
HAL Id: hal-04622850
https://hal.science/hal-04622850v1

Submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Online Space-Time Travel Planning in Dynamic Graphs
Quentin Bramas, Jean-Romain Luttringer, Sébastien Tixeuil

To cite this version:
Quentin Bramas, Jean-Romain Luttringer, Sébastien Tixeuil. Online Space-Time Travel Planning in
Dynamic Graphs. 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024),
Jun 2024, Patras, Greece. pp.7:1-7:14, �10.4230/LIPIcs.SAND.2024.7�. �hal-04622850�

https://hal.science/hal-04622850v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Online Space-Time Travel Planning in Dynamic
Graphs
Quentin Bramas #

University of Strasbourg, ICUBE, CNRS, Strasbourg, France

Jean-Romain Luttringer #

University of Strasbourg, ICUBE, CNRS, Strasbourg, France

Sébastien Tixeuil #

Sorbonne University, CNRS, LIP6, Institut Universitaire de France, Paris, France

Abstract
We study the problem of traveling in an unknown dynamic graph, to reach a destination with
minimum latency. At each step of the execution, an agent can decide to move to a neighboring
node if an edge exists at this time instant, wait at the current node in the hope that other links
will appear in the future, or move backward in time using an expensive time travel device. A travel
that makes use of backward time travel is called a space-time travel. Our aim is to arrive at the
destination with zero delay, which always requires the use of backward time travel if no path exists
to the destination during the first time instant.

Finding an optimal space-time travel is polynomial when the agent knows the entire dynamic
graph (including the future edges), even with additional constraints. However, we consider in this
paper that the agent discovers the dynamic graph while it is exploring it, in an online manner.

In this paper, we propose two models that define how an agent learns new knowledge about the
dynamic graph during the execution of its protocol: the T-online model, where the agent reaching
time t learns about the entire past of the network until t (even nodes not yet visited), and the
S-online model, where the agent learns about the past and future about the current node he is
located at. We present an algorithm with an optimal competitive ratio of 2 for the T-online model.
In the S-online model, we prove a lower bound of 2/3n − 7/4 and an upper bound of 2n − 3 on the
optimal competitive ratio when the cost function is linear.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Dynamic graphs, online algorithm, space-time travel, treasure hunt

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.7

1 Introduction

We consider the problem of an agent moving in both space and time in a dynamic graph
representing a transportation network. The goal of the agent is to reach a destination node
in the aforementioned graph with a delay of zero, thanks to backward time-travels. As the
dynamic graph evolves, its edges may appear and disappear over time. The agent can wait
at a given node for an adjacent edge to appear (thus moving forward in time). However,
conversely to most known models, we consider that the agent can also go back in time, to
cross an adjacent edge that previously appeared in the past. However, moving backward in
time involves a cost that the agent seeks to minimize.

It has been shown by Bramas et al. [4] that finding optimal-delay optimal-costs travels can
be computed with a polynomial offline algorithm, even when assuming an upper constraint
on the cost. However, the offline setting considered by Bramas et al. [4] implies that the
agent knows the entire dynamic graph. For example, an agent at time t may only be aware
of the evolution of the dynamic graph up to time t (e.g., if this dynamic graph represents a
transportation network, unforeseen problems may arise in the future, while past availability

© Quentin Bramas, Jean-Romain Luttringer, and Sébastien Tixeuil;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bramas@unistra.fr
https://orcid.org/0000-0003-0612-5616
mailto:Jr.luttringer@unistra.fr
https://orcid.org/0000-0002-1809-7723
mailto:Sebastien.Tixeuil@lip6.fr
https://orcid.org/0000-0002-0948-7172
https://doi.org/10.4230/LIPIcs.SAND.2024.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Online Space-Time Travel Planning in Dynamic Graphs

periods have been tracked). Also, the dynamic graph itself may be infinite, which may cause
storage issues before running the offline algorithm. Thus, it is important to consider settings
where the agent that plans its space-time travel only has limited knowledge.

In this paper, we focus on online settings, where agents possess limited initial knowledge of
the underlying dynamic graph. We define two settings, referred to as T-Online and S-Online.
In the T-online setting, the agent does not know the future of the dynamic graph, but learns
everything about the temporal graph up to its current time instant (even the existence of
time-edges between nodes that were not yet visited). Thus, the agent has complete spatial
knowledge up to its current time instant, but still navigates T ime in an online fashion.
Conversely, in the S-online settings, the agent knows the entire past and future of the nodes
it has visited, but has no knowledge about yet unvisited nodes, and thus navigates Space in
an online fashion. The knowledge acquired by the agent in both settings is illustrated in
Fig. 3 and 4.

Related Work. Space-Time routing has been studied, mostly assuming forward time travel,
i.e., waiting, is available. Many studies (see e.g. Casteigts et al.[7] and references herein)
recently revisited popular problems previously studied in static graphs [6, 9, 19] in a dynamic
context.

Casteigts et al [8] studied the possibility of discovering a restless temporal path between
two nodes in a dynamic network with a waiting time constraint: at each step, the traveling
agent cannot wait more than c time instants, where c is a given constant. It turns out that
computing such paths is NP-Hard. Perhaps surprisingly, Villacis-Llobet et al [20] showed
that if one allows going several times through the same node, the obtained restless temporal
walk can arrive earlier, and finding it can be done in linear time. As previously mentioned,
this line of work only considers forward time travel (a temporal path cannot go back in time),
and focuses on offline settings.

Multi-criteria path computation problems have been extensively studied within computer
networks [10, 16, 17]. In this context, each edge is characterized by a weight vector, comprising
both cost and delay. Path computation algorithms thus have to maintain and explore all
non-comparable paths, whose number may grow exponentially with respect to the size of the
network, leading to the use of approximation schemes or heuristics. However, these works
always focus on static graphs and offline settings.

As aforementioned, Bramas et al. [4] have proposed path computation algorithms on
dynamic graphs with both forward and backward time-travel (assuming costly backward
time-travel). They demonstrated the polynomial solvability of finding the path with minimum
delay, even when constraining (or optimizing) the cost. Note that, conversely to us, such
travels may not always allow for a delay of 0, if the constraint on the cost is too stringent.
However, their study exclusively focuses on offline settings.

Related online problems in graphs include graph exploration and treasure hunting. Online
graph exploration has been extensively studied in the literature in models that are similar
to our S-online model, i.e., when visiting a node, the agent learns about the identifiers of
the neighboring nodes. Algorithms with optimal competitive ratios were found in various
classes of graphs such as cycles, tadpole graphs [5], trees [15], and arbitrary graphs [2], in
undirected and directed [14] graphs. The case where more than one agent explores the graph
has also been investigated [11, 12].

The treasure-hunting problem is equivalent to the problem of reaching a destination
node with minimum latency, if considering the destination as the node where the treasure
is located. Previous work on treasure hunting only considers static graph [1, 3], usually

Q. Bramas, J.-R. Luttringer, and S. Tixeuil 7:3

considering a different model where the agent sees outgoing edges, but lacks visibility of the
neighboring nodes identifiers. In [18], the authors considered a model similar to ours, where
the agent sees the neighboring nodes, and show that the optimal competitive ratio is Θ(n).
This result implies the same asymptotic bounds in our model when assuming a linear cost
function, but the exact bound remains unknown. Moreover, an exact bound in their setting
cannot be generalized to our setting as an edge with a given cost requires several nodes to
be emulated in our model.

To the best of our knowledge, our paper is the first to consider a problem similar to the
online graph exploration and treasure-hunting problem in dynamic graphs.

Contributions. In this paper, we provide the following contributions:
We introduce the problem of online space-time travel in dynamic networks and formally
define several settings. In particular (a) in the T-online setting, an agent learns the past
of the entire network when reaching a particular moment in time, and (b) in the S-online
setting, an agent learns the past and future interactions involving the node where it is
currently located.
We present a T-online algorithm with an optimal competitive ratio able to compute a
space-time travel with lowest delay and having a cost of at most two times the optimal
cost.
We present a lower bound of 2n/3 − 7/3 for the competitive ratio of S-online algorithms,
even if the cost function is the identity. In contrast, we provide a 2n − 3 competitive S-
online algorithm assuming a linear cost function. This algorithm is at most n2 competitive
for arbitrary (but feasible) cost functions.

Our work opens several problems, for instance, how to close the gap between our lower
and upper bound regarding the competitive ratio of S-online algorithms.

2 Model

In this section, we define the models and notations used throughout this paper, before
formalizing the aforementioned problems.

We represent the dynamic graph as an evolving graph, as introduced by Ferreira [13]: a
graph-centric view of the network that maps a dynamic graph as a sequence of static graphs.
The footprint of the dynamic graph (that includes all nodes and edges that appear at least
once during the lifetime of the dynamic graph), is fixed. Furthermore, we assume that the
set of nodes is fixed over time, while the set of edges evolves.

More precisely, an evolving graph G is a pair (V, (Et)t∈N), where V denotes the set of
vertices, N is the set of time instants, and for each t ∈ N, Et denotes the set of edges that
appears at time t. The snapshot of G at time t is the static graph G(t) = (V, Et), which
corresponds to the state, supposedly fixed, of the network in the time interval t, t + 1).
The footprint F(G) of G is the static graph corresponding the union of all its snapshots,
F(G) =

(
V,

⋃
t∈N Et

)
. We say ({u, v}, t) is a temporal edge of graph G if {u, v} ∈ Et. We

say that an evolving graph is connected if its footprint is connected.

Space-time Travel. We assume that at each time instant, an agent can travel along any
number of adjacent consecutive communication links. However, the graph may not be
connected at each time instant, hence it may be that the only way to reach a particular
destination node is to travel forward (i.e., wait) or backward in time, to reach a time instant
where an adjacent communication link exists. In more detail, an agent travels from a node s

to a node d using a space-time travel (or simply travel when it is clear from the context).

SAND 2024

7:4 Online Space-Time Travel Planning in Dynamic Graphs

▶ Definition 1. A space-time travel of length k is a sequence ((u0, t0), (u1, t1), . . . , (uk, tk))
such that

∀i ∈ {0, . . . k}, ui ∈ V is a node and ti ∈ N is a time instant,
∀i ∈ {0, . . . k − 1}, if ui ̸= ui+1, then ti = ti+1 and {ui, ui+1} ∈ Eti i.e., there is a
temporal edge between ui and ui+1 at time ti.

By extension, the footprint of a travel is the static graph containing all edges
(and their adjacent nodes) appearing in the travel. Now, the itinerary of a travel
((u0, t0), (u1, t1), . . . , (uk, tk)) is its projection (u0, u1, . . . , uk) on nodes, while its schedule is
its projection (t0, t1, . . . , tk) on time instants. Let TG((u, t), (v, t′)) denote the set of travels
in G starting from node u at time t, and arriving at node v at time t′.

▶ Definition 2. A travel ((u0, t0), (u1, t1), . . . , (uk, tk)) is simple if for all i ∈ {2, . . . , k} and
j ∈ {0, . . . , i − 2}, we have ui ̸= uj.

Intuitively, a travel is simple if its footprint is a line (i.e., a simple path) and contains at
most one time-travel per node (as a consequence, no node appears three times consecutively
in a simple travel).

▶ Definition 3. The delay of a travel T = ((u0, t0), (u1, t1), . . . , (uk, tk)), denoted delay(T)
is defined as tk − t0.

The Backward cost of a travel.

▶ Definition 4. The backward-cost is the cost of going to the past. The backward-cost
function f : N∗ → R+ returns, for each δ ∈ N, the backward-cost f(δ) of traveling δ time
instants to the past. As we assume that there is no cost associated to forward time travel
(that is, waiting), we extend f to Z by setting f(−δ) = 0, for all δ ∈ N. In particular, the
backward-cost of traveling 0 time instants in the past is zero. When it is clear from context,
the backward-cost function is simply called the cost function.

▶ Definition 5. The backward-cost (or simply cost) of a travel T = ((u0, t0), (u1, t1), . . . , (uk,

tk)), denoted cost(T) is defined as follows:

cost(T) =
k−1∑
i=0

f(ti − ti+1)

▶ Definition 6. Let T1 = ((u0, t0), (u1, t1), . . . , (uk, tk)) and T2 = ((u′
0, t′

0),(u′
1, t′

1), . . . , (u′
k′ ,

t′
k′)) be two travels. If (uk, tk) = (u′

0, t′
0), then the concatenated travel T1 ⊕ T2 is defined as

follows:

T1 ⊕ T2 = ((u0, t0), (u1, t1), . . . , (uk, tk), (u′
1, t′

1), . . . , (u′
k′ , t′

k′))

▶ Remark 7. One can easily prove that cost(T1 ⊕ T2) = cost(T1) + cost(T2). In the following,
we sometimes decompose a travel highlighting an intermediate node: T = T1 ⊕ ((ui, ti)) ⊕ T2.
Following the definition, this means that T1 ends with (ui, ti), and T2 starts with (ui, ti), so
we also have T = T1 ⊕ T2 and cost(T) = cost(T1) + cost(T2).

Our notion of space-time travel differs from the classical notion of journey found in the
literature related to dynamic graphs [13] as we do not assume time instants monotonically
increase along a travel. As a consequence, some evolving graphs may not allow a journey
from A to B yet allow one or several travels from A to B.

We say a travel is cost-optimal, if there does not exist a travel with the same departure
and arrival node and times as T having a smaller cost. One can easily prove the following
Property.

Q. Bramas, J.-R. Luttringer, and S. Tixeuil 7:5

▶ Property 1. Let T be a cost-optimal travel from node u to node v arriving at time t, and
T ′ a sub-travel of T i.e., a travel such that T = T1 ⊕ T ′ ⊕ T2. Then T ′ is also cost-optimal.

In the remaining of this paper, we consider a given evolving graph G = (V, (Et)t∈N), a
given cost function f, a source nodes s and a destination node d in V .

Problem specification. We consider an agent that travels in the evolving graph, starting
from a node s at time 0. When at a node u at time t, the agent can either wait, go back in
time, or traverse an edge to a neighboring node v if the temporal edge ({u, v}, t) exists. If it
waits, it stays in the same node, but the time is incremented by one. If it goes back in time,
the new time can be any t′, 0 ≤ t′ < t, and the cost of this operation is f(t − t′). Note that
when traveling in space the agent can traverse several edges during a single time instant.
When time-traveling, the agent may travel back or forward in time to any time instant but
will remain on the same node.

The goal of the agent is to reach the destination d with minimal delay, i.e., arriving
at time 0. Notice that a backward time-travel is always necessary if no path exists to the
destination during the first time instant, and that reaching d at time 0 is always possible if
the footprint is connected.

This problem is trivial when the agent knows the entire evolving graph [4] (even when
the cost is constrained, and when the backward time travels are limited in amplitude). In
this paper, we consider that the agent has a limited initial knowledge of the evolving graph,
and it can learn more information by moving in the graph (moving in the topological or
temporal sense).

Online Algorithms. An online algorithm A is a function that takes as input tuple (G′, t, u)
where G′ is a sub-graph of G representing the partial information of the agent, t the current
time, and u a node where the agent is located. The algorithm outputs the action performed
by the agent: wait, go back at time t′ < t or traverse an edge. For simplicity, we can consider
without loss of generality that the output is a space-time travel T that exists in G′. By doing
so, the agent may learn new information about the traversed nodes or they can wait to learn
new information about the future. A single action (wait, go back in time, or traverse an
edge) can be seen as an elementary space-time travel.

We consider only deterministic algorithms so that executing an online algorithm on a
given evolving graph G makes the agent follow a single space-time travel (maybe of infinite
length if the agent loops for infinity). On a given evolving graph G, the cost obtained by an
online algorithm A is denoted Cost(A, G) and is the cost of the space-time travel performed
by the agent on this graph. For comparison, we denote by Cost(opt, G) the optimal cost
given by an optimal offline algorithm.

Our goal is to find an algorithm that minimizes the competitive ratio defined as follows.

▶ Definition 8. An online algorithm has competitive ratio ρ if in any evolving graph G, we
have

Cost(A, G)
Cost(opt, G) ≤ ρ

Acquiring new Knowledge. The way the agent learns about the evolving graph depends on
the model. We consider two cases. First, in the T-online model, when an agent reaches time t,
they learns about all the temporal edges ({u, v}, t′) ∈ E with t′ ≤ t, for all u, v ∈ V . In other
words, they learns about the entire graph up to this time. Second, in the S-online setting,

SAND 2024

7:6 Online Space-Time Travel Planning in Dynamic Graphs

when an agent reaches a node u, it learns about all the temporal edges ({u, v}, t′) ∈ E, for
all t′ ≥ 0 and for all v ∈ V . In other words, it learns all the information, past and future,
concerning the current node.

Observe that the definition of competitive ratio does not depend on the setting, as the
offline optimal algorithm gives the same solution regardless of the setting. The setting just
impacts the knowledge of the agent, so in practice, different knowledge should give different
algorithms, and it might not be possible to obtain the same competitive ratio in two different
settings. Hence, we are also interested in finding lower bounds for the competitive ratio in
each setting.

x0 x1 x2 x3 x4 x5 x6 x7

space

0
1
2
3
4
5
6
7

time

Figure 1 Possible representation of an evolv-
ing graph. Possible travels from x0 to x7 are
shown in red, green, and blue. Note that the
blue and green travels require sending an agent
to the past (to a previous time instant).

x0
x1 x2 x3 x4 x5 x6 x7

Figure 2 Footprint of the evolving graph
represented in Figure 1.

kn
ow

n

x0 x1 x2 x3 x4 x5 x6 x7

space

0
1
2
3
4
5
6
7

time u

Figure 3 Example of the state of an agent
during a T-online travel. The agent at position
u does not know about the dashed edges

known Vunexplored

x0 x1 x2 x3 x4 x5 x6 x7

space

0
1
2
3
4
5
6
7

time
u

Figure 4 Example of the state of an agent
during an S-online travel. The agent at position
u does not know about the dashed edges, nor
the unknown nodes outside Vunexplored.

Visual representation of online space-time travels. To help visualize the problem, consider
a set of n + 1 nodes denoted x0, x1, x2, . . . , xn. Then, the associated evolving graph can
be seen as a vertical sequence of graphs mentioning for each time instant which edges are
present. A possible visual representation of an evolving graph can be seen in Fig. 1. One can
see the evolution of the topology (consisting of the nodes x0 to x7) over time through eight
snapshots performed from time instants 0 to 7. Several possible travels are shown in red,

Q. Bramas, J.-R. Luttringer, and S. Tixeuil 7:7

green, and blue. The red travel only makes use of forward time travel (that is, waiting) but
is the earliest arriving travel in this class (arriving at time 7, while it is possible to arrive
at time 4). The green and blue travels both make use of backward time travel and arrive
at time 0, so they have minimal travel delay. Similarly, the red travel concatenated with
((x7, 7), (x7, 0)) (i.e., a backward travel to reach x7 at time 0) also has minimal travel delay.
However, if we assume that the cost function is the identity (f : d 7→ d) then the green travel
has a backward cost of 5, the blue travel has a backward cost of 4, and the concatenated red
travel has a backward cost of 7.

The main challenge arises when an agent explores the graph in an online manner,i.e.,
learns about the graph while it is exploring it. Figure 3 and 4 illustrate the current knowledge
of the agent after it traversed the red travel and is currently at node u. In Figure 3, the agent
is T-online and knows about the entire past of the graph, i.e., it knows about all the edges
that occurred at time 4 or before, regardless of the nodes involved. The agent knows about a
possible travel to reach destination x7, but does not know if it is cost-optimal depending on
the cost function (with a cost function f : x 7→ x, it knows that the blue travel is optimal).

In contrast, in Figure 4, the agent is S-online and knows about the past and the future
of all the visited nodes x0, . . . x3. In this case, the agent does not know a travel to the
destination yet, but it is challenging to decide what node to explore first to minimize the
cost.

3 Backward-cost Function Classes

The cost function f represents the cost of going back to the past. It has been shown by
Bramas et al. [4] that it is necessary for f to be non-negative and that it attains its minimum
(not just converge to it) on every interval that includes infinity, for an optimal-delay optimal
cost travel to exist. These conditions were also shown to be sufficient for an offline algorithm
to find an optimal solution.

▶ Definition 9. A cost function f is user optimizable if it is non-negative, and it attains
its minimum when restricted to any interval [C, ∞), with C > 0. Let UO be the set of user
optimizable cost functions.

For simplicity, in this paper, we only consider user friendly cost functions as defined by
Bramas et al. [4]:

▶ Definition 10. A cost function f is user friendly if it is user optimizable, non-decreasing,
and sub-additive1. Let UF be the set of user friendly cost functions.

Indeed, following the methodology by Bramas et al. [4], the optimal output of an algorithm
using a user friendly function can be transformed into an optimal solution assuming the cost
function is only user optimizable.

4 T-Online Algorithm with Optimal Competitive Ratio

In this section, we consider the T-online setting. In other words, the future of the evolving
graph is unknown to the algorithm: at a time t, only the snapshots at time instants t′ ≤ t

are known. We first prove that there exists no algorithm with a competitive ratio smaller
than 2, even if the cost function is the identity. Then we present our T-online Algorithm 1
and we show that it has an optimal competitive ratio.

1 sub-additive means that for all a, b ∈ N, f(a + b) ≤ f(a) + f(b)

SAND 2024

7:8 Online Space-Time Travel Planning in Dynamic Graphs

x0 x1 x2 x3 x4 x5 x6 x7 x8
0

1

2

i

time
...

...

Figure 5 Definition of the evolving graphs Gi, with 9 nodes (n = 8). The blue travel T8 has a
backward-cost of 8. The red travel Ti has a backward cost of i.

▶ Theorem 11. Assuming f : x 7→ x, if the future is unknown, there exists no T-online
algorithm with competitive ratio 2 − ε, with ε > 0.

Proof. Assume for the sake of contradiction that algorithm A is a T-online algorithm and
has a competitive ratio of 2 − ε, with ε > 0. Let n be an even integer greater than 5

ε . For any
i > 3, let Gi be an evolving graph whose footprint is a line with n + 1 nodes x0, x1, . . . , xn

defined in the following way:
Gi(0) is the graph where half of the edges are present:

Ei(0) = {{xk, xk+1} | k ∈ [0, n] ∧ k ≡ 1 mod 2}.

Gi(2) is the graph where the other half of the edges are present:

Ei(2) = {{xk, xk+1} | k ∈ [0, n] ∧ k ≡ 0 mod 2}.

Gi(i) is a line graph : Ei(i) = {{xk, xk+1} | k ∈ [0, n − 1]}.
for all j /∈ {0, 2, i}, Gi(j) is a graph with no edge : Ei(j) = ∅.

It is clear that, in all such graphs Gi, there exists a travel from x0 to xn, denoted by Tn,
with backward-cost n, using the edges present at time 0 and 2 (the blue travel in Figure 5).
In addition, there exists a travel, denoted Ti, of backward-cost i in the evolving graph Gi

(the red travel in Figure 5).
If i > n, the optimal travel is Tn, and if i < n the optimal travel is Ti.
Let us now run Algorithm A on the evolving graph G2n, with source being x0 and

destination xn. Clearly, the algorithm cannot wait until time instant 2n otherwise the
backward cost would be at least 2n, which is two times more than the backward cost of the
optimal path Tn. This implies that Algorithm A cannot distinguish between (hence runs
exactly in the same way in) graphs Gi, with i ≥ 2n. Let tmax be the maximum time instant
reached by Algorithm A in G2n. Then we can even say that A cannot distinguish between
graphs Gi with i > tmax.

Claim 1: In Gi, with i > tmax, Algorithm A outputs a travel with a backward-cost of at least
n + tmax − 2
Proof of the Claim: The travel T = A(Gi) that A outputs must contain the same temporal
edges as Tn because those are the only edges that exist before time i (recall that tmax < i).
Let tj be the time instant reached by Algorithm A at node xj , for all j = 0, . . . , n. Since
at each node the travel either arrives at time 2 or leaves at time 2, then ∀j ∈ [0..n], tj ≥ 2.

Q. Bramas, J.-R. Luttringer, and S. Tixeuil 7:9

To move from node xj to node xj+1 the travel T includes a backward trip of cost tj , if
j ≡ 1 mod 2, and of cost tj − 2, otherwise. Let tjmax = tmax = max(tj), we have that

cost(T) =
∑

j∈Odd(n)

tj +
∑

j∈Even(n)

tj − 2 ≥
{

2 |Odd(n)| + tmax − 2 if jmax is odd
2 (|Odd(n)| − 1) + tmax if jmax is even

Where Even(n), resp. Odd(n), denotes the set of even, resp. odd, numbers smaller or
equal to n, Since |Odd(n)| = n/2, we obtain in both case cost(J) ≥ n + tmax − 2

Claim 2: tmax ≤ n − 4
Proof of the Claim: Since algorithm A has a competitive ratio of 2 − ε, then, if it runs in
the evolving graph G2n, it must return a path of backward-cost at most

(2 − ε)Cost(opt, G2n) = (2 − ε)n < 2n − 5

(recall that nε > 5), so it cannot reach time instant n − 3. Indeed, if the algorithm waits
until time instant tmax ≥ n − 3, then, using the previous claim, the backward-cost of the
travel would be at least n + n − 5.

Now we run Algorithm A on graph Gtmax+1. Using Claim 1, we know that A returns a
travel of cost at least n + tmax − 2. However, in Gtmax+1, since tmax + 4 ≤ n (Claim 2), the
optimal travel is Ttmax+1 having a cost of tmax + 1. We obtain the following inequality:

cost(A(Gtmax+1)) ≥ n + tmax − 2 ≥ tmax + 4 + tmax − 2 ≥ 2(tmax + 1)
≥ 2Cost(opt, Gtmax+1)

This contradicts the fact that A has a competitive ratio of 2 − ε. ◀

Our Algorithm 1 works as follows: the agent remains in the initial node and waits to
learn more about the network until it finds a space-time travel to the destination. Since
it does not know whether this is an optimal travel, it waits until it is sure that this is the
case, and then goes back in time and enjoys its trip. Computing the best space-time travel
given a sub-graph is possible in polynomial time using the existing offline algorithm [4]. Our
algorithm assumes that the cost function tends to infinity when the input goes to infinity. It
is easy to see that this assumption is necessary to achieve a constant competitive ratio. For
instance, with a constant cost function that is equal to 1, one can create two indistinguishable
(up to time n) dynamic graphs where a travel with cost n − 2 exists before time t = n. Then,
the first graph contains no other travel, and the second contains another travel with cost
1 but requires a path available at time t ≫ n arbitrarily large. Not knowing which graph
it is put in (at time n, the agent’s knowledge about the two graphs is identical), the agent
either waits indefinitely to see if the second travel exists, or follows the first travel with a
competitive ratio of n − 2. A similar argument can be constructed when the cost function is
upper bounded by some number C when its input goes to infinity.

▶ Theorem 12. For any f ∈ UF that diverges to infinity, Algorithm 1 is a T-online algorithm
with a competitive ratio of 2.

Proof. Let Tmax be the final value of the variable in our algorithm, so it is the space-time
travel used by the agent after the agent returns back at time 0. Let

tmax = max{t | f(t + 1) < cost(Tmax)}.

SAND 2024

7:10 Online Space-Time Travel Planning in Dynamic Graphs

Algorithm 1 T-Online Algorithm.
Input :

G′: the known evolving graph
time: the current time
u: the current node (here u is always the starting node s)

Let Tmax be an optimal space-time travel in G′, if it exists, starting at time 0, from node s

to node d.
if Tmax does not exist or f(time + 1) < cost(Tmax) then

wait 1 time instant;
else

go back at time 0, then follow the travel Tmax;

0
1

ds

time

Figure 6 Evolving graph G used to prove that an S-online algorithm has a competitive ratio of
at least 2n/3 − 7/3.

First, we prove that Tmax is an optimal offline travel. Indeed, the algorithm reached time
tmax so all the other travels that are not discovered by our algorithm require temporal edges
appearing after time tmax, so their backward-costs are at least f(tmax + 1), which is at least
cost(Tmax) by definition. Hence cost(Tmax) is the optimal backward-cost.

When the algorithm terminates, the travel T that is returned is ((s, 0),(s, tmax),(s, 0))
⊕ Tmax. It has a backward-cost of f(tmax) + cost(Tmax). Since f(tmax) ≤ cost(Tmax), the
Lemma is proved. ◀

5 S-Online Algorithm

In this section, we study the S-online setting, where an agent knows only about the nodes
they have explored. In this case, we show a lower bound of 2n/3 − 7/3 for the competitive
ratio, even when the cost function is the identity. We then present an algorithm that has a
competitive ratio of 2n − 3 when the cost function is linear.

▶ Theorem 13. Assuming a cost function is f : x 7→ x, an S-online algorithm cannot have a
competitive ratio smaller than 2n/3 − 7/3, where n denotes the number of nodes in the graph.

Proof. Assume for the purpose of contradiction that there exists an S-online algorithm A

with a competitive ratio c.
Consider an evolving graph G consisting of k paths of length 3 having one node s in

common and append a node d to one of the paths, as illustrated in Figures 6 and 7. Links
connecting nodes at hop-distance 1 from s and nodes at hop-distance 2 from s appear at
time 1, and all the other links appear at time 0. The number of nodes is n = 3k + 2.

An agent traveling in this graph initially knows about all the neighbors of s does not
know their neighbors. Since all the edges connected to s appear at the same time 0, they are
indistinguishable. We can consider without loss of generality that the branches are explored
from left to right, direction according to Figure 7 (a branch is explored when the node at
hop-distance 3 is visited). Visiting a branch costs f(1), and going back to s also costs f(1), so
when the agent finally visits the last branch that is connected to d, they have paid 2(k −1)+1.

Q. Bramas, J.-R. Luttringer, and S. Tixeuil 7:11

s

d

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0
0

Figure 7 The same evolving graph G shown in Figure 6 as a static graph where the label
represents the time where the edge is present.

In the end the travel costs

2(k − 1) + 1 = 2k − 1 = 2(n − 2)
3 − 1 = 2n/3 − 7/3

while the optimal travel costs 1. So the competitive ratio is 2n/3 − 7/3. ◀

One important question is whether or not the lower bound is higher when assuming a
cost function f that is not linear. Interestingly, one can observe that, to create a worst-case
using non-linear functions, one must use longer paths because the travel cost of a two-hop
travel is the same in one way and the other, so longer travels are required to create travels
having higher cost. Moreover, following k smaller backward travels costs at most k times the
equivalent single but larger backward travel. So we conjecture that the lower bound is the
same for any cost function in UO.

We now present our Algorithm 2. At a given step, the agent is located at a node u at time
t and knows a subgraph G′ of G. Among the known nodes, some are not yet explored, called
Vunexplored. For a node v in Vunexplored, the agent does not know its entire neighborhood.
In particular, it does not know if it is connected to the destination d. Indeed, d is either
unknown or unexplored (otherwise the agent has already reached the destination). The goal
of the agent is to find a travel towards the destination that is not too expensive. A possible
travel to d is either in G′ or goes through a node in Vunexplored. A travel in G to d that
is not in G′ must go through a node v ∈ Vunexplored, so its cost is at least the cost of a
travel towards v at time 0. So the main idea of the algorithm is to explore nodes one by one
starting from the one that could potentially be an optimal travel to the destination d i.e.,
the agent visits first a node v ∈ Vunexplored whose travel from s to v at time 0 is minimal.

To illustrate a step of the algorithm, consider Figure 4. The agent at position u does not
know any travel towards d, but it knows that a travel must either go through x4 or x5. In
the best case, if it goes through x4, a travel to d costs at least 3 (it costs 2 to reach x4 using
the edge (x3, x4) at time 1 plus at best a backward travel to 0 if d is directly connected to
x4. If it goes through x5, a travel to d costs at least 4. So in this situation, the agent travels
towards x4. When it reaches x4, the agent realizes that it is not connected to d and that a
travel to d passing through x4 costs at least 5 (the green travel in Figure 1) so the agent
decides to explore next x5. Then it explores x6 and finally d = x7.

▶ Theorem 14. Assuming the cost function is linear, Algorithm 2 is an S-online algorithm
with a competitive ratio of 2n − 3, where n denotes the number of nodes.
Assuming non-linear f ∈ UF , the competitive ratio of Algorithm 2 is at most n2.

Proof. Consider first that the cost function is linear. After each iteration of the algorithm,
at least one new node v is explored.

SAND 2024

7:12 Online Space-Time Travel Planning in Dynamic Graphs

Algorithm 2 S-Online Algorithm.
Input :

G′: the known evolving graph
time: the current time
u: the current node

Let Vunexplored be the set of nodes known but unexplored;
Let H = {Tv = TG′ ((s, 0), (v, 0))|v ∈ Vunexplored};
/* Recall that TG′ ((s, 0), (v, 0) is the set of travels from s to v arriving and

departing at time 0 */
Let Tv be a space-time travel in H with minimum cost
Follow an optimal space-time travel towards (v, 0) in G′, from the current location u.

The cost of the travel from s to v arriving at time 0 is at most the cost Cost(opt, G) of
the optimal travel from s to d arriving at time 0. Indeed, if d is unknown, all travels goes
through at least one unexplored node, meaning that the cost to reach d is higher or equal
than the cost to reach v. If d is known, the travels towards d are included in the set H.

Note that when traveling back to s at time 0 from v at time 0, backward time jumps
become waiting, and vice-versa. Hence, an outbound trip requiring several, small waits and
a large backward-time jump translate in a return trip with a large wait and several small
backward-time jumps, which, intuitively, mais lead to different costs.

However, because we first assume the cost function to be linear (i.e. f(a+b) = f(a)+f(b),
the cost of the outbound trip is the same as the cost of the return trip. Thus, to visit the
next unexplored node v′, the agent has to, in the worst case, go back to s and then travel to
v′, incurring a cost of 2Cost(opt, G). In the worst case, the destination d is the last visited
node. The total cost is at most 2(n − 2)Cost(opt, G) for the first n − 2 nodes (all except s

and d) plus the last travel towards d, i.e., at most 2(n − 2)Cost(opt, G) + Cost(opt, G) and
the competitive ratio is 2n − 3.

Now, suppose the cost function f ∈ UF is non-linear. In this case, the costs of the
outbound and return trip may be different.

Let T be a k-hop travel from s to a node v, arriving and departing at time 0. Let Tr

be the associated returned trip. Observe that the sum of the amplitude (denoted ∆ in the
following) of all backward-time jumps is the same in both directions (i.e., for T and Tr).
Also, it is clear that each backward jump performed in Tr has amplitude smaller than ∆ and
since f is non-decreasing, each of these jumps costs at most f(∆). Since there are at most
k ≤ n backwards jumps in Tr, we know that, cost(Tr) ≤ k × f(∆). As f is also sub-additive,
we know that f(∆) ≤ cost(T). Thus, we have cost(Tr) ≤ k × cost(T).

Hence, using the same proof as in the previous case, we obtain in the worst case, a cost
of at most n × Cost(opt, G) to explore the next node v, which results in a total cost of at
most n2Cost(opt, G). ◀

6 Discussion and Open Problems

One may notice that the strategies used in Algorithm 2 are similar to some works related
to online static graph exploration and treasure hunting. These similarities raise interesting
questions regarding possible relations between these problems and possible applications of
existing works to our novel model.

Q. Bramas, J.-R. Luttringer, and S. Tixeuil 7:13

Studying this question is challenging due to the many different existing models. For
instance, many papers about treasure hunting in static graphs assume that the agent located
at a node does not learn about the identifier of the neighboring nodes, but only about
the outgoing edges [3, 1]. This results in bounds based on the number of edges, while our
algorithm performance only depends on the number of nodes.

One paper by Komm et al. [18] considers that an agent learns about the identifier of its
neighbors (a model dubbed fixed graph). Interestingly, our models align with theirs under
the assumption of a linear cost function. We, however, give a more refined bound about the
competitive ratio, implying perhaps a more precise bound for the model given by Komm et
al. [18] (which briefly mentions an asymptotically linear competitive ratio before focusing on
the impact of advice fed to the agent).

When assuming a non-linear cost function, our problem seems to exhibit similarities with
the treasure-hunting problem in directed graphs when agents see the neighboring nodes (a
problem that, to our knowledge, is unexplored in the literature).

Our work in the S-online setting can thus be seen as the first generalization of the
treasure-hunting problem in dynamic graphs. It is interesting to see that such generalizations
bear similarities to their static counterparts. However, these outcomes depend on the agent’s
ability to engage in time travel. In the absence of such capabilities, certain assumptions about
the graph may be needed to make up for the absence of backward time travel. For instance,
one might consider assumptions such as periodicity, or the presence of bounded-recurrent
edges, allowing for the traversal of disappearing edges by waiting for their reappearance,
instead of traveling back in time. The study of relations between the settings studied in this
paper and more general ones, as well as the study of associated complexity results, are open.

7 Conclusion

We presented the first online solutions to the delay-optimal cost-optimal space-time travel
problem in dynamic networks.

We first showed that, when the future is unknown, even assuming an identity cost function,
no online algorithm can exhibit a competitive ratio of less than two, and we present a very
simple online algorithm with a competitive ratio of two, for a larger class of cost functions.

Then, when the graph itself is unknown and has to be explored to gain connectivity
knowledge, we showed that there exists a linear (in the size of the graph) lower bound on the
competitive ratio, even when the cost function is the identity, and we present an algorithm
with a linear (in the size of the graph) competitive ratio assuming any linear cost function.
Refining the constants between our lower and upper bound is left for future work.

References
1 Adri Bhattacharya, Barun Gorain, and Partha Sarathi Mandal. Treasure hunt in graph

using pebbles. In International Symposium on Stabilizing, Safety, and Security of Distributed
Systems, pages 99–113. Springer, 2022.

2 Alexander Birx, Yann Disser, Alexander V Hopp, and Christina Karousatou. An improved
lower bound for competitive graph exploration. Theoretical Computer Science, 868:65–86,
2021.

3 Sébastien Bouchard, Yoann Dieudonné, Arnaud Labourel, and Andrzej Pelc. Almost-optimal
deterministic treasure hunt in unweighted graphs. ACM Transactions on Algorithms, 19(3):1–
32, 2023.

4 Quentin Bramas, Jean-Romain Luttringer, and Sébastien Tixeuil. Offline constrained backward
time travel planning. In Shlomi Dolev and Baruch Schieber, editors, Stabilization, Safety, and

SAND 2024

7:14 Online Space-Time Travel Planning in Dynamic Graphs

Security of Distributed Systems - 25th International Symposium, SSS 2023, Jersey City, NJ,
USA, October 2-4, 2023, Proceedings, volume 14310 of Lecture Notes in Computer Science,
pages 466–480. Springer, 2023. doi:10.1007/978-3-031-44274-2_35.

5 Sebastian Brandt, Klaus-Tycho Foerster, Jonathan Maurer, and Roger Wattenhofer. Online
graph exploration on a restricted graph class: Optimal solutions for tadpole graphs. Theoretical
Computer Science, 839:176–185, 2020.

6 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Shortest, fastest, and
foremost broadcast in dynamic networks. Int. J. Found. Comput. Sci., 26(4):499–522, 2015.
doi:10.1142/S0129054115500288.

7 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408,
2012. doi:10.1080/17445760.2012.668546.

8 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021. doi:
10.1007/s00453-021-00831-w.

9 Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse
spanners. J. Comput. Syst. Sci., 121:1–17, 2021. doi:10.1016/j.jcss.2021.04.004.

10 Shigang Chen and Klara Nahrstedt. An overview of qos routing for the next generation
high-speed networks: Problems and solutions. Network, IEEE, 12:64–79, December 1998.
doi:10.1109/65.752646.

11 Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pająk, and Przemysław Uznański.
Fast collaborative graph exploration. Information and Computation, 243:37–49, 2015.

12 Yann Disser, Frank Mousset, Andreas Noever, Nemanja Škorić, and Angelika Steger. A general
lower bound for collaborative tree exploration. Theoretical Computer Science, 811:70–78, 2020.

13 Afonso Ferreira. On models and algorithms for dynamic communication networks: The case
for evolving graphs. In Quatrièmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications (ALGOTEL 2002), pages 155–161, Mèze, France, May 2002. INRIA
Press.

14 Klaus-Tycho Foerster and Roger Wattenhofer. Lower and upper competitive bounds for online
directed graph exploration. Theoretical Computer Science, 655:15–29, 2016.

15 Robin Fritsch. Online graph exploration on trees, unicyclic graphs and cactus graphs. Infor-
mation Processing Letters, 168:106096, 2021.

16 Rosario G. Garroppo, Stefano Giordano, and Luca Tavanti. A survey on multi-constrained op-
timal path computation: Exact and approximate algorithms. Computer Networks, 54(17):3081–
3107, December 2010. doi:10.1016/j.comnet.2010.05.017.

17 Jochen W. Guck, Amaury Van Bemten, Martin Reisslein, and Wolfgang Kellerer. Unicast qos
routing algorithms for sdn: A comprehensive survey and performance evaluation. IEEE Com-
munications Surveys & Tutorials, 20(1):388–415, 2018. doi:10.1109/COMST.2017.2749760.

18 Dennis Komm, Rastislav Královič, Richard Královič, and Jasmin Smula. Treasure hunt with
advice. In Christian Scheideler, editor, Structural Information and Communication Complexity,
pages 328–341, Cham, 2015. Springer International Publishing.

19 Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Black
hole search in dynamic rings. In 41st IEEE International Conference on Distributed Computing
Systems, ICDCS 2021, Washington DC, USA, July 7-10, 2021, pages 987–997. IEEE, 2021.
doi:10.1109/ICDCS51616.2021.00098.

20 Juan Villacis-Llobet, Binh-Minh Bui-Xuan, and Maria Potop-Butucaru. Foremost non-
stop journey arrival in linear time. In Merav Parter, editor, Structural Information and
Communication Complexity - 29th International Colloquium, SIROCCO 2022, Paderborn,
Germany, June 27-29, 2022, Proceedings, volume 13298 of Lecture Notes in Computer Science,
pages 283–301. Springer, 2022. doi:10.1007/978-3-031-09993-9_16.

https://doi.org/10.1007/978-3-031-44274-2_35
https://doi.org/10.1142/S0129054115500288
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1016/j.jcss.2021.04.004
https://doi.org/10.1109/65.752646
https://doi.org/10.1016/j.comnet.2010.05.017
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/ICDCS51616.2021.00098
https://doi.org/10.1007/978-3-031-09993-9_16

	1 Introduction
	2 Model
	3 Backward-cost Function Classes
	4 T-Online Algorithm with Optimal Competitive Ratio
	5 S-Online Algorithm
	6 Discussion and Open Problems
	7 Conclusion

