
HAL Id: hal-04622856
https://hal.science/hal-04622856

Submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing Relational Concept Analysis and
Graph-FCA on their Common Ground

Vanessa Fokou, Peggy Cellier, Xavier Dolques, Sébastien Ferré, Florence Le
Ber

To cite this version:
Vanessa Fokou, Peggy Cellier, Xavier Dolques, Sébastien Ferré, Florence Le Ber. Comparing Rela-
tional Concept Analysis and Graph-FCA on their Common Ground. Concepts 2024, Cadiz, Spain,
septembre 2024, Sep 2024, Cadiz, Spain. �hal-04622856�

https://hal.science/hal-04622856
https://hal.archives-ouvertes.fr


Comparing Relational Concept Analysis and
Graph-FCA on their Common Ground ⋆

Vanessa Fokou1[0009−0009−3778−2708], Peggy Cellier2[0000−0002−1495−2534], Xavier
Dolques1[0000−0002−5579−1714], Sébastien Ferré2[0000−0002−6302−2333], and

Florence Le Ber1[0000−0002−2415−7606]

1 Université de Strasbourg, ENGEES, CNRS, ICube UMR 7357, F 67000 Strasbourg
vfokou@unistra.fr, dolques@unistra.fr, florence.leber@engees.unistra.fr

2 Univ Rennes, CNRS, Inria, IRISA - UMR 6074, Rennes
prenom.nom@irisa.fr

Abstract. Relational Concept Analysis (RCA) and Graph-FCA (GCA)
have been defined as Formal Concept Analysis (FCA) extensions for pro-
cessing relational data and knowledge graphs respectively. Nevertheless,
while their purposes and results seem similar, the data modelling and
the definition of concepts are different. In this paper, we compare these
two approaches on a common basis, considering only unary and binary
relations for GCA and the existential quantifier for RCA. We focus on
examples showing the similarities and dissimilarities between both meth-
ods, and highlighting how cycles are processed differently by RCA and
GCA.

Keywords: Relational Concept Analysis · Graph-FCA· Formal Concept
Analysis · Relational Data · Cycles.

1 Introduction

With the digitization of human activities, more and more complex and multi-
relational data are available for analysis in many fields (e.g., agriculture, trans-
port). In addition, with the rise of semantic web, more and more data on the
web is represented in the form of knowledge graphs (e.g., RDF graphs [8], Con-
ceptual Graphs [17]) providing a flexible representation of complex data as a set
of interconnected entities with binary, and possibly n-ary relationships. Appro-
priate methods are therefore necessary to analyze these types of data. Formal
Concept Analysis (FCA) [6], a mathematical clustering method widely applied
in many fields (e.g., transcriptomic data [1], information science [15]), has shown
interesting results for discovering conceptual structures in tabular data. This has
led to extensions of FCA to relational data, notably Relational Concept Analysis
(RCA) [16] and Graph-FCA (GCA) [3, 5]. These approaches aim to extract con-
ceptual structures in multi-relational data, in the same way that FCA extracts
conceptual structures in tables.

⋆ This research is supported by ANR project SmartFCA (ANR-21-CE23-0023).



2 V. Fokou et al.

On the one hand, RCA allows the processing of binary relationships linking
several tables and to extract interrelated unary concepts (whose extents are sets
of objects). On the other hand, the aims of Graph-FCA (GCA) is the extrac-
tion of graph patterns in knowledge graphs. Its allows the processing of n-ary
relationships and the extraction of n-ary concepts (whose extents are sets of n-
tuples of objects). Nevertheless, both RCA and GCA deal with relational data,
and their results seem somehow similar [13, 4]. It would thus be interesting to
broaden their comparison, to help an analyst choose which approach to use,
depending on the data, or the expected result.

In this paper, we compare the two approaches on a common basis, i.e. applied
on binary relations and using the existential quantifier for RCA. Furthermore,
since GCA implicitly integrates inverse relationships, we include inverse relation-
ships in the data processed by RCA. The equivalence of RCA and GCA results
is studied with two examples, and the role of data cycles in the respective re-
sults of the two methods is highlighted. The rest of the paper is organized as
follows. Section 2 presents the related work. Principles of FCA, RCA and GCA
are described in Section 3 and the comparison of RCA and GCA is detailed in
Section 4. Section 5 concludes the paper and discusses future work.

2 Related Work

Several extensions of FCA have been proposed to handle relational data. Tri-
adic Concept Analysis (TCA) [12] was proposed to deal with situations where
”the object g has the attribute m under the condition b”, this can be considered
to deal with any ternary relationship. The result is a concept trilattice where,
each triadic concept is a triple made of an extent, an intent and a modus re-
spectively. A power context family [18] is made up of a set of formal contexts
with different arities i.e., a context of objects, a context of pairs of objects, a
context of triples of objects, etc. A concept lattice is computed for each context,
independently of other contexts. In [11], the author generates concept lattices
directly from a relational structure, where relational structures assume the role
of formal context in standard FCA. Concept intents are relational structures
representing conjunctive queries and concept extents are the result sets of the
intent queries, i.e. tables. Relational Concept Analysis (RCA) [16] extends FCA
with binary relationships between objects, and defines concepts in an iterative
way such that each concept is defined in terms of relationships to concepts of the
previous iteration until reaching a fix point. Graph-FCA (GCA) [3, 5] extends
FCA to knowledge graphs. In a GCA concept, the intent is a Projected Graph
Pattern (PGP), analogous to a conjunctive query; and the extent is the set of
results of such a query, i.e. a set of object tuples. Unlike RCA, GCA is not lim-
ited to binary relations and unary concepts, it also handles n-ary relationships
and n-ary concepts. By restricting to binary relationships and unary concepts,
the inputs and outputs of RCA and GCA look similar.

A few works in the literature have addressed the question of links between
RCA and Graph-FCA. When using RCA, an important issue for its effective use



Comparing RCA and Graph-FCA 3

is the interpretation of its results, so in [4], the authors propose an equivalent rep-
resentation of a family of RCA concept lattices as a hierarchy of concept graphs
in which each concept belongs to one concept graph, and each concept graph
exhibits the relationships between several concepts. In [14], the authors present
a framework (RCA-SEQ) for helping experts when exploring sequential qualita-
tive data. Firstly, they apply RCA to a relational context family that encodes
the analysed sequential data; secondly the resulting family of concept lattices is
summarized into a lattice of graphs, each graph representing a navigation path
within the lattices. Besides, a practical comparison (on a real dataset) of TCA,
RCA and GCA for modelling indeterminate values in ternary data has been
carried out in [9]. In this work, ternary relationships are directly represented in
GCA and TCA while RCA models the ternary relationships with two binary re-
lationships. Until now comparisons conducted on these methods have focused on
particular modelling points, and no general comparison on their characteristics
and the results they produce has been done.

3 Preliminaries

In this section, we present the main notions of FCA, RCA and Graph-FCA used
in the rest of the paper.

3.1 Formal Concept Analysis (FCA)

FCA [6] consists of discovering conceptual descriptions from a set of objects de-
scribed by unary attributes, called a formal context. A formal context is a triple
K = (O,A, I) where, O and A are sets of objects and attributes respectively
and I is a binary relation between O and A, i.e., I ⊆ O × A. For instance, in
Fig. 1 (left, up), tables Garage, Person and Car are examples of formal con-
texts. The incidence relation I induces two mappings (operators), int : 2O → 2A

and ext : 2A → 2O such that int(X) = {y ∈ A | ∀x ∈ X, (x, y) ∈ I} and
ext(Y ) = {x ∈ O | ∀y ∈ Y, (x, y) ∈ I}. A formal concept is then defined as a
pair (X,Y ) where X ⊆ O, Y ⊆ A, int(X) = Y and ext(Y ) = X; X and Y re-
spectively represent the extent and the intent of the formal concept (X,Y ). The
subsumption relation on the concepts of a context forms a concept lattice. FCA
result on the Garage context is the concept lattice presented in Fig. 1 (right).

3.2 Relational Concept Analysis (RCA)

RCA [16] was designed to extend FCA to relational data. Its input data is a
Relational Context Family (RCF), which is made up of a collection of formal
contexts, one for each category of objects, along with a collection of binary rela-
tions connecting the objects of one context to the objects of the same or another
context. The six tables in Fig. 1 form a RCF with 3 formal contexts (Garage,
Person and Car) and 3 relational contexts (Maintain, Sell and Owner). For-
mally, a RCF is a pair (K, R) where:



4 V. Fokou et al.

G
a
r
a
g
e

m
a
n
u
fa
c
tu

re
r

ch
a
in

se
rv

ic
e

A ×
B ×
C ×
D ×

Person m
a
le

fe
m
a
le

c
it
y

c
o
u
n
tr
y
si
d
e

si
n
g
le

m
a
rr
ie
d

Alice × × ×
Bob × × ×

Charlie × × ×
Julie × × ×

Car R
e
n
a
u
lt

P
e
u
g
e
o
t

T
e
sl
a

fa
m
il
y

sp
o
rt

se
d
a
n

car1 × ×
car2 × ×
car3 × ×
car4 × ×
car5 × ×
car6 × ×

S
e
l
l

c
a
r1

c
a
r2

c
a
r3

c
a
r4

c
a
r5

c
a
r6

A × ×
B × ×
C × ×
D

Owner A
li
c
e

B
o
b

C
h
a
rl
ie

J
u
li
e

car1 ×
car2 ×
car3 ×
car4 ×
car5 ×
car6 ×

M
a
i
n
t
a
i
n

c
a
r1

c
a
r2

c
a
r3

c
a
r4

c
a
r5

c
a
r6

A ×
B × ×
C
D × × ×

C_Garage_4

C_Garage_3

manufacturer

A
C

C_Garage_0

C_Garage_2

chain

B

C_Garage_1

service

D

Fig. 1. Garage-Car-Person RCF1 (left) – formal contexts above and relational contexts
below – and lattice on Garage context (right).

– K = {Ki}i=1..n is a set of formal contexts Ki = (Oi, Ai, Ii) and
– R = {rk}k=1..m is a set of relations rk where rk ⊆ dom(rk) × ran(rk), and

dom(rk), ran(rk) ∈ {Oi}i=1..n are respectively the domain and range of rk.

For instance, in the running example, we have K = {Garage, Person, Car}
and R = {Sell, Owner, Maintain} with dom(Sell) = dom(Maintain) =
OGarage, ran(Sell) = ran(Maintain) = OCar, dom(Owner) = OCar and

ran(Owner) = OPerson. This example is called RCF1 in the following.
To take full advantage of the information contained in relational contexts,

RCA relies on the relational scaling mechanism [16, 2] to capture the information
encoded in the object-object contexts through relational attributes. These rela-
tional attributes are used to extend formal contexts along the RCA process. In
the following, the result of RCA execution on a RCF is denoted by RCA(RCF).

Definition 1 (Relational attribute). A relational attribute is an expression
qr(C), where q is a scaling quantifier (∃,∃∀, ...), r is a relationship between two
groups of objects and C is a concept whose extent contains objects from ran(r).

Overall, the RCA process is iterative and each iteration includes 2 steps: (1)
lattice construction for each formal context, (2) relational scaling and enrichment
of formal contexts. The next iteration is based on the results of the previous
iteration, and the process ends when the lattices obtained in two successive
iterations are equivalent. Finally, given a RCF, RCA(RCF) is a collection of
concept lattices interconnected by relational attributes named Concept Lattice



Comparing RCA and Graph-FCA 5

C_Garage_4

C_Garage_3

manufacturer
∃  Sell(C_Car_12)
∃  Sell(C_Car_16)

C_Garage_12

∃  Sell(C_Car_13)

C_Garage_0

∃  Maintain(C_Car_0)
∃  Sell(C_Car_0)

C_Garage_2

chain
∃  Maintain(C_Car_9)
∃  Maintain(C_Car_4)
∃  Maintain(C_Car_3)

∃  Sell(C_Car_9)
∃  Sell(C_Car_4)
∃  Sell(C_Car_3)

B

C_Garage_1

service
∃  Maintain(C_Car_10)
∃  Maintain(C_Car_5)
∃  Maintain(C_Car_2)

D

C_Garage_6

∃  Maintain(C_Car_11)
∃  Maintain(C_Car_6)
∃  Maintain(C_Car_1)
∃  Sell(C_Car_11)
∃  Sell(C_Car_6)
∃  Sell(C_Car_1)

A

C_Garage_5

∃  Sell(C_Car_10)
∃  Sell(C_Car_5)
∃  Sell(C_Car_2)

C

C_Garage_7

∃  Maintain(C_Car_8)
∃  Maintain(C_Car_14)

C_Garage_10

∃  Maintain(C_Car_7)
∃  Maintain(C_Car_15)

∃  Sell(C_Car_7)
∃  Sell(C_Car_15)

C_Garage_8

∃  Sell(C_Car_8)
∃  Sell(C_Car_14)

C_Garage_9

∃  Maintain(C_Car_12)
∃  Maintain(C_Car_16)

C_Garage_11

∃  Maintain(C_Car_13)

Fig. 2. Concept lattice Garage in RCA(RCF1).

Family (CLF), one concept lattice per formal context. Hence, for the current
RCF, we have a CLF made of 3 concept lattices (Garage, Person and Car).
For the sake of space, we only show the concept lattice Garage at the end of
RCA process as presented in Fig. 2 which is different from the one shown in
Fig. 1 (right). Relational attributes are represented in the intents of concepts.
For instance, ∃ Sell(C Car 10) is a relational attribute with existential scaling
linking C Garage 5 to C Car 10. As OPerson does not constitute the domain of
any relational context, its concept intents will not contain relational attributes.
More details about relational scaling mechanism and relational attributes can
be found in [16, 2].

3.3 Graph-FCA (GCA)

To process multi-relational data, GCA [3, 5] adopts a graph point of view, seeing
objects as nodes, relationships as directed edges between nodes, and attributes
as node and edge labels. The input of GCA is a graph context which is a triple
K = (O,A, I), where O is a set of objects, A is a set of attributes, and I ⊆ O∗×A
is an incidence relation between object tuples o ∈ O∗ and attributes a ∈ A.
An incidence ((o), a) describes object o by attribute a like in FCA, while an
incidence ((o1, o2), a) relates object o1 to object o2 through the binary relation a
like in RCA. An incidence ((o1, . . . , on), a) represents an n-ary relationship. By
extension, we call unary relations the classical attributes that describe objects.
Figure 3 shows the graph context named GC1 corresponding to RCF1 presented
in Fig. 1 (left). Nodes are represented by rectangles where the first compartment
identifies the object and the second compartment lists its descriptors, i.e. unary



6 V. Fokou et al.

A

manufacturer

car1

Renault
family

Sell
Maintain

car6

Renault
sedan

Sell
Maintain

car2

Peugeot
family

Julie

female
countryside
married

Owner

car3

Tesla
sport

Charlie

male
city
single

Owner

Bob

male
countryside
married

Owner

D

service

Maintain

car5

Peugeot
sport

Maintain

Alice

female
city
single

car4

Tesla
sedan

OwnerOwner

C

manufacturer

Sell Sell

Owner

B

chain

Sell
Maintain

Sell
Maintain

Fig. 3. Graph context (GC1) of RCF1.

Q3e

Renault

car6
car1

Q3d

countryside
married
male

Bob

Owner

Q3b

family
Renault

car1

Owner

Q3c

manufacturer

A

Sell
Maintain

Sell
Maintain

Q3a

sedan
Renault

car6

Sell
Maintain

Owner

Fig. 4. An example of GCA
pattern.

Table 1. A tabular representation of GC1 binary relations.

(Garage, Car) M
a
i
n
t
a
i
n

S
e
l
l

(A, car1) × ×
(A, car6) × ×
(D, car2) ×
(D, car5) ×
(C, car2) ×
(C, car5) ×
(B, car3) × ×
(B, car4) × ×

(Car, Person) O
w
n
e
r

(car1, Bob) ×
(car6, Bob) ×
(car2, Julie) ×
(car5, Julie) ×

(car3, Charlie) ×
(car4, Alice) ×

relations/attributes. Unary relations are used to label nodes while (n > 1)-ary
relations are used to label edges connecting n nodes as presented in Table 1
which shows the binary relations of GC1. For example, the object A (garage)
is described as a manufacturer and is connected to the object car1 through
the binary relations Sell and Maintain (see Fig. 3). This is formally expressed
as: {((A, car1), Sell), ((A, car1), Maintain), ((A), manufacturer)}.
In the following, GCA(GC1) expresses the result of Graph-FCA on GC1.

Graph-FCA defines the extent of a graph concept as a set of n-tuples of
objects and the intent as a Projected Graph Pattern (PGP) which expresses
what those n-tuples of objects have in common; n is the arity of the concept.
Those notions are defined in the following.

Definition 2 (Graph pattern and PGP). Let V be an infinite set of vari-
ables. A graph pattern P ⊆ V∗×A is a set of n-ary edges with variables as nodes,
and attributes as labels. A PGP is then a couple Q = (x, P ) where P is a graph
pattern and x ∈ V∗ is called the projection tuple.

A graph pattern is similar to a small graph context, except that objects are
abstracted into variables. Figure 4 shows an example of graph pattern P3 with
a-e as variable names. A PGP is simply a graph pattern with focus on one or
several nodes. For instance, Q3e = ((e), P3) is the unary PGP with focus on
node e. A PGP can be seen as a conjunctive query, whose results are tuples



Comparing RCA and Graph-FCA 7

of objects that can replace the projected variables and match the pattern over
the graph context. PGPs form a bounded lattice modulo PGP equivalence. A
PGP is more specific than (or equivalent to) another PGP if the results of the
former is necessarily a subset of the results of the latter, whatever the graph
context [5]. The third compartment of a node (Fig. 4) represents the results for
that projected node as a list of objects. For instance, Q3e has two results: car1
and car6. A GCA concept is a pair (R,Q) such that Q is a PGP (concept intent),
R is the set of results (concept extent) of Q, and Q is the most specific PGP for
those results. In this paper we only consider unary concepts, in which there is
only one projected node in concept intents. Figure 4 therefore shows 5 distinct
unary concepts, 1 garage concept, 3 car concepts, and 1 person concept. Each
concept is referenced by its intent PGP, e.g. Q3e, and its extent can be found in
the third compartment of the projected node. The nodes a-d (brightly-colored)
belong to the pattern core, i.e. its minimal retract. A retract of a graph G is a
subgraph H of G such that G is homomorphic to H (see [7], p. 112). When the
projected node x is a core node, the non-core nodes can be ignored in the pattern
of PGP Qnx because they are redundant with core nodes. However, when the
projected node is not a core node, it must of course be included in the pattern
of the PGP, possibly along with other non-core nodes. The latter nodes are then
indicated in parentheses in the first compartment of node boxes. For instance,
node e is only used for PGP Q3e.

The GCA unary concepts are organized into a single lattice, in contrast to the
family of concept lattices in RCA. However, as the GCA output hides both top
and bottom concepts for the sake of readability, this output appears as a family
of concept hierarchies, one for each category of objects, similarly to RCA. The
GCA tool provides a lattice view, as an alternative to the pattern view, as shown
in Fig. 5 with the Person concept lattice. In this view, a (n > 1)-relation between
two nodes is represented in the description of nodes (second compartment), along
with unary relations. For instance, the Owner relation between nodes a and d

in Q3 (Fig. 4) is represented by edge [Owner a ] in the description part of
Q3d (Fig. 5). Note that those edges are to be read as part of one pattern. For
instance, edges [Owner a ] in Q3d and [Owner a ] in Q5c are distinct. Their
generalization in the supremum concept Q6a appears as edge [Owner d ].

4 RCA and Graph-FCA Comparison

This section compares both approaches in the following order: a glance at the
obvious differences, examples showing the similarities, dissimilarities and how cy-
cles are processed differently in both approaches. Since intents are represented
differently in both approaches, the comparison of concepts is done at the exten-
sional representation level; thus, a RCA concept (named r-concept) corresponds
to a GCA concept (named g-concept) when they have the same extent. To illus-
trate our comparison, we rely on the above RCF1 / GC1 example.



8 V. Fokou et al.

Q1b

Owner d _

Julie
Charlie

Bob
Alice

Q2d

countryside
married

Owner b _

Julie
Bob

Q6h (g)

Owner g _

Charlie
Bob
Alice

Q7i (g)

Owner g _

Julie
Charlie
Alice

Q3d

countryside
married

male
Owner b _
Owner a _

Bob

Q4c

countryside
female

married
Owner a _
Owner e _

Julie

Q5d

city
single
male

Owner e _

Charlie

Q5c

city
female
single

Owner a _

Alice

Q5g (f)

city
single

Owner f _

Charlie
Alice

Q6a

Owner d _

Bob
Alice

Q6e

male
Owner c _

Charlie
Bob

Q7e

female
Owner d _

Julie
Alice

Q7b

Owner f _

Julie
Charlie

Fig. 5. Person concept lattice from GCA(GC1).

C_Person_9

C_Person_6

male

C_Person_0

C_Person_4

Alice

C_Person_2

Charlie

C_Person_1

Julie

C_Person_3

Bob

C_Person_7

female

C_Person_8

city
single

C_Person_5

countryside
married

Fig. 6. Person lattice from
RCA(RCF1).

4.1 A First Glance at the Differences Between RCA and GCA

We first state the obvious differences between RCA and Graph-FCA.

– RCA uses various scaling quantifiers [2] while graph patterns in GCA are
implicitly existentially quantified.

– GCA handles n-ary relations, while RCA handles only unary and binary
relations.

– GCA handles unary and n-ary concepts, while RCA is limited to unary
concepts (we focus on unary concepts in this work).

– RCA concepts are defined in term of relational attributes while GCA con-
cepts are defined in term of graph patterns.

– RCA concepts are computed through a fixed-point iteration while GCA relies
on graph intersection.

Furthermore, GCA and RCA do not consider relationships in the same way.
GCA automatically considers relationships in both directions, while RCA consid-
ers relationships as explicitly defined in the RCF. For illustration, RCF1 in Fig. 1
(left) and GC1 in Fig. 3 represent the same information: garages that sell and/or
maintain cars owned by a person. However, the definition of the relationships
Sell(OGarage, OCar), Maintain(OGarage, OCar) and Owner(OCar, OPerson)
for RCA means that the Garage and Car concepts will contain relational at-
tributes in their intent in addition to unary attributes unlike the Person con-
cepts which will only have unary attributes in their intent, since the objects of
the latter do not constitute the domain of any relational context.

On the GCA side, as in the graph context relations are oriented but can be
traversed in both ways, the Person concept lattice presented in Fig. 5 contains
links to Car concepts. For instance, the intent of concept Q3d contains the edges



Comparing RCA and Graph-FCA 9

[Owner a ] and [Owner b ]. This means that instances of concept Q3d are
characterized by the relation Owner−1 to Car nodes a and b. In this example,
the concepts produced by RCA on RCF1 (37 concepts without ⊥) are included in
those produced by GCA on GC1 (45 concepts without ⊥)3, this is expressed by
RCA(RCF1) ⊂ GCA(GC1). The 8 additional g-concepts have to do with inverse
relationships.

In the following, to further explore the difference between the two approaches,
we will compare them on their common grounds by choosing the following param-
eters: scaling quantifier ∃ for RCA because GCA has only quantifier ∃ implicitly,
data with only unary and binary relations because n-ary relations (n > 2) re-
quire a specific modelling in RCA [10]. Finally, inverse relations are included in
the RCF for RCA processing.

4.2 Adding Inverse Relations to a RCF

The addition of inverse relations in a RCF makes it possible to bring the RCA re-
sults as close as possible to those of GCA. The question is how close these results
are. We compare RCA(RCF) and RCA(RFC r), where RCF r = RCF + inverse
relations and we present an example in which RCA(RFC r) ≡ GCA(GC) and
an example in which RCA(RFC r) ̸≡ GCA(GC), where GC is the correspond-
ing graph context of RCF. For the running example, this is done by adding 3
relational contexts to RCF1: Sell r(OCar, OGarage), Owner r(OPerson, OCar)

and Maintain r(OCar, OGarage) which are respectively the inverse of the re-

lation Sell, Owner and Maintain. For instance, the Owner r(OPerson, OCar)
relationship defines the fact that a person owns a car. Then, in the RCA process,
the concepts built on the Car context, by association with the scaling quantifier
and the relation Owner r, will be used to form relational attributes to extend
the Person context. In the following, this extended RCF1 is denoted by RCF1 r.

RCA(RCF) ⊆ RCA(RCF r). The RCA result obtained on RCF1 r, is to
be compared with the one obtained on RCF1. Adding inverse relations in a
RCF leads to the addition of new relational attributes that lead either to the
modification of the intent of existing concepts or to the addition of new concepts.
This is consistent with the RCA process, because there are always at least as
many concepts in a lattice at iteration i+1 as at iteration i. Formally, RCA(RCF)
⊆ RCA(RCF r) for any RCF. In our example, the concepts built on RCF1 (37
concepts) are included in those built on RCF1 r (45 concepts). Figures 6 and
7 present the Person lattices built respectively from RCF1 and RCF1 r. There
are 4 additional concepts in the second lattice, due to relational attributes of
the form ∃ Owner r(C Car i) extending the Person context. In the same way, 4
new Car concepts have been added in the Car lattice. For the Garage context,
the number of concepts has not changed, but some concept intents have been
modified to take into account the new concepts of the Car lattice.

3 The ⊥ concept is not considered when counting concepts in the following.



10 V. Fokou et al.

C_Person_9

∃ Owner_r(C_Car_13)

C_Person_6

male
∃ Owner_r(C_Car_15)

C_Person_13

∃ Owner_r(C_Car_20)

C_Person_0

∃ Owner_r(C_Car_0)

C_Person_4

∃ Owner_r(C_Car_3)

Alice

C_Person_2

∃ Owner_r(C_Car_4)

Charlie

C_Person_1

∃ Owner_r(C_Car_10)
∃ Owner_r(C_Car_5)
∃ Owner_r(C_Car_2)

Julie

C_Person_3

∃ Owner_r(C_Car_11)
∃ Owner_r(C_Car_6)
∃ Owner_r(C_Car_1)

Bob

C_Person_7

female
∃ Owner_r(C_Car_14)

C_Person_12

∃ Owner_r(C_Car_19)

C_Person_8

city
single

∃ Owner_r(C_Car_9)

C_Person_11

∃ Owner_r(C_Car_7)
∃ Owner_r(C_Car_18)

C_Person_10

∃ Owner_r(C_Car_8)
∃ Owner_r(C_Car_17)

C_Person_5

countryside
married

∃ Owner_r(C_Car_12)
∃ Owner_r(C_Car_16)

Fig. 7. Person lattice from RCA(RCF1 r).

RCA(RCF1 r) ≡ GCA(GC1).A comparison of the results from RCA(RCF1 r)
and GCA(GC1) shows that both are equivalent in term of concept extents. For
illustration, let us look at the Person concepts in both approaches shown in the
lattices in Fig. 7 for RCA and in Fig. 5 for GCA. Both lattices have the same
number of concepts and concepts have the same extents. This example shows that
when applying RCA to RCF1 with inverse relations, the result RCA(RCF1 r) is
equivalent to the results obtained with GCA on the corresponding graph con-
text GC1. This example suggests that the addition of inverse relations leads to
equivalent results for the two approaches. However, in the following, we show
a case where the two approaches give different results, despite the addition of
inverse relations.

RCA(RCF2 r) ̸≡ GCA(GC2). The example we are dealing with here is ob-
tained by a small modification of the data presented in Fig. 3, car6 is here main-
tained by garage D instead of garage A. The resulting graph context is called
GC2 and the corresponding relational context family with inverse relationships
is named RCF2 r. GCA produces one additional concept than RCA for this ex-
ample (53 concepts against 52). Figure 8 shows the PGP Q2x = ((x), P2x)

corresponding to this g-concept. In this PGP, the concept Q2x with extent =
{car5, car2, car1} is the g-concept not constructed by RCA. Pattern P2x is
the sub-graph containing the node x, the core nodes (in red), and all the other
nodes useful for describing x identified in brackets, hence, the notation x (bb l

q w j ba).
We now describe what characterizes this additional g-concept. As shown in

Fig. 8, the nodes adjacent to x are nodes l, bb and w defined by the relations:
Sell(l, x), Maintain(bb, x) and Owner(x, w). The other nodes are intro-
duced by these adjacent nodes and so on up to the core nodes that carry the
main information of the pattern. A simplified description of x can be formulated
as follows: x is the concept of cars sold by some garage l, maintained by some



Comparing RCA and Graph-FCA 11

Q2j (bb l q w ba)

 

car6
car5
car2

Q2w (bb l q j ba)

countryside
married

Julie
Bob

Owner

Q2h

service

D

Maintain

Q2b

Peugeot
family

car2

Maintain

Q2i

Peugeot
sport

car5

Maintain

Q2a

sedan
Renault

car6

Maintain

Q2f

countryside
female

married

Julie

Owner

Q2l (bb q w j ba)

manufacturer

C
A

Sell

Q2q (bb l w j ba)

family

car2
car1

Sell

Q2x (bb l q w j ba)

 

car5
car2
car1

Sell

Owner

Q2e

manufacturer

A

Q2c

family
Renault

car1

Sell
Maintain Sell

Q2ba (bb l q w j)

Renault

car6
car1

Sell

Q2d

manufacturer

C

SellSell

Q2bb (l q w j ba)

 

D
A

MaintainMaintain Maintain

Q2g

countryside
married

male

Bob

Owner OwnerOwnerOwner Owner

Fig. 8. Q2x PGP with x as projection tuple.

garage bb and owned by some person w, who also owns a family car q and an-
other car j, both sold by the same garage l. This description includes the cycle
(l, q, w, j, l). At this point we suspect that this cycle may be the reason
why RCA does not construct this concept. Note that both approaches produce
the super-concept of Q2x whose extent is {car6, car5, car2, car1}.

In addition to this modelling case, we have also modified GC1 in Fig. 3
to obtain four other data models by manipulating the different relationships
between objects. For these data models, the results show the 2 previous cases:
an equivalence of results (on 2 models) and the case where GCA produces more
concepts than RCA (on 2 other models). In the latter case, we obtain for each
model that GCA produces 2 g-concepts not found in RCA. The common point
between these g-concepts is the presence of cycles in their associated pattern
which may explain the fact that RCA does not construct the equivalent concepts.
In the following, we further explore the effect of cycles in the data.

4.3 RCA and Graph-FCA Cycle Processing

We have described how despite the addition of inverse relations that brings the
RCA results closer to those of GCA, there are situations where some g-concepts
have no corresponding relational concepts. Analyses reveal that a common point
of these g-concepts is the presence of cycles in their intent. Below, we study the
effect of cycles in RCA and GCA results.

Cycles of length 2-4. The first example is a graph context (GC3, Fig. 9)
made of two cycles of length 2 and 4 formed on elements of the same category
(Person) and defined on the relation love(Person, Person). Figure 12 presents
the GCA patterns – Q1 (blue), Q2 (red), Q3 (lime-green), Q4 (green) – and Fig.
14 presents the lattice view of these patterns.

As these patterns show, different nodes of a pattern may represent the same
concept, e.g. nodes a and b in Q2. Indeed, they have equivalent intents and the
same extent, pattern Q2 describes two persons that love each other (a cycle of
length 2). This duplication of concepts in GCA output is required to properly



12 V. Fokou et al.

Jean

male

Julie

female

love

Julien

male

love

Jeanne

female

love

Bob

male

Anne

female

love

love

love

Fig. 9. Graph context made of
cycles of length 2-4 (GC3).

Jean

male

Julie

female

love

Julien

male

love

Anne

female

Bob

male

love love

love

Fig. 10. Graph context made
of cycles of length 2-3 (GC4).

Q1a

female

Anne

Q1b

male

Bob

love love

Q2a

Anne
Bob

Q2b

Anne
Bob

love love

Q3b

Julie
Julien

Q3c

male

Julien
Jean

love

Q3a

Julie
Jean

love

love

Q4b

male

Jean

Q4a

female

Julie

love

Q4c

male

Julien

love

love

Q5a

Julie
Julien
Jean

Q5c

Julie
Julien
Jean

love

Q5b

Julie
Julien
Jean

love

love

Q6a

Anne
Julie
Jean

Q6e

Julie
Bob
Julien

love

Q6b

Anne
Julie
Julien

Q6f

male

Bob
Julien
Jean

love

love

Q6c

Anne
Julien
Jean

Q6d

Julie
Bob
Jean

love

love

love

Q7a

Anne
Julie
Bob
Julien
Jean

Q7f

Anne
Julie
Bob
Julien
Jean

love

Q7d

Anne
Julie
Bob
Julien
Jean

Q7c

Anne
Julie
Bob
Julien
Jean

love

Q7b

Anne
Julie
Bob
Julien
Jean

love

Q7e

Anne
Julie
Bob
Julien
Jean

love

lovelove

Q8e

male

Bob
Julien

Q8a

Anne
Jean

love

Q8c

Julie
Bob

love

Q8f

male

Bob
Jean

Q8d

female

Anne
Julie

love

Q8b

Anne
Julien

love

love

love

Fig. 11. GCA patterns for GC4.

represent the graph patterns that exhibit symmetries. We refer to duplicated
concepts as automorphic concepts, they are only different representations of the
same theoretical concept. These automorphic concepts are represented in the
hierarchical view by a meta-node grouping them (dashed box), for example Q2a
and Q2b in Fig. 14. The top concept Q3a-d in Fig. 14, which includes all persons
in its extent, is duplicated into 4 nodes organized into a cycle of length 4 (see
Fig. 9). This particular pattern deserves an explanation. Looking at the data, it
appears that all persons are involved in a cycle of length 2 or a cycle of length 4.
The most specific generalization is therefore a cycle of length 4 because a cycle
of length 2 can simulate a cycle of length 4 by going around the cycle twice.

Figure 13 presents the RCA corresponding lattice (in this case, the family
lattice has only one lattice). The ⊤ concept C person 3 has ∃ love(C person 3)

as relational attribute. It is a self-referenced concept materializing the fact that
a person loves another person. C person 3 is equivalent to the automorphic con-



Comparing RCA and Graph-FCA 13

Q1a female Anne Q1b male Bob
love

love

Q2a Anne
Bob

Q2b Anne
Bob

love

love

Q3a

Anne
Jeanne
Julie
Bob
Julien
Jean

Q3d

Anne
Jeanne
Julie
Bob
Julien
Jean

love

Q3c

Anne
Jeanne
Julie
Bob
Julien
Jean

love

Q3b

Anne
Jeanne
Julie
Bob
Julien
Jean

love
love

Q4c male
Bob
Julien
Jean

Q4b female
Anne
Jeanne
Julie

love
Q4a female

Anne
Jeanne
Julielove

Q4d male
Bob
Julien
Jean

love
love

Fig. 12. GCA patterns for GC3.

cepts that make up pattern Q3 (they have the same extent). Nevertheless, as
said before, their intents are defined differently and thus represent different in-
formation: Q3 intent integrates the information on the cycle length through the
automorphic concepts, while C person 3 intent represent a more abstract infor-
mation. Concepts C person 1 and C person 2 pointing to each other through
relational attributes represent the fact that a male person loves a female person
and vice versa. C person 1 and C person 2 have the same extents as concepts
Q4a-b and Q4c-d respectively, but not the same intents. In fact, like Q3, Q4 is a
cycle of length 4 and is made of two pairs of automorphic concepts as shown in
Fig. 14.

Finally, taking into account the fact that automorphic concepts are consid-
ered identical, the concept lattice presented in Fig. 14 contains 6 concepts for
GCA (Q1a, Q1b, Q2a-b, Q4a-b, Q4c-d, Q3a-d) against 3 concepts for RCA
(C person 1, C person 2, C person 3) as presented in Fig. 13. GCA concepts
Q1a, Q1b, Q2a-b have no equivalent concepts in RCA, this could be explained
by the fact that cycle lengths are not taken into account by RCA. For illustration,
pattern Q1 describes the fact that a female and male persons love each other (a
cycle of length 2). In RCA, the two instances Anne and Bob have the same rela-
tional attributes as respectively Julie, Julien, i.e. ∃love(male), ∃love r(male),
and ∃love(female), ∃love r(female). Thus all instances are grouped within the
two concepts C person 1, C person 2.

Cycles of length 2-3. In this example, we modify GC3 to see what happens
when data contains cycles that do not have a multiple/divisor relationship be-
tween their lengths. This modification involves deleting node Jeanne, shortening
the cycle of length 4 to length 3. This new graph context named GC4 is shown
in Fig. 10. The patterns produced by GCA for this example are presented in
Fig. 11 and their lengths vary between 2, 3 and 6. Patterns of lengths 2 and 3
capture and generalize the structure of cycles in the data while those of length
6 generalize the cycles of lengths 2 and 3. For illustration, Q1 and Q4 form the
graph context (GC4), Q2 generalizes Q1, Q3 generalizes Q4, Q5 generalizes Q3 and
Q4 and so on. This reveals that in GCA patterns, the most specific generalization
is a cycle whose length is the smallest common multiple of the cycle lengths in



14 V. Fokou et al.

C_person_3

∃ love(C_person_3)
∃ love_r(C_person_3)

 

C_person_2

male
∃ love(C_person_1)
∃ love_r(C_person_1)

Jean
Julien
Bob

C_person_0

∃ love(C_person_0)
∃ love_r(C_person_0)

 

C_person_1

female
∃ love(C_person_2)
∃ love_r(C_person_2)

Julie
Jeanne
Anne

Fig. 13. RCA result about GC3.

Q1a

female
love b _
love _ b

Anne

Q1b

male
love _ a
love a _

Bob

Q2a

love b _
love _ b

Bob
Anne

Q2b

love _ a
love a _

Bob
Anne

Q3a

love c _
love _ d

Jean
Julien
Bob
Julie

Jeanne
Anne

Q3c

love _ a
love b _

Jean
Julien
Bob
Julie

Jeanne
Anne

Q3d

love _ b
love a _

Jean
Julien
Bob
Julie

Jeanne
Anne

Q3b

love d _
love _ c

Jean
Julien
Bob
Julie

Jeanne
Anne

Q4c

male
love _ b
love a _

Jean
Julien
Bob

Q4b

female
love c _
love _ d

Julie
Jeanne
Anne

Q4a

female
love d _
love _ c

Julie
Jeanne
Anne

Q4d

male
love _ a
love b _

Jean
Julien
Bob

Fig. 14. GCA concept lattice about GC3.

the graph context, just like in GC3 where the most specific generalization was a
cycle of length 4 which is the smallest common multiple of 2 and 4.

Conversely to the GC3 example where the concept with extent {Anne} (Q1a
in Fig. 14) had no equivalent in RCA results (Fig. 13), it is well found in the
RCA results of GC4 (concept C person 11 in Fig. 15). This is because, during
the iterative process, relational attributes of {Anne} / {Bob} become different
(pointing to different concepts) from these of other instances. RCA captures the
difference between the two cycles – a female loves a male which loves a female /
a female loves a male which loves a male – but not their lengths. GCA produces
two additional g-concepts than RCA for GC4 (23 concepts against 21): these
automorphic concepts (Q2a-b and Q5a-c in Fig. 11) respectively characterize
people involved in cycles of length 2 and 3, independently of their gender. In
RCA, these two patterns are generalized in the self-referential top concept, that
can be interpreted as a person who loves a person, and is loved by a person.

These analyses allow to conclude that, along with cycles in the data, some
GCA graph patterns can contain or represent cycles that cannot be expressed in
RCA, because cycles in RCA are taken into account through relational attributes
pointing to concepts. Consequently, GCA concepts not built by RCA are due to
the fact that GCA graph patterns capture some data structures that are covered
in RCA by more general concepts.

4.4 Discussion

The examples and results described above have shown some similarities and
differences between RCA and Graph-FCA, when applied on a common basis.
Data are described with only unary and binary relations, the existential scaling
quantifier is used for RCA, and only unary concepts are computed by GCA.



Comparing RCA and Graph-FCA 15

Fig. 15. RCA corresponding result on GC4 where concepts 4 and 11 are highlighted.

Furthermore, concepts built by RCA and those built by GCA are compared on
their extent. Finally, to make results closer, inverse relations have been included
into RCA input data (RCF).

In general, the addition of inverse relations leads to an equivalence between
the results of RCA and GCA, i.e. both methods produce the same number of
concepts with the same extents. However, in some cases, GCA produces con-
cepts not constructed by RCA. These additional concepts are due to the fact
that intents in GCA are PGPs and the construction of graph patterns captures
complex data structure, which can sometimes generate concepts that have no
equivalence in RCA. The same reasons explain why data with cycles of different
lengths are represented within several (possibly automorphic) concepts by GCA
while RCA produces a few (possibly self-referencing) general concepts.

From an analyst point of view, the two methods have different qualities. On
one hand, GCA has an ability to capture complex data structures, and to give
a global view on data. On the other hand, RCA allows to progressively explore
the data, choosing the relations to add and the scaling quantifiers to use.

5 Conclusion and Future Work

We have conducted a comparison between RCA and Graph-FCA within a re-
stricted common framework, i.e., using existential scaling quantifier for RCA,
unary concepts, data with only unary and binary relations for GCA and includ-
ing inverse relations. Our study, based on several examples, highlighted the effect
of data cycles on the results of the two methods. This result has to be explored
further in order to dissect the underlying mechanisms in the two methods.

In the future, other points of comparison will be explored between RCA and
GCA. Our work will focus on the study of n-ary concepts implemented in GCA
and how RCA unary concepts can be used to construct n-ary concepts that
come close to the GCA intuition. It would also be interesting to compare both
approaches in less similar configurations: encoding n-ary relations by reification



16 V. Fokou et al.

and using other quantifiers in RCA. Other effects of intent definitions and the
different parameters handled by these approaches can also be studied.

References

1. Alam, M., Coulet, A., Napoli, A., Smäıl-Tabbone, M.: Formal concept analysis
applied to transcriptomic data. In: FCA4AI (ECAI 2012) (2012)

2. Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Generalization effect of quantifiers
in a classification based on relational concept analysis. Knowledge-based systems
160, 119–135 (2018)

3. Ferré, S.: A proposal for extending formal concept analysis to knowledge graphs.
In: Formal Concept Analysis: ICFCA 2015, Proc. pp. 271–286. Springer (2015)

4. Ferré, S., Cellier, P.: How Hierarchies of Concept Graphs Can Facilitate the Inter-
pretation of RCA Lattices? In: CLA 2018. CEUR-WS Proc., vol. 2123 (2018)

5. Ferré, S., Cellier, P.: Graph-FCA: An extension of formal concept analysis to knowl-
edge graphs. Discrete applied mathematics 273, 81–102 (2020)

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1999)

7. Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph
symmetry: algebraic methods and applications, pp. 107–166. Springer (1997)

8. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies.
Chapman and Hall/CRC (2009)

9. Keip, P., Ferré, S., Gutierrez, A., Huchard, M., Silvie, P., Martin, P.: Practical
comparison of fca extensions to model indeterminate value of ternary data. In:
CLA 2020. CEUR-WS Proc., vol. 2668, pp. 197–208 (2020)

10. Keip, P., Gutierrez, A., Huchard, M., Le Ber, F., Sarter, S., Silvie, P., Martin,
P.: Effects of Input Data Formalisation in Relational Concept Analysis for a Data
Model with a Ternary Relation. In: ICFCA 2019 - 15th Int. Conf. on Formal
Concept Analysis. LNCS, vol. 11511, pp. 191–207 (2019)

11. Kötters, J.: Concept lattices of a relational structure. In: Conceptual Structures for
STEM Research and Education: ICCS 2013, Proc. pp. 301–310. Springer (2013)

12. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Con-
ceptual Structures: Applications, Implementation and Theory: ICCS’95, Proc. pp.
32–43. Springer (1995)

13. Nica, C., Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Extracting hierarchies
of closed partially-ordered patterns using relational concept analysis. In: Graph-
Based Representation and Reasoning. ICCS 2016. LNCS vol 9717, Springer (2016)

14. Nica, C., Braud, A., Le Ber, F.: RCA-SEQ: an original approach for enhancing
the analysis of sequential data based on hierarchies of multilevel closed partially-
ordered patterns. Discrete Applied Mathematics 273, 232–251 (2020)

15. Priss, U.: Formal concept analysis in information science. Annu. Rev. Inf. Sci.
Technol. 40(1), 521–543 (2006)

16. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept
analysis: mining concept lattices from multi-relational data. Annals of Mathematics
and Artificial Intelligence 67, 81–108 (2013)

17. Sowa, J.F.: Conceptual structures: information processing in mind and machine.
Addison-Wesley Longman Publishing Co., Inc. (1984)

18. Wille, R.: Conceptual graphs and formal concept analysis. In: Conceptual Struc-
tures: Fulfilling Peirce’s Dream: ICCS’97, Proc. pp. 290–303. Springer (1997)


