balanced by phone. Mathematically, it is the average of ac-
curacies obtained for each phone. Thus, even when not speci-
fied, accuracies are systematically balanced by phone.

To analyse the impact of fine-tuning Wav2Vec2 (1), two
14k-large models were used, only one of which has been fine-
tuned. By comparing both models 14k-large Frozen and 14k-
large, we can see that the fine-tuning step significantly im-
proves accuracies on all three test datasets (confidence intervals
are not overlapping themselves). Unsurprisingly, fine-tuning
Wav2Vec2 models on similar datasets is beneficial regarding
accuracy.

Then, the impact of the pre-training datasets (2) was mea-
sured by using LeBenchmark models that had different sets of
pre-training data. We relied on both 3k and 14k model families,
which are pre-trained on respectively 3,000 and 14,000 hours of
French speech. They include read, acted, spontaneous, and pro-
fessional French speech, with standard and accentuated French.
Both of these datasets vary greatly in terms of accent variety.
Indeed, the 3k pre-training dataset mainly contains audiobooks
and French radio programmes, with less than 1% of African-
accented speech that we are aware of – included audiobooks and
radio programmes do not provide information on the accents of
their speakers. However, the 14k pre-training datasets contain
around 4,700 hours of speech from the European Parliament,
which features at least three additional French accents: Belgian,
Swiss, and Aosta Italian, as well as more negligible amounts

1github.com/MaloMn/wav2vec2-phone-classification
2Ferrer, L. and Riera, P. Confidence Intervals for evaluation in ma-

chine learning [Computer software]. https://github.com/luferrer/
ConfidenceIntervals

of African radio, comprising Malian and Nigerian accents. By
comparing models 14k-large and 3k-large, our results underline
that adding linguistic variability through various French accents
does not offer significant improvements regarding classification
accuracies.

Regarding model size (3), multiple LeBenchmark model
sizes (3) were experimented : light, base and large, involving 6,
12, and 24 hidden layers respectively. Results show that using
a large model (with 24 hidden layers) offers significantly better
accuracies than smaller models (with 6 and 12 hidden layers).
Unfortunately, as LeBenchmark offers neither a 14k-base model
nor a 3k-light model, we cannot compare the results of the 3k-
base and 14k-light models. Nevertheless, our results show that
smaller models have weaker generalization power than larger
models on both unseen C2SI datasets.

Finally, to analyse the impact of fine-tuning datasets on
transformer-based models (4), we add a new fine-tuning dataset
– the Common Phone (CP) corpus – compared with [8], in
which only the BREF dataset was involved. All the initial mod-
els mentioned above have separately been fine-tuned on a com-
bination of the BREF and Common Phone corpora (BREF,CP
in Table 2). According to our results, adding read speech from
other corpora in the fine-tuning stage significantly improves the
generalization to both C2SI datasets on all our fine-tuned mod-
els (for instance, an absolute 12.4% improvement is achieved
by the 3k-base model trained on BREF and CP, compared with
the 3k-base model trained on BREF only, on the C2SI-DAP
dataset). Accuracies are also similar on the BREF-Int dataset:
all confidence intervals overlap each other, except for the 14k-
light model, which is significantly better, once fine-tuned on
the combination of BREF and Common Phone. It therefore
seems worthwhile to include other datasets in the fine-tuning
stage, even if they do not represent a significant percentage of
the training data.

4.2. Wav2Vec2 and CNN

The best Wav2Vec2 model – 3k-large fine-tuned on BREF and
CP, still according to results shown in table 2, improves by an
absolute 6.9% the classification accuracy on BREF-Int com-
pared with the CNN (88.3% versus 81.4%). On C2SI-LEC,
the difference is not significant (72.6% versus 72.2%). Com-
paratively, we note a significant improvement of 4.7% on C2SI-
DAP (73.9% versus 69.2%). However, by comparing the num-
ber of parameters of these models, we can point out that the best
Wav2Vec2 model has 330 million of parameters, against 10 mil-
lion for the CNN. Furthermore, smaller Wav2Vec2 models base
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Figure 1: Confusion matrices of obstruent phones, on BREF-Int
and C2SI-LEC (HC speakers only) datasets respectively.
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Figure 2: Confusion matrices of oral/nasal phones, on BREF-
Int and C2SI-LEC (HC speakers only) datasets respectively.

and light – with respectively 90 and 26 million parameters –
do not generalize as well as the CNN on C2SI datasets. This
gap in parameter count is significant, but both model types do
not have the same architecture, and a comparison based only on
parameter count is necessarily biased. Nevertheless, this size
difference implies that the carbon footprint of our inferences
will inevitably be higher when using Wav2Vec2 models.

To ensure that our models do not overfit on certain phones,
and that confusions between phones remain explainable, con-
fusion matrices were generated on BREF-Int and C2SI-LEC,
using the 3k-large model fine-tuned on BREF and Common
Phone. Figures 1a, 1b, 2a and 2b show specific parts of these
matrices, dedicated to obstruent and oral/nasal phones. Re-
straining our analysis to these phones makes a direct compar-
ison with the analysis done in [8] possible. The comparison be-
tween previously obtained results and current results show that
Wav2Vec reduces the observed confusions in most cases.

Regarding obstruent phones (figures 1a and 1b), /Z/ was
confused with /S/ in 9% of cases on BREF-Int in the previ-
ous work, against 4.6% now. Confusion between both of these
phones is therefore still present, but happens in half the cases
compared with previous results. This reduction can also be
found on the C2SI dataset: whereas /p/ was previously con-
fused with /t/ in 9.3% of cases, this is only the case 2.2% of
the time with our architecture. We also find the same causes for
important confusions: either the loss of the place of articulation
(acuteness – /f/ → /s/, compactness – /S/ → /s/), or confusion
due to the voicing feature (/t/ → /d/).

Regarding oral and nasal phones, we also get strong con-
fusions linked to oral vowels and nasal consonants on C2SI-
LEC. Where /ã/ and /a/ were confused in 11.5% of cases, they
still are in 10.1% of cases. /ã/ is also more confused now with
/n/ (13.1%, against 8.4% previously) but is less confused with
/m/ (2.5%, against 6.2% previously). These confusions, pre-
viously explained by the change of speakers’ accent (Parisians
for BREF-Int, and from the Toulouse area for C2SI), can also be
found here, when using another type of model architecture. Our
results therefore support those obtained previously, and show
that the data used during fine-tuning and the domain differences
between datasets remain a non-negligible problem for this type
of architecture. On BREF-Int, we also find strong confusions
between /ã/ and /c̃/, with a mutual confusion of 16.4%, albeit
less intense than when using a CNN – 20.6%. These results are
important because they show that our model is also sensitive
to atypical pronunciations (such as a regional accent), which is
desirable when analysing pathological speech.
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Figure 3: Scatter plots of C2SI patients and HC on perceptual
evaluations by experts and balanced accuracies obtained.

4.3. Application to pathological speech

Having demonstrated the robustness of our model and its ability
to generalize well to other datasets, we will now see whether its
computed accuracies can correlate positively with the assess-
ments of the six C2SI experts. The severity and intelligibility
scores given by the experts on the image description task (DES)
for a speech record were averaged and then compared to classi-
fication accuracies. Figures 3a and 3b show scatter plots com-
paring perceptual scores to classification accuracies of phones
in recordings of patients and HC from the C2SI corpus. Regres-
sion lines are also plotted. High Pearson correlation values –
0.90 for severity and 0.80 for intelligibility – confirm that per-
ceptual measures can be estimated using phone-balanced classi-
fication accuracies with our 3k-large model fine-tuned on BREF
and Common Phone. These correlation values are similar to
the ones obtained using the CNN [8], where balanced accura-
cies correlated at 0.91 and 0.81 with severity and intelligibility
scores respectively.

The less-intense correlation with perceptual intelligibility
can be explained by the fact that experts are known to be biased
on evaluating intelligibility, by underestimating the degree of
speech disorders. Indeed, when a task involves using expected
French words (for instance, using the word “bateau” to describe
an image showing a boat), experts tend to understand them bet-
ter. This was one of the reasons for creating a pseudo-word
reading task in [1, 25]. Furthermore, experts have generally
less trouble understanding patients. These results confirm that
a speech representation based on a Wav2Vec2-based model is
well suited for a phone-wise analysis of pathological speech.

5. Conclusion
In this work, we showed that a Wav2Vec2-based model outper-
forms a CNN model on a phone classification task, while pre-
serving certain linguistic specificities, such as regional accents.
Our results validate not only the efficacy of our approach based
on Wav2Vec2, but also highlights the importance of the choice
of the model architecture as well as the diversity of fine-tuning
datasets for optimal performance. Future works include apply-
ing the NCD concept developed in [8] to analyse hidden layers
of our fine-tuned architecture, and analyse how this new model
influences the detection of phonetic features, which are crucial
for interpreting predicted phones. In turn, this interpretability
is needed to have an objective analysis of a patient’s speech,
which would improve re-habilitation techniques implemented
by clinicians.
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