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Deformation control of a 3D soft object
using RGB-D visual servoing and FEM-based

dynamic model
Mandela Ouafo Fonkoua, François Chaumette, and Alexandre Krupa

Abstract—In this letter, we present a visual control framework
for accurately positioning feature points belonging to the surface
of a 3D deformable object to desired 3D positions, by acting
on a set of manipulated points using a robotic manipulator.
Notably, our framework considers the dynamic behavior of the
object deformation, that is, we do not assume that the object
is in its static equilibrium during the manipulation. By relying
on a coarse dynamic Finite Element Model (FEM), we have
successfully formulated the analytical relationship expressing the
motion of the feature points to the six degrees of freedom (6 DOF)
motion of a robot gripper. From this modeling step, a novel
closed-loop deformation controller is designed. To be robust
against model approximations, the whole shape of the object
is tracked in real-time using an RGB-D camera, thus allowing
to correct any drift between the object and its model on-the-fly.
Our model-based and vision-based controller has been validated
in real experiments. The results highlight the effectiveness of the
proposed methodology.

Index Terms—Deformation control, physics-based model, vi-
sual servoing.

I. INTRODUCTION

THE manipulation of deformable objects has become a
major concern in robotics, recently gaining substan-

tial attention within the robotics research community. This
growing interest is due to its important role in enhancing
robot capabilities in various fields, such as surgical robotics,
home and personal robotics, and manufacturing robotics where
tasks involving the manipulation of soft and flexible materials
are required [1]. Despite advancements in soft robotics, the
autonomous manipulation of compliant objects persists as an
ongoing research challenge [1]. In contrast to rigid objects,
deformable objects exhibit infinite degrees of freedom and
highly nonlinear dynamics, introducing significant challenges.

Accurately controlling the position of points belonging to
a deformable object is one of the fundamental operations for
its manipulation [2]. In this work, we focus on the indirect
positioning of a 3D elastic object that consists in driving points
of its surface (feature points) to desired 3D positions by acting
on a set of manipulated points through a robot gripper.
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To autonomously control the deformation of a soft object
using a robot, it is necessary to establish a relationship between
the robot motion and the change in the object deformation.
In the literature, this relation is obtained either by using a
physics-based or geometric-based deformation model, or by
an online estimation of a local deformation model from past
sensor measurements.

A. Model-free deformation control

Recent literature on deformation control of soft bodies
commonly employs a deformation Jacobian [3], [4], [5]. This
Jacobian establishes the relationship between the robot motion
and the deformation of the object. It is typically numeri-
cally estimated based on sensor measurements. In model-free
approaches, the control problem is generally formulated in
sensor measurement space. Instead of using a deformation
Jacobian, other model-free approaches use machine learning to
directly map the sensor measurements to the control velocities
of the robot end-effectors [6], [7], [8]. After obtaining the
model, one can employ a controller such as model predictive
control (MPC) [9] for executing the deformation task. These
approaches do not require an identification of the physical
parameters of the object being manipulated. However, the
success of these approaches heavily depends on the accuracy
of initial estimates for the interaction, and there are potential
issues of losing generality or overtraining in specific situations,
which present difficulties for learned models. Moreover, these
model-free techniques are sensitive to measurement noise and
lack the capability to guarantee beforehand the feasibility of
the desired deformation. The risk of damaging the soft object,
especially in critical scenarios like robot-assisted surgery,
remains a major concern in such instances.

B. Model-based deformation control

To control the deformation of soft objects, methods relying
on physics-based model have been proposed to predict the
behavior of the objects of interest. Wada et al. [10], [11] intro-
duced the problem of indirect simultaneous positioning for soft
objects. They developed a control law using a PID controller
and a Mass-Spring-Model (MSM). However, the validation of
this approach has been limited to simulations involving small
deformations and planar motion. In a more recent development
based on MSM, Makiyeh et al. [12] introduced a deformation
control strategy to indirectly position a single point on a soft
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object by controlling only the translations of the robot end-
effector. Kinio et al. [13] employed a H∞ controller and
a FEM model of the object to carry out the deformation
control task. Ficuciello et al. [14] and Duenser et al. [15]
also considered FEM to control the shape of a soft object by
formulating the problem as an optimization problem. However
their control approaches are open-loop, which reduces their
robustness to model and parameter uncertainties. In a more re-
cent development based on FEM, Koessler et al. [16] proposed
a model-based controller with visual feedback to indirectly
position points belonging to a soft linear object. However their
approach cannot perform deformation at high speed since it
relies on the quasi-static hypothesis which considers that the
object is always in its equilibrium state during the deformation.

FEM-based approaches are also considered in soft robotics:
[17] uses a reduced-order FEM to control a robotic arm, and
[18] applies FEM-based gain-scheduling control for position-
ing the end-effector of a soft trunk robot. As described below,
a different approach is proposed in this paper.

Other types of physics-based models are mesh-free: Fason
et al. [19] used a mesh-free particle method, known as the
reproducing kernel particle method, from which an output
regulator is designed to move some points on the object to
desired 2D locations, this approach being limited to planar
motion. Geometric approaches are another type of model-
based approach. In this category, Shetab-Bushehri et al. [20],
[21] used a model called As-Rigid-As Possible (ARAP) to
model deformable bodies and to automatically control their
shapes. Geometric models only take into account the shape of
the object and can not capture complex behaviors related to
the object properties.

C. Contributions

In this letter, we propose a vision-based and model-based
deformation control framework. Our main contributions are:

• A new analytical form of the relation between the motion
of a robot gripper and the motion of feature points is
derived based on FEM. Contrary to previous work using
FEM, our developments are not based on quasi-static
assumptions, which allows for better robustness against
dynamic effects.

• From the relation obtained, a novel control law is de-
signed, incorporating a feedback term and a feedforward
term whose values are computed from the derived dy-
namic model.

• An experimental validation of the proposed control
framework with two distinct soft objects made of foam.

The remainder of this letter is organized as follows: Section
II outlines the proposed approach, Section III details the
experimental evaluation, and finally Section IV concludes the
letter with a discussion on the approach and on future work.

II. METHODOLOGY

The main challenge addressed in this letter is to generate
the velocities of a robot gripper to guide 3D feature points
on a 3D elastic object to desired locations in a closed-loop
manner. This is achieved through the utilization of a dynamic

physical model and a stationary RGB-D camera. We assume
that the robot gripper remains rigidly attached to the object
throughout the entire manipulation process, and we consider
that the transformation matrix between the RGB-D camera
frame {C} and the robot base frame {B} is known thanks to a
preliminary hand-eye calibration. This is why all the following
equations are expressed in the camera frame. As already said,
contrary to previous approaches [16], [14], [15] we do not
assume that the object is in a quasi-static equilibrium during
its deformation. To make it clear, we describe in Section II-A1
the modeling obtained using this quasi-static assumption while
the dynamic case is described in Section II-A2.

Fig. 1: System configuration. The points depicted on the object
are nodes of the volumetric mesh of the 3D object. The red
points are nodes attached to the gripper, the green points are
the feature points, the blue points are static or free to move,
depending on the chosen configuration, and the black points
are the other points.

A. Modeling

A detailed introduction on how to model deformable objects
using FEM can be found in [22], [23]. In continuum mechan-
ics, 3D deformable objects are modelled by non-linear partial
differential equations of elasticity. Applying FEM to the non-
linear equations of motion results in the following simplified
equation,

MMM(xxx)ẍxx = fffe(t)− fff(xxx, ẋxx) (1)

where xxx ∈ R3n is the vector of generalized degrees of freedom
that corresponds to the 3D positions of the nodes of a volu-
metric 3D mesh describing the object topology, ẋxx the vector
of velocities, ẍxx the vector of accelerations, MMM(xxx) ∈ R3n×3n is
the mesh mass matrix. fff represents the internal elastic forces
applied to the deformable object depending on the current state
and fffe gathers external forces applied on the object. We split
the external forces in three parts: the known external forces fffp

(like gravity for example), the external forces due to known
constraints fff c (like fixing a part of the object, for example),
and external forces due to actuators fffa (which in our case is
due to the displacement of the gripper attached to the object).
We can thus rewrite (1) as follows,

MMM(xxx)ẍxx = fffp(t) + fff c(t) + fffa(t)− fff(xxx, ẋxx) (2)

In order to be applicable for our control purposes, (2) needs
to be integrated (numerically) over time, to find a relation
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between the velocities of the manipulated points and the
velocities of the feature points. For that, we employ a time-
stepping implicit scheme, specifically the backward Euler
method, to ensure unconditional stability of the numerical
integration [22].

In the following sections, we unveil the resulting model
for both quasi-static and dynamic cases.

1) Quasi-static case: In this case, (2) becomes,

fffp(t) + fff c(t) + fffa(t)− fff(xxx) = 000 (3)

The internal elastic forces fff(xxx) are non-linear. To address
this, we use a Taylor series expansion to compute a unique
linearization of fff(xxx) per time step h. This yields:

fff(xxxt+h) = fff(xxxt) +
∂fff(xxxt)

∂xxx
∆xxx (4)

with ∆xxx = xxxt+h − xxxt. Combining (3) and (4) leads to,

∂fff

∂xxx
∆xxx = fff t+h

p + fff t+h
c + fff t+h

a − fff(xxxt) (5)

= ∆fffp +∆fff c +∆fffa + fff t
p + fff t

c + fff t
a − fff(xxxt) (6)

where ∆fff i = fff t+h
i −fff t

i, i ∈ {p, c, a}. Using (3) at time step
t, (6) becomes,

∂fff

∂xxx
∆xxx = ∆fffp +∆fff c +∆fffa (7)

To find the relationship between the manipulated points and
the feature points, like in [16] we partition (7). First we define
xxxf = SSSfxxx, xxxm = SSSmxxx, xxxc = SSScxxx, and xxxo = SSSoxxx, with
SSSf , SSSm, SSSc, and SSSo being selection matrices. The indices f ,
m, c, and o correspond respectively to the feature points (the
green points in Fig. 1), the manipulated points (the red points
attached to the robot gripper in Fig. 1), the static points if
any (the blue points in Fig. 1), and the other points (the black
points in Fig. 1). Now we can write xxx as follows,

xxx = SSST
f xxxf +SSST

mxxxm +SSST
o xxxo +SSST

c xxxc (8)

Let ASASAS = ∂fff
∂xxx and bSbSbS = ∆fffp + ∆fff c, then by applying the

partition in (7), dropping small variation ∆ for dotted time
derivatives, we obtain:SSSf

SSSm

SSSo

ASASAS

[
SSST

f SSST
mSSST

o

] ẋxxf

ẋxxm

ẋxxo

 =

SSSf

SSSm

SSSo

 ḃSḃSḃS +

SSSf

SSSm

SSSo

 ḟffa (9)

since ẋxxc = 000 for the static points. In the quasi-static case,
characterized by low velocities and small displacements be-
tween consecutive time steps, ḃSḃSḃS can be considered as 000.
Furthermore, as actuation forces are exclusively applied to the
manipulated points, (9) is transformed to:AAAff AAAfm AAAfo

AAAmf AAAmm AAAmo

AAAof AAAom AAAoo

ẋxxf

ẋxxm

ẋxxo

 =

 000

SSSmḟffa

000

 (10)

where AAAij = SSSiASASASSSS
T
j with i, j ∈ {f,m, o}. From (10) we

can deduce,
ẋxxf = −AAA−1

f AAAmẋxxm (11)

where AAAf = AAAff − AAAfoAAA
−1
oo AAAof and AAAm =

AAAfm −AAAfoAAA
−1
oo AAAom. We thus obtain a linear relationship as

established in [16], [11], [21].

2) Dynamic case: In this scenario, applying the backward
Euler method to integrate (2) results in,

MMM(ẋxxt+h − ẋxxt) = h(fff t+h
p + fff t+h

c − fff(xxxt+h, ẋxxt+h)) + hfff t+h
a

(12)

xxxt+h = xxxt + hẋxxt+h (13)

From (12) one can see that computing the internal elastic
forces fff requires the position and the velocities at time-step
t+h, which are unknown at the current time step t. To proceed,
we take the first order approximation of the internal forces
fff [24]:

fff(xxxt+h, ẋxxt+h) = fff(xxxt, ẋxxt) +
∂fff(xxxt, ẋxxt)

∂xxx
dxxx+

∂fff(xxxt, ẋxxt)

∂ẋxx
dẋxx

(14)
with dxxx = xxxt+h − xxxt and dẋxx = ẋxxt+h − ẋxxt. Combining (12),
(13) and (14) leads to,(

MMM + h
∂fff

∂ẋxx
+ h2 ∂fff

∂xxx

)
dẋxx =

− h2 ∂fff

∂xxx
ẋxxt + h

(
fff t+h
p + fff t+h

c − fff(xxxt, ẋxxt)
)
+ hfff t+h

a (15)

Before applying partition to (15), we obtain from (8):

dẋxx = SSST
f dẋxxf +SSST

mdẋxxm +SSST
o dẋxxo (16)

since ẋxxc = 000 for static points. Then, let

ADADAD = MMM + h
∂fff

∂ẋxx
+ h2 ∂fff

∂xxx
(17)

bDbDbD = −h2 ∂fff

∂xxx
ẋxxt + h

(
fff t+h
p + fff t+h

c − fff(xxxt, ẋxxt)
)

(18)

Applying the partition to (15), and using (16), we obtain:SSSf

SSSm

SSSo

ADADAD

[
SSST

f SSST
mSSST

o

] dẋxxf

dẋxxm

dẋxxo

 =

SSSf

SSSm

SSSo

bDbDbD+h

SSSf

SSSm

SSSo

fff t+h
a

(19)
Since there is no external actuation forces applied on the
feature points and on the other points, (19) simplifies to:AAAff AAAfm AAAfo

AAAmf AAAmm AAAmo

AAAof AAAom AAAoo

dẋxxf

dẋxxm

dẋxxo

 =

 bbbf
bbbm + hSSSmfff t+h

a

bbbo

 (20)

where AAAij = SSSiADADADSSS
T
j , bbbi = SSSibDbDbD, with i, j ∈ {f,m, o}. Let

us note that AAAij share the same expressions as in the previous
section. However, their values completely differ since they are
obtained from ADADAD, not from ASASAS . Finally, from (20) we deduce,

dẋxxf = −AAA−1
f AAAmdẋxxm +AAA−1

f (bbbf −AAAfoAAA
−1
oo bbbo) (21)

Note that AAAf and AAAoo are always invertible since (7) and (15)
have unique solutions, given that ASASAS and ADADAD are non-singular
matrices. This is because the mass matrix MMM and the stiffness
matrix ∂fff

∂xxx are positive definite [23], and the damping term
∂fff
∂ẋxx is modeled as Rayleigh damping. Since dẋxxf = ẋxxt+h

f − ẋxxt
f
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and dẋxxm = ẋxxt+h
m − ẋxxt

m, it follows from the previous equation
that,

ẋxxt+h
f = −AAA−1

f AAAmẋxxt+h
m + γγγ (22)

where γγγ = AAA−1
f (bbbf −AAAfoAAA

−1
oo bbbo+AAAmẋxxt

m)+ẋxxt
f is a term that

depends on the internal elastic forces applied on the object and
on the velocities of the manipulated and feature points at the
previous time-step. In summary, γγγ encapsulates the cumulative
effects of previous actions applied to the manipulated object.
Note that this term does not appear in the quasi-static case.

B. Control

Let us now define xxx∗
f as the desired 3D position of the

feature points xxxf . Our control objective is to drive xxxf ex-
ponentially toward xxx∗

f by acting on manipulated points xxxm

through the robot gripper.
To model the interaction between the robot gripper and the

deformable object, as in [25] we consider the part of the object
rigidly attached to the robot gripper as a rigid body, whose
center of gravity G coincides with the center of the robot
gripper. On Fig. 1 one can clearly see that the manipulated
points (red points) compose this rigid body. Let Am be the
set of manipulated points, ωωωG ∈ R3 the angular velocity of
the robot gripper, and vvvG ∈ R3 its linear velocity. For a point
Pi ∈ Am in the rigid part of the deformable object, we can
write its velocity as follows,

ẋxxPi = vvvG − (xxxPi − xxxG)×ωωωG (23)

For all points Pi ∈ Am we have:

ẋxxm =


ẋxxP1

ẋxxP2

...
ẋxxPM

 =


III3×3 −[xxxP1 − xxxG]×
III3×3 −[xxxP2 − xxxG]×

...
III3×3 −[xxxPM

− xxxG]×


[
vvvG
ωωωG

]
= JJJ

[
vvvG
ωωωG

]
(24)

where III3×3 is the identity matrix of size 3×3, M is the number
of manipulated points, and [uuu]× is the skew symmetric matrix
related to the vector uuu.

We substitute (24) in (22) to obtain the following expres-
sion:

ẋxxf = JDJDJD

[
vvvG
ωωωG

]
+ γγγ (25)

where JDJDJD = −AAA−1
f AAAm JJJ is the deformation Jacobian. To ful-

fill our control objective, using (25) we propose the following
control law, [

vvvG
ωωωG

]
= −JDJDJD+

(
λ
(
xxxf − xxx∗

f

)
+ γγγ

)
(26)

with JDJDJD
+ the pseudo-inverse of JDJDJD and λ a positive gain.

Using the quasi-static model to design a control law leads to
a control scheme akin to (26), with the strong distinction that
the deformation Jacobian JDJDJD is not the same, and there is no
feedforward term.

III. EXPERIMENTS

A. Experimental Setup and Implementation

Fig. 2 illustrates the experimental setup employed to val-
idate our methodology. It features a 7-DOF Franka Emika
Panda robot with its gripper rigidly attached to the soft body
during manipulation. The setup also includes a static RGB-
D Intel RealSense-D435 camera for the visual tracking of
the object shape and markers located on it that represent the
feature points. For the software part (see Fig. 3), we used the
ViSP library [26] both to acquire/process the RGB-D frames
from the camera and to control the robot. The terms essential
for computing our control law can not be obtained directly
from the object itself but rather from a simulator utilizing
the FEM to solve the dynamics equations of a deformable
elastic object. For that, we used SOFA [27]. As illustrated in
Fig. 3, we can have access from SOFA to all the quantities
required to compute the proposed control law (26). Finally, all
computations were executed on a laptop with Intel® CoreTM
i7 CPU @ 2.70GHz × 20, leading to a control rate at 60 Hz.

Fig. 2: Experimental setup.

Fig. 3: Block diagram of our approach: visual deformation
tracking in blue, visual marker tracking in pink, physics-based
simulator in red and the closed-loop control law in black.

B. Deformation Tracking using an RGB-D camera

Tracking the deformations of the soft object is an important
part of our approach. To obtain a good estimate of the
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deformation Jacobian JDJDJD and the additional term γγγ, it is
crucial that the object model closely mirrors the configuration
of the real object. To achieve this alignment, we segment the
current point cloud of the object that is provided by the RGB-
D camera and use it to constrain the model to match the
shape of the real object. This strategy enhances the robustness
to uncertainties in the physical parameters of the object and
mitigates errors accumulated during simulation, which could
otherwise lead to an unrealistic object representation.

The problem of tracking deformation consists of fitting
the segmented point cloud of the object with its volumetric
mesh [28]. To obtain this volumetric mesh, first, we need a
closed surface mesh, which can be obtained either through
3D reconstruction techniques or from a 3D CAD model.
Subsequently, a coarse volumetric mesh is generated by filling
the surface mesh with tetrahedra, a process facilitated using
the Gmsh tool [29].

Let us denote by YYY = {yyyi}nYYY

i=1 the segmented point
cloud of the object at the current image/depth frame k. To
obtain YYY , the object is first segmented from the RGB image
using a color thresholding algorithm. The resulting segmented
image is intersected with the aligned depth map to obtain the
segmented depth map of the object which is back-projected in
the camera frame to obtain the segmented point cloud of the
visible surface of the object. Let XXX = {xxxi}nXXX

i=1 be the set of
vertices of the volumetric mesh at the previous image/depth
frame k − 1. The goal is then to find the positions of points
in XXX at the current image/depth frame k, by fitting XXX to YYY
following the same procedure as described in [28], where
forces are computed to be applied on the volumetric mesh
to deform it. By relying only on forces computed using the
method described in [28], excessive oscillations may occur
in the tracking. To prevent this, we also add damping forces
computed as described in [30]. Those forces can be regarded
as visual constraints. In addition to the visual constraints, we
incorporate other known constraints, such as fixed position
constraints for the static points, and the position and orienta-
tion of the robot gripper. The physics-based simulator (in our
case, SOFA) then estimates the deformation of the volumetric
mesh by solving the dynamic equations under these constraints
before the next image/depth frame k + 1 arrives.

In addition to the volumetric mesh of the object, SOFA
requires its physical parameters namely the Young modu-
lus E and the Poisson ratio ν. Achieving accurate estimations
of these parameters involves conducting meticulous material
testing with the appropriate equipment. An alternative, albeit
less precise method [12], involves utilizing an RGB-D sensor,
a force sensor mounted on the robot, and a physics-based
simulator (SOFA) for identifying E and ν. Notably, our
approach does not necessitate a precise estimation of E and ν,
a rough estimate is sufficient, and the identification technique
proposed in [31] was satisfactory enough.

C. Results

The effectiveness of our deformation control scheme was
evaluated using two distinct soft objects, as illustrated in
Fig. 4. Their mesh was respectively composed of 378 and

450 points. To validate our methodology, we measured the
3D positional error between the desired positions of the feature
points and their actual positions during the time evolution of
the robotic task, aiming to exponentially drive this positional
error close to zero. In the following, we present results on the
control of one and two feature points. In all the subsequent
experiments, the control gain λ in (26) has been set to λ = 1.5.
The results are also presented in the accompanying video.

Fig. 4: Soft objects used in our experiments.

The first experiment is presented in Fig. 5. In that case, there
are no static object points and only the 3D position of one fea-
ture point (in green) is controlled. It has been selected far away
from the gripper to enhance the influence of dynamic effects.
This green point represents the projection of the feature point
in the image, using a fiducial marker rigidly attached to the
object so that it is easily tracked using the ViSP Libray [26].
It is requested to reach first the 3D position depicted in red
and then the 3D position depicted in yellow. The error of the
positioning task is directly measured by the RGB-D camera.
The measured depth exhibits oscillations within a 2 mm range,
attributed to the depth measurement noise inherent to this type
of camera. Consequently, convergence is considered when the
error norm is within 2 mm. The blue, green, yellow, and
red solid lines in Figs. 5a and 5c represent respectively the
evolution of the positioning error along (xxx, yyy, zzz) axes of the
camera frame and the error norm.

The results obtained with our complete control law (26) are
presented on Figs. 5a and 5b while the results obtained with
the control law derived with the quasi static assumption are
depicted on Figs. 5c and 5d. Our control law clearly exhibits
better performance compared to the alternative method in
terms of time-to-convergence, and it demonstrates reduced
sensitivity to dynamic effects, such as oscillations induced
by gravity and rapid and noisy movements of the gripper
observed when using the quasi-static assumption. The dynamic
performance of our complete controller is also more apparent
in the accompanying video.
The second experiment is presented in the first column of

Fig. 6, which again consists of positioning one point on the
surface of the object at a desired 3D location. Now, the bottom
of the object is rigidly attached to a bar and, consequently,
constrained to be static. This is to enhance the compliant
behavior of the object during the manipulation task. The green
and yellow points in Fig. 6a, as well as the blue, green, yellow,
and red solid lines in Fig. 6i have the same meaning as in the
previous experiment. We can note that the proposed control
law rapidly decreases the error norm exponentially, reducing it
from approximately 150 mm to close to 0 mm, which validates
the modeling proposed in the previous section. We can notice
a convergence in less than 3 seconds.
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Fig. 5: First experiment: (a-b) Evolution of the positioning errors and robot gripper control velocity in the dynamic case. (c-d)
Evolution of the positioning errors and robot gripper control velocity in the quasi-static case. (e-g) Snapshot of the experiment.
From left to right: initial configuration, intermediate configuration, configuration at the end of the first task.

Since our gripper has 6 DOF, it is possible to control the
3D position of 2 object points. The second column of Fig. 6
presents the results of such a task. In Fig. 6e the green points
represent the projection of the feature points in the image as
in the previous scenario. The yellow and red points represent
respectively the projection in the image of the desired locations
of the left green point and right green point. Fig. 6j shows the
evolution of the 3D positioning errors along the (xxx, yyy, zzz) axes
of the camera frame of each feature point. The plots eee1x, eee1y ,
and eee1z correspond to the left feature point, while the plots
eee2x, eee2y , and eee2z correspond to the right feature point. The plot
||eee|| depicts the evolution of the error norm in the positioning
of the two points over time. Like in the previous experiment,
we can notice a fast exponential convergence of the different
errors close to 0mm in less than 3 seconds. Figs. 6k and 6l
depict the evolution of the velocities of the robot-gripper over
time during the manipulation. In the case of one point, our
controller exhibits almost no rotational velocity since there

are only 3 DOF to control. This is in contrast to the case
with two points where gripper rotation is required to achieve
the task. It is important to note that the manipulator can only
drive the features to physically reasonable targets, depending
also on the grasping configuration.

The results for the second object depicted on Fig. 4 are
presented in the accompanying video. Due to its more com-
plex shape and perception limitations, we can note a more
shakier behavior. In addition, the video also demonstrates the
robustness of our control scheme against external disturbances.

IV. CONCLUSION

In this letter, we presented a physics-based approach to
control the 6 DOF of a robot gripper using an RGB-D
camera to position feature points belonging to a soft object
by manipulating distant points. We also combined real-time
visual tracking of the object for minimizing the gap between
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Fig. 6: Second and third experiment: the first column show the results for positioning one point while the second column
show the results for positioning two points. (a), (e) Soft object in initial state. (b), (f) Model of the soft object in its initial
state within SOFA. (c), (g) Soft object after deformation process. (d), (h) Model of the soft object after deformation process
within SOFA. (i), (j) 3D errors in mm measured over time for the one-point and two-points positioning task respectively. (k),
(l) linear velocities in m/s and angular velocities in rad/s of the robot gripper for the one-point and two-points positioning
task respectively. (m), (n) 3D trajectory in the camera frame of the 3D feature points from their initial position in green to
their desired position in yellow and red for the one-point and two-points positioning task respectively.

the FEM model used and the deformations observed from the
RGB-D camera. Based on the FEM model, we derived the
analytical relationship between the motion of the robot gripper
and the motion of the feature points without considering

the classical quasi-static assumption. Using that relation we
proposed a visual servoing framework to automatically control
the deformation of a soft object. The proposed approach was
evaluated in real experiments involving two deformable objects
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with different topology, and appealing results were presented
involving large deformations. Experiments also show that it is
beneficial to take into account the dynamic effect in the control
law to compensate for the transient dynamic behavior of the
object, leading to a far better behavior than the one obtained
using the quasi-static assumption.

As future work, we will focus on the control of the whole
shape of the object using a dual-arm robot. Since the shape
control of deformable objects is an under-actuated problem, it
will be necessary to define more advanced features that could
provide a controllable, low-dimensional representation of the
overall shape. To conclude, by analogy with classical visual
servoing where the interaction matrix related to a point of a
rigid object is involved for designing more complex visual
features such as moments [32], we have introduced in this
work its counterpart for a point belonging to a deformable
object. From this knowledge we plan to elaborate high-level
features for soft object manipulation in future work.
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