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Abstract—Despite today’s prevalence of ultrasound imaging
in medicine, ultrasound signal-to-noise ratio is still affected
by several sources of noise and artefacts. Moreover, enhancing
ultrasound image quality involves balancing concurrent factors
like contrast, resolution, and speckle preservation. Recently,
there has been progress in both model-based and learning-
based approaches addressing the problem of ultrasound image
reconstruction. Bringing the best from both worlds, we propose
a hybrid reconstruction method combining an ultrasound linear
direct model with a learning-based prior coming from a gen-
erative Denoising Diffusion model. More specifically, we rely on
the unsupervised fine-tuning of a pre-trained Denoising Diffusion
Restoration Model (DDRM). Given the nature of multiplicative
noise inherent to ultrasound, this paper proposes an empirical
model to characterize the stochasticity of diffusion reconstruction
of ultrasound images, and shows the interest of its variance
as an echogenicity map estimator. We conduct experiments on
synthetic, in-vitro, and in-vivo data, demonstrating the efficacy
of our variance imaging approach in achieving high-quality
image reconstructions from single plane-wave acquisitions and
in comparison to state-of-the-art methods. The code is available
at: https://github.com/Yuxin-Zhang-Jasmine/DRUSvar.

Index Terms—Diffusion models, Inverse Problems, Ultrasound
imaging

I. INTRODUCTION

Ultrasound (US) imaging finds extensive use in muscu-
loskeletal, cardiac, obstetrical, and other medical diagnostic
applications. In contrast to Magnetic Resonance or Computer
Tomography, which are expensive or ionizing, ultrasound is
real-time, affordable, portable, and minimally invasive. How-
ever, US imaging is affected by acoustic attenuation and arte-
facts (shadowing, reverberation, clutter), as well as electronic
and speckle noise. The standard image reconstruction method,
Delay and Sum (DAS) [1], converts time-domain signals into
B-mode images. While this low-complexity approach enables
fast reconstruction, it often results in poor image quality in
terms of signal-to-noise ratio (SNR), contrast, and spatial
resolution, especially with unfocused emissions.

In the last decade, model-based reconstruction methods [2],
[3] have been proposed, providing physical plausibility but re-
quiring high computational resources for convergence. Mean-
while, deep learning (DL) based techniques [4], [5] have ex-
celled in image denoising and enhancement but face challenges
with generalization and interpretability. To complement each
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other, hybrid model-based DL approaches have gained interest.
For instance, Chennakeshava et al. [6] solve a model-based
plane-wave compounding problem by unfolding a classical op-
timization algorithm. Zhang et al. [7] propose a self-supervised
beamforming approach enforcing explicit prior assumptions on
the reconstruction through the loss function. Our work falls
within this model-based DL family of approaches, but contrary
to previous methods which are deterministic, we focus on
stochastic methods based on the recent success of Diffusion
Models [8]–[10], renowned for image synthesis.

Instead of conventionally training a “task-specific” neural
network, diffusion-based inverse problem solvers use pre-
trained neural networks to encode only the prior knowl-
edge [11]–[16]. In a recent work [16], we adapted the Denois-
ing Diffusion Restoration Models (DDRMs) framework [11] to
incorporate the physics and constraints of US imaging through
an approximate direct model, and with a self-supervised fine-
tuning of the unconditional diffusion model. Also related,
Asgariandehkordi et al. [17] apply diffusion denoising without
considering a measurement model. Stevens et al. [18] focus
on the specific task of dehazing cardiovascular US images.

The stochastic nature of a diffusion model leads to varying
posterior samples under different noise initializations. Studies
have demonstrated that the variance of these samples is non-
uniform and tends to delineate edges or uncertain regions of
the reconstructed objects [15], [18], [19]. Unlike such uncer-
tainty interpretation, this paper proposes a novel perspective of
the diffusion variance as an estimator for US images, following
the nature of the multiplicative noise present in US reflectivity
maps. The contributions of our work are:

1) Proposing an empirical model characterizing the
stochasticity of diffusion-based US recontructions.

2) Revealing that computing the variance of multiple dif-
fusion reconstructed samples achieves higher SNR and
contrast, and results in a despeckling without over-
smoothing.

3) Confirming the superiority of the inverse-problem-
informed diffusion reconstruction method over the de-
noising diffusion approach [17] through experiments on
real data.

II. VARIANCE OF A DIFFUSION RESTORATION MODEL

A. Denoising Diffusion Restoration Models
Diffusion Denoising Probabilistic Models (DDPMs) are

a class of parameterized Markov chains used to generate
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synthetic images from noise [8]–[10]. These models employ a
fixed forward diffusion process and a learned backward gener-
ation process. During training, the forward process gradually
adds Gaussian noise with variance σ2

t (t = 1, . . . , T ) to a
clean image x0 until it becomes random noise xT , while the
backward process iteratively denoises the pure noise until the
original clean image is reconstructed. Sampling involves simu-
lating backward paths composed of multiple steps using either
stochastic differential equations (SDEs) or ordinary differential
equations (ODEs) to generate synthetic clean images.

Within the realm of model-based deep learning, a recent
focus is made on leveraging learned prior knowledge from
diffusion models to address inverse problems [11]–[16]. Un-
like conventional task-specific learning approaches relying
on paired datasets [4], [5], the above algorithms operate
as Markov Chains conditioned on measurements through an
observation model, allowing the utilization of pre-trained
diffusion models across multiple tasks instead of task-specific
training.

Assume an observation model yd = Hdxd + nd, where
yd denotes the measurements, Hd is the degradation operator,
xd is the sought quantity, and nd represents i.i.d. Gaussian
additive noise with standard deviation σd. For such problems,
Denoising Diffusion Restoration Models (DDRMs) [11] serve
as robust diffusion-based solvers operating in the spectral
space of Hd

1. To this end, DDRM leverages the Singular
Value Decomposition (SVD): Hd = UdSdV

T
d with Sd =

Diag (s1, . . . , sN ), to decouple the dependencies between the
measurements, and cast the original observation model as a
denoising problem:

yd = xd + nd

with yd = S†
dU

T
dyd, xd = VT

dxd, and nd = S†
dU

T
dnd, where

S†
d is the generalized inverse of Sd.
The ODE-based sampling in DDRM enables fast restoration

by covering multiple diffusion steps at once, i.e., directly
transitioning from xt to xt−k, where k ⩾ 1 denotes the num-
ber of skipped diffusion steps [20]. In practice, the value of
xt−k is determined by linearly combining xt, the transformed
measurements yd, the transformed current prediction xθ,t,
and random noise using coefficients A, B, C, and D. These
coefficients satisfy conditions related to noise and signal,
specifically (Aσt)

2 + (Bσd/si)
2 +D2 = σt−k

2 for the noise
and A + B + C = 1 for the signal. The adjustment of these
coefficients is governed by two hyperparameters, providing
flexibility in the restoration process. After Nit denoising iter-
ations, the final restored image x0 is obtained as Vdx0.

B. DRUS Variance Imaging

Having introduced the general principle of DDRM, this
section introduces the adaptation of this framework to integrate
a direct model describing the construction of an US image,
incorporating both additive and multiplicative noise.

1We use subscript d to refer to the original equations of DDRM.

For a given imaged area, we denote p(r) the echogenicity at
position r ∈ Ω, which can be modeled as piecewise smooth.
The tissue reflectivity can then be expressed as:

o(r) = m(r)p(r), (1)

where m refers to the standard Gaussian multiplicative
noise [4], [21]. To capture measurements from p, US imaging
uses a transducer array with L elements, each emitting a
pulse and receiving an echo signal. We consider the first-order
Born approximation and no absorption within tissues to model
the ultrasonic transmission-reception process as a linear time-
invariant system.

The US wave emitted by the ith element passes through
the object domain Ω and is received by the jth element. The
received radio-frequency (RF) signal at time t is then:

yi,j(t) =

∫
r∈Ω

h(t− τi,j(r))m(r)p(r)dr+ nj(t), (2)

where nj represents the noise for the jth receiving element,
h is a kernel resulting from the convolution of the emitted
excitation pulse he and the transducer impulse response ht.

For single plane-wave (PW) US imaging, the discretized
model with N observation positions and K time samples for
all L receiving elements can then be written as:

y = H(m⊙ p) + n, (3)

where y = [yT
1 , ...,y

T
L]

T ∈ RKL×1, H ∈ RKL×N , m ⊙ p is
the componentwise product of m by p, both vectors being in
RN×1, and n = [nT

1 , ...,n
T
L]

T ∈ RKL×1 includes electronic
noise and model error. For simplicity, n is assumed white
Gaussian with standard deviation γ, which is reasonable for
the plane wave transmission [22].

In the domain of medical US image reconstruction, some
studies [7], [16] focus on restoring the reflectivity map, while
others [23], [24] opt for reconstructing the echogenicity map.
Our previous work, DRUS (Diffusion Reconstruction of US
images) [16], falls into the former category. It projects the
data in (3) using a beamforming matrix2 B ∈ RN×KL:

By = BHo+Bn, (4)

and employs DDRM to estimate the reflectivity o. The current
paper explores a new application of DRUS, extending it to
estimate US echogenicity p maps.

Diffusion sampling in DRUS can yield varied ô due to
stochasticity. Research has shown that the variance of diffusion
posterior samples under additive noise tends to highlight edges
of reconstructed objects [15], [18], [19]. However, due to the
multiplicative noise inherent in US, the amplitudes of o fol-
low zero-mean Gaussian distributions with standard deviation
depending on the intensity of p, affecting neighboring pixel
differences and thus diffusion variance. Therefore, the variance
is intuitively linked to p, and we introduce the following model
to characterize this property:

ôc = m⊙ p+ pβ ⊙Gc, (5)

2A weighted matched filter matrix of H.



where ôc represents the cth DRUS sample, Gc follows a stan-
dard normal distribution to account for generative stochasticity,
and β is an empirical parameter. It can be easily checked that
E[ôc] = m⊙ p and Var[ôc] = p2β . Consequently, we define
DRUSvar as an US echogenicity map estimator:

p̂DRUSvar =

(
1

C − 1

C∑
c=1

|ôc − ôDRUSmean|2
) 1

2β

, (6)

where ôDRUSmean = 1
C

∑C
c=1 ôc is hereafter named DRUS-

mean. In our experiments, β = 0.5 (used in this paper)
empirically yielded the most favorable results.

III. NUMERICAL ANALYSIS

We focus on reconstructing US images from a single
plane wave (PW). This section demonstrates the feasibility of
using DRUSvar as an US echogenicity map estimator under
a controlled numerical analysis on two synthetic phantoms.
As illustrated in Fig. 1, the occlusion phantom comprises 9
anechoic regions, while the second one contains 25 scatterers.
For each phantom, we synthesize 9 reflectivity maps with
various realizations of multiplicative noise, following (1).

Fig. 1. Echogenicity maps of the synthetic occlusion (left) and scatterer (right)
phantoms. Metrics are calculated within the colored boundary regions.

To reproduce the behaviour of DRUSvar under a minimal
observation model and emphasize on its pertinence in pres-
ence of multiplicative noise, we employ two 1-D convolution
kernels instead of the full degradation matrix BH in (4).
Specifically, the lateral kernel is a Gaussian with a standard
deviation of 0.17 mm, while the axial kernel is a cosine-
modulated Gaussian with the same standard deviation to
mimic a realistic US pulse-echo response (i.e., h in (2)).

The restoration process employs a US fine-tuned
diffusion model at a resolution of 256 × 256. The
original open-source diffusion model (Downloaded from
https://github.com/openai/guided-diffusion) was trained on
ImageNet [25]. For fine-tuning, a dataset consisting of 2339
high-quality in vitro images was acquired from a TPAC
Pioneer machine using the CIRS 040GSE phantom.

We conduct qualitative and quantitative evaluations on the
above phantoms, considering various additive noise levels
std(n). All diffusion samples underwent Nit = 50 iteration
steps and the DRUSmean/var images were constructed with
C = 10 samples. The occlusion phantom is used to evaluate

the generalized Contrast to Noise Ratio (gCNR) [26] and the
Signal to Noise Ratio (SNR), defined as:

gCNR = 1−
∫ ∞

−∞
min {gin(v), gout(v)} dv,

SNR = µROI/σROI, respectively, where the subscripts ‘in’ and
‘out’ indicate inside or outside the target regions, v denotes
the pixel values, g refers to the histogram of pixels in each
region, ‘ROI’ refers to the region of interest, and µ and σ
denote the mean and the standard deviation respectively. The
spatial resolution evaluated using -6 dB Full Width at Half
Maximum (FWHM) is assessed on the scatterer phantom. A
smaller FWHM value indicates a higher resolution.

The results in Figs. 2 (occlusion) and 3 (scatterer) comprise
the quantitative scores and the qualitative images. The means
and the standard deviations of the scores were calculated
across all target regions from the 9 synthetic reflectivity maps.
Fig. 2 demonstrates the significant superiority of DRUSvar
over DRUSmean and By in terms of gCNR, SNR, and visual-
ization. While DRUSvar exhibits slightly inferior performance
compared to DRUSmean in terms of spatial resolution (Fig. 3),
it remains stable even with large levels of additive noise.
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Fig. 2. Quantitative and qualitative comparison of the synthetic occlusion
phantom-based images under varying levels of additive noise. Images are in
decibels with a dynamic range [-60,0]. Left std(n) = 0.02, right std(n) =
0.08.
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Fig. 3. Quantitative and qualitative comparison of the synthetic scatterer
phantom-based images under varying levels of additive noise. Images are in
decibels with a dynamic range [-60,0]. Left std(n) = 0.018, right std(n) =
0.1.

IV. REAL DATA RESULTS

We conducted quantitative and qualitative evaluations of
our approach based on the publicly available experimental
datasets from the Plane Wave Imaging Challenge in Medical
UltraSound (PICMUS) [27]. The datasets were obtained with
a 128-element L11–4v linear-array transducer. The transmit
pulse has a central frequency of 5.208 MHz and a bandwidth
ratio (BWR) of 67%. The sampling rate is 20.8 MHz. We
name the 2 in vitro datasets EC (Experimental Contrast) and
ER (Experimental Resolution), and the 2 in vivo datasets CC
(Carotid Cross-sectional) and CL (Carotid Longitudinal).

The linear inverse problem model in (4) is leveraged in
DRUSmean/var. The construction of the matrix H necessitates
the channel data acquisition parameters, the field of view, and
the image resolution. The data acquisition parameters came
from the PICMUS setup, the field of view spans from -18
mm to 18 mm in width and from 10 mm to 46 mm in depth,
with the origin located at the transducer center. The image
resolution was fixed at 256 × 256. The construction of the
beamforming matrix B relies on the same parameters as H,
and the receive apodization weights defined by a window of
Tukey0.25 and an f-number of 1.4.

The same diffusion model and evaluation metrics as in
Sect. III are employed for EC and ER. CC and CL use
a diffusion model fine-tuned on 1012 home-made in vivo
images. Nit = 50 and C = 10. Quantitative results are
presented in Table I. Fig. 4 and 5 depict the qualitative
results. In addition to comparing DRUSvar with DAS (1PW

and 75 PWs) and DRUSmean, we also include a comparison
against DENOmean with 10 DENO [17] samples, a state-
of-the-art technique that denoises US images with diffusion
models without solving an inverse problem. Furthermore,
for despeckling comparison, DRUSvar is visually contrasted
with DRUSmean+ADMSS [23]3, where ADMSS is an US
despeckling method applied on beamformed images before log
compression.

Table I shows that our approach, DRUSvar, significantly
outperforms others in terms of contrast and SNR, while
maintaining competitive spatial resolution. This is consistent
with the numerical observations in Sect. III and the qualita-
tive results in Fig. 4. Additionally, Fig. 5 demonstrates that
DRUSvar mitigates the over-smoothing issue commonly seen
in US despeckling methods like ADMSS [23]. However, for
applications such as motion tracking, where speckle is useful,
DRUSvar, being a despeckling method, is not suitable.

TABLE I
QUANTITATIVE COMPARISON ON THE PICMUS in vitro DATASETS. A AND

L DENOTE AXIAL AND LATERAL DIRECTIONS RESPECTIVELY. BEST
VALUES BOLDED, SECOND-BEST UNDERLINED.

DAS DENOmean DRUSmean DRUSvar
75 PWs 1PW 1PW [17] 1PW, [16] 1PW (proposed)

EC gCNR↑ 0.95 0.87 0.95 0.97 0.98
SNR↑ 1.92 1.97 1.93 1.87 3.03

ER
gCNR↑ 0.77 0.69 0.95 0.95 1.00

FWHM
[mm]

A↓ 0.54 0.56 0.31 0.24 0.34
L↓ 0.56 0.87 0.64 0.54 0.32

V. CONCLUSION

This paper proposes an empirical model to characterize
the stochasticity of diffusion reconstruction of US images,
and introduces a novel US imaging approach, DRUSvar.
The proposed approach leverages the empirical variance of
multiple DRUS [16] samples to mitigate speckle noise, thereby
enhancing contrast and SNR, without causing over-smoothing.
The feasibility and competitiveness of DRUSvar are demon-
strated in the task of single plane-wave US image restoration,
using both synthetic and real-world datasets.
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