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Abstract
We consider the problem of graph exploration by energy sharing mobile agents that are subject to
crash faults. More precisely, we consider a team of two agents where at most one of them may fail
unpredictably, and the considered topology is that of acyclic graphs (i.e. trees). We consider both
the asynchronous and the synchronous settings, and we provide necessary and sufficient conditions
about the energy in two settings: line-shaped graphs, and general trees.
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1 Context

This paper investigates the collective exploration of a known edge-weighted graph by mobile
agents originating from arbitrary nodes. The objective is to traverse every edge at least once.
Each agent possesses a battery with an initial energy level (that may differ among agents).
An agent’s battery is depleted by x when it travels a distance of x. Also, when two agents
meet, they may freely exchange remaining energy. Finally, the possibility for one of the two
agents to crash, or cease functioning indefinitely and unpredictably, exists.

Energy transfer by mobile agents was previously considered by Czyzowicz et al. [3].
Agents travel and spend energy proportional to distance traversed. Some nodes have
information acquired by visiting agents. Meeting agents may exchange information and
energy. They consider communication problems where information held by some nodes must
be communicated to other nodes or agents. They deal with data delivery and convergecast
problems for a centralized scheduler with full knowledge of the instance. With energy
exchange, both problems have linear-time solutions on trees. For general undirected and
directed graphs, these problems are NP-complete. Then, Czyzowicz et al. [2] consider the
gossiping problem in tree networks. In an edge-weighted tree network, agents spend energy
while traveling and collect copies of data packets from visited nodes. They deposit copies of
possessed data packets and collect copies of data packets present at the node. Czyzowicz et
al. [2] prove that gossiping can be solved in O(k2n2) time for an n-node tree with k agents.

Most related to our paper are the works by Czyzowicz et al. [4], Sun et al. [5], and Bramas
et al. [1]. On the one hand, Czyzowicz et al. [4] study the collective exploration of a known
n-node edge-weighted graph by k mobile agents with limited energy and energy transfer
capability. The goal is for every edge to be traversed by at least one agent. For an n-node
path, they give an O(n + k) time algorithm to find an exploration strategy or report that
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none exists. For an n-node tree with ℓ leaves, they provide an O(n + ℓk2) algorithm to find
an exploration strategy if one exists. For general graphs, deciding if exploration is possible
by energy-sharing agents is NP-hard, even for 3-regular graphs. However, it’s always possible
to find an exploration strategy if the total energy of agents is at least twice the total weight
of edges; this is asymptotically optimal. Next, Sun et al. [5] examines circulating graph
exploration by energy-sharing agents on an arbitrary graph. They present the necessary and
sufficient energy condition for exploration and an algorithm to find an exploration strategy if
one exists. The exploration requires each node to have the same number of agents before
and after. Finally, Bramas et al. [1] considered the problem of exploring every weighted
edge of a given ring-shaped graph using a team of two mobile energy-sharing agents. They
introduce the possibility for one of the two agents to fail unpredictably and cease functioning
permanently (i.e., crashing). In this context, Bramas et al. [1] considered two scenarios:
asynchronous (where no limit on the relative speed of the agents is known, so one agent
cannot wait at a meeting point for another agent for a bounded amount of time and infer
that the other agent has crashed, as it may simply be arbitrarily slow), and synchronous
(where the two agents have synchronized clocks and move at precisely the same speed).

2 Model

Our model is similar to that proposed by Bramas et al. [1].
We are given a weighted graph G = (V, E) where V is a set of n nodes, E is a set of m

edges, and each edge ei ∈ E is assigned a positive integer wi ∈ N+, denoting its weight (or
length). We have k mobile agents (or agents for short) r0, r1, . . . , rk−1 respectively placed at
some of the nodes s0, s1, . . . sk−1 of the graph. We allow more than one agent to be located
in the same place. Each agent ri initially possesses a specific amount eni of energy for its
moves. An agent has the ability to travel along the edges of graph G in any direction. It
can pause its movement if necessary and can change its direction either at a node or while
traveling along an edge. The energy consumed by a moving agent is equal to the distance
x it moved. An agent can move only if its energy is greater than zero. Now, the distance
between two agents (that is, the minimum sum of the weights for all the paths connecting
them) is the smallest amount of energy needed for them to meet at some point.

In our setting, agents can share energy with each other. When two agents, ri and rj ,
meet at a vertex or edge, ri can take some energy from rj . If their energy levels at meeting
time meeting are en′

i and en′
j , then ri can take an amount of energy 0 < en ≤ en′

j from rj .
After the transfer, their energy levels are en′

i + en and en′
j − en, respectively.

Each agent adheres to a pre-established trajectory until encountering another agent. At
this point, the agent determines if it acquires energy, and calculates its ensuing trajectory.
The definition of a trajectory depends on the synchrony model:

In the synchronous model, a trajectory is a sequence of pairs ((u0, t0), (u1, t1), . . .),
where ui is a node, and ti denotes the time at which the agent should reach ui. For each
i ≥ 0, ti < ti+1, and ui+1 is either equal to ui (i.e., the agent waits at ui between ti and
ti+1), or is adjacent to ui (i.e., the agent leaves ui at time ti and arrives at ui+1 at time
ti+1). For simplicity, we assume in our algorithm that the moving speed is always one (it
takes time d to travel distance d, so if ui ̸= ui+1 and the weight of edge (ui, ui+1) is w,
then ti+1 − ti = w).
In the asynchronous model, a trajectory is just a sequence of nodes (u0, u1, u2, . . .),
ui+1 being adjacent to ui for each i ≥ 0, and the times at which it reaches the nodes are
determined by an adversary.

In other words, in the synchronous model, the agent controls its speed and its waiting time
at nodes, while an adversary decides them in the asynchronous model.
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The computation of the trajectory and the decision to exchange energy is based on a
localized algorithm (that is, an algorithm executed by the agent). In a given execution, the
configuration at time t is denoted by Ct.

Localized algorithm. A localized algorithm fi executed by an agent ri at time t takes as
input the pasts of ri and its collocated agents, and returns (i) its ensuing trajectory traji

and (ii) the amount of energy takei,j taken from each collocated agent rj . The past Pasti(t)
of ri at time t corresponds to the path already traversed by ri union the past of all the
previously met agents. More formally:

Pasti(t) = {pathi(t)} ∪ {Pastj(t′) | ri met rj at time t′ ≤ t}

A set of localized algorithms is valid for a given initial configuration c if, for any execution
starting from c, agents that are ordered to move have enough energy to do so and when an
agent ri takes energy from an agent rj at time t, then rj does not take energy from ri at t.

In this paper, we consider the possibility of agent crashes. At any point in the execution,
an agent ri may crash and stop operating forever. However, if ri has remaining energy
en′

i > 0, then other agents meeting ri may take energy from ri. Now, a set of localized
algorithms is t-crash-tolerant if it is valid even in executions where at most t agents crash.

We are interested in solving the problem of t-crash-tolerant collaborative exploration:

t-crash-tolerant collaborative exploration. Given a weighted graph G = (V, E) and k mobile
agents r0, r1, . . . , rk−1 together with their respective initial energies en0, en1, . . . , enk−1 and
positions s0, s1, . . . , sk−1 in the graph, find a valid set of localized algorithms that explore
(or cover) all edges of the graph despite the unexpected crashes of at most t < k agents.

This paper focuses on the 1-crash-tolerant collaborative exploration of trees by two agents.

3 Our Results

We consider the problem of graph exploration by energy-sharing mobile agents that are
subject to crash faults. More precisely, we consider a team of two agents where at most
one of them may fail unpredictably, and the considered topology is that of acyclic graphs
(i.e. trees). Similarly to Bramas et al. [1] who studied the case of ring-shaped networks, we
consider both the asynchronous and the synchronous settings, and we provide necessary and
sufficient conditions for the initial amounts of energy in two settings: lines and trees. In the
following, en0 and en1 denote the initial energy of the first and second agents, respectively.

Lines. In the case of the line, x (resp. y) denotes the distance of the first (resp. second)
agent to the left border of the line, assuming x ≤ y and x ≤ ℓ − y, while ℓ denotes the weight
of the line. In the asynchronous case, a necessary and sufficient condition is:

(en0 ≥ x + y) ∧ (en1 ≥ y) ∧ (en0 + en1 ≥ 2ℓ + x + y)
∨ (en0 ≥ ℓ − x) ∧ (en1 ≥ 2ℓ − (x + y)) ∧ (en0 + en1 ≥ 4ℓ − (x + y))
∨ (en0 ≥ ℓ + x) ∧ (en1 ≥ 2ℓ − y)
∨ (en0 ≥ y − x) ∧ (en1 ≥ y − x) ∧ (en0 + en1 ≥ min(3ℓ + y − x, 2ℓ − x + 3y))

In the synchronous case, a necessary and sufficient condition is:

(en0 ≥ x + y) ∧ (en1 ≥ y) ∧ (en0 + en1 ≥ max(ℓ + x + y, 2ℓ + x − y))
∨ (en0 ≥ ℓ − x) ∧ (en1 ≥ 2ℓ − (x + y)) ∧ (en0 + en1 ≥ 3ℓ − x − y)
∨ (en0 ≥ ℓ + x) ∧ (en1 ≥ 2ℓ − y)
∨ (en0 ≥ y − x) ∧ (en1 ≥ y − x) ∧ (en0 + en1 ≥ 2ℓ − x + y)
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Trees. In the case of a weighted tree T , d denotes the diameter of the tree, x the initial
distance between the two agents, and W its total weight. In the asynchronous case, a
sufficient condition is:

(en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + 2d⌈log3/2 W ⌉ + x + 2) (1)

We provide a lower bound on the total energy for unweighted star graphs: en0 + en1 cannot
be in 2W + 2 log(o(W )) (notice W = |E|).

The main ingredients for our positive result are as follows.
First, we construct a family of k connected non-empty subtrees of T named T1, T2, . . . , Tk,

where Ti = (Vi, Ei) and (Ei)1≤i≤k forms a partition of E. At the beginning, the agents meet
to share energy. Then the agents repeat a procedure explore(Ti) for all i ∈ {1, . . . , k} from 1
to k. The procedure assumes that the agents are initially at the same location (possibly on an
edge), and ensure that after the execution the agents are at the same location (not necessarily
the same as the initial one) if i < k (when i = k the agents can terminate anywhere on
completion of the exploration).

Agent r0 (resp. r1) executing explore(Ti) first moves to the closest node vi of Ti, executes
EulerianExplore(Ti) (resp. ReverseEulerianExplore(Ti)), and moves back to its initial loca-
tion, until it meets the other agent, and Ti is explored. If the agents meet before ending this
sequence of moves and Ei is explored, then the procedure terminates. This occurs during
the exploration of the Eulerian tour from vi, or when one of the agents r comes back from vi

to its initial location after completing its Eulerian tour while the other has not started it (it
is still moving towards vi from the location where it started executing explore(Ti)).

Since the length of the Eulerian tour is 2w(Ti) (where w(Ti) denotes the weight of Ti) and
the distance to vi from their initial location is d in the worst case, each agent must have, at
the beginning of the procedure, the energy of at least 2d + 2w(Ti) if i < k (to terminate even
when the other agent remains at the initial location), at least d + 2w(Ti) if i = k. When the
procedure terminates, the total energy consumed during the procedure is at most 2d + 2w(Ti)
(because every edge traversed in the procedure is traversed exactly twice if i < k, and at
most twice if i = k).

Consequently, to complete all explore(Ti), for every i, sequentially, our algorithm requires
that the total remaining energy ENi at the beginning of the procedure explore(Ti) is as
follows, where x is the initial distance between the agents:

ENk ≥ 2d + 4w(Tk)
ENi ≥ max (2d + 2w(Ei) + ENi+1, 4d + 4w(Ti)) (2 ≤ i ≤ k − 1)
EN1 ≥ x+max (2d + 2w(T1) + EN2, 4d + 4w(T1)) where x is the initial weighted distance
between the agents.

Moreover, the total energy consumption for exploring T is at most x+
∑

i=1..k(2d+2w(Ti)) =
2W + 2kd + x.

We now have to construct the partition T1, T2, . . . , Tk of T so that k should be small to
reduce the number of calls to explore(), but each w(Ti) should not be too large to avoid
increasing the energy required at the beginning of explore(Ti). A good partition could be
to have w(Tk) = 1 and w(Ti) = 2w(Ti+1), which results in k = ⌈log W ⌉. In general trees,
such a partition does not exist, but we can obtain a similar result using the centroid-based
partition recursively, which guarantees Wi/3 ≤ w(Ti) ≤ Wi/2 (Wi is the total weight of the
remaining part of the tree).

Let T = (V, E) be a weighted tree with total weight W . The centroid of T is defined as
follows. In the following, for a tree T and a node u of T , T can be regarded as a rooted tree,
denoted by T u, rooted at u. For the root u and its neighbor v, let T u

v be the subtree of T u

rooted at v.
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1. When there exists an edge (u, v) ∈ E satisfying w(T u
v ) < W/2 and w(T v

u ) < W/2, the
centroid of T is the point p on edge (u, v) such that w(T u

v ) + w(v, p) = w(T v
u ) + w(u, p) =

W/2. We call p the edge centroid.
2. When there exists a node u ∈ V satisfying w(T u

v ) + w(u, v) ≤ W/2 for each neighbor v of
u, the centroid of T is node u. We call u the node centroid.

By spliting the tree recursively at the centroid point, we can construct a partition
T1, . . . , Tk with k = ⌈log3/2 W ⌉ to obtain the sufficient condition (1).

In the synchronous case, a sufficient condition is:

(en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + d + x)

On the other hand we show that there exists an infinite family of trees such that the required
total energy is at least 2W + d

2 − 3.

4 Conclusion

We characterized the solvability of exploration with two crash-prone energy-sharing mobile
agents in the case of tree topologies, both in the synchronous and in the asynchronous settings.
Obvious open questions include further closing the gap between necessary and sufficient
conditions for the initial amounts of energies in the case of trees, solving the problem with
more than two agents, and considering general graphs.

Also, our model for energy transfer is very simple (all energy can be transferred instanta-
neously between two agents, at no cost). It would be interesting to study non-linear battery
models (where the capacity decreases faster if more instantaneous current is drawn, and the
capacity increases less if faster charge is executed) in this context.
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