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Abstract—Accurate Land Surface Temperature (LST) estima-
tion is crucial for understanding environmental dynamics and
addressing diverse scientific and societal challenges. This study
explores a novel approach for LST estimation using RGB data
and integrating it with additional data modalities. By leveraging
conditioned Generative Adversarial Networks (cGANs) for LST
generation on adjacent tiles, certain artifacts are observed. To
address this issue, we introduce a comprehensive processing
pipeline and tiling strategy, evaluating fusion methods for artifact
removal and improving LST generation accuracy. Our findings
demonstrate the potential of integrating multi-modal data to
enhance LST estimation, leading to promising advancements,
particularly in LST data inference.

Index Terms—Land Surface Temperature estimation, cGANs,
fusion methods, multi-modality, tiling strategy, artifact removal

I. INTRODUCTION

Land surface temperature (LST) estimation is crucial for
understanding global and regional environmental conditions.
LST is closely linked to critical Earth system variables such as
water vapor content, soil moisture, and evapotranspiration [1].
Accurate estimation of LST is essential for assessing Urban
Heat Island (UHI) effects, where urban areas experience
elevated temperatures compared to rural surroundings due
to human activities and land surface modifications. These
effects have significant implications for urban planning, public
health, and climate-resilient strategies [2]–[4]. Traditionally,
LST estimation encompasses a spectrum of approaches, in-
cluding field measurements, satellite observations, and model
simulations [5]. Field measurements, also referred to as in-situ
measurements, involve direct observations of LST at specific
locations [6]. While providing accurate data, this method is
limited by its spatial coverage and accessibility, particularly in
remote or densely populated areas. Additionally, gaps in the
data may occur due to factors such as equipment malfunctions
or adverse weather conditions [7]. Satellite observations have
become indispensable for their global coverage and consistent
monitoring capabilities. Sensors onboard satellites, including

This work is supported by the IATOAURA project of the Auvergne Rhône-
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EOS/MODIS, NOAA/AVHRR, and FY/VISSR, offer LST
products with acceptable temporal and spatial resolutions [8].
However, these satellite-based observations confront chal-
lenges such as coarse spatial resolution, typically ranging
from tens of meters to kilometers, which may limit their
ability to capture fine-scale variations in LST. Furthermore, the
estimation algorithms used, such as split-window algorithms
and single-channel algorithms, often incorporate auxiliary
variables like surface emissivity, altitude, latitude, longitude,
and vegetation indices such as NDVI (Normalized Difference
Vegetation Index), and other indices like EVI (Enhanced
Vegetation Index) and SAVI (Soil Adjusted Vegetation Index),
to enhance accuracy [9]–[14]. Despite these advancements,
cloud cover in satellite images can lead to missing data and
reduced accuracy, particularly in urban areas where surface
temperature variations are complex and influenced by factors
like land cover and human activity [5]. To address these
limitations, method integrating RGB-based (Red-Green-Blue)
data with land cover and elevation information should be
emerged as a means to supplement satellite-based estimation
especially in areas where satellite observations are hindered
by adverse weather conditions. This fusion of different data
modalities is a holistic approach to LST estimation, aiming to
overcome missing data, ultimately enhancing our understand-
ing of surface temperature on both global and regional scales.
To develop this approach, a model that translates RGB (and
other modalities) to LST is needed. Image-to-image translation
methods in remote sensing utilize deep learning architectures
to transform images between different domains. These tech-
niques include traditional approaches like linear regression as
well as convolutional neural networks (CNNs) and Genera-
tive Adversarial Networks (GANs) [15]. Among GAN-based
models, pix2pix is notable for its ability to generate realistic
images with pixel-level correspondence between input and
output domains [16], [17]. In remote sensing, pix2pix has
been applied for tasks like RGB to NIR [18], NIR to NDVI
translation [19], offering accurate results while maintaining
spatial and spectral fidelity.
Pix2pix requires tiles of size (256, 256), and when using
grid tiling, artifacts between generated tiles are observed.



Consequently, the use of overlapping tiles and the fusion of
generated overlapping tiles are employed to gather more infor-
mation for each meter of the area. Various fusion techniques
have been explored for merging overlapping images, including
classical methods like average arithmetic methods (AAW)
and weighted methods such as exponential distance weight-
ing [20]and Gaussian distribution-based methods [21]. Addi-
tionally, other fusion techniques such as machine learning-
based fusion methods have been investigated [22].
This study extends our previous research [23], which initially
focused on RGB to LST generation, by introducing a tiling
strategy and by employing fusion methods for artifact removal
in LST generated tiles, thus enhancing our deep learning
based LST estimation. In section II, we detail the different
methods at each stage of the pipeline. Section III presents the
outcomes of these methods, while section IV delves into their
implications. In section V, we conclude with an outlook on
future directions for this research.

II. METHODOLOGY

A. Data Collection and Preprocessing

Data collection is conducted according to the standards
established in our previous work [23]. Data is collected
from various sources, including RGB satellite imagery, raster
Digital Elevation Model (D) data and vector Land Cover (L)
data. A comprehensive preprocessing is crucial to standard-
ize, reproject, and optimize these datasets for analysis and
modeling. The preprocessing begins by standardizing the data
to a uniform Coordinate Reference System (CRS), ensuring
spatial consistency across all datasets. Spatial resolution is then
adjusted to 1 meter for uniformity, enhancing resolution for
LST data while converting other datasets like RGB imagery
and (D) to match. The vector datasets (L) are then rasterized to
a 1-meter resolution, enabling seamless integration into further
processing and training.

B. Tiling Strategy

A tiling strategy is employed to prepare the data for
deep learning model training. The dataset is partionated into
256x256 pixel tiles, representing square areas of 256 meter per
side, aligning with the requirements of the model architecture.
Tiles are systematically generated to cover the entire study
area, ensuring comprehensive spatial coverage and consistency
in size. To augment the dataset, 1/2 overlapping is introduced
between adjacent tiles. This overlapping not only ensures
spatial continuity but also effectively increases the sample
size for model training. Additionally, a concept of super-tiles
is employed. A super-tile is a grid of 4.5 tiles. Its size is
(1152,1152). Super-tiles are specifically utilized for the testing
phase, with 90 strategically placed super-tiles spaced evenly
across the study area to ensure robust model generalization.
The remaining tiles are dedicated to the training phase. To
maintain the independence between the training and testing
datasets, overlapping tiles between super-tiles and the training
area are excluded from both sets. The training dataset consists
of 22,633 tiles, while the testing dataset comprises 5,760

tiles, maintaining an 80% /20% division between the two
sets. The data combination phase involves the merging of
tiles from different data types to create composite input tiles.
The final dataset consisted of two main combinations: RGB
tiles, containing only spectral information, and RGBDL tiles,
integrating both spectral and terrain features. Notably, the RGB
and RGBDL tiles have sizes of (3, 256, 256) and (5, 256, 256)
respectively.

C. Model Training and Evaluation
1) Architecture: The architecture utilized is a conditional

Generative Adversarial Network (cGANs), pix2pix. The gen-
erator component of the model is based on the U-Net archi-
tecture, renowned for its effectiveness in various image-to-
image translation tasks. The U-Net architecture consists of an
encoder-decoder structure with skip connections, allowing for
efficient feature extraction and preservation of spatial informa-
tion. The encoder part of the U-Net architecture comprises a
series of convolutional layers followed by max-pooling layers,
progressively reducing the spatial dimensions of the input
image while extracting hierarchical features. The decoder part
of the architecture consists of up-sampling layers combined
with skip connections from the corresponding layers in the
encoder, enabling localization and reconstruction of features.
The discriminator component of the pix2pix model comprises
conventional layers, evaluating pairs of combined tiles and
LST images to discern plausible transformations. Through
adversarial training, the generator aims to produce LST images
that closely match real ones.

2) Configuration: The Adam optimizer is employed with
a learning rate of 0.0002 and a batch size of 1. The training
loss function combines mean absolute error and cross-entropy
loss. Over 50 epochs, the model iteratively learns and refines
from the data.

3) Evaluation Metrics: After the training phase, generated
super-tiles are constructed and evaluation metrics are com-
puted. Constructing the generated tiles involved multiple meth-
ods, including simply merging adjacent tiles with four possible
combinations. The construction process begins by merging
tiles in groups of four adjacent tiles and then completing the
remaining pixels at the edges with the last generated tiles at the
edges. The edges can be abbreviated as follows: Bottom Left
(BL), Top Left (TL), Top Right (TR), and Bottom Right (BR).
RMSE, PSNR, and SSIM are computed to evaluate the model’s
performance in the test partition. Specifically, these metrics
are calculated between each pair of super-tiles, representing
the generated super-tiles and the corresponding ground truth.
Subsequently, the mean value of each metric across all pairs is
calculated. Notably, the RMSE input values range from [0,1],
while the SSIM values are normalized from [-1,1] to [0,1]. An
SSIM value of 0 indicates no similarity between two images,
whereas an SSIM value of 1 indicates perfect similarity.

D. Super-tile Fusion
Various fusion methods for the super-tiles fusion are em-

ployed, including average, exponential distance, Gaussian dis-
tribution, and a novel method specific for our case. Each



method will be tested and compared both qualitatively and
quantitatively to evaluate their effectiveness. In this section,
method is proposed for fusing super-tiles generated from
overlapping tiles. The fusion process involves computing the
pixel values of the super-tile at position (i, j) by summing the
weighted contributions from individual tiles within the over-
lapping zone. A local coordinate system, (O1, ⃗O1O4, ⃗O1O2),
is assigned to the overlapping region (Fig. 1). The weight
assigned to each tile is determined based on its relative
position within the overlapping region O1O2O3O4. V (i,j)

denote the value of the pixel P (Fig. 1) at position (i, j) in the
the super-tile. The pixel value is computed as follows:

V (i,j) =
∑

T∈C(i,j)

wT · VT (1)

where C(i,j) is the set of all overlapping tiles at position
(i, j). Each point P within the super-tile may fall within
an overlapping zone, where one tile (at the corners), two
tiles (along the edges of the super-tile), or four tiles (in the
remainder of the super-tile) are overlapping. C(i,j) is defined
as:

C(i,j) = {Tk : k ∈ [1, 2, 3, 4],

Tile centered on Ok and overlap the position(i, j)}
(2)

VT represents the pixel value of tile T , and wT is the weight
assigned to tile T . The weights wT are determined using
coefficients αT and computed using the following formula:

wT =
αT∑

T ′∈C(i,j) αT ′
(3)

where αT represents the coefficient associated with tile T ,
and the sum in the denominator is over all tiles within the
overlapping zone C(i,j). Additionally, the sum of weights
wT equals 1, ensuring that the weighted contributions are
normalized: ∑

T∈C(i,j)

wT = 1 (4)

The coefficients αT are determined based on the relative
position of the pixel within the overlapping zone, which is
defined with respect to the local coordinate system. These
coefficients correspond to the areas of the rectangles formed by
point P with the the centers of overlapping tiles. Specifically,
we define the following coefficients:

αT1
= (1− a)(1− b) (5)

αT2
= b(1− a) (6)

αT3
= ab (7)

αT4
= a(1− b) (8)

where a and b (0 ≤ a, b ≤ 1) represent the coordinates of
the pixel within the local coordinate system. The proposed
super-tiles fusion method leverages coefficients α to compute
weights w assigned to individual tiles based on their contri-
butions to the super-tile pixel values. This approach ensures
spatial integrity and minimizes artifacts.

Fig. 1: Proposed fusion method: The final value of each pixel P in the
overlapping zone O1O2O3O4 is a combination of values predicted by
the four overlapping tiles, weighted by the corresponding coefficient.

III. RESULTS

A. Generation and Construction of LST Super-tiles

Fig. 2 illustrates the construction of super-tiles using adja-
cent generated tiles, without fusion. The completion of super-
tiles is achieved by filling in the missing pixels with the
generated tiles at the edges, specifically at the bottom left
(BL), bottom right (BR), top left (TL) and top right (TR)
corners. Based solely on the RGB modality, the generated
super-tiles exhibit a good construction across all construction
methods, closely resembling the ground truth. This observation
is supported by quantitative metrics (TABLE I), which indicate
low values for RMSE and high values for PSNR and SSIM.
However, noticeable artifacts are present in this construction.
Upon incorporating terrain elevation data and land cover
information, improvements are observed both quantitatively,
especially in terms of RMSE, and visually, as depicted in
the accompanying figure. Note in particular that the lower
river temperature is better captured by the RGBDL-based
prediction than by the RGB-only estimation. The addition of
these data enhances the construction, resulting in super-tiles
that more accurately reflect the real LST. Nonetheless, artifacts
are still prominent between the generated tiles, prompting an
investigation into the source of these artifacts and how errors
propagate across all tiles.

Fig. 2: Example of a constructed super-tile, (i) represents the cor-
responding RGB (a) and the expected target (b); (ii) to (v) are
constructed super-tiles with BR, TL, BL and TR construction methods
with respectively RGB (a) and RGBDL modalities (b).



TABLE I: Comparison of super-tiles construction methods.

Modalities Method RMSE PSNR SSIM

RGB

BL 0.071 24.663 0.893
BR 0.071 24.619 0.893
TL 0.071 24.624 0.892
TR 0.071 24.602 0.892

RGBDL

BL 0.065 25.052 0.896
BR 0.066 24.915 0.895
TL 0.065 25.034 0.896
TR 0.066 24.924 0.896

B. Error Localization

To analyze error localization, a tile of mean absolute errors
is calculated, where each pixel represents the average absolute
error between the generated pixel and its corresponding ground
truth pixel. The resulting error tiles for both combinations are
presented in Fig. 3, revealing that errors are not localized
uniformly across the entire tile surface. Our models tend to
make more errors at the edges of tiles compared to the center.
This can be explained by the model losing information from
adjacent tiles at the edges, while the center benefits from more
surrounding information. This finding underscores the impor-
tance of constructing test super-tiles using all overlapping
tiles but in a more context-appropriate manner. Traditional
methods of fusing overlapping tiles, such as averaging, assign
equal weights to all pixels at a given position, which may not
adequately address error localization characteristics (i.e., from
the center to the edges). Consequently, we plan to explore
alternative fusion methods from the state of the art that assign
weights to pixel values based on the proximity of their tile
centers to better address error localization patterns.

(a) (b)

Fig. 3: Mean absolute error (in °C) across tiles for (a) RGB based
model and (b) RGBDL based model

C. Super-tiles Fusion

Several fusion methods are employed to merge overlapping
tiles. For each pixel in the overlapping region, its value
is a combination of the pixel values from the overlapping
tiles at that position. TABLE II illustrates the evaluation
metrics. The fusion methods include the arithmetic aver-
age weighted method (AAW), exponential distance weighted
method (EDW), truncated Gaussian function based method
(TGF), and the proposed method described in the previous
section. The comparison highlights the superiority of fusion
techniques in improving image quality over (BL) construction
method. Among fusion methods, those like AAW, EDW,
TGF, and the proposed approach show enhanced fidelity to

TABLE II: Comparison of super-tiles construction and fusion
methods.

Modalities Method RMSE PSNR SSIM

RGB

BL 0.071 24.663 0.893
AAW 0.068 25.187 0.895
EDW 0.069 25.002 0.895
TGF 0.067 25.192 0.897

proposed 0.067 25.22 0.898

RGBDL

BL 0.065 25.052 0.896
AAW 0.062 25.578 0.898
EDW 0.063 25.35 0.899
TGF 0.062 25.535 0.901

proposed 0.062 25.565 0.901

ground truth images, quantitatively. However, artifact occur-
rence varies, with AAW and EDW methods exhibiting arti-
facts, while TGF and the proposed method effectively suppress
artifacts, leading to smoother image reconstructions (Fig. 4).

Fig. 4: Qualitative comparison of fusion methods on generated super-
tiles, (i) are RGB ((a);(c)) and super-tiles groundtruth ((b);(d)), (ii) to
(v) are super-tiles after fusion methods respectivly with AAW, EDW,
TGF and the proposed method through RGB based model ((a);(c))
and RGBDL based model ((b);(d)).

IV. DISCUSSION

The construction of the generated super-tiles using nonover-
lapping tiles, with many tiles overlapping at the borders,
resulted in a satisfactory level of fidelity to the ground truth
super-tiles. However, clear artifacts are observed, especially
when using RGB data alone, with some improvement when in-
corporating RGBDL information. These artifacts are attributed
to the nonuniform error localization along the generated tiles,
a known issue in U-Net networks due to kernel constraints and
the loss of information at the tile edges compared to the center.
To address this issue, a post-processing method involving the
fusion of all overlapping generated tiles is employed. Fusion
methods demonstrated an enhancement in similarity to the
ground truth compared to construction methods relying solely
on adjacent tiles. While the Average Arithmetic Weighting



(AAW) method achieved quantitative similarity, it does not
yield qualitative similarity due to artifact retention. Results
from the AAW method underscored the effectiveness of the
Truncated Gaussian Fusion (TGF) method and the proposed
method, which assigns greater weight to pixel values from
the nearest tiles’ centers. Utilizing RGBDL modalities with
TGF and the proposed method proved to be the optimal
choice for generating super-tiles that are both similar and
faithful to real data. This is attributed to the need to model
additional data beyond RGB, such as elevation and land cover,
which are essential factors influencing real-world land surface
temperature (LST). Furthermore, fusion methods leverage a
greater number of generated tiles, providing more information
to guide towards the true value, while assigning greater weight
to the most influential tiles, thereby mitigating artifacts. Over-
all, these experimental iterations have led to improvements
in LST estimation from RGB data alone and underscore
the potential of leveraging additional data modalities, such
as elevation and land cover, to further enhance results and
facilitate meaningful LST data imputation for research and
societal applications. While the estimation of LST using RGB
and RGBDL data has shown promising results, there are
avenues for further improvement. We aim to expand this work
to incorporate temporal aspects, which are crucial for LST
estimation. Additionally, increasing the dataset size to better
align with the test and training sets, with a more frequent
overlap of 1/2 tile, is another area we plan to explore to
enhance our results. These considerations will contribute to
refining our methodology and advancing the accuracy of LST
estimation in future iterations of our research.

V. CONCLUSION

This study highlights the effectiveness of employing cGANs
in generating Land Surface Temperature (LST) estimates us-
ing RGB data and its integration with additional modalities.
By leveraging cGANs for LST generation on adjacent tiles,
certain artifacts are observed, prompting the introduction of a
comprehensive tiling strategy to address this issue. Through
the evaluation of fusion methods for artifact removal and
enhancing LST generation accuracy, our findings emphasize
the potential of integrating multi-modal data to improve LST
estimation. These advancements hold promise for addressing
environmental challenges and advancing climate research.
Future research directions may involve expanding temporal
dimensions to further refine LST estimation techniques.
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[9] P. Käfer, S. Rolim, L. Ribeiro Diaz, N. Souza da Rocha, M. Iglesias,
and F. Rex, “Comparative analysis of split-window and single-channel
algorithms for land surface temperature retrieval of a pseudo-invariant
target,” Boletim de Ciências Geodésicas, vol. 26, 01 2020.

[10] L. Wang, Y. Lu, and Y. Yao, “Comparison of three algorithms for the
retrieval of lst from landsat 8 images,” Sensors, 2019.

[11] X. Wang, L. Zhong, and Y. Ma, “Estimation of 30m lsts over the entire
tibetan plateau based on landsat-7 etm+ data and machine learning
methods,” International Journal of Digital Earth, 2022.

[12] M. Kim, D. Kim, and G. Kim, “Examining the relationship between land
use/land cover (lulc) and land surface temperature (lst) using explainable
artificial intelligence (xai) models: A case study of seoul, south korea,”
International Journal of Environmental Research and Public Health,
vol. 19, no. 23, 2022.

[13] A. Sekertekin, “Validation of physical radiative transfer equation-based
land surface temperature using landsat 8 satellite imagery and surfrad
in-situ measurements,” Journal of Atmospheric and Solar-Terrestrial
Physics, vol. 196, p. 105161, 2019.

[14] W. Liu, J. Shi, S. Liang, S. Zhou, and J. Cheng, “Simultaneous
retrieval of land surface temperature and emissivity from the fengyun-
4a advanced geosynchronous radiation imager,” International Journal of
Digital Earth, vol. 15, no. 1, pp. 198–225, 2022.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Advances in Neural Information Processing Systems, vol. 3, 06 2014.

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5967–
5976.

[17] J. Henry, T. Natalie, and D. Madsen, “Pix2pix gan for image-to-image
translation,” 08 2021.

[18] A. Akagic, E. Buza, and M. Horvat, “Mapping rgb-to-nir with pix2pix
image-to-image translation for fire detection applications,” in 34th
Central European Conference on Information and Intelligent Systems,
09 2023.

[19] C. Davidson, V. Jaganathan, A. N. Sivakumar, J. M. P. Czarnecki, and
G. Chowdhary, “Ndvi/ndre prediction from standard rgb aerial imagery
using deep learning,” Computers and Electronics in Agriculture, vol.
203, p. 107396, 2022.

[20] L. Wu, S. Hu, and C. Liu, “Exponential-distance weights for reducing
grid-like artifacts in patch-based medical image registration,” Sensors,
vol. 21, no. 21, 2021. [Online]. Available: https://www.mdpi.com/1424-
8220/21/21/7112

[21] Y. Xu, S. Hu, and Y. Du, “Research on optimization scheme for blocking
artifacts after patch-based medical image reconstruction,” Computational
and Mathematical Methods in Medicine, vol. 2022, pp. 1–17, 07 2022.

[22] D. Müller and F. Kramer, “Miscnn: a framework for medical image
segmentation with convolutional neural networks and deep learning,”
BMC Medical Imaging, vol. 21, 01 2021.

[23] I. Khedher, J.-M. Favreau, S. Miguet, and G. Gesquière, “A Multimodal
Deep Learning Approach for High-Resolution Land Surface Tempera-
ture Estimation,” in 7th International Symposium on Signal Processing
and Intelligent Recognition Systems (SIRS’23), ser. Lecture Notes in
Networks and Systems, PES University. Bangalore, India: Springer
Verlag, Dec. 2023.


