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Abstract

Unraveling the material behavior at the microscale is one of the challenges of
this century, demanding progress in experimental and computational strategies.
Among the latter, two approaches are commonly applied for predicting crack
nucleation. The Coupled Criterion (CC) and the Phase Field (PF) model, both
depending on a material length parameter. In brittle materials at the macroscale,
this parameter is significantly smaller than the specimen size. However, when the
scale decreases, this material length might approach the structural dimensions. In
this context, a comprehensive comparison between the two models is conducted,
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changing the ratio between the material length parameter and the dimensions of
the specimen. Results indicate that when this ratio is sufficiently small predictions
from both models coincide, otherwise both the CC and the PF model predict
different results. Despite their differences, a good agreement with experiments
reported in the literature have been observed.

Keywords: Phase Field, Coupled Criterion, Microscale, Brittle fracture

1 Introduction

The latest advancements in microscopy have revealed that the microstructure of mate-
rials is crucial for enhancing their properties at the microscale, thus setting the stage
for the development of new materials of high technological impact. Consequently,
unraveling the material behavior at the microscale has emerged as a primary objective
in this century. One of the most interesting properties to prevent nucleation or prop-
agation of cracks is the brittleness of materials such as ceramics, where this inherent
characteristic limits their application, despite numerous advantages, such as thermal
properties or high resistance to oxidation or corrosion [1]. The emergence of advanced
ceramics like alumina zirconia, has demonstrated the potential to enhance the brit-
tleness of traditional ceramics. However, the full development of this new technology
requires a comprehensive understanding of fracture behavior at lower scales. While
a wide range of experimental techniques have been introduced, such as the nano-
indentation [2] or the Micro-Electro-Mechanical System (MEMS) [3], it is equally
critical to evaluate the suitability of applying numerical methodologies typically used
at the macroscale to predict crack initiation and propagation at the microscale. Among
these methodologies two prominent models within the context of Fracture Mechanics
stand out: the Coupled Criterion (CC)[4, 5], within the framework of Finite Fracture
Mechanics (FFM), and the gradient damage model for brittle fracture [6, 7], frequently
named as a Phase Field (PF) model for brittle fracture [8].

One of the fundamental ingredients of FFM is the assumption that a crack jumps
a finite length upon nucleation. This can be formulated through the CC [4], obtain-
ing that this length depends on the material toughness, the tensile strength and the
geometry. In contrast, the gradient damage model for brittle fracture presented in [6]
introduces a material-related length that describes the size of the damaged region,
called the phase field length scale. Both the PF length scale and the nucleation length
obtained by the CC are proportional to the Irwin length defined by material proper-
ties. At the macro-scale, they are relatively small compared to structural dimensions,
whereas at the micro-scale they become comparable or even larger, and can interact
with the dimensions of the structure. In this context, the main objective of this paper
is to investigate the applicability of both the CC and the PF model when descend-
ing the scales, presenting a reflective comparison between the two methodologies and
contrasting them with selected experiments found in the literature.

On the one hand, the applicability of the CC at the microscale has been investigated
in previous works. In 2020, Doitrand et al. [9] investigated the relationship between the
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maximum flexural stress in a four-point bending test and the tensile strength across
scales using the CC, while Gallo et al.[10] studied the FFM at the nanoscale, comparing
results with experiments. In 2021, Jimenez-Alfaro and Leguillon [11] investigated the
application of the CC across scales in ceramic materials, employing case studies and
comparing results to experiments found in the literature. Moreover, in 2023, Baldassari
et al. [12] applied the FFM approach to investigate the size effect of quasi-brittle
materials, in particular, concrete and rock samples, obtaining a good agreement with
experimental results.

On the other hand, one of the initial works regarding the applicability of the PF
model when descending the scales is the one of Tanne et al. in 2018 [13], where they
studied the crack nucleation in various geometries and the effect of a defect size with
respect to the phase field length scale. Moreover, an important investigation related to
composites has been developed in the last years, since the micromechanical analysis is
essential to define the fracture behaviour of these materials at the mesoscale. In partic-
ular, in 2019 Guillen-Hernandez et al. [14] showed the applicability of the PF together
with the Cohesive Zone Model (CZM) to predict failure initiation at the micro-scale,
comparing with experiments and FFM predictions. Furthermore, Fantoni et al. [15]
studied the influence of the micro-scale over the macro-scale results considering the
PF model in composite materials. In 2020, Guillen-Hernandez et al. [16] investigated
the in-situ effect found in transverse matrix cracking phenomena considering the PF
model. Finally, in 2023 Macias et al. [17] provided a guidance to the application of the
PF model for computational micro-mechanical studies in composite materials under
2D plane strain assumption.

Additional research has focused on the effect of the Fracture Process Zone (FPZ)
in the fracture properties at the microscale [18], and the applicability of Linear Elastic
Fracture Mechanics (LEFM) when the FPZ becomes significant [19]. Additionally, in
2020 Molnar et al. [20] included the effect of the process zone on the definition of
the PF length scale, and the results were compared with those obtained by CC. This
work was also explored in 2023 by Doitrand et al. [21], proposing a length free PF
model, which was compared the CC results. An investigation of this approximation
for daugther crack formation in antiplane shear is shown in [22] in 2024, including a
comparison to the results obtained by the CC. Despite the extensive literature, none
of these works have compared the CC and the PF model when descending the scales in
homogeneous brittle materials, determining the influence of the relationship between
the Irwin length and the dimensions of the specimen in the predictions.

The paper is structured as follows. Section 2 introduces the Coupled Criterion
and the Phase Field model applied in this work. Section 3 analyzes the scale effect
in various case studies, comparing the results obtained from both models. Section 4
compares the models with some experiments found in the literature. Finally, Section
5 presents the main conclusions drawn from this study.

2 Two different approaches to brittle fracture

The representation of fracture in brittle materials involves modeling the initiation and
propagation of cracks, which can be achieved through two distinct approaches: discrete
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and continuous models. In discrete models, such as the renowned Griffith model [23]
or the Coupled Criterion [5], the crack is treated as a discontinuity in the material.
Conversely, continuous models conceptualize cracks as damaged zones with reduced
stiffness [24].

2.1 The Coupled Criterion

First, the Coupled Criterion relies on two conditions: an energy condition and a stress
condition [4]. The energy condition is based on an energy balance encompassing two
states of the loaded structure: one prior (0) and the other following (1) the initiation
of a crack,

Π(0)
p + Π

(0)
k = Π(1)

p + Π
(1)
k +GcδS. (1)

Assumming a zero kinetic energy before the crack onset, δΠk ≥ 0, and therefore

δΠ(0)
p +GcδS ≤ 0. (2)

In a 2D domain the energy balance is referred to the admissible crack extension δl,

δΠ(0)
p +Gcδl ≤ 0. (3)

which is simplified introducing the Incremental Energy Release Rate (IERR) [4],
named as Ginc,

Ginc = −δΠp

δl
≥ Gc. (4)

In the stress condition the tensile stress along the expected crack path is compared
with the tensile strength (non-local condition),

σ(s) ≥ σc for 0 ≤ s ≤ δl, (5)

where s is the coordinate along the expected crack path. To sum up, the Coupled
Criterion is based on two conditions

Ḡinc =
Ginc(δl)

Gc
≥ 1, (6)

σ̄ =
σ(s)

σc
≥ 1, for 0 ≤ s ≤ δl, (7)

Two approaches can be used when applying the CC: The Matched Asymptotics (MA)
and the Full Finite Element (FFE) approach. In this paper, the FFE one is used, since
the nucleation length can be of the order of the dimensions of the specimen at the
microscale [11].

2.2 The Phase Field model

Discrete models such as the one previously presented face limitations in situations
where the crack path is not known a priori. In those situations, continuous models have
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a significant advantage, although discrete models such as the one previously presented
are typically simpler. One type of continuous model is the gradient damage model
[6, 7], where a damage variable α is used to define stiffness degradation. Typically
0 ≤ α ≤ 1, where α = 1 and α = 0 represents the damaged and undamaged states
respectively. Assuming a solid Ω loaded by a time-dependent body force b and a
contour force t on ∂tΩ, the following total energy functional Ψlpf is defined,

Ψlpf
(u, α) =

∫
Ω

ψlpf
(ε(u), α,∇α) dx−

∫
Ω

b · u dx−
∫
∂tΩ

t · u ds, (8)

where the admissible displacement field u and damage variable α are defined in the
functional spaces

Vu := u ∈ H1(Ω) : u = ū on ∂uΩ, (9)

Vα := α ∈ H1(Ω) : α = ᾱ on ∂αΩ. (10)

In (8) the energy density ψlpf
(ε(u), α,∇α) is

ψlpf
(ε(u), α,∇α) = ψel(α, ε(u)) +

Gc

lpfcw

(
w(α) + l2pf||∇α||2

)
(11)

where the elastic energy density ψel(ε(u), α) is split into two components ψ+
el(α, ε(u))

and ψ−
el(α, ε(u)), related to traction and compression strain components [25] respec-

tively:
ψel(α, ε(u)) = g(α)ψ+

el(α, ε(u)) + ψ−
el(ε(u)), (12)

being g(α) = (1 − α)2 the degradation function. In this work, the strain energy split
is based on the volumetric-deviatoric decomposition presented in [26].

ψ+
el(α, ε(u)) =

K

2
< tr(ε(u)) >2

+ +A0 : ε0(u) : ε0(u), (13)

ψ−
el(ε(u)) =

K

2
< tr(ε(u)) >2

−, (14)

where < tr(ε) >±=
tr(ε)±|tr(ε)|

2 , K is the bulk modulus of the material and ε0(u) is

the deviatoric part of the strain tensor.
In (11) a gradient term is introduced in the formulation to avoid spurious local-

ization of damage in stress softening regimes [24]. This term depends on the gradient
of the damage variable, introducing an internal length scale lpf. The definition of lpf
is studied in [6, 27] based on a 1D analysis of a bar under tensile loading, where it is
concluded that lpf is a material property proportional to the Irwin length, defined as

lIrwin =
EGc

σ2
c

. (15)
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The function w(α) in (11) fulfills that w(0) = 0 and w(1) = 1, and the coefficient

cw :=
∫ 1

0

√
(w(s))ds. A first definition of w(α) and cw is given when an elastic phase

with no damage (α = 0) is considered, after which there is a damaged phase where α
evolves until the complete damage α = 1 [6]. This model is known as the AT1 model,
and

w(α) = α and cw = 8/3. (16)

If, on the contrary, no elastic phase is included, the following functions can be used

w(α) = α2 and cw = 1/2, (17)

which is known as the AT2 model [27]. In these two models, the phase field length
scale can be defined as a function of lIrwin,

lpf =
3

8
lIrwin for AT1, (18)

lpf =
27

256
lIrwin for AT2. (19)

The solution (ū, α) is described at each time τ > 0 through the application of the
evolution problem [6, 24]:

• Irreversibility condition: the damage variable must not decrease with time α̇ ≥ 0.
• Stability condition: At each time τ > 0 the solution (ū, α) must be stable, i.e.,

there exists h̄ > 0 such that

Ψlpf
(u+ h(û− u), α+ h(α̂− α)) ≥ Ψlpf(u, α), (20)

for all h ∈ [0, h̄], û ∈ Vu, α̂ ∈ Vα and α̂ ≥ α .
• Energy balance: at each time τ > 0

∂Ψlpf

∂τ
(u, α)(0, α̇) ≥ 0 (21)

The gradient damage model presented above is inspired in the variational approach
to brittle fracture introduced in [28], where a functional Ψ(Γ, u) is minimized, depend-
ing on the crack surface Γ. Hence, based on Γ−convergence [29], it can be shown that
the global minimizer of Ψlpf

(u, α) would approach the global minimizer of Ψ(u,Γ)
when lpf → 0 [30] in the absence of body and contour forces.

The numerical application of the PF model is achieved using the Finite Element
Method (FEM). Two options can be formulated: monolithic or staggered schemes. The
first ones are potentially more efficient, because the solution is obtained with only one
iteration loop [8], although they need more time to be completed. On the contrary,
the staggered schemes are more robust and for this reason they are the ones applied in
this paper. For each time τ , an iterative process starts. First, the displacement field ui

at iteration i is obtained while keeping constant the damage variable αi = αi−1. Then,
the damage variable at iteration i denoted as αi is calculated keeping constant ui. The
process is iterated until the algorithm finds a convergence, based on |αi−αi−1| < Tol,
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where Tol is a tolerance that must be adjusted in the problem. Note that the first
iteration i = 1 uses the damage variable from the previous step. The software FEniCSx
has been applied to develop the FEM codes in the CC and the PF model [31].

3 Case studies

In this section, several case studies are proposed to analyze how fracture behavior
in materials changes when the ratio of the Irwin length divided by the specimen
dimensions is varied, highlighting its effect at the microscale. Two models, the Coupled
Criterion (CC) and the Phase Field (PF), are applied and compared in this analysis.
The analysis begins with a preliminary remark in Section 3.1, the tensile test of a bar
is presented. Subsequently, the study of an unnotched specimen in a bending test is
examined in Section 3.2, followed by the bending test of a u-notched cantilever beam
3.3. Moreover, the source code used to solve the latter case is offered in the NewFrac
repository1.

3.1 A preliminary remark

In the context of this study, an elastic bar under tension, characterized by its length
L and cross-sectional area S, is subjected to an applied tensile force F , as depicted
in Fig. 1. The material composition of the bar is alumina zirconia, and its mechan-
ical properties [32] are provided in Table 1. These properties are determined at the
macroscale and it is assumed that they are not changed across scales, i.e., lIrwin is
considered the same in the whole analysis. The main objective of this analysis is to
determine the parameter σfail(L), defined as the maximum allowable tensile stress in
the bar.

Fig. 1: Scheme of a bar in tension.

1https://zenodo.org/doi/10.5281/zenodo.11518790
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E [GPa] ν σc [MPa] Gc [MPa mm]

380 0.22 400 0.023

Table 1: Mechanical properties of the alumina zirconia [32].

Application of the Coupled Criterion: The application of the CC predicts
the crack nucleation when both the stress and the energy condition are satisfied. At
the moment of failure, it is assumed that a sharp crack appears in the specimen, and
the energy is abruptly reduced to zero. From the study conducted in [11] where this
problem is analyzed, σfail is defined as

σfail(L) = σc if L > 2lIrwin, (22)

σfail(L) = σc

√
2
lIrwin

L
if L < 2lIrwin. (23)

where the characteristic Irwin length is defined in (15). It is observed that a critical
length 2lIrwin plays an important role in the crack nucleation. When L > 2lIrwin, the
failure stress is predominantly determined by the stress condition (7). In contrast,
for cases where L < 2lIrwin, the failure stress is primarily influenced by the energy
condition (6), i.e., according to the CC, the size of the specimen is so small that it is
necessary to increase the load in order to reach the failure. To illustrate this idea the
evolution of σfail has been represented in Fig. 2, highlighting the region where either
the stress or the energy condition is governing.

Fig. 2: Evolution of σfail with respect to lIrwin/L of a homogeneous bar in tension,
according to the CC.

Application of the Phase Field model: On the other hand, when applying
the PF model two options can be explored if the boundary conditions of the damage
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variable are changed [7]: BC1, which imposes no Dirichlet boundary conditions on
α, and BC2, which enforces the condition α = 0 at both ends of the bar. In BC1,
the damage variable remains constant along the bar, allowing for the development of
solutions with homogeneous damage. In BC2, a localized damaged region is observed,
indicating that the crack breaks into two pieces after crack nucleation. In both cases
σfail is defined in the same way as in the application of the CC, as the maximum
allowable tensile stress in the structure. In the case of PF BC1, the solution yields
σfail = σc. However, for PF BC2, the value of σfail depends on the ratio lIrwin/L. For
L > lIrwin, the PF model defines a brittle failure of the structure. Therefore, when
σ = σfail, a crack is abruptly nucleated across the beam and the solution shows a
snap-back in the strain-stress response [33]. This case is illustrated in Fig. 3 where the
evolution of σ(ε)/σc is represented for L = 10lIrwin. Moreover, in Fig. 4 the damage
variable after failure is also shown, observing a narrow damage region representing the
crack.

Fig. 3: Evolution of the tensile stress σ/σc with respect to the axial strain ε for the
case BC2 and L = 10lIrwin, according to the PF model. The failure stress σfail is
highlighted. The points A, B correspond to damage fields in Fig. 7.

Fig. 4: Damage variable after failure for L = 10lIrwin, according to the PF model in
the BC2 case.
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The PF model with BC2 conditions describes a different failure mode in the struc-
ture when L < lIrwin. In that case, the current PF formulation does not predict a
Griffith-like crack; instead, it predicts the development of a significant damage region,
which generates the complete failure of the structure, as mentioned in [6]. Conse-
quently, when σ = σc a snap-back in the strain-stress response is not observed. Instead,
an apparent strengthening effect is noticed, due to the extensive damage region, which
amplifies the spread of damage, and therefore it is necessary to increase the load to
reach failure. An example to illustrate this case is shown in Fig. 5 for L = 3/8lIrwin,
where the evolution of σ(ε)/σc is represented. It can be observed that the highest
value of σ = σfail is bigger than σc. Furthermore, in Fig. 6 the damage variable after
failure is also shown. A large damage region is now described by the PF model.

Fig. 5: Evolution of the tensile stress σ/σc with respect to the axial strain ε for the
case BC2 and L = 3/8lIrwin, according to the PF model. The failure stress σfail is
highlighted. The points A, B, C, D correspond to damage fields in Fig. 7.

Fig. 6: Damage variable after failure for L = 3/8lIrwin, according to the PF model in
the BC2 case.

The evolution of the damage profile along the middle axis of the beam is represented
in Fig. 7 for various loading scenarios in the two examples studied in Figs. 3 and 5.
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For L = 10lIrwin, the damage remains 0 until a critical loading point where σ = σc and
crack nucleation occurs. Therefore, only two profiles are observable, before and after
fracture, the latter characterized by the point B in Fig. 3 and the second one by the
point A (as an example). However, for L = 3/8lIrwin, the damage profile progressively
evolves until reaching a value of 1 (completely broken) in the bar, characterized by
point D in Fig. 5. Damage begins to appear later than point A in Fig. 5, corresponding
to σ = σc. Two intermediate loading points B and C in Fig. 5 are chosen to illustrate
the progressive evolution of the damage region for L = 3/8lIrwin. Furthermore, it is
observed that the damaged area for L = 3/8lIrwin is much larger than the damaged
area for L = 10lIrwin when the failure is fully developed (point B in Fig. 3 and point
D in Fig. 5 ).

Fig. 7: Evolution of the damage variable α with respect to the axial direction x for
different load cases highlighted in Figs. 4 and 5, for L = 10lIrwin and L = 3/8lIrwin

respectively.

The three proposed evaluations of the failure stress (CC, PF BC1 and PF BC2)
are represented in Fig. 8, where the selected range is lIrwin/L = 0.2 − 5, considering
that the minimum length of the bar is greater than the size of the FPZ estimated
in [18]. An apparent strengthening effect is observed for both the CC and the PF
BC2. Nevertheless, it is noticeable that this phenomenon differs significantly. This
dissimilarity arises from their distinct inherent natures of both approaches. According
to the CC, the failure of the structure is explained by the nucleation of a sharp crack,
defined as a discontinuity in the material. The apparent strengthening is a consequence
of the small size of the specimen, which has not enough energy to generate damage.
However, according to the PF model, when the length of the specimen is less than
lIrwin, the failure is not generated by a sharp crack, it is explained by the development
of a damage region where the stiffness is significantly and progressively reduced. The
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size of the damage region is so big that the load is still increasing until the tensile stress
is finally decreased, generating an apparent strengthening effect completely different
to the one predicted by the CC.

Fig. 8: Evolution of σfail with respect to lIrwin/L of a homogeneous bar in tension,
according to the CC and the PF model.

In conclusion, the response of the CC and the PF model varies depending on
the relation between the Irwin length and the specimen dimensions, lIrwin/L. When
lIrwin ≪ L, both models predict the same response. However, when lIrwin ∼ L, the two
models describe different scenarios, primarily because the PF model no longer predicts
a brittle failure, unlike the CC model, which always defines the crack as a material
discontinuity. As consequence, both models give different predictions when addressing
scale-related effects, such as the apparent structural strengthening, highlighted in this
section. However, both are able to show that the maximum allowable stress in the
bar is a structural property instead of a material one when descending the scales.
The upcoming sections aim to thoroughly investigate these differences and determine
whether, despite them, both models can accurately approximate experiments involving
situations where the control parameter lIrwin/L is larger or of the order of 1.

3.2 Bending test of an unnotched specimen

In the study conducted in [11], the CC is applied to investigate the behaviour of an
unnotched specimen in a 3-point bending test when the scale is changed (mm, µm...)
by varying Gc. In this paper, the study is conducted keeping constant Gc, to study the
influence of the control parameter lIrwin/W , where W is a characteristic dimension of
the specimen.

The problem solved in [11], frequently encountered in the field of Solid Mechanics,
is not a well-posed problem since it can lead to infinite energy in the vicinity of the
point load. However, this challenge can effectively be addressed through the applica-
tion of the CC, which defines the expected crack path a priori. This chosen crack path
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is located at a considerable distance from the regions where the point loads are applied,
preserving the validity of the elastic solution, justified under the Saint Venant’s Prin-
ciple. Nevertheless, the problem posed by point loads is not easily solved considering
variational methods, since localized damage is observed in the vicinity of the region
where the load is applied. One possible solution is to impose the Dirichlet boundary
condition α = 0 in these specific regions. This approach, however, would limit the
crack growth, preventing it from attaining the width of the specimen. While this con-
straint has not difficulties for small values of σc, it complicates the convergence of the
solution as σc increases, thereby increasing the damage energy within the solid. In
cases where solution converges, a crack branching is predicted in the region where α
can grow, which might deviate from reality. Hence, in this paper an alternative prob-
lem is introduced, involving the bending test of an unnotched specimen subjected to
a distributed displacement applied at its ends, see Fig. 9 where u(x2) is defined as

u(x2) = U
(

1 − x2
W

)
. (24)

The specimen dimensions considered for the specimen are L = 8 µm and W = 1 µm,
with E = 380 GPa and ν = 0.22, as the material properties. The tensile stress along
the width of the specimen is also represented, where its maximum value is located
in the lower part of the structure, and is named as flexural stress σf = σ(s = 0).
The main objective of the analysis is to determine the critical flexural stress σfc,
defined as the maximum allowable σf reached in the structure, and the corresponding
critical displacement Uc for which σfc is reached, as a function of the control parameter
lIrwin/W .

Fig. 9: Schematic view of an unnotched specimen in a bending test. The orange solid
line is the tensile component of the stress tensor along the middle axis. In blue the
flexural stress has been highlighted.

Application of the Coupled Criterion: One of the main difficulties when apply-
ing the CC in this problem is that although it is known that the crack grows through
the specimen thickness, precisely defining its longitudinal position might not be pos-
sible, and therefore the expected crack path is unknown a priori. This situation is
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easily solved when considering internal defects in the structure, since their presence is
directly related to the position where the failure is localized, although this is beyond
the scope of this analysis. In the context of the stress condition, this is not problematic,
as the prescribed boundary conditions result in a constant tensile stress distribution
along the longitudinal axis of the beam, see Fig. 10a where σ is represented for U = 1
at several axial positions in the solid (possible locations of the expected crack path).
However, when considering the energy condition, Ginc is different depending on the
longitudinal position where the crack is located, as it is illustrated in Fig. 10b for three
longitudinal crack positions and U = 1.

(a) σ (b) Ginc

Fig. 10: Representation of the two main parameters used in the Coupled Criterion
for three longitudinal positions of the expected crack path, considering U = 1.

Looking at Fig. 10b it can be observed that, for s < 0.3 µm, there is negligible
disparity among the three curves. Consequently, the position of the crack along x1
only assumes significance when the newly created crack length surpasses 0.3µm, a
scenario that is out of this study, since it is not observed in the chosen range of σc
values, see Fig. 11, where the nucleation length obtained in the Coupled Criterion δl is
represented as a function of lIrwin/W (for the sake of simplicity δl has been calculated
in the middle position as an example. To sum up, for the application of the CC in this
context, the longitudinal position of the crack does not wield significance, and it does
not introduce alterations to the values of Uc and σfc. Furthermore, it is observed in Fig.
11 that δl notably increases when the Irwin length is of the order of the dimensions
of the specimen, a conclusion that was already observed in [11].
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Fig. 11: Evolution of the nucleation length δl as a function of lIrwin/W according to
the CC.

Application of the Phase Field model: two options are available: either with no
boundary conditions in the damage variable (BC1) or by applying the condition α = 0
at both ends of the specimen (BC2). However, small differences have been observed
between them in this case, and only the case BC1 is represented here. Hence, in Fig.
12 the function σf(U) is represented for two different values of lIrwin/W = 0.001 and 1,
with BC1. In Fig. 12a, for lIrwin/W = 0.001, a Griffith-like crack appears and σf starts
decreasing when it reaches the tensile strength σc. However, when lIrwin/W increases,
as shown in Fig. 12b for lIrwin/W = 1, the critical stress σfc is higher than σc, what is
known as a structural strengthening effect. As was indicated in the Section 3.1, this
phenomenon is observed because the damage variable does not abruptly change but
evolves progressively. The damaged zone is no longer a small region in the material,
and therefore there is no crack in the sense of Griffith.
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(a) lIrwin/W = 0.001 (b) lIrwin/W = 1

Fig. 12: Evolution of σf/σc with respect to U in the bending test of an unnotched
specimen for two values of the control parameter lIrwin/W = 1.

The critical flexural stress σfc and the corresponding critical displacement Uc

obtained using both the CC method and the PF model are compared in Fig. 13. It is
observed that both models predict a structural strengthening effect, see Fig. 13a, when
the Irwin length reaches values comparable to the dimensions of the specimen. How-
ever, it is important to note that results obtained differ significantly between the two
models. This disparity in predictions is primarily attributed to the capability of the
phase field model to capture and consider diffuse damage dissipation, an aspect that
is not accounted by the CC in any case. On the other hand, when the Irwin length is
significantly smaller than the dimensions of the specimen, both models predict brittle
fracture and the critical stress is equal to the tensile strength. In this scenario, the
differences between the two models are minimized. It is relevant to note that, despite
discrepancies in the stress solution between PF and CC, both models provide very
similar estimations of Uc, as depicted in Fig. 13b. This phenomenon is due to the fact
that the displacement range over which damage dissipation occurs in the PF model is
relatively small and similar to the end of the elastic regime. Obviously, the evolution
of the elastic regime in both models is identical, since the AT1 model is considered.
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(a) (b)

Fig. 13: Evolution of σfc/σc and Uc in the bending test of an unnotched specimen
with respect to the control parameter lIrwin/W .

3.3 Bending test of a u-notched cantilever beam

As mentioned in Section 1, bending tests of cantilever beams are extensively used to
study fracture at the microscale. In this section, the application of the PF model is
analyzed and compared to the use of the CC. The main objective is to investigate the
impact of changing the control parameter lIrwin/(W−a), whereW−a is a characteristic
dimension of the specimen, defined as the available width for the crack to grow, see Fig.
14. To that aim, an equivalent 2D plane strain model under displacement control is
generated. This model is inspired by the experiments made in [34], where the fracture
toughness and the critical force of a total of 14 specimens at the microscale are tested.
In fact, reference dimensions in this section are taken from specimen number 6 in
[34]: L = 8.76 µm, W = 4.265 µm, n = 0.876 µm, a = 0.91 µm and B = 4.42 µm.
Moreover, a blunt in the notch of r = 0.01 µm is considered [11]. It is important to
highlight that in Section 4.2, dedicated to experimental comparison, the 14 specimens
are numerically tested and compared with results in [34], from the point of view of
the PF model and the CC.

A previous study considering the CC is presented in [11]. In this paper, some
modifications are included in the model, applying a distributed load instead of a point
load to avoid the nucleation of local damage in the load application zone when applying
the PF model, as it was done in Section 3.2. Hence, the main parameter studied is the
critical force Fc, obtained using the critical distributed displacement uc, as

Fc =
2ΨelB

uc
, (25)

where Ψel is the elastic energy stored in the equivalent 2D specimen, therefore it is
multiplied by the thickness B to obtain the total force in the 3D problem.
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Fig. 14: Scheme of the equivalent 2D model used in this analysis, based on experiments
in [35] and the model presented in [11].

One of the critical points in the numerical resolution of the problem presented
in Fig. 14 is the choice of the mesh size h in the vicinity of the u-notch, where the
crack nucleation is expected. In [36], it is defined that a size h = lpf/5 is necessary to
correctly capture the fracture process with the PF model. However, this magnitude
competes in this problem with the notch blunt radius, which can be even smaller than
lpf. Consequently, when r > 10lIrwin, h = lpf/5 is taken; otherwise, h = r/2 to correctly
capture the notch blunt in the discretized model.

Another important aspect in the model generation is the definition of Dirichlet
boundary conditions on the damage variable. In [13], the idea of applying the condition
α = 1 on the faces of the notch is studied, distinguishing between the damaged and
undamaged boundary conditions. The analysis conducted indicates that undamaged
boundary conditions tend to overestimate the critical load, a similar conclusion to the
one obtained in [37]. In this problem, three different options are studied. The first,
NDBC, does not consider any damage boundary condition in the u-notch. The second,
DBC1, considers the condition α = 1 only in the u-notch blunt. The third, DBC2,
considers the condition α = 1 in the entire u-notch. Fig. 15 and 16 illustrate the three
options for two cases, when lpf << (W − a) and lpf ≈ (W − a).
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(a) NDBC (b) DBC1 (c) DBC2

Fig. 15: Crack nucleation considering the three options for the damage boundary
conditions for lpf << (W − a).

(a) NDBC (b) DBC1 (c) DBC2

Fig. 16: Crack nucleation considering the three options for the damage boundary
conditions for lpf ≈ (W − a)

Fig. 17 shows the critical force Fc as a function of σc for the three options, while
keeping Kc = 1.44 MPa m0.5 constant, a value derived from experimental estimations
for specimen 6 in [34]. It is observed that the NDBC option tends to overestimate the
critical load, as previously indicated in [13]. The options DBC1 and DBC2 coincide for
large values of σc, associated with small values of lIrwin. However, as σc decreases and
lIrwin approaches the specimen dimensions, DBC1 and DBC2 diverge. This is because
the size of the damaged region is proportional to lIrwin according to the PF model
studied in this paper. In the case of DBC2, when this value is significantly larger than
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the specimen dimensions, the part of the notch that is not corresponding to the blunt
radius has a greater contribution to damage diffusion, as indicated in Fig. 16. This is
not the case for DBC1, where the damage is more localized. In the results presented
below, the DBC1 option is chosen, although in Section 4.2 the NDBC and DBC1 are
compared with experimental results. The DBC2 option is no longer studied, as it does
not represent the physics of the problem for small values of σc.

Fig. 17: Evolution of Fc as a function of σc for the three options in the damage
boundary conditions: DBC1, DBC2 and NDBC.

In Fig. 17 the parameter Fc is calculated as the maximum allowable force in the
structure. Since displacement control is considered in this analysis, this means that Fc

is associated with a significant drop in the force - displacement curve. If force control
were studied (as in Section 4.2), Fc would be related to a sudden and considerable
increase in the displacement. This can be considered as a first criterion to define the
failure in the structure and numerically estimate the critical force Fc, named here as
FU. A second criterion, named as KU, defines the crack nucleation through a decrease
in the structural stiffness. An example of these two criteria is illustrated in Fig. 18 for
specimen 6 (Kexp

c = 1.56 MPa m0.5 and σexp
c = 2500 MPa).
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(a) Force - displacement curve. (b) Stiffness - displacement curve.

Fig. 18: Examples of a force-displacement and stiffness-displacement curve. These
curves were obtained using the fracture properties and dimensions experimentally
obtained in [34] for specimen 6 (Kexp

c = 1.56 MPa m0.5 and σexp
c = 2500 MPa).

A third criterion, named as αU, involves understanding that crack nucleation
occurs when the condition α = 1 is reached at the notch tip. An example is illustrated
in Fig. 19. In this case, the DBC2 conditions are considered, and crack nucleation
is deemed to have occurred when the damage variable reaches α = 1 at a node not
initially affected by the damage boundary condition. This is represented through an
damage-displacement diagram. In the case of force control, applied in Section 4.2, the
damage-force diagram is considered.

Fig. 19: Example of the damage variable. The experimental values for specimen 6 in
[34] are considered (Kexp

c = 1.56 MPa m0.5 and σexp
c = 2500 MPa).
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Fig. 20 compares the three criteria. For this purpose, Fc is represented against
the control parameter lIrwin/(W − a), keeping constant Kc = Kexp

c = 1.56 MPa m0.5

and the dimensions of the specimen, i.e., varying only σc. First, it is noticed that for
small values of lIrwin/(W − a) the three criteria lead to the same estimation of Fc. An
example of this situation was shown in Figs. 18 and 19, where lIrwin/(W − a) = 0.12.
On the other hand, for bigger values of lIrwin/(W − a) it is shown in Fig. 20 that the
FU criterion provides a larger estimation of Fc than the αU and KU criteria, while the
latter two always coincide. For these values, as mentioned earlier, the PF model does
not predict a crack in the Griffith sense, and the failure of the structure is due to the
diffusion and propagation of damage in a certain region. This means that although
the stiffness decreases, the diffusion must grow even more to observe a drop in the
force-displacement diagram, as shown in Fig. 21 for lIrwin/(W − a) = 0.77, where the
critical points obtained the two criteria (FU and KU) are highlighted (αU provides the
same result as KU). In conclusion, for these values of lIrwin so close to the specimen
dimensions, these criteria may yield slightly different results, although this difference
is less than 10% within the range of lIrwin studied. In the results presented throughout
this paper, the criterion FU is adopted, due to its similarity to the experimental
procedures typically applied to analyze crack nucleation.

Fig. 20: Evolution of Fc as a function of lIrwin for the three criteria stablished for
crack nucleation: FU, KU and αU. The fracture toughness is constant in this analysis
and equal to the experimental value measured in [34], Kc = Kexp

c = 1.56 MPa m0.5.
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(a) Force - Displacement curve. (b) Stiffness - Displacement curve.

Fig. 21: Examples of a force-displacement and stiffness-displacement curve. These
curves were obtained using the fracture properties and dimensions experimentally
obtained in [34] for specimen 6 (Kexp

c = 1.56 MPa m0.5 and σexp
c = 1000 MPa).

Fig. 22 compares the PF model and the CC, representing Fc with respect to the
control parameter lIrwin/(W − a). Notice that a lower value of lIrwin/(W − a) cor-
responds to a higher value of σc, what is related to a greater Fc. Two options in
the PF model for the damage boundary condition are used, NDBC and DBC1. It is
observed that both the CC and PF model qualitatively exhibit the same trend. When
lIrwin is of the order of the specimen dimensions, Fc loses its dependence on σc (and
therefore on lIrwin), as it is an energy criterion that governs failure. However, when
lIrwin << (W − a), a tensile criterion governs crack nucleation, and this is perceived
through the strong dependence of Fc on σc, represented here as a strong dependence
on lIrwin. Similar conclusions are obtained in [13], where the control parameter is the
phase field length scale divided by the size of an initial defect. In [11], this analysis is
presented only for the CC at the microscale, where the specimen size is so small that
the energy criterion completely governs crack nucleation (there is not energy available
for the crack to be nucleated). Generally, the difference between the CC and PF model
does not exceed 15%. In the region where the Irwin length is of the order of the speci-
men dimensions, the difference between the CC and the NDBC option is the greatest;
that is, imposing the condition α = 1 at the blunt radius approximates the results of
the PF model and the CC for that range of lIrwin. However, for small values of lIrwin,
this difference appears to be smaller in the case of NDBC. This may be because the
DBC1 conditions contribute to localize the damage at the notch tip, even when the
damaged region is large, as is the case for lIrwin ≈ (W − a). In general, by imposing
the DBC1 conditions, the critical load is underestimated compared to the other two
approximations.
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Fig. 22: Evolution of Fc as a function of lIrwin/(W −a) for the PF model (NDBC and
DBC1) and the CC. The fracture toughness is constant in this analysis and equal to
the experimental value obtained in [34], Kc = Kexp

c = 1.56 MPa m0.5.

4 Comparison to experiments

In previous sections it has been shown that both the CC and the PF model yield
different results when the Irwin length and the dimensions of the specimen are similar.
Therefore, a comparison to experiments is necessary to ascertain whether these models
are able to describe crack nucleation at the micro-scale.

4.1 Experiments conducted by Parvizi et al.

In Section 3.1, an intriguing strengthening effect is observed for sufficiently small spec-
imen lengths in the tensile test of a brittle, homogeneous material. However, it is
crucial to acknowledge that such effects may manifest differently depending on the
specific circumstances of the problem. To illustrate this variability, the experimental
investigations conducted by Parvizi et al. [38] are analyzed. In their study, tensile
tests were conducted to explore transverse cracking in a cross-ply laminate composed
of glass fiber epoxy. Remarkably, Parvizi et al. found that the observed strengthen-
ing effect is controlled by the thickness of the transverse ply, denoted as e. This delay
in crack initiation is known as in-situ effect and has been widely studied. Models at
the macroscale in composite laminates can be found in [39] where an analytical pro-
cedure based on Fracture Mechanics is proposed, and in [4, 40] where Finite Fracture
Mechanics is applied to study the previously mentioned experiments by Parvizi et al.
[38]. A more advanced concept that studies this phenomenon at the microscale can be
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found in [16], where a micromechanical analysis is made to study the in-situ effect of
this problem applying the PF model.

The material properties considered in the numerical simulations used to represent
the set of experiments made by Parvizi et al. are as follows: Young’s modulus E1 =
42 GPa, E2 = 14 GPa, Poisson’s ratio ν12 = 0.278, critical energy release rate Gc2 =
0.12 MPa mm, and tensile strength σc2 = 84 MPa, obtained from experimental data
reported in [38] and [41]. Hence, the Irwin length is lIrwin = 0.24 mm. Notice that
the model studied assumes that crack nucleation appears only in the transverse ply
[38]. At this stage, it is important to emphasize that this paper focuses on nucleation
rather than the propagation of cracks within the inner ply. Consequently, multiple
transverse cracking is not studied, although this aspect has been succesfully addressed
in [16, 42, 43].

This problem can be approached analytically by applying the CC model, as
described in [4]. Analysis within this framework reveals that for small values of e,
the failure mechanism is governed by an energy criterion. Consequently, a struc-
tural strengthening effect is observed due to the small size of the specimen. On the
other hand, the PF model can be applied on a two-dimensional (2D) equivalent
model, assuming plane strain conditions, as depicted in Fig. 23. This corresponds to
a cylindrical bending assumption for the laminate plate.

Fig. 23: Scheme of the equivalent 2D model that illustrates the experiments conducted
by Parvizi et al. [38].

Although two PF models are studied, the so-called AT1 and AT2, only AT1 is
ultimately represented. This decision stems from the fact the AT2 model estimates a
critical strain of εc = 0.9% for values of the transverse ply thickness where experi-
mental observations yield approximately εc ≈ 0.6%. As discussed in Section 3.1, the
tensile test can be modeled using the PF approach, considering both homogenized and
localized solutions (BC1 and BC2) [7]. Among these two models, the BC1 is repre-
sented in Fig. 24 to compare with predictions obtained using the CC and experiments,
since BC2 yields the same results as BC1. Looking at Fig. 24, the critical longitudinal
stress σ1c is represented as a function of e/lIrwin. It is important to highlight that in
this paper σ1c = E2ε1c for the sake of simplicity, although a more precise calculation
would include the laminate theory and would slightly differ from the one presented
here [41]. Notice that in Fig. 24 the parameter used is e/lIrwin instead of lIrwin/e (used
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in previous sections). The change has been made for the sake of analogy with the
experimental representation in [38].

Fig. 24: Critical longitudinal stress σ1c represented against the control parameter
e/lIrwin estimated by experiments and the numerical predictions using both the PF
and the CC model.

Fig. 24 shows that the predictions obtained by the PF model and the CC are
in qualitative agreement. The greatest quantitative disparity is observed when e
approaches lIrwin. In that case a structural strengthening effect emerges, captured by
the two numerical estimations and the experimental results.

One of the critical aspects when investigating this problem using the PF model is
the definition of crack nucleation, and different criteria can be applied, as studied in
Section 3.3. In this case, the evolution of α is considered, i.e., the crack nucleation is
located at the point where the maximum value of the damage variable in the structure
αmax reaches 1. This criterion is chosen over parameters such as the global elastic
energy Ψel or the stiffness in the specimen, since failure detection might be inadequate
for very small values of the transverse layer thickness, where failure of the central ply
is described by the development of an almost homogeneous damage field, instead of
localized crack-like damage bands. An example of this is shown in Fig. 25 where αmax

and Ψel are represented for a very thin transversal ply (e = 0.2 mm). The control
parameter is in this case e/lIrwin = 0.84.
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Fig. 25: Evolution of α for a thin case (e = 0.2 mm), considering the AT1 model and
the BC2 solution. Two variables are represented with respect to εx [%], the maximum
damage value in the structure, αmax, and the elastic energy in the tranverse ply Ψel.

The limitation mentioned above does not apply to larger values of e, as shown in
Fig. 26 for e = 2 mm. In this scenario, it is observed that at the point where a decrease
in the elastic energy of the transverse ply occurs, the phase field variable abruptly
changes from 0 to 1 at a specific location in the structure, where the crack is nucleated.
Notice that in this case the thickness is much bigger than the Irwin length, i.e., the
control parameter e/lIrwin = 8.4. The failure is described by an array of crack-like
solutions with localized damage.

Fig. 26: Evolution of α for a thick case (e = 2 mm), considering the AT1 model and
the BC2 solution. Two variables are represented with respect to εx [%], the maximum
damage value in the structure, αmax, and the elastic energy in the transverse ply Ψel.

4.2 Experiments conducted by Henry et al.

Bending tests of microcantilever beams offer enhanced reliability compared to, for
example, tensile tests, as it incorporates the application of a notch to localize crack
nucleation far away from the region of load application. This practice effectively mit-
igates local effects according to the Saint-Venant principle. In 2019, Henry et al. [34]
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conducted experimental investigations to determine the fracture toughness of 8Y-
FSZ cubic zirconia considering this technique under force and displacement control.
A scheme of the experiments is shown in Fig.27, where the main dimensions used to
describe the specimen are highlighted. A total of 14 specimens were tested, considering
the material properties E = 216 GPa and ν = 0.22. The tensile strength of this mate-
rial was also predicted as 2.5 ± 0.7 GPa using bending tests on unnotched specimens
(a total of 4 specimens were tested for that purpose).

Fig. 27: Scheme of the experiments performed by Henry et al. in [34].

In Section 3.3 an equivalent 2D model (see Fig. 14) is used to represent these
experiments, readjusting the height of the 2D specimen, W , to consider the pentagonal
shape of the cross section in the real model highlighted in Fig. 27, so that W =
Ŵ+C/2. In Table 2 the main dimensions of the equivalent 2D model for each specimen
are summarized, as well as the critical force and the fracture toughness experimentally
obtained in [34].
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Index L [µm] W [µm] B [µm] n [µm] a [µm] F exp
c [mN] Kexp

c [MPa · m0.5]

1 9.20 4.34 5.98 0.920 1.32 1.53 1.44
2 9.97 4.04 4.99 0.997 0.64 1.53 1.50
3 9.74 5.01 6.27 0.974 0.70 3.28 1.57
4 9.10 4.66 6.21 0.910 0.61 2.27 1.14
5 8.03 4.20 4.57 0.803 0.56 2.29 1.65
6∗ 8.76 4.26 4.42 0.876 0.91 1.51 1.56
7∗ 12.11 3.32 4.40 1.211 0.64 0.87 1.63
8 8.76 4.30 4.99 0.876 0.50 2.75 1.68
9 8.13 4.57 5.34 0.813 0.42 3.68 1.59
10 7.19 4.12 3.45 0.719 0.84 1.28 1.42
11 7.33 4.60 4.18 0.733 0.56 2.13 1.29
12 9.40 4.13 4.56 0.940 0.70 1.46 1.41
13 7.08 4.35 5.25 0.708 0.83 2.21 1.35
14∗ 9.96 3.50 3.94 0.996 0.63 0.82 1.32

Table 2: Geometrical parameters and experimental results of the 14 different speci-
mens tested in [34]. The specimens highlighted by ∗ were tested using displacement
control, whereas the others were tested using force control.

A critical force numerically obtained F num
c is calculated considering the CC and

PF model to compare with experiments, assuming the mechanical properties obtained
in [34]. Hence, for each specimen the fracture toughness considered is Kc = Kexp

c . In
case of displacement control, F num

c is obtained applying (25). Under force control, the
critical distributed force applied in the structure tc is used to calculate the critical
force Fc,

F num
c = tcWB. (26)

In addition, it is important to highlight that two set of damage boundary conditions
are studied for the PF model, as explained in Section 3.3: non-damaged boundary
conditions (ndbc) and damaged boundary conditions at the blunt of the notch (dbc).

Fig. 28 shows the parameter F num
c /F exp

c for each specimen. In general, the PF
model with no damaged boundary conditions tends to overestimate the experimental
predictions, with an average relative error of 11.2% with respect to the experimental
values. Nevertheless, it appears to be a reasonable approximation for specimens 7, 8
and 9, which are underestimated by both the CC and the PF with damaged boundary
conditions. In the case of the CC the average relative error with respect to experi-
ments is 5.7%, whereas for PF dbc the average is 8.5%, suggesting they offer a better
approximation than the PF ndbc. Looking at this comparison, we can conclude that
both the PF model and the CC can predict experimental results.
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Fig. 28: A comparison between experimental results obtained in [34] and those
obtained applying the PF model and the CC is presented. For the PF model, two
options are investigated: one with damaged (dbc) and the other with non-damaged
(ndbc) boundary conditions on the U-notch.

Furthermore, the same parameter F num
c /F exp

c is also represented with respect to
lIrwin/(W−a) in Fig. 29, only for the PF dbc and the CC, the two closest distributions.
It is observed that the biggest difference between the CC and the PF model with
damaged boundary conditions is given when lIrwin/(W − a) reaches the highest value
(for specimen number 7 in Fig. 28), with a difference of 7%. On the contrary, the
smallest difference, around 3%, is attributed to the smallest value of lIrwin/(W − a).
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Fig. 29: Effect of lIrwin/(W − a) in the critical force obtained in experiments [34] and
numerical simulations, considering the PF model and the CC. For the PF model, two
options are investigated: one with damaged and the other with non-damaged boundary
conditions on the u-notch.

5 Conclusions

This study compares the answer of both the CC and the PF model in different scenar-
ios, changing the ratio between the Irwin length and the dimensions of the specimen,
a common case observed in brittle materials when the scale of the problem is changed
from the macro to the microscale. As a general conclusion, it has been shown that
the two models predict different results when the Irwin length is of the order of the
dimensions of the specimen, therefore interacting with the dimensions of the structure.
The reason is that while the CC model consistently defines a discontinuous crack, the
PF model represents a damage model where the stiffness degradation occurs within
a localized region, and therefore a Griffith like crack is no longer predicted. On the
contrary, when the Irwin length is much smaller than the dimensions of the specimen
the same results are obtained from both the PF and the CC.

When the Irwin length is of the order of the dimensions of the specimen, the frac-
ture behaviour of the structure can change. One of the observed changes is a structural
strengthening effect, i.e., the maximum allowable stress reached in the structure is
higher than the tensile strength considered in the definition of the Irwin length (an
input in both the CC and the PF model). This conclusion, that might indicate that
the failure stress is a structural property rather than a material characteristic in those
situations, is captured by both the CC and PF model considered in this paper. How-
ever, different quantitative results are obtained and this is explained by the different
mechanisms that each model is describing. In the CC, this effect is attributed to the
small specimen size, leading to crack nucleation governed by the energy criterion. Con-
versely, the apparent strengthening effect in the PF model is more related to the size
of the damage region, so significant that an increase in the load is required to reach
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a complete structural failure. In other words the PF model is defining a quasi-brittle
behaviour when the Irwin length is of the order of the dimensions of the specimen,
whereas the CC is always describing a brittle failure.

In this paper, the critical load is used to compare the results obtained by the CC
and the PF model. In the latter, three criteria are considered to define this parameter:
FU, KU, and αU. The FU criterion predicts a higher critical load compared to the KU
and αU criteria when the Irwin length approaches the specimen dimensions; otherwise,
all three criteria yield the same results. Additionally, it is observed that the critical
load has less dependency on the tensile strength when the Irwin length is of the order of
the specimen dimensions. The CC explains this by suggesting that an energy criterion
governs failure in such situations. This qualitative conclusion is captured by both the
CC and the PF model.

Comparison with experimental data reveals that while there are differences between
the two models, these disparities are not significant enough to unequivocally deter-
mine a method that clearly gives better predictions at the microscale. Both models
exhibits a good agreement with experimental observations, despite their differences.
Furthermore, incorporating a damaged boundary condition in the blunt of the notch
when applying the PF model in the context of U-notches provides a closer approxima-
tion to experimental outcomes and aligns the results more closely with those predicted
by the CC model.

To sum up, this paper addresses the differences and similarities between two of the
most commonly used models for predicting fracture, the CC and the PF model, con-
cluding that they differ in their predictions when the Irwin length is of the order of
the dimensions of the specimen, since they are describing different failure mechanisms.
Despite their differences, both models show a good agreement with experimental data.
A further study would include studying and comparing other high-potential models,
such as the Cohesive Zone Model [44], where a traction-separation law governs the
nucleation of failure, could also be of great interest. Moreover, it would also be inter-
esting to compare the results with a length scale insensitive phase-field damage model
[45].
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[19] Bažant, Z.P., Kazemi, M.T.: Size effect in fracture of ceramics and its use to deter-
mine fracture energy and effective process zone length. Journal of the American
Ceramic Society 73(7), 1841–1853 (1990)

[20] Molnár, G., Doitrand, A., Estevez, R., Gravouil, A.: Toughness or strength? reg-
ularization in phase-field fracture explained by the coupled criterion. Theoretical
and applied fracture mechanics 109, 102736 (2020) https://doi.org/10.1016/j.
tafmec.2020.102736

[21] Doitrand, A., Molnár, G., Estevez, R., Gravouil, A.: Strength-based regularization
length in phase field fracture. Theoretical and Applied Fracture Mechanics 124,
103728 (2023)

34

https://doi.org/10.1016/j.tafmec.2023.103787
https://doi.org/10.1016/j.jmps.2017.09.006
https://doi.org/10.1007/s10704-019-00384-8
https://doi.org/10.1007/s10704-019-00400-x
https://doi.org/10.1016/j.tafmec.2020.102621
https://doi.org/10.1016/j.tafmec.2020.102621
https://doi.org/10.1016/j.euromechsol.2023.105069
https://doi.org/10.1016/j.euromechsol.2023.105069
https://doi.org/10.1016/j.tafmec.2020.102736
https://doi.org/10.1016/j.tafmec.2020.102736


[22] Molnár, G., Doitrand, A., Lazarus, V.: Phase-field simulation and coupled cri-
terion link echelon cracks to internal length in antiplane shear. Journal of the
Mechanics and Physics of Solids, 105675 (2024) https://doi.org/10.1016/j.jmps.
2024.105675

[23] Griffith, A.A.: VI. The phenomena of rupture and flow in solids. Philosophical
transactions of the royal society of London. Series A, containing papers of a
mathematical or physical character 221(582-593), 163–198 (1921) https://doi.
org/10.1098/rsta.1921.0006

[24] Marigo, J.-J., Maurini, C., Pham, K.: An overview of the modelling of fracture
by gradient damage models. Meccanica 51, 3107–3128 (2016) https://doi.org/10.
1007/s11012-016-0538-4

[25] Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-
field models of fracture: Variational principles and multi-field fe implementations.
International journal for numerical methods in engineering 83(10), 1273–1311
(2010)

[26] Amor, H., Marigo, J.-J., Maurini, C.: Regularized formulation of the variational
brittle fracture with unilateral contact: Numerical experiments. Journal of the
Mechanics and Physics of Solids 57(8), 1209–1229 (2009) https://doi.org/10.
1016/j.jmps.2009.04.011

[27] Bourdin, B., Marigo, J.-J., Maurini, C., Sicsic, P.: Morphogenesis and propagation
of complex cracks induced by thermal shocks. Physical review letters 112(1),
014301 (2014)

[28] Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimiza-
tion problem. Journal of the Mechanics and Physics of Solids 46(8), 1319–1342
(1998) https://doi.org/10.1016/S0022-5096(98)00034-9

[29] Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps
by elliptic functional via t-convergence. Communications on Pure and Applied
Mathematics 43(8), 999–1036 (1990) https://doi.org/10.1002/cpa.3160430805

[30] Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited
brittle fracture. Journal of the Mechanics and Physics of Solids 48(4), 797–826
(2000) https://doi.org/10.1016/S0022-5096(99)00028-9

[31] Barrata, I.A., Dean, J.P., Dokken, J.S., HABERA, M., HALE, J., Richardson, C.,
Rognes, M.E., Scroggs, M.W., Sime, N., Wells, G.N.: Dolfinx: The next generation
fenics problem solving environment (2023)
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implementation of the phase field fracture method. Applications in Engineering
Science 6, 100050 (2021) https://doi.org/10.1016/j.apples.2021.100050

[37] Klinsmann, M., Rosato, D., Kamlah, M., McMeeking, R.M.: An assessment of
the phase field formulation for crack growth. Computer Methods in Applied
Mechanics and Engineering 294, 313–330 (2015)

[38] Parvizi, A., Garrett, K., Bailey, J.: Constrained cracking in glass fibre-reinforced
epoxy cross-ply laminates. Journal of Materials Science 13(1), 195–201 (1978)
https://doi.org/10.1016/0010-4361(87)90006-1

[39] Camanho, P.P., Dávila, C.G., Pinho, S.T., Iannucci, L., Robinson, P.: Prediction
of in situ strengths and matrix cracking in composites under transverse ten-
sion and in-plane shear. Composites Part A: Applied Science and Manufacturing
37(2), 165–176 (2006) https://doi.org/10.1016/j.compositesa.2005.04.023
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