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Abstract

The Electric Autonomous Dial-A-Ride Problem (E-ADARP) consists in scheduling a fleet of electric autonomous

vehicles to provide ride-sharing services for customers that specify their origins and destinations. The E-ADARP

considers the following perspectives: (i) a weighted-sum objective that minimizes both total travel time and total

excess user ride time; (ii) the employment of electric autonomous vehicles and a partial recharging policy. This

paper presents the first labeling algorithm for a path-based formulation of the DARP/E-ADARP, where the main

ingredient includes: (1) fragment-based representation of paths, (2) a novel approach that abstracts fragments to

arcs while ensuring excess-user-ride-time optimality, (3) construction of a sparser new graph with the abstracted

arcs, which is proven to preserve all feasible routes of the original graph, and (4) strong dominance rules and

constant-time feasibility checks to compute the shortest paths efficiently. This labeling algorithm is then integrated

into Branch-and-Price (B&P) algorithms to solve the E-ADARP. In the computational experiments, the B&P

algorithm achieves optimality in 71 out of 84 instances. Remarkably, among these instances, 50 were solved optimally

at the root node without branching. We identify 26 new best solutions, improve 30 previously reported lower bounds,

and provide 17 new lower bounds for large-scale instances with up to 8 vehicles and 96 requests. In total 42 new

best solutions are generated on previously solved and unsolved instances. In addition, we analyze the impact of

incorporating the total excess user ride time within the objectives and allowing unlimited visits to recharging stations.

The following managerial insights are provided: (1) solving a weighted-sum objective function can significantly

enhance the service quality, while still maintaining operational costs at nearly optimal levels, (2) the relaxation on

charging visits allows us to solve all instances feasibly and further reduces the average solution cost.

Keywords: Dial-A-Ride Problem, Electric Autonomous Vehicles, (Excess-)user-ride-time optimal scheduling,

Branch-and-Price, Labeling Algorithm

1. Introduction

The Dial-A-Ride Problem (DARP) consists in designing minimum-cost routes by scheduling a fleet of vehicles to

serve a set of customers who specify their origins and destinations (Cordeau & Laporte, 2007). For each customer

request, a time window is defined on either the origin or the destination. The DARP was first introduced in the

∗Corresponding author: yue.su@enpc.fr
Email addresses: yue.su@enpc.fr (Yue Su ), nicolas.dupin@univ-angers.fr (Nicolas Dupin), sophie.parragh@jku.at (Sophie N.

Parragh), jpuchinger@em-normandie.fr (Jakob Puchinger)

Preprint submitted to Transportation Research Part B: Methodological June 24, 2024



context of providing door-to-door service for people with reduced mobility, e.g., Madsen et al. (1995); Toth &

Vigo (1996). In recent years, the concept of the DARP has been extended to adopt requests from diverse clients

and provide them with ride-sharing services. Many demand-responsive systems have been constructed, such as

the mobile-based app of BlaBlaCar in France and Didi Hitch in China (Jin et al., 2018). With the blooming of

on-demand ride-sharing services, considerable attention has arisen to solving the DARP and its variants (Cordeau &

Laporte, 2007; Ho et al., 2018). The DARP is a generalization of several NP-hard problems such as the Pickup and

Delivery Vehicle Routing Problem (PDPVRP) and the Vehicle Routing Problem with Time Windows (VRPTW)

and is therefore very difficult to solve to optimality using exact methods. Consequently, only a few studies have

proposed exact methods, e.g., Cordeau (2006); Braekers et al. (2014); Gschwind & Irnich (2015). The DARP is

even more challenging than the PDPVRP and the VRPTW, as user inconvenience needs to be considered while

minimizing the operational cost (Cordeau & Laporte, 2003). The classical DARP model imposes a maximum user

ride time constraint on every user request to maintain a certain level of service quality. Due to this constraint in

combination with time windows, scheduling service start times as early as possible does not necessarily result in

a feasible schedule for a given sequence of pickup and delivery locations, given that one exists. On the contrary,

allowing delays in the service start time may help to eliminate unnecessary waiting time for succeeding nodes and, as

such, reduce the user ride time. Heuristic solution methods for the DARP usually invoke the “eight-step” procedure

of Cordeau & Laporte (2003), which composes a feasible schedule with the latest possible service start time at the

origin depot and subsequently delays service start times at pickup nodes using the notion of forward time slack

(Savelsbergh, 1992) while respecting maximum user ride time constraints. As a result, the complexity of the route

evaluation in the DARP rises substantially. There are scheduling procedures aimed at minimizing the total (excess)

user ride time for the DARP (e.g., Molenbruch et al. (2017); Bongiovanni et al. (2024)). However, they are all

heuristic methods and cannot guarantee the (excess-)user-ride-time optimality.

This article addresses the Electric Autonomous DARP (E-ADARP), which was first formulated by Bongiovanni

et al. (2019). Although the E-ADARP shares some constraints with the classical DARP (Cordeau & Laporte, 2007),

the E-ADARP contains other problem-specific features that derive from the electric and autonomous nature of

vehicles. First, the use of an electric vehicle fleet necessitates the calculation of State of Charge (SoC) when a vehicle

arrives at a node in order to prevent vehicles from running out of charge. Vehicles make detours to recharging

stations when necessary, and partial recharging is allowed at recharging stations. Second, considering the autonomy

of vehicles removes the maximum route duration constraints and makes the E-ADARP more difficult to solve.

Also, the autonomy of vehicles offers the possibility to operate vehicles in a non-stop manner. As autonomous

vehicles need to continuously relocate during their non-stop service, the destination depot is no longer predefined.

Another important feature is that the E-ADARP employs a weighted-sum objective, including total travel time and

total excess user ride time. Incorporating the total excess user ride time into the objective function offers tangible

advantages for ride-sharing service providers. It enables them to greatly improve service quality (i.e., to reduce

total excess user ride time) while yielding very small increases in operational costs (i.e., total travel time). However,

solving such a weighted-sum objective function is challenging, as it requires obtaining the excess-user-ride-time

optimal schedule for an E-ADARP route. This task is even more complicated when designing a labeling algorithm

to solve column-generation subproblems of the E-ADARP, as each E-ADARP partial path is not fixed until it is
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extended to the sink node (i.e., destination depot). In this case, one must decide all excess-user-ride-time optimal

schedules from battery-feasible schedules along the extension. In this paper, we first propose a Column Generation

(CG) algorithm relying on a highly-efficient labeling algorithm to solve the E-ADARP. Additionally, we consider

adding valid cuts to strengthen the quality of lower bounds. Then, we integrate the developed CG algorithm into

the B&P scheme to solve the E-ADARP exactly.

The contributions of our work are summarized as follows:

• From a theoretical perspective: We propose the first labeling algorithm for a path-based formulation of

the DARP/E-ADARP that can deal with minimizing the total (excess) user ride time. We first present a

fragment-based representation of the resource-constrained paths. On each fragment, we apply a new approach

to determine the minimum excess user ride time and abstract the fragment to an arc that captures all

excess-user-ride-time optimal schedules. We then construct a new graph that preserves all feasible routes of

the original one, and we ensure excess-user-ride-time optimality on each arc of the new graph. We develop

an efficient labeling algorithm with strong dominance rules on the new graph to allow fast shortest-path

computations in solving the CG subproblems of the E-ADARP.

• From an experimental perspective: The numerical results demonstrate the superiority of our CG and

B&P algorithms over the state-of-the-art methods. Our CG algorithm solves 50 out of 84 instances optimally

at the root node and obtains 40 equal lower bounds and 24 better lower bounds than those reported in

Bongiovanni et al. (2019). Twenty-two new best solutions and 15 new optimal solutions are identified with our

CG algorithm on previously solved and unsolved instances. On larger-scale instances, the CG algorithm yields

14 better solutions as well as 17 new lower bounds, compared to the best-reported heuristic results of Su et al.

(2023). By integrating the CG algorithm into the B&P framework, we finally solve 71 out of 84 instances

optimally within the two-hour time limit, while the B&C algorithm can only solve 50 instances optimally. In

addition, our B&P algorithm obtains 26 new best solutions and 30 improved lower bounds. On larger-scale

instances, we obtain 16 new best solutions, compared with the existing results of Su et al. (2023).

• From a model perspective: In the initial version of the E-ADARP in Bongiovanni et al. (2019), at-most-one

charging visit is allowed on each recharging station. Then, they extended their model to allow at-most-three

charging visits per station by duplicating the set of recharging stations. In our work, we propose a more

general version of the E-ADARP, which allows unlimited visits to each recharging station.

• Managerial insights and other interesting findings: We investigate the impact of incorporating the total

excess user ride time within the objectives and allowing unlimited charging visits to each recharging station.

The following managerial insights are provided: (1) compared with the optimal results of solely minimizing

operational costs (i.e., total travel times), we achieve substantial improvements in service quality (i.e., total

excess user ride times) with only a slight increase in the other objective. This result aligns with the preliminary

results outlined in Bongiovanni et al. (2019) and provides practical benefits for service providers: they can

significantly improve service quality while maintaining nearly optimal operational costs. (2) By removing the

restriction on charging visits, all instances can be solved feasibly, and their solution costs are reduced by 0.65%
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on average. We also analyze the impact of applying different column initialization strategies. We find that

applying an efficient algorithm to initialize the column pool may sometimes accelerate convergence.

This paper is organized into six sections. Following the introduction, Section 2 presents an overview of related

literature in the DARP and Electric VRPs (E-VRPs). In Section 3, we present the problem definition and the

notations of sets, parameters, and variables used throughout the paper. An extended formulation of the E-ADARP

is given at the end of this section. Section 4 introduces the proposed CG and B&P algorithms. The results of the

proposed CG and B&P algorithms are presented in Section 5. Finally, Section 6 discusses conclusions and extensions.

2. Literature Review

Following the features of the E-ADARP, this section briefly reviews the literature that considers partial recharging

in E-VRPs and emphasizes literature that applies CG and B&P. Then, we review articles related to DARPs with

Electric Vehicles (EVs) and those that specifically minimize the excess user ride time.

2.1. Related Literature of E-VRPs

The E-VRP was first introduced by Conrad & Figliozzi (2011) and has been extensively studied in recent years.

Schneider et al. (2014) proposed the Electric Vehicle Routing Problem with Time Windows and Recharging Stations

(E-VRPTW). Their work considered customer time windows and limited vehicle capacities, and introduced new

E-VRP instances. Since then, several problem variants of the E-VRPTW have been proposed considering different

problem features.

Many works relax the full recharging assumption to a partial recharging policy, e.g.,(Bruglieri et al., 2015; Keskin

& Çatay, 2016; Desaulniers et al., 2016; Duman et al., 2021; Ceselli et al., 2021). The majority of these articles

develop meta-heuristic algorithms to solve the problem, e.g., Felipe et al. (2014); Hiermann et al. (2019); Montoya

et al. (2017); Froger et al. (2017), while some of them propose exact methods. The representative work is Desaulniers

et al. (2016), where the authors investigate four E-VRP variants: E-VRP with full recharging plus single/multiple

visits to recharging stations and E-VRP with partial recharging plus single/multiple visits to recharging stations.

For each variant, customized mono- and bi-directional labeling algorithms are proposed to solve the CG subproblems

within a B&P framework. Desaulniers et al. (2020) further accelerate their previous labeling algorithms with a

variable-fixing-based acceleration strategy, which yields significant speedup. Recently, Duman et al. (2021) develop

both an exact (i.e., Branch-and-Cut-and-Price, hereafter B&C&P) and a CG-based heuristic algorithm for solving

E-VRPTW. Six acceleration techniques are applied, and both the proposed heuristic and exact algorithm obtain

a number of new best and optimal solutions. Lam et al. (2022) investigate a more practical case of EVRPTW in

which the availability of chargers at the recharging stations and a piecewise-linear recharging time is taken into

account. A B&C&P is proposed and is capable of solving instances with 100 customers.

2.2. Related Literature of DARPs with EVs

Several articles have investigated the impact of EVs on the DARP. Masmoudi et al. (2018) is the first work to

investigate a version of the DARP with EVs. Their model considers a battery swapping technique to recharge electric

vehicles and applies a realistic energy consumption rate as in Genikomsakis & Mitrentsis (2017); the battery swapping
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time is a constant while the energy consumption on each arc varies, influencing the routing results. Masmoudi et al.

(2018) propose Evolutionary Variable Neighborhood Search (EVO-VNS) algorithms that can solve instances with

up to three vehicles and 18 requests. Bongiovanni et al. (2019) investigate EAVs in the context of the DARP and

propose a new problem variant, namely the E-ADARP. The authors impose a minimum battery level (defined by γQ,

where γ is the minimum battery level ratio and Q is the total battery capacity) at the end of the route to restrict the

vehicle’s SoC at the destination depot. They analyze three different γ values, i.e., γ ∈ {0.1, 0.4, 0.7}, representing a

minimum SoC of 10%, 40%, and 70% of the total battery capacity must be kept when the vehicle returns to the

destination depot. As the γ values rise, the problem becomes more constrained and more challenging to solve. The

authors propose a Branch-and-Cut algorithm (B&C) that solves 42 out of 56 instances optimally in less-constrained

cases (i.e., γ = 0.1, 0.4). However, the proposed B&C algorithm cannot obtain feasible solutions for 9 out of 28

instances within two hours of run time in the highly-constrained case (i.e., γ = 0.7). Moreover, for the instances that

are not solved optimally, the reported lower bounds still have important gaps (with up to 9%) to the best objective

values. The largest instance that can be solved optimally by the B&C algorithm contains 5 vehicles and 40 requests.

More recently, Su et al. (2023) propose a Deterministic Annealing (DA) local search, which provides near-optimal

solutions within reasonable computational times. The authors construct a large-sized benchmark instance set and

provide results for instances with up to 8 vehicles and 96 requests. Bongiovanni et al. (2022) extend the static

E-ADARP to the dynamic E-ADARP and propose a Machine Learning-based Large Neighborhood Search (MLNS),

where random forest classification is applied in the selection phase of destroy and repair operators. The proposed

MLNS algorithm outperforms the Adaptive Large Neighborhood Search (ALNS) metaheuristic of Ropke & Pisinger

(2006) by nine percent on average in terms of solution quality, at the cost of additional computational time generated

from solving the prediction problem at every iteration. Kullman et al. (2022) propose an Electric Ridehail Problem

with Centralized Control (E-RPC). They employ reinforcement learning to the E-RPC, and develop model-free

policies which anticipate demand without any prior knowledge. Most recently, Stallhofer (2023) proposes to solve

the E-ADARP by introducing a Mixed-integer Linear Programming (MILP) model that relies on an event-based

graph. They have separated valid cuts to enhance the developed model. Preliminary results on a subset of the

E-ADARP instances set are reported, where our method outperforms the event-based MILP model in both solution

quality and computational efficiency.

2.3. Related Literature of Excess User Ride Time Minimization

Several works have specifically minimized excess user ride time in the DARP. Parragh et al. (2009) observe the

“eight-step” procedure in Cordeau & Laporte (2003) does not necessarily minimize excess user ride time. Therefore,

the authors adapt the forward time slack calculation to avoid increasing the excess user ride time for a route.

However, the adapted procedure leads to a more restrictive feasibility check and may result in incorrect infeasibility

declarations. This drawback is fixed by the scheduling heuristic proposed by Molenbruch et al. (2017). The heuristic

first sets the excess ride time of each request to its lower bound to construct a potentially infeasible schedule and

then shifts service start times at some nodes to recover the infeasibility while minimizing excess user ride time.

However, the developed scheduling procedures in Parragh et al. (2009) and Molenbruch et al. (2017) cannot ensure

excess-user-ride-time optimality for a given route. Recently, Bongiovanni et al. (2024) have proposed a scheduling
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heuristic for the DARP, which is then extended to the E-ADARP by integrating a battery management heuristic.

Their algorithm is shown to return optimal solutions in almost all of the investigated instances (both for the DARP

and E-ADARP). Furthermore, while showing a worst-case quadratic complexity, it is also shown to be efficient in

practice. Then, Su et al. (2023) have introduced the first exact method to calculate the value of the minimal total

excess user ride time for a given E-ADARP route. However, their method does not encompass the determination of

schedules optimized for minimal excess user ride time and cannot be applied in a labeling algorithm as they only

minimize excess ride time for a fixed route.

Apart from the methods that tackle excess user ride time minimization, there are some works that propose

methods to improve feasibility checking efficiency for a DARP route, compared to that of applying the “eight-step”

method. A comprehensive review can be found in Su (2023). Gschwind & Irnich (2015) seems to be the only work

that handles the time-window and maximum-user-ride-time constraints jointly in the labeling algorithm for solving

the CG subproblems of the DARP. However, their method does not aim at minimizing the total (excess) user ride

time in the labeling algorithm and they do not consider the effect of recharging. To the best of our knowledge, our

proposed labeling algorithm is the first labeling algorithm for a path-based formulation of the DARP/E-ADARP

that can deal with minimizing the total (excess) user ride time.

2.4. Conclusion and Motivation

Based on our review, Bongiovanni et al. (2019) is the only work that proposes an exact method (i.e., the B&C

algorithm) to solve the E-ADARP. However, their proposed B&C algorithm has difficulties obtaining optimal/feasible

solutions within the given time limit for medium-to-large-sized instances. As a result, significant gaps between their

best-found upper and lower bounds are observed. These limitations motivate us to propose an efficient CG approach,

including a labeling algorithm for solving the pricing problem to provide tighter lower bounds and improved upper

bounds. The CG performance largely depends on the efficiency of the labeling algorithm to solve the E-ADARP

subproblems, where one must always determine the excess-user-ride-time optimal schedule from battery-feasible

schedules during label extension. This issue complicates solving the CG subproblems of the E-ADARP and cannot

be handled exactly by existing DARP feasibility check methods (Gschwind & Irnich, 2015; Gschwind & Drexl, 2019)

and scheduling procedures (Parragh et al., 2009; Molenbruch et al., 2017; Bongiovanni et al., 2024). In this work, we

address this issue by constructing a new sparser graph, where excess-user-ride-time optimality is guaranteed on each

arc. We define a labeling algorithm on this new graph and handle battery feasibility by tailored REFs. Its efficiency

is ensured by strong dominance rules and constant-time feasibility checks.

3. The E-ADARP Description and Extended Formulation

This section presents the mathematical notation used throughout the paper and sketches the structure of the

compact three-index E-ADARP formulation proposed in Bongiovanni et al. (2019). We extend the initial E-ADARP

model to a more general version by allowing at most Nmax
s visits per recharging station, where Nmax

s can be any

non-negative integer. When we set Nmax
s = ∞, it implies that unlimited visits are allowed to recharging stations. In

the second part, we briefly introduce the weighted-sum objective function of minimizing total travel time and total
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excess user ride time and the E-ADARP constraints. The final part introduces a path-based formulation for the

E-ADARP.

3.1. Notation and Problem Statement

Let n denote the number of requests to be served by vehicles in the vehicle set K. The E-ADARP is defined on

a complete directed graph, denoted as G = (V,A), where V is the set of vertices and A = {(i, j) : i, j ∈ V, i ̸= j}

is the set of arcs. V can be partitioned into several subsets, namely, V = N ∪ S ∪ O ∪ F . Subset N is the set

of all customer nodes and is the union of customer pickup set (denoted as P ) and drop-off set (denoted as D),

namely, N = P ∪D. Subset S is the set of recharging stations. Sets O and F denote the set of origin depots and

destination depots, respectively. Particularly, the cardinality of F might be higher than the total number of vehicles

and therefore allows vehicles to select destination depots.

Each user request is a pair (i, n + i), where i = 1, · · · , n denotes the pickup and n + i the drop-off node. A

maximum user ride time mi is imposed for each request. Each customer node i ∈ N is associated with a load qi,

and a service duration si (si > 0), such that qi = −qn+i, i = 1, · · · , n. For all other nodes j ∈ O ∪ F ∪ S, qj and sj

are equal to zero. A time window on each node is also given and is denoted by [ei, li] for i ∈ V . We tackle the static

E-ADARP, i.e., all user requests are known at the beginning of the planning horizon and have to be served.

Each electric vehicle k ∈ K is characterized by a maximum vehicle capacity and a maximum battery capacity.

Following Bongiovanni et al. (2019), we assume that vehicles have heterogeneous vehicle capacity Ck and homogeneous

battery capacity Q. The initial battery charge of each vehicle is denoted as Qk
0 . The travel time and battery

consumption of each arc (i, j) ∈ A are denoted as ti,j and bi,j , respectively. We assume that bi,j is constant on

arc (i, j) and is independent of load, speed, and SoC, as in Desaulniers et al. (2016). This assumption is suitable

when the vehicle load is significantly smaller than the curb weight of the vehicle and velocity remains constant

or has infrequent variations (Pelletier et al. (2017)). Therefore, it is reasonable to keep this assumption in our

work, as EAVs are characterized by limited vehicle capacity and constant cruise speed. The triangle inequality is

assumed to hold for both ti,j and bi,j . At recharging stations, partial recharging is performed with a constant battery

recharge rate α. This assumption remains reasonable as we allow partial recharging, and the charging process can

be approximated by piece-wise linear functions, where the first phase ended at recharging 80% of Q (Montoya et al.

(2017)). To avoid numerical problems that may appear when computing time and battery consumption, all the

battery consumption is converted to the time required to recharge the amount of consumption. That is, we define

hi,j = bi,j/α to convert the battery consumption on arc (i, j) to the time required to recharge bi,j . Similarly, the

current battery charging level can also be converted to the time required to recharge to this battery charging level,

and we define H to denote the time required to recharge from zero to full battery capacity Q. Moreover, each vehicle

has to maintain a certain level of battery when returning to the destination depot. This restriction is introduced to

better evaluate the algorithm’s performance in solving the E-ADARP. Without this restriction, even a large-sized

instance with 5 vehicles and 50 requests can be solved without visiting the recharging station. It is also interesting

to analyze the results under different levels of battery restrictions. The minimum battery level that needs to be

reached at destination depots is γQ, where γ is the minimum battery level ratio. Finally, each recharging station

can be visited at most Nmax
s times, where Nmax

s can be any non-negative integer.
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3.2. Objectives of the E-ADARP

The weighted-sum objective function of the E-ADARP is formulated as:

minw1

∑
k∈K

∑
i,j∈V

ti,jx
k
i,j + w2

∑
i∈P

Ri (1)

where xk
i,j is a binary decision variable which denotes whether vehicle k travels from node i to j, w1 and w2 are

weight factors. Ri is the excess user ride time of request i ∈ P and is formulated as the difference between the actual

ride time T k
n+i − (T k

i + si) and direct travel time ti,n+i and T k
i is the service start time at node i.

Table 1 summarizes all the notations and definitions for sets and parameters.

Table 1 Notations of the E-ADARP

Sets Definitions

N = {1, · · · , n, n+ 1, · · · , 2n} Set of pickup and drop-off nodes

P = {1, · · · , i, · · · , n} Set of pickup nodes

D = {n+ 1, · · · , n+ i, · · · , 2n} Set of drop-off nodes

K = {1, · · · , k} Set of available vehicles

O = {o1, o2, · · · , ok} Set of origin depots

F = {f1, f2, · · · , fh} Set of all available destination depots (supposing the total number is h)

S = {s1, s2, · · · , sg} Set of recharging stations (supposing the total number is g)

V = N ∪ S ∪O ∪ F Set of all nodes

Parameters Definitions

ti,j Travel time from location i ∈ V to location j ∈ V

bi,j Battery consumption from location i ∈ V to location j ∈ V

hi,j The charging time required to recharge bi,j , i, j ∈ V

ei Earliest time at which service starts at i ∈ V

li Latest time at which service starts at i ∈ V

si Service duration at i ∈ V

qi Change in load at i ∈ N

mi Maximum user ride time of request i ∈ P

Ck The vehicle capacity

Q The battery capacity

H Recharging time required to recharge from zero to Q

Qk
0 The initial battery charging level of vehicle k

α The recharged battery per time unit

γ The minimum battery level ratio

w1, w2 The weight factors for total travel time and total excess user ride time

3.3. Constraints of the E-ADARP

We briefly list the series of constraints that need to be satisfied in the E-ADARP:

1) Every route starts at an origin depot and ends at a destination depot and has no cycle;

2) Customer nodes are visited exactly once by all vehicles;
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3) For each request, its pickup node i ∈ P and drop-off node n+ i are served by the same vehicle, and the pickup

node is visited before the drop-off node;

4) The maximum user ride time must be respected for each request;

5) Each destination depot f ∈ F can be visited at most once by all vehicles;

6) Each recharging station s ∈ S can be visited at most Nmax
s times by all vehicles;

7) The vehicle load cannot exceed the maximum vehicle capacity at each node i ∈ V ;

8) Each node i ∈ V must be visited within its time window [ei, li]. Waiting time occurs when the vehicle arrives

earlier than the earliest time window;

9) The battery charging level at the destination depot must be at least equal to the minimum battery level γQ;

10) The battery charging level at any node along a route must be positive and not exceed the battery capacity Q;

11) The recharging station can only be visited when there is no passenger on board;

3.4. Extended Formulation of the E-ADARP

The E-ADARP consists of finding a set of E-ADARP routes for EAVs to transport users with specific origin-

destination pairs such that each customer i ∈ N is visited exactly once, and the weighted sum of total travel time

and total excess user ride time is minimized. The definition of an E-ADARP route is as follows:

Definition 1 (E-ADARP route). An E-ADARP route is a path that starts at an origin depot and ends at a

destination depot such that Constraints (1), (3), (4), (6) to (11) are satisfied.

We obtain the extended formulation (also called “Master Problem”, abbreviated as MP) of the E-ADARP via

Dantzig-Wolfe decomposition. The MP is formulated as a set covering problem, where Ω denotes the set of all

E-ADARP routes. For each route ω ∈ Ω, we define cω as the cost of route ω. Note that the route cost accounts for

the weighted sum of total travel time and total excess user ride time, as presented in Equation (1). To consider

heterogeneous vehicles, we define T as the set of available vehicle types and classify vehicles with the same capacity

into one vehicle type t ∈ T (as in Parragh et al. (2012)). Let Ωt denote the set of feasible routes for vehicles of type

t ∈ T and Ω =
⋃

t∈T Ωt is the set of all feasible routes. We denote Mt as the maximum number of vehicles of type t

that can be included in the solution.

We define θiω as a binary coefficient that equals one if the request i is visited by route ω (zero otherwise). Let

yω denote a binary variable that equals one if and only if route ω ∈ Ω is included in the solution (0 otherwise). The

number of requests to be served is n. To restrict the visits to each destination depot and recharging station, we define

binary coefficients ϕfω and ρsω, determining whether the destination depot f or recharging station s is visited in route

ω. As we have multiple origin depots that may be located at different places and cannot be visited repeatedly by differ-

ent vehicles, we define ϵoω to denote whether origin depot o is visited in ω. The objective function of MP is formulated

as the total routing cost and we improve the formulation of MP by adding a high penalty Pi for request i not served

in the objective function. The penalties for unserved requests are only used to warm-start the problem. For instance,
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we can start from a heuristic solution of the E-ADARP (e.g., obtained from the DA algorithm of Su et al. (2023)) that

does not include all the requests. Also, we introduce a binary variable, denoted as ai, to represent whether request i is

visited or not. If ai = 1, request i is omitted, otherwise, request i is visited. The set covering problem is formulated as:

min
∑
ω∈Ω

cωyω +
∑
i∈P

Piai (2)

subject to: ∑
ω∈Ω

θiωyω ⩾ 1− ai, ∀i ∈ P (3)

∑
ω∈Ω

ϕfωyω ⩽ 1, ∀f ∈ F (4)

∑
ω∈Ω

ρsωyω ⩽ Nmax
s , ∀s ∈ S (5)

∑
ω∈Ω

ϵoωyω ⩽ 1, ∀o ∈ O (6)

∑
ω∈Ω

yω ⩽ Mt, ∀t ∈ T (7)

yω ∈ {0, 1}, ∀ω ∈ Ω (8)

ai ∈ {0, 1}, ∀i ∈ P (9)

Constraints (3), (4), and (5) restrict the visit to each request, destination depot, and recharging station.

Constraints (6) and (7) guarantee that each origin depot appears at most once in the solution and at most Mt of

vehicles of type t can be used. Due to the large size of Ω, we cannot solve the MP directly. Instead, we solve the

linear relaxation of the MP on a subset of set Ω (denoted as Ω′), which we call the continuous Restricted Master

Problem (hereafter continuous RMP). The subset Ω′ can be generated by CG.

In CG, the continuous RMP and the pricing subproblems are solved iteratively. The subproblems are solved to

generate E-ADARP routes with negative reduced costs. These routes are added to Ω′, and the continuous RMP

will be solved to update the dual variable values. With the renewed dual variable values, the subproblems will be

solved again to find E-ADARP routes with negative reduced costs. The iterative solving of the continuous RMP and

subproblems ends when no more negative-reduced-cost columns can be found. In this case, the optimal solution of

the continuous MP is found. The integer RMP is solved at the end to obtain integer solutions by using all columns

generated.
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4. Branch-and-Price Algorithm

In this section, we present the CG subproblem in the first part. Then, we focus on designing the labeling algorithm

to solve the subproblem in Section 4.2. The cutting planes to strengthen the continuous RMP are elaborated in

Section 4.3. The considered branching strategies in the B&P framework are presented in Section 4.4. To enhance

the clarity, we illustrate the main ingredients in the B&P and our contributions in Figure 1

Start Initial column pool: 
Warm start by DA

Solve CG subproblems 
with labeling algorithm

Exist 
negative reduced cost 

columns ?

YesAdd columns 
to RMP

Solve RMP

No

Integer solution ?
No

StopStart branch-and-price Yes

Preprocessing: 
frag. enum, graph 

construction

Figure 1 Block diagram overview

4.1. Column Generation Subproblem

As mentioned, we solve the pricing subproblem in order to identify E-ADARP routes with negative reduced cost

c̄ω, ω ∈ Ω. The reduced cost for an E-ADARP route ω is formulated as:

c̄ω = cω −
∑
i∈P

θiωλi −
∑
f∈F

ϕfωτf −
∑
s∈S

ξsωρs −
∑
o∈O

ϵoωζo − κt (10)

where λi, i ∈ P , τf , f ∈ F , ξs, s ∈ S, and ζo, o ∈ O are the dual variable values of constraints (3) to (6), respectively.

The dual variable values associated with constraint (7) is κt.

The objective function of the subproblem is:

minimize
ω∈Ω

c̄ω (11)

4.2. Forward Labeling Algorithm for ESPPRC-MERT

We design a customized forward labeling algorithm to solve the pricing sub-problems, which are formulated

as Elementary Shortest Path Problems with Resource Constraints and Minimizing Excess Ride Time (hereafter

ESPPRC-MERT). This labeling algorithm extends the one tackling E-VRP subproblems in Desaulniers et al. (2016)

by considering the following aspects:

1) The characteristics of the DARP are taken into account (i.e., pickup and delivery);
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2) Problem-specific constraints (i.e., minimum-battery-level constraint, maximum user ride time constraint,

limited visits to each recharging station) are considered;

3) Minimizing the total excess user ride time for a partial path.

The last point is the most challenging one of solving the ESPPRC-MERT, as the minimum excess user ride time

is particularly difficult to be calculated in the extension of labels. This difficulty manifests in two aspects: (1) the

minimum excess user ride time can only be determined at nodes where the vehicle has no passenger onboard at

arrival/departure; (2) an excess-user-ride-time optimal schedule for a partial path may conflict with time window

constraints on succeeding nodes.

To handle this issue, we construct a new sparser graph Gsp, where each arc is ensured to be excess-user-ride-time

optimal. We propose an efficient labeling algorithm over Gsp to compute routes with negative reduced costs. The

construction of Gsp takes three steps:(1) we generate all battery-restricted fragments (defined in Definition 2); (2) we

abstract each fragment to an arc that ensures excess-user-ride-time optimality; (3) we construct Gsp by connecting

each transformed arc with depots, recharging stations, and other transformed arcs in a feasible way.

This section is organized as follows: in Section 4.2.1, we introduce a fragment-based representation of paths,

which regards fragments as basic components. Then, each partial path is a concatenation of fragments, over which

the minimum excess user ride time is determined. In Section 4.2.2, we explain how fragments are abstracted to

arcs. This abstraction allows us to design a single REF that represents the extension from the start node to the end

node of a fragment. In Section 4.2.3, we enumerate all feasible fragments, abstract fragments to arcs, and connect

transformed arcs with each other, depots, and recharging stations in a feasible way to construct Gsp. We show in

Theorem 2, Gsp preserves all feasible routes of the original one and therefore preserves all negative-reduced-cost

routes of the original graph. Finally, we define labels for nodes on Gsp and present their notations and the definitions

of their associated resources in Section 4.2.4. The following part includes the label feasibility check, REFs, and

dominance rules.

4.2.1. Representation of Partial Paths.

One important characteristic of the ESPPRC-MERT is that the reduced cost incorporates the total excess user

ride time, which needs to be minimized along the extension. In the classical representation of a partial path, the

path is extended in a node-by-node fashion. As mentioned, in the case of open requests existing on the partial

path, we cannot calculate the excess user ride time for these open requests. Hence, for the label associated with this

partial path, its reduced cost cannot be determined. In order to calculate the minimum excess user ride time in the

extension of a partial path, we extend the partial path with battery-restricted fragments, as in Su et al. (2023). This

representation generalizes the notion of fragments as proposed in Rist & Forbes (2021) by adding battery constraints

in the feasibility check. The definition for a battery-restricted fragment is as follows:

Definition 2 (Battery-restricted fragment, Su et al. (2023)). Assuming that F = (i1, i2, · · · , ik) is a sequence of

pickup and drop-off nodes, where the vehicle arrives empty at i1 and leaves empty at ik and has passenger(s) on

board at other nodes. Then, we call F a battery-restricted fragment if there exists a feasible route of the form:

(o, si1 , · · · , siv ,
F︷ ︸︸ ︷

i1, i2, · · · , ik, siv+1
, · · · , sim , f),
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where si1 , · · · , siv , siv+1 , · · · , sim(v,m ⩾ 0) are recharging stations, and o ∈ O, f ∈ F .

It should be noted that if the route is feasible without visiting a recharging station (i.e., v = m = 0), the

battery-restricted fragment is equivalent to the one defined in Rist & Forbes (2021). Based on Definition 2, each

E-ADARP route can be regarded as the concatenation of an origin depot, battery-restricted fragments (hereinafter

referred to as “fragments”), recharging stations (if required), and a destination depot. Clearly, we can exactly

minimize the excess user ride time on each fragment.

4.2.2. Abstracting Fragments to Arcs.

In this section, we present the general method to abstract each fragment F to an arc that captures all excess-user-

ride-time optimal schedules over F . Assuming that a fragment F is {1, 2, · · · ,m}, we denote any excess-user-ride-time

optimal schedule A for F as a set of service start times, namely, A = (A1,A2, · · · ,Am). Then, to abstract F to an

arc, it is enough to determine all possible values of A1 and Am for any excess-user-ride-time optimal schedule A

over F . To calculate all possible values of A1 and Am, we introduce vehicle-waiting-time optimal schedules:

Definition 3. A vehicle-waiting-time optimal schedule B for a fragment F is defined as a set of service start times Bi,

i ∈ F that minimize the sum of vehicle waiting times at each node along F (i.e.,
∑m

i=2[Bi − (Bi−1 + ti−1,i + si−1)]).

Note that a vehicle-waiting-time optimal schedule is not necessarily an excess-user-ride-time optimal schedule, as

the latter one minimizes a weighted sum of waiting times along F , which weight factors are equal to vehicle loads at

nodes with waiting time. For a given fragment F , we determine two vehicle-waiting-time optimal schedules:

1. the “latest” vehicle-waiting-time optimal schedule Bl;

2. the “earliest” vehicle-waiting-time optimal schedule Be.

We show later in Theorem 1 that these schedules Bl,Be determine all possible values of A1 and Am in any excess-

user-ride-time optimal schedule A by the following means: For any excess-user-ride-time optimal schedule A, there

exists δl, δe ⩾ 0 such that:

A1 = Bl
1 − δl, Am = Bl

m − δl;

A1 = Be
1 + δe, Am = Be

m + δe;

To better illustrate our idea, we take an example as follows:

Example 1. Given a fragment F = {1+, 2+, 1−, 2−}, the time window on each node and the travel time for each

arc are shown in Figure 2. The dashed lines present the direct travel times from pickup nodes to the corresponding

drop-off nodes. Assuming that the service time at each node is equal to zero and each request includes one passenger

to be transported.

Clearly, any excess-user-ride-time optimal schedules on F can be represented as Aδ, where 0 ⩽ δ ⩽ 10.

These schedules have an identical minimum excess user ride time of 30 minutes. Hence, we can abstract F to

an arc from node 1+ and node 2- with time windows being [50,60] and [130,140]. In this example, we have

Be
1 = 50, Bl

1 = 60, Be
m = 130, Bl

m = 140, where node 1 and m corresponds to node 1+ and 2−. This arc captures
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Figure 2 Example of abstracting a fragment to an arc

all excess-user-ride-time optimal schedules Aδ on F . The travel time from node 1+ to node 2- is presented on the

converted arc.

Next, for a given fragment F = {1, 2, · · · ,m}, we present the construction scheme for Bl and Be.

Construction of Bl and Be. The latest vehicle-waiting-time optimal schedule Bl must obey the following two

rules:

1. Starting service as late as possible at the first node in F ;

2. Starting service as early as possible at all other nodes in F ;

For the first rule, as the vehicle arrives at the first node of F with no passenger, the delay of service start time at

the first node will always help to eliminate unnecessary vehicle waiting time at succeeding nodes.

As for the second rule, when there is/are passenger(s) on board, it is straightforward to start service as early as

possible as in this case to reduce vehicle waiting time. In the following part, we will first construct Bl and then

construct Be.

• Construct Bl: Assuming that a fragment F = {1, 2, · · · ,m}. Let Bl
i be the service start time for schedule Bl

at node i. Then the arrival time at each node i is Arri = Bl
i−1 + ti−1,i + si−1, 2 ⩽ i ⩽ m. The waiting time ∆i

at node i is calculated as ∆i = Bl
i −Arri. Based on the proposed rules, we define Bl

i inductively as follows:

1. Bl
1 = l1;

2. assuming Bl
i has been defined for i < v, we define Bl

v by:

(a) if the extension from node (v − 1) respects the time window constraint at node v (i.e., Arrv ≤ lv),

then we define Bl
v = max{ev, Arrv};

(b) Otherwise,

– if min
i<v

{Bl
i − ei} ≥ Arrv − lv, we can update the schedule at nodes 1, · · · , v− 1 by moving forward

Arrv − lv. Then the extension from node (v − 1) to node v will not violate the time window

constraint. I.e., we update Bl
i as Bl

i − (Arrv − lv) for i = 1, · · · , v − 1 and define Bl
v = lv;
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– Otherwise, there is no feasible schedule for {1, 2, · · · , v}.

For the last point, the maximum amount of time that can be moved forward from node 1 to node (v − 1) is

min
i<v

{Bl
i − ei}. To satisfy the time window constraint at node v, the minimum amount of time that is required

to be moved forward is Arrv − lv. In the case of min
i<v

{Bl
i − ei} < Arrv − lv, the time window constraint at

node v is never fulfilled.

• Construct Be: After determining the latest vehicle-waiting-time optimal schedule Bl on F , the earliest

vehicle-waiting-time optimal schedule Be is determined by moving forward Bl on F by the maximum amount

of time (denoted as
←
∆) that will not change the minimum vehicle waiting time.

←
∆ can be calculated by taking

the minimum value among all the Bl
i − ei, for i ∈ F . That is:

←
∆ = min

i∈F
{Bl

i − ei}, and Be
i = Bl

i −
←
∆, i ∈ F .

We recall the previous example to present the construction of Bl and Be:

Example 2 (Example 1 continued). For the given fragment F , Bl and Be for fragment F are directly shown in

Figure 3. In this example,
←
∆ = 10 and Be

i = Bl
i − 10, i ∈ F . Interested readers are invited to derive these results by

themselves.

Figure 3 Example of any excess-user-ride-time optimal schedule on a fragment

Now, we prove that Bl,Be can determine all possible values of A1 and Am of any excess-user-ride-time optimal

schedule A.

Theorem 1. Assuming that fragment F = {1, 2, · · · ,m}, A is an excess-user-ride-time optimal schedule, Bl

is the constructed latest vehicle-waiting-time optimal schedule over F , and Be is the earliest vehicle-waiting-time

optimal schedule. Then there exists δe, δl ≥ 0 such that:

A1 = Be
1 + δe, Am = Be

m + δe;

A1 = Bl
1 − δl, Am = Bl

m − δl.

Proof of Theorem 1. In the case of ∆u(Bl) = 0 for all 1 ≤ u ≤ m (∆i(·) is the waiting time at node i according to a

given schedule), then the theorem clearly holds. Next, we assume that there exists 1 ≤ v ≤ m such that ∆v(Bl) ̸= 0.

We will show that A1 = Bl
1,Am = Bl

m.

The proof contains two parts.
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• A1 = Bl
1. According to the first construction rule of Bl, we have Bl

1 ≥ A1. Next, we prove Bl
1 ≤ A1 by

contradiction.

Assuming that Bl
1 > A1, then if ∆2(A) = 0, we must have Bl

2 > A2 ≥ e2, therefore ∆2(Bl) = 0 by our

construction. Moreover, if ∆3(A) = 0, we must have Bl
3 > A3 ≥ e3, therefore ∆3(Bl) = 0.

Repeat the above process, since ∆v(Bl) ̸= 0, there exists v0 ≤ v such that: Bl
i > Ai,∆i(A) = 0 for 1 ≤ i < v0,

∆v0(A) > 0. Then the total excess user ride time of A can be further reduced by delaying the service start

time by:

min{min1≤i<v0
{Bl

i −Ai},∆v0(A)}

in 1, · · · , v0 − 1. A is not an optimal plan, which is a contradiction!

• Bl
m = Am. Since there exists 1 ≤ v ≤ m such that ∆v(Bl) ̸= 0, we have Bl

v = ev at node v. According to the

second construction rules of Bl, we also have Bl
m ≤ Am. Next, we prove Bl

m ≥ Am by contradiction.

Assuming that Bl
m < Am, if ∆m(A) = 0, we must have Bl

m−1 < Am−1. Moreover, if ∆m−1(A) = 0, we

must have Bl
m−2 < Am−2. Since Bl

1 = A1 as we proved above, there must exists 2 ≤ v1 ≤ m such that:

Bl
i < Ai,∆i(A) = 0 for v1 < i ≤ m and ev1 ≤ Bl

v1 < Av1 ,∆v1(A) > 0. Then the excess user ride time of A

can be further reduced by moving forward the service start time by:

min{minv1≤i≤m{Ai − Bl
i},∆v1(A)}

in v1, · · · ,m. A is not an optimal plan, which is a contradiction!

Theorem 1 also implies that as soon as the excess-user-ride-time optimal schedule for fragment F contains

waiting time, we have Bl = Be and δl = δe = 0. In this case, any excess-user-ride-time optimal schedule (denoted as

A) must satisfy A1 = Bl
1 = Be

1 and Am = Bl
m = Be

m, where node 1 and node m are the first and the last node of

F . In the other case, an excess-user-ride-time optimal schedule can be obtained by moving forward(backward) the

vehicle-waiting-time optimal schedule Bl (Be) by δ, such that 0 ⩽ δ ⩽ Bl
1 − Be

1.

Abstracting a Fragment to an Arc.. For each fragment F = {1, · · · ,m}, assuming Be,Bl are the corresponding

earliest and latest vehicle-waiting-time optimal schedules. Based on Theorem 1, restricting time windows at

node 1 and node m to [Be
1,Bl

1] and [Be
m,Bl

m] will include all excess-user-ride-time optimal schedules on fragment

F = {1, · · · ,m}. Then we can abstract F to an arc (1,m) such that:

1. the total travel time from 1 to m (denoted as t′1,m) is Bl
m − Bl

1;

2. the original time windows of node 1 and node m are restricted to [Be
1,Bl

1] and [Be
m,Bl

m];

3. the battery consumption from 1 to m is
m−1∑
i=1

hi,i+1;

If no waiting time is generated on F , we can calculate the minimum excess user ride time directly. It is also

straightforward to compute the minimum excess user ride time for F that contains one request with waiting time

generated. When waiting time is generated on a fragment containing more than two requests, calculating the value
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of minimum excess user ride time becomes difficult. In this case, we improve the calculation process in Su et al.

(2023) by setting the service start times at node 1 and node m to Bl
1 and Bl

m, respectively. Then, we solve a Linear

Program (LP) to determine the minimum excess user ride time, as presented in Appendix A.

4.2.3. Constructing a New Sparser Graph.

In this section, we construct a new sparser graph Gsp by two steps: (1) we enumerate all feasible fragments and

abstract them to arcs; (2) we connect each transformed arc with depots, recharging stations, and other transformed

arcs in a feasible way.

The fragment enumeration is conducted with depth-first search as in Alyasiry et al. (2019). For each feasible

fragment, the corresponding restricted time windows and minimum excess user ride times are recorded. To generate

all feasible fragments, we assume that the vehicle departs from each pickup node with a full battery level and must

respect constraints of maximum user ride time, battery capacity, time window, pairing, precedence, and vehicle

capacity. We start from each pickup node and extend it node by node until no more feasible fragment that starts

from this pickup node can be generated. By enumerating all feasible fragments before computation, we largely

accelerate the labeling algorithm as we only need to query information instead of recalculating. Particularly, we

compute the minimum excess user ride time for each fragment just once in the preprocessing phase (i.e., fragment

enumeration). Then, during the execution of the labeling algorithm, we determine the minimum excess user ride time

for an extended partial path by aggregating the minimum excess user ride times of all the fragments it encompasses.

Therefore, the time for computing the minimum excess user ride time for a given E-ADARP route is negligible with

our proposed approach. To provide more details, we conduct a preliminary test for fragment enumeration on each

instance in Appendix B. For all the instances, the fragment enumeration can be fulfilled in a matter of seconds.

In the computational experiments, we report the CPU time, which includes the computational time for fragment

enumeration. With the information of all feasible fragments, we abstract fragments to arcs as shown in Section 4.2.2.

Then, we construct Gsp by connecting depots, recharging stations, and the start nodes and end nodes of

transformed arcs in a feasible way. Details for the connection between nodes are as follows:

1. Each origin depot connects with all start nodes of arcs, recharging stations, and destination depots;

2. Each recharging station connects with start nodes of arcs and destination depots in a feasible way;

3. Each end node of an arc connects with destination depots, recharging stations, and all the start nodes of arcs

in a feasible way;

Figure 4 shows an example of constructing new arcs in Gsp. It should be noted that for two different fragments,

even though they have the same start node i+ and end node j−, we need to treat them as two different arcs in Gsp

as they represent different fragments consisting of different sequences of nodes, which lead to different restricted

time windows. To distinguish, we make copies (e.g., i′+, j′+) for node i+ and node j− and we generate two arcs

(i+, j−) and (i′+, j′−).

Note that our way of constructing the network is completely different from Alyasiry et al. (2019), who build a

network by discretizing the time windows of all pickup and delivery nodes with a fixed length of time η. However,

we make copies (i+′, j+′) to distinguish different fragments with the same start/end nodes as they have different

restricted time windows.
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Figure 4 Example of constructing arcs in the new graph Gsp

Next, we work on the new sparser graph Gsp instead of G, as we show in Theorem 2 that Gsp preserves all

feasible routes over G.

Theorem 2. Let R be a route over graph G, and Rsp be the corresponding route over Gsp. Then R is feasible if

and only if Rsp is feasible.

Proof of Theorem 2. Clearly, if Rsp is feasible then R is feasible. Therefore, we only need to prove the other

direction.

Now, we assume that R is feasible and A is a feasible schedule over R. It is enough to show that there is also a

feasible schedule over Rsp. This is implied by the following lemma:

Lemma 1. For any fragment F = {1, 2, · · · ,m} in R. Let Be,Bl be the constructed vehicle-waiting-time optimal

schedule over F . Then there exists 0 ≤ δ ≤ Bl
1 − Be

1 such that A1 ≤ Bl
1 − δ,Bl

m − δ ≤ Am.

Then we can obtain a feasible schedule over Rsp by replacing the schedule of every fragment F = {1, 2, · · · ,m}

to the schedule {Bl
1 − δ,Bl

m − δ} over the arc generated from F .

Proof of Lemma 1. According to the construction rules of Bl, we always have A1 ≤ Bl
1. Let Bδ be the vehicle-

waiting-time optimal schedule obtained by moving forward the service begin time by δ from Bl and ∆v(Bl) denote

the waiting time at node v according to Bl.

In the proof, we show that we can find a δ0 satisfying 0 ≤ δ0 ≤ Bl
1 − Be

1 such that A1 ≤ Bδ0
1 ,Bδ0

m ≤ Am. There

are two cases:

1. If ∆v(Bl) ̸= 0 for some 1 ≤ v ≤ m, then it is enough to take δ0 = 0 as shown in Theorem 1.

2. If ∆v(Bl) = 0 for all nodes on F , let δ0 be the maximal value that satisfies (i) Bδ0 is feasible and (ii) A1 ≤ Bδ0
1 .

There are two cases:

(a) If A1 ⩾ Be
1, then we have A1 = Bδ0

1 . Since ∆v(Bl) = 0 for all nodes, we derive Bδ0
m ≤ Am.
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(b) If A1 < Be
1, then we have A1 < Bδ0

1 and Bδ0 = Be. By definition of Be, there must exist a node u ∈ F

such that Be
u = eu. Therefore, we derive Bδ0

m ≤ Am as we have ∆u(Bl) = 0 for all nodes.

Summing up these cases, we can always find δ0 such that A1 ≤ Bδ0
1 ,Bδ0

m ≤ Am.

Then, we design our labeling algorithm on the newly constructed graph.

4.2.4. Labeling Algorithm.

We design a labeling algorithm on the new sparser graph Gsp, where excess-user-ride-time optimality is ensured

on each arc. The proposed labeling algorithm extends the label at the end of the partial path P. We denote Li

as the label associated with a partial path ends with node i. The forward labeling algorithm extends labels from

a source node ok ∈ O to a non-predefined sink node f ∈ F . Let a label associated with a partial path P from

ok to current vertex i be Li = {Rcost
i , (Rrchs

i )s∈S , R
tMin
i , RtMax

i , RrtMax
i , Rreq

i }, the definition of each resource is

described as follows:

1. Rcost
i : The reduced cost of the partial route until i;

2. Rrchs
i : The number of times recharging station s ∈ S is visited along partial path P;

3. RtMin
i : The earliest service start time at vertex i that considers a minimum recharging time (ensuring the

battery feasibility up to vertex i) at the recharging station if a recharging station is visited along the partial

path before reaching i;

4. RtMax
i : The earliest service start time at vertex i that considers a maximum recharge time (ensuring the

time-window feasibility up to vertex i) at the recharging station if a recharging station is visited along the

partial path before reaching i;

5. RrtMax
i : The maximum recharging time required to fully recharge at vertex i. In the case that a recharging

station is visited prior to i along P , the vehicle performs a minimum recharge that ensures the battery feasibility

up to vertex i;

6. Rreq
i : The set of unreachable requests until i along partial path P. A request is said to be “unreachable” if

time window constraints are violated or this request has been visited.

In case no recharging station is visited on partial path P, the value of RtMin
i is equal to RtMax

i , indicating the

earliest service start time at vertex i. RrtMax
i represents the accumulated amount of needed recharging time until i.

In the initial label at vertex ok, R
req
ok

is an empty set, RtMin
ok

and RtMax
ok

are equal to eok , while all other components

are set to zero. We extend a label Li = {Rcost
i , (Rrchs

j )s∈S , R
tMin
i , RtMax

i , RrtMax
i , Rreq

i } along arc (i, j) ∈ A′ using

the following REFs:

Rcost
j = Rcost

i + c̄i,j (12)

Rrchs
j = Rrchs

i +

1, if j = s

0, otherwise

(13)

19



RtMin
j =

max{Be
j , R

tMin
i + t′i,j}, if Rrch

i = ∅

max{Be
j , R

tMin
i + t′i,j}+ Zi,j , otherwise

(14)

RtMax
j =

min{Bl
j ,max{Be

j , R
tMin
i +RrtMax

i + t′i,j}}, if i ∈ S

min{Bl
j ,max{Be

j , R
tMax
i + t′i,j}}, otherwise

(15)

RrtMax
j =

RrtMax
i + h′i,j , if Rrch

i = ∅

min{H,max{0, RrtMax
i − Si,j}+ h′i,j}, otherwise

(16)

Rreq
j = Rreq

i ∪ Un(R
tMin
j ) (17)

where in these functions:

Si,j(R
tMin
i , RtMax

i , RrtMax
i ) =

max{0,min{Be
j −RtMin

i − t′i,j , R
rtMax
i }}, if i ∈ S

max{0,min{Be
j −RtMin

i − t′i,j , R
tMax
i −RtMin

i }}, otherwise

(18)

Zi,j(R
tMin
i , RtMax

i , RrtMax
i ) = max{0,max{0, RrtMax

i − Si,j(R
tMin
i , RtMax

i , RrtMax
i )}+ h′i,j −H} (19)

The Si,j is the slack time between the earliest vehicle-waiting-time optimal service start time Be
j at j and the

earliest arrival time to j. If i is a recharging station, Si,j may be equal to the maximum possible recharging time

RrtMax
i at vertex i, while at other nodes, it may be equal to RtMax

i −RtMin
i . Zi,j is the minimum recharging time

accounting for the available slack that the previous recharging station must perform to maintain battery feasibility.

Un(R
tMin
j ) is the function to determine the unreachable nodes from j.

An extension feasibility check is performed while extending label Li to label Lj via arc (i, j) ∈ A′. The feasibility

check rules are presented in the following proposition:

Proposition 1. The extension of label Li to label Lj is feasible if and only of label Lj satisfies:

RtMin
j ⩽ Bl

j , RtMin
j ⩽ RtMax

j , R
reqp
j ⩽ 1,∀p ∈ P, RrtMax

j ⩽

(1− γ)H, j ∈ F

H, otherwise

where R
reqp
j is the number of times request p is visited along the partial path.

If j is a recharging station, then constraint (20) must be considered:

R
rchj

j ⩽ Nmax
s (20)

In case of a feasibility violation, the corresponding label will be discarded. Also, it should be mentioned that each

time when a fragment is added, the visited customers on this fragment need to be checked. If the fragment contains

a visited customer, it should be discarded. The maximum user ride time constraints and capacity constraints are

checked when generating fragments.
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Definition 4. Suppose that Lk = {Rcost
k , (Rrchs

k )s∈S , R
tMin
k , RtMax

k , RrtMax
k , Rreq

k }, k ∈ 1, 2 are two labels and the

partial path associated to L1 and L2 are P1 and P2, respectively. Assuming that P1, P2 end at the same node, L1

dominates L2 if and only if:

Rr
1 ⩽ Rr

2,∀r ∈ {cost, rch, tMin} (21)

Rreq
1 ⊆ Rreq

2 (22)

RrtMax
1 − (RtMax

1 −RtMin
1 ) ⩽ RrtMax

2 − (RtMax
2 −RtMin

2 ) (23)

RrtMax
1 − (RtMax

2 −RtMin
1 ) ⩽ RrtMax

2 (24)

The last two conditions are equivalent to the requirement that: for every service start time T2 ∈ [RtMin
2 , RtMax

2 ],

there exists a service start time T1 ∈ [RtMin
1 , T2] such that RrtMax

1 − (T1 − RtMin
1 ) ⩽ RrtMax

2 − (T2 − RtMin
2 ). In

other words, we can always find a service start time T1 ⩽ T2 that does not consume more energy.

4.3. Cutting Planes

To strengthen the continuous MP formulation, we apply two types of cutting planes for instances that are not

solved optimally by CG. The first type of cutting plane is the two-path cut, which was initially proposed by Kohl

et al. (1999) for solving VRPTW and is defined as follows. For a subset W ⊆ N ∪S, we define the sets of predecessors

of W as π(W ) = {i ∈ P : i+ n ∈ W, i /∈ W}, the sets of successors of W as σ(W ) = {i+ n ∈ D : i ∈ W, i+ n /∈ W},

and the flow enter subset W ⊆ N ∪ S is:

x(W ) =
∑
i/∈W

∑
j∈W

xi,j (25)

where xi,j =
∑
k∈K

xk
i,j is calculated with the current solution of continuous MP.

We aim at finding the subset W such that x(W ) < 2 and k(W ) > 1, where k(W ) is the smallest number of

vehicles needed to serve all nodes in W . The corresponding two-path inequality for such a subset W is:∑
ω∈Ω

nW
ω yω ⩾ 2 (26)

where nW
ω is the number of times column ω enters W , i.e., the number of arcs (i, j) ∈ ω such that i /∈ W and j ∈ W .

To separate two-path inequalities, we adapt the greedy heuristic proposed in Kohl et al. (1999). After identifying

set W satisfying x(W ) < 2, we determine whether there exists an elementary path that serves all nodes in

π(W ) ∪W ∪ δ(W ) in a feasible way. If no such path can be found, then the subset W defines a valid two-path

inequality (26), which is added to the continuous MP formulation. The dual variable associated with inequality (26)

must be subtracted from c̄ω for all arcs (i, j) with i /∈ W and j ∈ W .

The second type of cutting planes are subset row inequalities which were first introduced by Jepsen et al. (2008)

to solve the VRPTW. For a subset W ⊆ N ∪ S of three elements, the corresponding subset row inequality is:∑
ω∈Ω′

mW
ω yω ⩽ 1 (27)
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where mW
ω = ⌊βW

ω /2⌋ and βW
ω is the number of visits to a customer in W along route ω. For an elementary route ω,

we have mW
ω = 1 if ω visits two or three customers in W and mW

ω = 0 otherwise.

Subset row inequalities are separated if we find no two-path cut from the current solution of continuous MP.

We separate subset row inequalities by enumerating all subsets of three customers and checking for each subset if

the corresponding inequality is violated. The valid inequalities are added to the continuous MP formulation. Note

that the dual variables associated with the cuts cannot be integrated into the reduced cost of the labels. Instead,

one additional resource attribute is created to record the number of visits to each subset of customers. Also, the

dominance rules are modified, as in Jepsen et al. (2008); Desaulniers et al. (2011). Each time, we identify such cuts

and select at most nSRC
max cuts according to the rules proposed in Desaulniers et al. (2008). In our case, nSRC

max = 10.

4.4. Branching Strategies

In case the CG algorithm does not obtain integer solutions, we impose branching strategies on fractional solutions

to derive integer solutions. We consider two branching strategies in the branch-and-bound search tree: the first

branching strategy branches on the total number of routes (as in Desrochers et al. (1992)), and the second branching

strategy branches on the total flow of an arc (as in Desaulniers et al. (2016)). For a fractional solution, we evaluate

the branching strategies with the mentioned order and select the first type that can be imposed. When imposing the

selected branching strategy, the first type of branching strategy is imposed by adding the respective inequality to

the continuous MP. As for the second type of branching strategy, we remove columns that contain incompatible arcs

from the column pool and prevent the generation of columns that include these arcs in the labeling algorithm. If

we obtain fractional arc flow for several arcs, the arc with a fractional flow that is closest to 0.5 is selected. Each

time when a branching strategy is imposed, we create two branches and explore the branch-and-bound tree in a

depth-first fashion.

5. Computational Experiments

In this section, we first describe the benchmark instance sets used to examine the performance of the proposed

CG and B&P algorithms. In order to validate our algorithms, we take the identical problem settings (Nmax
s = 1) as

in the literature (i.e., Bongiovanni et al. (2019); Su et al. (2023)). With this setting, we present our B&P algorithm

results under different minimum battery level restrictions (i.e., γ = 0.1, 0.4, 0.7). In Section 5.2.1, we compare the

root node results (i.e., Lagrangian dual bounds and CG primal bounds solving integer RMP on the previously

generated columns) to the best-reported B&C results of Bongiovanni et al. (2019). We also test our algorithm on

larger-scale instances with up to 8 vehicles and 96 requests, which are first introduced in Su et al. (2023). We

compare the root node results with their best heuristic results. In Section 5.2.2, we report the B&P algorithm results

on all existing instances. To facilitate reading and comparison, Tables 2, 3, and 4 consolidate all our algorithm

results (including results from CG, CG with cutting planes, and B&P algorithms), as well as best-known literature

results. Following the validation of our algorithm, we delve into some intriguing perspectives in Section 5.2.3, where

we address several noteworthy aspects: (1) the impacts of considering total excess user ride time in the objectives

and its practical advantages, (2) the impacts of having a good initialization of the column pool, (3) the impacts of

allowing unlimited visits to recharging stations (Nmax
s = ∞).
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All algorithms are coded in Julia 1.7.2 and are run on a standard PC with an Intel(R) Core(TM) i7-8700 CPU

at 3.20 GHz and with 32 Gb of RAM using a single thread only. Other packages used in the program are JuMP

1.0.0 and Gurobi, 0.11.1. It should be noted that the results reported in Bongiovanni et al. (2019) are obtained from

a computer with an Intel(R) Core(TM) i7-4790 CPU at 3.60 GHz and with 16 Gb of RAM.

5.1. Benchmark Instances

Three benchmark instance sets are used in the computational experiments. Two are existing benchmark instance

sets from Bongiovanni et al. (2019). The third set corresponds to the large-scale E-ADARP instances introduced in

Su et al. (2023). All the instances are labeled in the form xk-n, where x ∈ {a, u, r}, k is the number of vehicles and

n is the number of requests. The characteristics of the three benchmark instance sets are as follows:

• “a” denotes the E-ADARP instances proposed by Bongiovanni et al. (2019) that are extended from the standard

DARP benchmark instance set of Cordeau (2006) by supplementing features of electric vehicles and recharging

stations. These instances are called type-a instances. For these instances, the number of vehicles is in the

range 2 ⩽ k ⩽ 5, and the number of requests is in the range 16 ⩽ n ⩽ 50.

• “u” denotes the E-ADARP instances generated by Bongiovanni et al. (2019) that are based on the ride-sharing

data from Uber Technologies. These instances are called type-u instances. For these instances, the number of

vehicles is in the range 2 ⩽ k ⩽ 5 and the number of requests is in the range 16 ⩽ n ⩽ 50, as in the type-a

instances.

• “r” denotes the larger E-ADARP instances adopted from Su et al. (2023). These instances are based on the

large-scale instances of Ropke et al. (2007) for the standard DARP and are adapted to the E-ADARP following

the same logic as the type-a instances. These instances are called type-r instances. For these instances, the

number of vehicles is in the range 5 ⩽ k ⩽ 8 and the number of requests is in the range 60 ⩽ n ⩽ 96.

The supplemented information on both type-a and type-r instances includes recharging station ID, vehicle

capacity, battery capacity, the final state of charge requirement, recharging rates, and discharging rates. For type-a

and type-r instances, the vehicle capacity is set to three and the maximum user ride time is 30 minutes. The

recharging rate is equal to the discharging rate, and is set to 0.055KWh per minute, according to the design parameter

of EAVs given in https://www.hevs.ch/media/document/1/fiche-technique-navettes-autonomes.pdf. The

amount of battery consumption for a sequence of nodes is proportional to the travel time on the sequence. With full

effective battery capacity (it is set to 14.85 KWh), approximately 20 nodes can be visited without recharging.

The ride-sharing data of Uber Technologies can be obtained via https://github.com/dima42/uber-gps-analysis/

tree/master/gpsdata. To create type-u instances, the origin/destination locations are extracted from the GPS

logs of the city of San Francisco (CA, USA). To calculate the travel time matrix, Dijkstra’s shortest path algorithm

is applied, assuming a constant speed of 35 km/h. The recharging station locations are obtained through the

Alternative Fueling Station Locator from Alternative Fuels Data Center (AFDC). The datasets are available at:

https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip

Following Bongiovanni et al. (2019), we set w1 = 0.75, w2 = 0.25. We consider three different γ values, namely,

γ ∈ {0.1, 0.4, 0.7}, representing the low-,medium-, and high-battery-level restriction case, respectively. Higher values
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of γ result in more tightly constrained instances of the E-ADARP, allowing us to analyze the algorithm’s performance

from the loosely- to the highly-constrained case.

5.2. Computational Results

We first solve the continuous RMP with the proposed CG algorithm. To initialize the column pool, we iterate the

DA algorithm 500 times and store all the generated columns. To obtain integer solutions, all the feasible columns

generated are used to compute the integer RMP at the end of the CG algorithm. In Tables 2, 3, and 4, we provide

an overview of our CG results for type-a, -u, and -r instances, organized into four columns labeled “Obj”, “LB”,

“LB%”, and “CPU”. These columns correspond to the upper bound derived from solving the integer RMP, the lower

bound obtained from solving continuous RMP, the percentage gaps between best integer solution and lower bound,

and the computation time in seconds. To close the integrality gaps in the case it exists, we tried the following ideas:

(1) separating two-path cuts and subset row inequalities and adding them to the continuous MP formulation so as to

strengthen lower bounds, and (2) embedding the CG approach into a branch-and-bound algorithm, resulting in a

B&P algorithm. The respective results are reported in Tables 2, 3, and 4. It should be noted that one may consider

combining idea (1) with (2), resulting in a branch-and-price-and-cut (B&P&C) scheme to solve the E-ADARP.

Our computational results indicate that branching seems to be computationally more attractive than adding cuts.

Moreover, since the majority of instances are optimally solved at the root node or by exploring a few nodes of

the B&P tree, the adoption of a B&P&C approach seems unlikely to yield substantial improvements and would

introduce additional complexity. Therefore, our study does not incorporate a B&P&C algorithm.

In all experiments, the maximum time limit for executing the considered algorithm (e.g., CG algorithm) is set

to two hours. For type-r instances, we extend the maximum time limit to 5 hours. The benchmark results from

Bongiovanni et al. (2019) are given in the last three columns in Table 2, Table 3. The meanings of the abbreviations

are summarized as follows:

• Obj and Obj1: The objective values of integer RMP solutions obtained by the CG algorithm without and with

cutting planes being added, respectively;

• LB and LB1: Lagrangian dual bound (hereafter LB) values obtained by solving the continuous MP without

and with cutting planes being added, respectively;

• LB% and LB1%: the gaps of the LB and LB1 to the best-obtained integer solution values among all considered

algorithms (denoted as Best), respectively;

• CPU and CPU1: the CPU time in seconds of solving the continuous MP without and with cutting planes being

added, including the time of fragment enumeration, all preprocessing works, and column pool initialization;

• Obj′: the optimal objective values from B&P;

• LB′: the lower bounds obtained from B&P;

• LB′%: the gaps of LB′ to Best;

• Nnode: the number of nodes explored in the B&P tree;
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• CPU ′: the CPU time in seconds of applying B&P algorithm;

• Obj2: the best solution found by Bongiovanni et al. (2019);

• LB2: the best lower bounds reported in Bongiovanni et al. (2019);

• LB2%: the gaps between the LB2 and Best;

• BKS : the best known solutions of the DA algorithm of Su et al. (2023);

• CPU : average CPU time (in seconds) per instance;

• LB% and LB1%: average value of LB% and LB1% per instance, respectively;

• LB2%: average LB2% per instance;

• NA (Not Available): the considered algorithm does not obtain a feasible integer solution or solve the continuous

MP within the given time limit for the respective instance;

• #opt: number of optimal solutions obtained by the respective algorithm;

• #bestlb: number of times the respective algorithm provides the best lower bound of all considered algorithms;

• #bestub: number of times the respective algorithm provides the best integer solution of all considered

algorithms;

And:

LB% =
Best− LB

Best
× 100%

LB1% and LB2% are calculated similarly.

In Tables 2, 3, and 4, we mark the obtained LB from the CG algorithm in italics if the CG algorithm does

not converge within the time limit. If the CG algorithm converges, then the obtained LB values are equal to the

optimal solution values to continuous RMP. If the corresponding solution is an integer solution, then we obtain

the optimal solution of MP, and we indicate it by an asterisk in column “Obj”. Otherwise, we try to close the

integrality gap by (1) enhancing the continuous MP formulation with cuts or (2) branching directly. For (1), we

perform the CG algorithm to solve the continuous MP, considering additional dual variables introduced by cuts. If

the remaining integrality gap is closed, we mark the obtained optimal solution with an asterisk in column “Obj1”.

For (2), we perform the CG algorithm within the branch-and-bound tree, considering the branching strategies of

Section 4.4. If the B&P algorithm terminates within the time limit, the obtained solutions are optimal and are

marked with an asterisk in column “Obj′”. Equal/improved integer solutions and LB values compared to those

reported in Bongiovanni et al. (2019) are marked in bold.

In the scenario of γ = 0.4 and γ = 0.7, we find strictly better integer solutions than the reportedly optimal

solution in Bongiovanni et al. (2019). After analyzing their model and parameter settings, we find that in the

model of Bongiovanni et al. (2019), the employed “big M” values were not correctly computed. Readers can refer to

Appendix F for a more in-depth analysis and how the “big M” values should be set correctly. These problematic

results are marked in italics in column “Obj2”, and we add two asterisks to our values in columns “Obj”, “Obj1”, and
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“Obj′” for the concerned instances. These associated instances are a2-24-0.4, a3-30-0.4, a3-36-0.4, a2-24-0.7, a3-24-0.7,

a4-24-0.7, u2-24-0.1, u2-24-0.4, u4-40-0.4, u3-30-0.7. The corresponding LB2% values are therefore negative.

5.2.1. CG results on type-a, -u, and -r instances under different minimum battery level restrictions.

In this part, we conduct experiments on type-a, -u, and -r instances considering different minimum battery level

restrictions γ = 0.1, 0.4, 0.7. With rising values of γ, vehicles must have a higher minimum battery level when

returning to the depot. Recall that we set Nmax
s = 1 for being comparable to existing benchmark results in these

experiments. We set the time limit for performing our algorithms on type-a and -u instances to 2 hours (the same

setting as in Bongiovanni et al. (2019)), while a maximum of 5 hours’ execution time is set for each type-r instance.

From our results on type-a and -u instances, our proposed CG algorithm obtains optimal solutions for 50 out of

84 instances before adding cuts to further enhance lower bounds. In addition, we obtain 48 equal integer solutions

and 23 new best solutions on previously solved and unsolved instances. As for the quality of obtained lower bounds,

we obtain 41 equal lower bounds while enhancing 23 lower bounds (with an improvement of up to 11.88%). On

average, we reduce the overall LB% by 1.24%, compared to the best-reported B&C results in Bongiovanni et al.

(2019). Then, the remaining integrality gaps are closed to a large extent by adding cuts to the continuous MP

formulation. The proposed CG algorithm solves 16 more instances optimally and further improves 14 lower bounds

and 4 integer solutions. In total 66 out of 84 instances are solved optimally at the root node, and we improve the

reported lower bounds of Bongiovanni et al. (2019) by 1.35% on average. In addition to discovering new solutions

and improving lower bounds, our CG algorithm demonstrates robust performance, particularly in solving highly

constrained instances (i.e., under γ = 0.7). The interaction of restricted charging visits and increasing γ values

complicates the E-ADARP solution process, rendering the E-ADARP under γ = 0.4, 0.7 hard to solve. The B&C

algorithm in Bongiovanni et al. (2019) cannot obtain a feasible solution for 10 instances within two hours, while our

CG algorithm remains robust in providing feasible/optimal solutions and enhanced lower bounds.

From our results on large-scale type-r instances (Table 4), we obtain 15 better solutions than the heuristic

solutions reported in Su et al. (2023), and 10 of these solutions are proven optimal. We report the computed lower

bound values in the third column, which are the first lower bound values for the type-r instances. For setting γ = 0.7,

neither the CG algorithm nor the DA of Su et al. (2023) is able to provide feasible solutions. We improve a majority

of the integer solutions, while four DA heuristic solutions are still better than CG-obtained solutions.

5.2.2. B&P results on type-a, -u, and -r instances under different minimum battery level restrictions.

From previous experiments, adding cuts is shown to be efficient in enhancing the quality of lower bounds and

can close the integrality gaps for some instances. In this part, we explore the performance of the B&P algorithm

by applying it to solve instances where the CG algorithm obtains fractional solutions. The corresponding results

can be found under the block titled “B&P results” in Tables 2, 3, and 4. The obtained B&P results are compared

to state-of-the-art results in Bongiovanni et al. (2019) and Su et al. (2023). Then, we compare the obtained B&P

results with those of the CG algorithm with adding cuts. This comparison aims to analyze the trade-off between the

time saved from adding cuts to enhance the lower bound, which may possibly close the integrality gaps without

branching, and the time lost due to the increasing complexity of solving the current node.
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Table 2 Overview of E-ADARP solution approaches on type-a instances under γ = 0.1, 0.4, 0.7

γ = 0.1 CG results CG with cutting planes B&P results B&C (Bongiovanni et al., 2019)a

Instance Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj′ LB′ LB′%Nnode CPU′ Obj2 LB2 LB2% CPU(s)

a2-16 237.38∗ 237.38 0 11.1 237.38∗ 237.38 0 11.1 237.38∗ 237.38 0 1 11.1 237.38∗ 237.38 0 1.2

a2-20 279.08∗ 279.08 0 70.9 279.08∗ 279.08 0 70.9 279.08∗ 279.08 0 1 70.9 279.08∗ 279.08 0 4.2

a2-24 346.21∗ 346.21 0 243.3 346.21∗ 346.21 0 243.3 346.21∗ 346.21 0 1 243.3 346.21∗ 346.21 0 9.0

a3-18 236.82∗ 236.82 0 5.0 236.82∗ 236.82 0 5.0 236.82∗ 236.82 0 1 5.0 236.82∗ 236.82 0 4.8

a3-24 274.80∗ 274.80 0 81.2 274.80∗ 274.80 0 81.2 274.80∗ 274.80 0 1 81.2 274.80∗ 274.80 0 13.8

a3-30 413.27∗ 413.27 0 221.7 413.27∗ 413.27 0 221.7 413.27∗ 413.27 0 1 221.7 413.27∗ 413.27 0 102.0

a3-36 481.17∗ 481.17 0 730.8 481.17∗ 481.17 0 730.8 481.17∗ 481.17 0 1 730.8 481.17∗ 481.17 0 106.8

a4-16 222.49 222.38 0.05 7.5 222.49∗ 222.49 0 11.4 222.49∗ 222.49 0 5 5.5 222.49∗ 222.49 0 3.6

a4-24 310.84∗ 310.84 0 25.0 310.84∗ 310.84 0 25.0 310.84∗ 310.84 0 1 25.0 310.84∗ 310.84 0 31.2

a4-32 393.96∗ 393.96 0 143.2 393.96∗ 393.96 0 143.2 393.96∗ 393.96 0 1 143.2 393.96∗ 393.96 0 612.0

a4-40 453.84∗ 453.84 0 653.0 453.84∗ 453.84 0 653.0 453.84∗ 453.84 0 1 653.0 453.84∗ 453.84 0 517.2

a4-48 554.54∗ 554.54 0 1334.4 554.54∗ 554.54 0 1334.4 554.54∗ 554.54 0 1 1334.4 554.54 526.96 5.04 7200.0

a5-40 416.79 413.48 0.25 318.6 414.51∗ 414.51 0 805.2 414.51∗ 414.51 0 21 448.3 414.51∗ 414.51 0 1141.8

a5-50 559.17∗ 559.17 0 496.2 559.17∗ 559.17 0 496.2 559.17∗ 559.17 0 1 496.2 559.17 531.15 5.01 7200.0

Avg 0.02 310.1 0 345.1 0 2.7 319.3 0.72 1210.5

γ = 0.4 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj′ LB′ LB′%Nnode CPU′ Obj2 LB2 LB2% CPU(s)

a2-16 237.38∗ 237.38 0 12.7 237.38∗ 237.38 0 12.7 237.38∗ 237.38 0 1 12.7 237.38∗ 237.38 0 1.8

a2-20 280.70∗ 280.70 0 93.8 280.70∗ 280.70 0 93.8 280.70∗ 280.70 0 1 93.8 280.70∗ 280.70 0 49.8

a2-24 347.04∗∗ 347.04 0 267.8 347.04∗∗ 347.04 0 267.8 347.04∗∗ 347.04 0 1 267.8 348.04∗ 348.04 -0.29 25.2

a3-18 236.82∗ 236.82 0 5.3 236.82∗ 236.82 0 5.3 236.82∗ 236.82 0 1 5.3 236.82∗ 236.82 0 4.2

a3-24 274.80∗ 274.80 0 69.7 274.80∗ 274.80 0 69.7 274.80∗ 274.80 0 1 69.7 274.80∗ 274.80 0 16.8

a3-30 413.34∗∗ 413.34 0 306.9 413.34∗∗ 413.34 0 306.9 413.34∗∗ 413.34 0 1 306.9 413.37∗ 413.37 -0.01 99.0

a3-36 483.83∗∗ 481.85 0.41 1273.5 482.75∗∗ 482.64 0.02 7200.0 482.75∗∗ 482.75 0 13 5154.1 484.14∗ 484.14 -0.06 306.6

a4-16 222.49 222.38 0.05 6.5 222.49∗ 222.49 0 10.1 222.49∗ 222.49 0 5 3.3 222.49∗ 222.49 0 5.4

a4-24 311.03∗ 311.03 0 18.4 311.03∗ 311.03 0 18.4 311.03∗ 311.03 0 1 18.4 311.03∗ 311.03 0 39.6

a4-32 394.26∗ 394.26 0 199.3 394.26∗ 394.26 0 199.3 394.26∗ 394.26 0 1 199.3 394.26∗ 394.26 0 681.6

a4-40 453.84∗ 453.84 0 792.0 453.84∗ 453.84 0 792.0 453.84∗ 453.84 0 1 792.0 453.84∗ 453.84 0 417.6

a4-48 554.60∗ 554.60 0 2292.0 554.60∗ 554.60 0 2292.0 554.60∗ 554.60 0 1 2292.0 554.60 529.22 4.58 7200.0

a5-40 415.25 413.48 0.25 307.8 414.51∗ 414.51 0 481.6 414.51∗ 414.51 0 3 323.6 414.51∗ 414.51 0 1221.0

a5-50 559.51∗ 559.51 0 1957.1 559.51∗ 559.51 0 1957.1 559.51∗ 559.51 0 1 1957.1 560.50 528.91 5.47 7200.0

Avg 0.05 543.1 0 979.1 0 2.3 821.1 0.74 1233.5

γ = 0.7 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj′ LB′ LB′%Nnode CPU′ Obj2 LB2 LB2% CPU(s)

a2-16 240.66∗ 240.66 0 20.8 240.66∗ 240.66 0 20.8 240.66∗ 240.66 0 1 20.8 240.66∗ 240.66 0 5.4

a2-20 293.27 292.73 0.18 1108.8 293.27∗ 293.27 0 1733.8 293.27∗ 293.27 0 5 1758.6 NA 287.17 2.08 7200.0

a2-24 353.18∗∗ 353.18 0 1241.9 353.18∗∗ 353.18 0 1241.9 353.18∗∗ 353.18 0 1 1241.9 358.21∗ 358.21 -1.42 961.2

a3-18 240.58∗ 240.58 0 14.1 240.58∗ 240.58 0 14.1 240.58∗ 240.58 0 1 14.1 240.58∗ 240.58 0 48.0

a3-24 275.97∗∗ 275.97 0 100.8 275.97∗∗ 275.97 0 100.8 275.97∗∗ 275.97 0 1 100.8 277.72∗ 277.72 -0.63 152.4

a3-30 426.40 422.57 0.56 1171.6 424.93∗ 424.93 0 3401.9 424.93∗ 424.93 0 3 1893.3 NA 417.06 1.85 7200.0

a3-36 500.57 491.80 0.45 2191.6 494.04 493.71 0.07 7200.0 494.04 494.01 0.01 20 7200.0 494.04 485.91 1.65 7200.0

a4-16 223.13∗ 223.13 0 8.4 223.13∗ 223.13 0 8.4 223.13∗ 223.13 0 1 8.4 223.13∗ 223.13 0 67.2

a4-24 318.24 316.24 0.13 84.3 316.65∗∗ 316.65 0 129.7 316.65∗ 316.65 0 7 164.4 318.21∗ 318.19 -0.49 1834.8

a4-32 397.87 396.84 0.26 734.7 397.87 397.78 0.02 7200.0 397.87∗ 397.87 0 9 1638.6 430.07 387.99 2.48 7200.0

a4-40 467.72 466.96 0.16 3252.4 467.72∗ 467.72 0 5238.4 467.72∗ 467.72 0 9 3987.4 NA 443.62 5.15 7200.0

a4-48 NA 476.54 NA 7200.0 NA 476.54 NA 7200.0 NA 476.54 NA 1 7200.0 NA 524.92 NA 7200.0

a5-40 418.75 417.25 0.36 2182.2 418.75∗ 418.75 0 6808.1 418.75∗ 418.75 0 15 1572.0 447.63 405.99 4.78 7200.0

a5-50 NA 176.58 NA 7200.0 NA 176.58 NA 7200.0 690.79 327.84 NA 1 7200.0 NA 522.37 NA 7200.0

Avg 0.32 1893.7 0.01 3394.5 0 5.4 2428.6 1.70 4333.5

Summary #opt #bestlbLB%#bestub #opt #bestlbLB1%#bestub #opt #bestlbLB′%Nnode#bestub #opt #bestlbLB2% #bestub

28 34 0.13 36 37 40 0.003 40 39 40 0 3.5 40 24 26 1.06 28

a: Due to incorrect big M values, some of the reported results of Bongiovanni et al. (2019) are higher than the actual optimal values.

Those results are highlighted in italics;
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Table 3 Overview of E-ADARP solution approaches on type-u instances under γ = 0.1, 0.4, 0.7

γ = 0.1 CG results CG with cutting planes B&P results B&C (Bongiovanni et al., 2019)a

Instance Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj′ LB′ LB′%Nnode CPU′ Obj2 LB2 LB2% CPU(s)

u2-16 57.61 57.08 0.92 43.6 57.61∗ 57.61 0 72.1 57.61∗ 57.61 0 3 22.2 57.61∗ 57.61 0 21.0

u2-20 55.59∗ 55.59 0 69.3 55.59∗ 55.59 0 69.3 55.59∗ 55.59 0 1 69.3 55.59∗ 55.59 0 9.6

u2-24 91.36 90.55 0.12 851.7 90.66∗∗ 90.66 0 7001.9 90.66∗∗ 90.66 0 7 1649.0 91.27∗ 91.27 -0.67 432.0

u3-18 50.74∗ 50.74 0 14.0 50.74∗ 50.74 0 14.0 50.74∗ 50.74 0 1 14.0 50.74∗ 50.74 0 10.8

u3-24 67.56∗ 67.56 0 40.3 67.56∗ 67.56 0 40.3 67.56∗ 67.56 0 1 40.3 67.56∗ 67.56 0 130.2

u3-30 76.75∗ 76.75 0 570.8 76.75∗ 76.75 0 570.8 76.75∗ 76.75 0 1 570.8 76.75∗ 76.75 0 438.0

u3-36 104.39 103.94 0.10 1894.6 104.04∗ 104.04 0 3293.4 104.04∗ 104.04 0 11 4204.6 104.04∗ 104.04 0 1084.8

u4-16 53.58∗ 53.58 0 1.9 53.58∗ 53.58 0 1.9 53.58∗ 53.58 0 1 1.9 53.58∗ 53.58 0 48.0

u4-24 89.83∗ 89.83 0 25.5 89.83∗ 89.83 0 25.5 89.83∗ 89.83 0 1 25.5 89.83∗ 89.83 0 13.2

u4-32 99.29∗ 99.29 0 366.2 99.29∗ 99.29 0 366.2 99.29∗ 99.29 0 1 366.2 99.29∗ 99.29 0 1158.6

u4-40 133.11∗ 133.11 0 1376.6 133.11∗ 133.11 0 1376.6 133.11∗ 133.11 0 1 1376.6 133.11∗ 133.11 0 185.4

u4-48 148.08 147.02 0.72 7200.0 148.08 147.02 0.72 7200. 148.08 147.02 0.72 1 7200.0 148.30 134.48 9.18 7200.0

u5-40 121.86∗ 121.86 0 496.9 121.86∗ 121.86 0 496.9 121.86∗ 121.86 0 1 496.9 121.86 114.12 6.35 7200.0

u5-50 142.82 142.75 0.05 7100.9 142.82 142.75 0.05 7200.0 142.82 142.77 0.04 7 7200.0 143.10 132.69 7.09 7200.0

Avg 0.14 1432.3 0.06 1659.8 0.06 9.5 1659.8 1.66 1795.1

γ = 0.4 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj′ LB′ LB′%Nnode CPU′ Obj2 LB2 LB2% CPU(s)

u2-16 57.65∗ 57.65 0 53.2 57.65∗ 57.65 0 53.2 57.65∗ 57.65 0 1 53.2 57.65∗ 57.65 0 25.8

u2-20 56.61 56.06 0.50 407.3 56.34∗ 56.34 0 665.2 56.34∗ 56.34 0 3 281.3 56.34∗ 56.34 0 12.0

u2-24 91.62 90.80 0.51 1140.2 91.27∗∗ 90.95 0.33 4266.0 91.06∗∗ 91.06 0 25 6917.0 91.63∗ 91.63 -0.39 757.2

u3-18 50.74∗ 50.74 0 15.0 50.74∗ 50.74 0 15.0 50.74∗ 50.74 0 1 15.0 50.74∗ 50.74 0 13.8

u3-24 67.56∗ 67.56 0 58.5 67.56∗ 67.56 0 58.5 67.56∗ 67.56 0 1 58.5 67.56∗ 67.56 0 220.8

u3-30 76.75∗ 76.75 0 500.2 76.75∗ 76.75 0 500.2 76.75∗ 76.75 0 1 500.2 76.75∗ 76.75 0 336.6

u3-36 104.06∗ 104.06 0 1769.0 104.06∗ 104.06 0 1769.0 104.06∗ 104.06 0 1 1769.0 104.06∗ 104.06 0 2010.0

u4-16 53.58∗ 53.58 0 2.2 53.58∗ 53.58 0 2.2 53.58∗ 53.58 0 1 2.2 53.58∗ 53.58 0 44.4

u4-24 89.83∗ 89.83 0 30.8 89.83∗ 89.83 0 30.8 89.83∗ 89.83 0 1 30.8 89.83∗ 89.83 0 28.2

u4-32 99.29∗ 99.29 0 393.4 99.29∗ 99.29 0 393.4 99.29∗ 99.29 0 1 393.4 99.29∗ 99.29 0 2667.6

u4-40 133.78∗∗ 133.37 0.31 2186.1 133.78∗∗ 133.46 0.24 3958.2 133.78∗∗ 133.70 0.06 32 7200.0 133.91∗ 133.91 -0.10 2653.2

u4-48 147.63 146.37 0.85 7200.0 147.63 146.37 0.85 7200.0 147.63 146.37 0.85 1 7200.0 NA 133.86 9.33 7200.0

u5-40 121.96∗ 121.96 0 723.7 121.96∗ 121.96 0 723.7 121.96∗ 121.96 0 1 723.7 122.23 112.58 7.69 7200.0

u5-50 142.84 142.75 0.06 7200.0 142.84 142.75 0.06 7200.0 142.84 142.75 0.06 1 7200.0 143.14 134.09 6.13 7200.0

Avg 0.16 1548.5 0.11 1916.8 0.07 5.1 2310.3 1.69 2169.3

γ = 0.7 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj′ LB′ LB′%Nnode CPU′ Obj2 LB2 LB2% CPU(s)

u2-16 60.01 58.48 1.20 89.6 59.19∗ 59.19 0 2597.2 59.19∗ 59.19 0 39 679.8 59.19∗ 59.19 0 338.4

u2-20 56.86∗ 56.86 0 337.0 56.86∗ 56.86 0 337.0 56.86∗ 56.86 0 1 337.0 56.86∗ 56.86 0 72.0

u2-24 92.17 91.48 0.75 2056.3 92.17 91.71 0.50 7200.0 92.01 91.60 0.52 30 7200.0 NA 90.83 1.45 7200.0

u3-18 50.99 50.94 0.10 65.4 50.99∗ 50.99 0 116.4 50.99∗ 50.99 0 3 45.2 50.99∗ 50.99 0 24.0

u3-24 68.44 68.00 0.57 119.9 68.44 68.12 0.47 176.2 68.34∗∗ 68.34 0 27 541.9 68.39∗ 68.39 0 400.2

u3-30 77.41∗∗ 77.33 0.10 955.3 77.41∗∗ 77.41 0 1778.3 77.41∗∗ 77.41 0 5 1725.5 78.14∗ 78.14 -0.94 3401.4

u3-36 106.45 105.46 0.31 7200.0 106.45 105.46 0.31 7200.0 105.79 105.78 0.01 15 7200.0 105.79 104.37 1.34 7200.0

u4-16 53.87∗ 53.87 0 4.0 53.87∗ 53.87 0 4.0 53.87∗ 53.87 0 1 4.0 53.87∗ 53.87 0 88.8

u4-24 89.96∗ 89.96 0 82.3 89.96∗ 89.96 0 82.3 89.96∗ 89.96 0 1 82.3 89.96∗ 89.96 0 22.8

u4-32 99.50∗ 99.50 0 1028.6 99.50∗ 99.50 0 1028.6 99.50∗ 99.50 0 1 1028.6 99.50∗ 99.50 0 2827.2

u4-40 135.33 134.56 0.54 1959.5 135.29 134.65 0.47 5555.5 135.76 134.96 0.59 43 7200.0 NA 133.01 2.46 7200.0

u4-48 185.16 NA NA 7200.0 185.16 NA NA 7200.0 185.16 NA NA 1 7200.0 NA 132.49 NA 7200.0

u5-40 124.01 122.82 0.81 4774.6 123.82 122.87 0.77 7200.0 122.93∗ 122.93 0 7 6513.9 NA 109.28 11.88 7200.0

u5-50 195.72 132.79 NA 7200.0 195.72 132.79 NA 7200.0 195.72 132.79 NA 1 7200.0 144.36 133.33 7.64 7200.0

Avg 0.36 2362.3 0.21 3405.4 0.09 12.4 3354.1 1.98 3598.2

Summary #opt #bestlbLB%#bestub #opt #bestlb LB% #bestub #opt #bestlb LB% Nnode#bestub #opt #bestlb LB′% #bestub

22 30 0.22 35 29 38 0.13 39 32 39 0.07 9 39 26 28 1.78 29

a: Due to incorrect big M values, some of the reported results of Bongiovanni et al. (2019) are higher than the actual optimal values.

Those results are highlighted in italics;
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Table 4 Overview of E-ADARP solution approaches on type-r instances under γ = 0.1, 0.4

γ = 0.1 CG results CG with cutting planes B&P results DA

Instance Obj LB CPU(s) Obj1 LB1 CPU(s) Obj′ LB′ LB′% Nnode CPU′ BKS

r5-60 687.80 682.27 11263.2 683.39∗ 683.39 13983.7 683.39∗ 683.39 0 7 7817.0 691.83

r6-48 506.45∗ 506.45 1109.1 506.45∗ 506.45 1109.1 506.45∗ 506.45 0 1 1109.1 506.72

r6-60 692.25 689.31 2389.2 689.45∗ 689.45 16387.4 689.45∗ 689.45 0 15 3695.7 692.00

r6-72 761.34 748.90 18000.0 761.34 748.90 18000.0 761.34 748.90 NA 1 18000.0 777.44

r7-56 613.19 611.97 1402.5 612.02∗ 612.02 4975.3 612.02∗ 612.02 0 3 810.8 613.10

r7-70 760.23 753.56 7275.6 754.28 753.56 18000.0 754.28∗ 754.28 0 31 18000.0 760.90

r7-84 975.26 638.59 18000.0 975.26 638.59 18000.0 975.26 638.59 NA 1 18000.0 889.38

r8-64 632.22∗ 632.22 3246.5 632.22∗ 632.22 3246.5 632.22∗ 632.22 0 1 3246.5 641.99

r8-80 788.99∗ 788.99 14563.8 788.99∗ 788.99 14563.8 788.99∗ 788.99 0 1 14563.8 803.52

r8-96 1329.75 651.32 18000.0 1329.75 651.32 18000.0 1329.75 651.32 NA 1 18000.0 1053.11

Avg 9525.0 12626.6 0 6.2 10324.3

γ = 0.4 Obj LB CPU(s) Obj1 LB1 CPU(s) Obj′ LB′ LB′% Nnode CPU′ BKS

r5-60 686.85 682.76 15555.3 686.85 683.56 18000.0 684.49∗ 684.49 0 9 17281.3 697.97

r6-48 506.45∗ 506.45 1195.6 506.45∗ 506.45 1195.6 506.45∗ 506.45 0 1 1195.6 506.91

r6-60 695.69 688.81 4109.1 689.48 689.33 18000.0 689.46∗ 689.46 0 3 2521.1 694.78

r6-72 NA NA 18000.0 NA NA 18000.0 NA NA NA 1 18000.0 799.60

r7-56 612.17 611.97 1496.3 612.02∗ 612.02 3991.7 612.02∗ 612.02 0 3 803.0 613.66

r7-70 759.27 753.56 10380.5 754.28∗ 754.28 16540.0 754.28∗ 754.28 0 11 13664.6 766.05

r7-84 1081.76 NA 18000.0 1081.76 NA 18000.0 1081.76 NA NA 1 18000.0 932.12

r8-64 632.22∗ 632.22 3030.0 632.22∗ 632.22 3030.0 632.22∗ 632.22 0 1 3030.0 638.36

r8-80 788.99 780.81 18000.0 788.99 780.81 18000.0 788.99 780.81 NA 1 18000.0 811.19

Avg 9974.1 12750.8 0 10277.3

Summary #opt #bestub #bestlb #opt #bestub #bestlb #opt #bestlb LB% Nnode #bestub #bestub

5 14 17 10 15 17 13 17 0 3.4 16 4

Compared with the best-reported B&C results in Bongiovanni et al. (2019), we finally solve 71 out of 84 instances

optimally within the two-hour time limit,while the B&C algorithm can only solve 50 instances optimally. In terms

of computational efficiency, we have observed a significant reduction of 24% with our proposed B&P algorithm

when solving both type-a and type-u instances, as compared to the reported CPU times of the B&C algorithm.

Then, we compared our B&P algorithm results with our results of the CG algorithm with cuts. On type-a and -u

instances, the proposed B&P algorithm solves 5 additional instances optimally, obtains 6 tighter lower bounds, and

generates 3 additional new best solutions. In addition, due to the high-quality lower bounds obtained at the root

node, only a few search tree nodes are needed to close the gap when applying the B&P. As a result, branching

seems to be more computationally attractive than adding valid cuts, as subset-row inequalities introduce additional

complexity to solve the subproblems while branching does not. We can draw the same conclusion from the obtained

B&P results on type-r instances. Compared with the results of the CG algorithm with cutting planes, the proposed

B&P algorithm solves 3 more instances to optimality, tightens 4 previously reported lower bounds, and improves 3

previously generated integer solutions.

5.2.3. The impact of solving weighted-sum objective function, column pool initialization, and allowing unlimited

charging visits.

The impact of considering total excess user ride time in the objective function. To illustrate the tangible

impact of incorporating the total excess user ride time within the objective function, we conduct experiments wherein
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we solely focused on minimizing the total travel time. For the obtained solutions, we report their corresponding total

excess user ride time and compare them to the results we obtained from solving the weighted-sum objective problem.

Table 5 presents the aggregated results, with average solution costs for the first and second objectives in columns

Avgobj1 and Avgobj2 , respectively. In addition, Gap1 and Gap2 measure the average differences (in percent) in total

travel time/excess user ride time between solutions obtained by solving the single objective and the weighted-sum

objective versions. Detailed experimental results per instance can be found in Appendix C.

Table 5 Aggregated results for single- and weighted-sum-objective E-ADARP

Minimize total travel time only: w = {1, 0} Minimize weighted-sum objective: w = {0.75, 0.25}
Scenarios Avgobj1 Avgobj2 #opt CPU(s) Avgobj1 Avgobj2 Gap1 Gap2 #opt′ CPU ′(s)

a:γ = 0.1 452.16 184.72 14 730.1 465.51 83.00 2.68% -134.06% 14 319.3

a:γ = 0.4 453.93 184.95 14 959.7 466.02 82.81 2.42% -135.68% 14 821.1

a:γ = 0.7 424.83 155.17 12 2111.6 486.79 107.84 2.27% -118.30% 12 2428.6

u:γ = 0.1 116.20 29.83 13 1902.5 118.66 12.87 2.24% -237.03% 12 1659.8

u:γ = 0.4 115.94 32.15 11 2015.8 118.68 13.69 2.38% -162.69% 11 2310.2

u:γ = 0.7 117.37 34.32 11 4052.6 128.67 14.58 2.46% -324.79% 9 3354.1

Overall 75 1962.1 2.36% -160.80% 72 1815.6

From Table C.8 and Table C.9, comparing to the solutions achieved when solely minimizing the total travel time,

our analysis reveals the following insights: (1) Across all cases, we have observed substantial reductions in total

excess user ride time upon integrating it into the objective function. These improvements come at the cost of only

slight increases in total travel time. (2) The above observation holds significant managerial implications, particularly

for ride-sharing service providers like Uber. By considering a weighted-sum objective function, they can significantly

enhance the quality of their service, ensuring a more favorable user experience while still maintaining operational

costs at nearly optimal levels. An interesting avenue for further exploration involves addressing a bi-objective version

of the E-ADARP. By identifying all Pareto optimal solutions, we can better understand the trade-off between

total travel time and total excess user ride time. (3) We observe that the average computational time of solely

minimizing the total travel time (i.e., weight factors of {1,0}) for both type-a and type-u instances is similar to

that under the weight factors of {0.75,0.25}. The main reason is that we pre-calculate the minimum excess user

ride time for all feasible battery-restricted fragments in the preprocessing step (i.e., fragment enumeration). As

a result, our labeling algorithm determines the minimum total excess user ride time for an extended partial path

by querying and summing the pre-computed minimum excess ride times for each fragment, avoiding the need for

recomputations. This result leads to an important computational implication: with our proposed method, the total

time for minimum excess user ride time computation does not depend on different weight combinations and is only a

matter of seconds per instance (detailed results are presented in Appendix B). This characteristic potentially gives

our method a competitive edge in multi-objective optimization scenarios compared to existing scheduling methods

(e.g., Bongiovanni et al. (2024)), guiding future research in multi-objective E-ADARP optimization.

It should be noted that Bongiovanni et al. (2019) have reported preliminary results on solely minimizing the

total travel time on 36 type-a instances. In our work, we found 13 new solutions on type-a instances compared with
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the best-reported results of Bongiovanni et al. (2019) and we report new solutions on 42 type-u instances. In total

55 new solutions are presented in Appendix C. These results not only confirm the preliminary observation reported

in Bongiovanni et al. (2019), but may also serve as a benchmark for future studies.

The impact of performing the DA algorithm to initialize the column pool. In the previous section, we

initialize the column pool by iterating the DA algorithm 500 times and storing all generated columns. To analyze

the effect of this initialization strategy on the computational performance, we perform our algorithms with only 1

iteration of the DA algorithm to initialize the column pool. The computational results are presented in Appendix D.

From Table D.10 and Table D.11, we have the following findings: (1) Even when initiated with a randomly

constructed solution, the B&P algorithm yields outcomes of similar quality to those obtained using a higher-quality

initial column pool. (2) The incorporation of the DA algorithm into the B&P framework seems to help enhance the

computational efficiency. By seeding the column pool with high-quality columns, the B&P algorithm accelerates its

convergence towards optimality, resulting in faster solution times. There is a trade-off between the time invested in

the initialization phase and the time saved as a result of this high-quality initialization, which accelerates convergence.

Based on preliminary experiments, iterating the DA algorithm 500 times is a good choice for initialization.

The impact of allowing unlimited visits to recharging stations. In Bongiovanni et al. (2019), each recharging

station s ∈ S can be visited at most once. The authors allow multiple visits to each recharging station by replicating

the set of recharging stations S. Therefore, the maximum number of visits per recharging station (denoted as

Ns
max, s ∈ S) must be predefined. Only three different values of Ns

max, N
s
max = {1, 2, 3} are tested for type-u

instances. From their results, the computational time increases substantially with a higher value of Ns
max, which

prevents them from applying the B&C algorithm to allow unlimited visits to each recharging station (Ns
max = ∞).

In this part, we investigate the case of Ns
max = ∞. To allow unlimited visits per recharging station, the constraints

(5) in MP are removed. In the labeling algorithm, constraints (20) are deleted to allow visits to the same recharging

station. The B&P algorithm is executed on type-a, -u, and -r instances. If the adapted B&P algorithm solves

instances optimally within the maximum time limit, the corresponding results are marked with an asterisk in the

column named “Obj”. Detailed results of allowing unlimited visits to each recharging station under different settings

of γ for type-a, -u, and -r can be found in Table E.12, Table E.13, and Table E.14, respectively. We present a

summary of these results in Table 6.

Table 6 Aggregated results allowing unlimited or at-most-one charging visit(s) per charging station

Unlimited charging visits At-most-one charging visit

Instances #opt #bestub LB% Nnode Ns
max CPU(s) #bestuba BKS′%

Type-a 26 26 0.15% 1.2 2.3 1352.4 10 0.59%

Type-u 35 40 0.11% 2.0 1.3 2431.4 26 0.57%

Type-r 18 28 0.54% 4.5 2.8 11030.6 14 0.79%

Overall 79 94 0.27% 2.6 2.1 4938.1 50 0.65%

a: The #bestub values, when restricting to at-most-one charging visits, indicate the number of solutions with

objective values that are equal to or less than those achieved by permitting unlimited charging visits.
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For γ = 0.1, as the optimal solutions are obtained without visiting recharging stations multiple times for type-a

instances, we only conduct experiments for γ = 0.4, 0.7 for type-a instances. From the global algorithm performance,

the major findings are: (1) for type-a and -u instances, our B&P algorithm obtains optimal solutions for 61 out of

70 instances, among which 60 are solved optimally at the root node without branching. (2) For type-r instances, the

proposed B&P algorithm solves 18 instances optimally (12 instances are solved optimally at the root node). Feasible

solutions are yielded for all instances. Hence, we demonstrate in all cases the effectiveness of the B&P algorithm to

solve a more general version of the E-ADARP. From Table 6, we also observe that allowing unlimited charging visits

improves the solution costs for 44 instances, achieving an average reduction of 0.65% in the objective function values.

From Table E.12, Table E.13, and Table E.14, we analyze the effect of allowing unlimited visits by comparing our

obtained results with the best-reported results of allowing at most one recharging visit among the B&P and B&C

algorithms (presented in the column named “BKS′”). The column of “BKS′%” represents the deviation between BKS

and the best-obtained results allowing unlimited charging visits per station. If a solution obtained with Ns
max = ∞

has a lower cost than with Ns
max = 1, the corresponding BKS′% is positive. We also report the maximum number

of recharging visits to a recharging station for the obtained solutions in the column named “Ns
max”. The major

observations include: (1) we find 52 out of 100 obtained solutions contain multiple visits to the same recharging

station, especially under γ = 0.7, and we observe considerable improvements in solution feasibility and quality

with setting Ns
max = ∞; (2) there are several solutions for type-a instances that contain multiple recharging visits

but have the same cost as the obtained solutions with Ns
max = 1 (e.g., a3-24-0.4). This situation is possible as

all recharging stations for a type-a instance are at the same location and one can have an equal-cost solution by

replacing one recharging station with another; (3) setting Ns
max = 3 seems enough for solving type-u instances

allowing unlimited recharging visits, while one needs to set Ns
max to 4 and 8 for type-a and -r instances, respectively.

6. Conclusion and Extensions

This paper has presented an effective B&P algorithm relying on a problem-tailored labeling algorithm to solve

the E-ADARP. The E-ADARP shares some characteristics with the classical DARP and E-VRP but differs from

these problems regarding the following features: a weighted-sum objective function that minimizes total travel time

and excess user ride time, EAVs, and partial recharging at recharging stations. In this work, we propose a new

paradigm to handle the excess-user-ride-time optimization in the labeling algorithm. This paradigm includes (1) a

fragment-based representation of paths that replaces a sequence of REFs with a single one, (2) a novel approach that

abstracts fragments to arcs with excess user ride time being minimized to build a new sparser graph that preserves

all feasible routes of the original graph, and (3) strong dominance rules and constant time feasibility checks on the

new graph.

In the computational experiments, the performance of the B&P algorithm is rigorously evaluated across an

extensive range of benchmark instances from Bongiovanni et al. (2019) and Su et al. (2023). We first compare the

algorithm performance between CG with cutting planes and the B&P algorithm. With our best-performing method

(i.e., the B&P algorithm), we solve 71 out of 84 instances optimally within the two-hour time limit, while the B&C

algorithm of Bongiovanni et al. (2019) can only solve 50 of them optimally. In addition, we obtain 26 new best

solutions, 54 equal solutions, and 30 improved lower bounds. On larger-sized instances (i.e., type-r instances), we
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obtain 16 new best solutions, compared with the existing results of Su et al. (2023). Then, we analyze the impact of

(1) incorporating the total excess user ride time into the objective, (2) performing the DA algorithm for column

pool initialization, and (3) allowing unlimited visits to recharging stations. From our numerical results, we have the

following conclusions: (1) By integrating total excess user ride time into the objective, we obtain solutions that

achieve dramatic reductions in total excess user ride time, accompanied by only a marginal increase in total travel

time. (2) Computing initial columns by means of an existing metaheuristic algorithm contributes towards a faster

convergence to optimality. (3) The relaxation on charging visits per recharging station allows to obtain feasible

solutions for instances that could not be solved in the more restrictive settings. Forty-nine improved solutions are

obtained, compared to the best-obtained results of allowing at most one recharging visit per station.

Finally, our CG and B&P algorithms also offer new insights into designing an exact algorithm for solving a

practical version of the electric DARP, considering multiple objectives. One important “by-product” of our labeling

algorithm is the first exact scheduling procedure that can efficiently determine the excess-user-ride-time optimal

schedule for a given E-ADARP route. This scheduling procedure can also be applied to optimize excess user ride time

in the classical DARP or the DARP with multiple objectives, in which total excess user ride time is minimized in a

separate objective. In addition, it would be interesting to hybridize the proposed method with machine learning (ML)

and metaheuristic methods so as to tackle realistically sized instances. One promising path into this direction is to

develop an ML-based pricing heuristic to find negative-reduced-cost columns efficiently. Another path is to leverage

ML to find good parametrizations of different methods within the column generation framework. Another promising

direction stemming from our study is to take a more comprehensive analysis of the non-linear nature of recharging

and discharging, thereby offering theoretical insights into modeling the E-ADARP in a more energy-realistic context.
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Appendix A. Linear Programming Model

We present the Linear Programming (LP) model for calculating the minimum excess user ride time in case of

two or more requests are served simultaneously on a fragment F and ∃i ∈ F such that ∆i ̸= 0.

Let PF denote all pickup nodes on F = {1, · · · ,m}:

min
∑
i∈PF

Ri (A.1)

s.t.


Ti = Bl

1, if i = 1

Ti = Bl
m, if i = m

ei ⩽ Ti ⩽ li, Otherwise

(A.2)

Ti + si + ti,j ⩽ Tj , ∀i ∈ F \ {m}, idxj = idxi + 1 (A.3)

Tn+i − (Ti + si) ⩽ mi, ∀i ∈ PF (A.4)

Tn+i − Ti − si − ti,n+i ⩽ Ri, ∀i ∈ PF (A.5)

Ri ⩾ 0, ∀i ∈ PF (A.6)

where idxi is the index of node i on the segment. The objective function is to minimize the total excess user ride

time. Constraints (A.2) to (A.3) are time window constraints where we set the service start time at node 1 and

node m to Bl
1 and Bm

1 (Bl is the latest vehicle-waiting-time optimal schedule), respectively. Constraints (A.4) and

constraints (A.5) are user ride time constraints.

Appendix B. Computational experiments for fragment enumeration

In this section, we present experimental details of fragment enumeration for each instance in Table B.7, as in Su

et al. (2023). For the sake of completeness, we also present detailed results in this section. These details include

the number of fragments generated (in the column “Nfrag”), the average and maximum length of fragments (in

columns “Legavg” and “Legmax”), respectively, the number of time LP is solved (in the column “NLP ”), and the

total computational time for enumeration in seconds (in the column named “CPU”).
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Table B.7 Details of fragments enumeration for all

the instances

Nfrag Legavg Legmax NLP CPU(s)

a2-16 32 3.06 6 0 0.94

a2-20 51 3.41 6 1 0.23

a2-24 64 3.72 8 1 0.09

a3-18 71 4.25 8 4 0.04

a3-24 110 4.71 12 0 0.06

a3-30 89 3.66 8 0 0.12

a3-36 114 4.12 12 1 0.27

a4-16 78 4.51 8 4 0.04

a4-24 91 4.07 8 2 0.07

a4-32 206 5.58 12 3 0.20

a4-40 242 5.45 12 6 0.37

a4-48 355 5.33 12 15 0.61

a5-40 337 5.65 12 3 0.38

a5-50 659 8.25 24 33 0.99

Avg 178.5 4.70 10.57 5.21 0.32

u2-16 61 3.80 6 0 1.05

u2-20 180 5.26 12 7 0.32

u2-24 66 3.27 4 0 0.06

u3-18 78 3.95 8 0 0.04

u3-24 129 4.25 8 0 0.08

u3-30 255 5.06 8 19 0.29

u3-36 276 5.14 12 12 0.30

u4-16 75 4.03 8 1 0.04

u4-24 57 3.19 6 0 0.05

u4-32 177 4.14 10 3 0.21

u4-40 149 4.01 8 2 0.26

u4-48 1177 9.01 18 7 1.69

u5-40 335 5.28 14 1 0.49

u5-50 584 6.13 14 6 0.96

Avg 257.07 4.75 9.71 4.14 0.42

r5-60 632 6.44 16 44 2.61

r6-48 4082 14.20 36 414 6.89

r6-60 809 6.58 18 40 1.65

r6-72 1080 7.12 22 36 2.51

r7-56 1089 7.92 18 83 1.70

r7-70 2340 8.32 18 183 4.14

r7-84 2892 11.66 30 405 7.77

r8-64 11694 18.23 42 3517 40.52

r8-80 5822 14.89 30 260 14.07

r8-96 3155 9.30 26 312 9.65

Avg 3359.50 10.47 25.6 526.4 9.15
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Appendix C. Single-objective E-ADARP v.s. weighted-sum objective E-ADARP

In this section, we compare results from solving a single-objective function (i.e., minimizing total travel time)

with the results of solving the weighted-sum objective function in Table C.8 and Table C.9. The additional notations

used in the tables are summarized as follows:

• Obj
′′
: the objective values of optimal solutions from B&P in solving the minimization of total travel time;

• Obj
′′

1 : the total travel times corresponding to optimal solutions of solely minimizing total travel time;

• Obj
′′

2 : the total excess user ride times corresponding to optimal solutions of solely minimizing total travel time;

• N
′′

node: the number of nodes explored in the B&P tree in solely minimizing total travel time;

• CPU
′′
: the CPU time in seconds of solely minimizing total travel time by applying B&P algorithm;

• Obj
′

1: the total travel times corresponding to optimal solutions of minimizing weighted-sum objective;

• Obj
′

2: the total excess user times corresponding to optimal solutions of minimizing weighted-sum objective;

• Gap1: the gaps between Obj
′′

1 and Obj
′

1;

• Gap2: the gaps between Obj
′′

2 and Obj
′

2;

• -∞: the gaps between Obj
′′

2 and Obj
′

2 cannot be calculated as Obj
′

2 = 0.

And Gap1, Gap2 are calculated as follows:

Gapk% =
Obj

′

k −Obj
′′

k

Obj
′
k

× 100% k ∈ {1, 2}
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Table C.8 B&P results on type-a instances under γ = 0.1, 0.4, 0.7:minimizing total travel time only v.s.

minimizing the weighted sum of total travel time and total excess user ride time

γ = 0.1 Minimizing total travel time only a Minimizing the weighted-sum objective Gaps on objectives

Instance Obj
′′

Obj
′′
1 Obj

′′
2 N

′′
node CPU

′′
Obj

′
Obj

′
1 Obj

′
2 Nnode CPU

′
(s) Gap1 Gap2

a2-16 294.25∗ 294.25 72.98 1 11.1 237.38∗ 299.26 51.73 1 11.1 1.67% -41.08%

a2-20 344.83∗ 344.83 112.56 1 56.0 279.08∗ 347.89 72.63 1 70.9 0.88% -54.96%

a2-24 413.12∗ 413.12 157.41 1 204.7 346.21∗ 433.26 85.08 1 243.3 4.66% -85.03%

a3-18 300.48∗ 300.48 119.06 1 7.2 236.82∗ 304.34 34.24 1 5.0 1.27% -247.68%

a3-24 344.83∗ 344.83 120.31 1 76.9 274.80∗ 355.78 31.87 1 81.2 3.08% -277.47%

a3-30 494.85∗ 494.85 197.18 1 176.7 413.27∗ 500.69 150.99 1 221.7 1.17% -30.59%

a3-36 583.19∗ 583.19 244.37 5 998.1 481.17∗ 600.85 122.12 1 730.8 2.94% -100.11%

a4-16 282.68∗ 282.68 44.49 1 2.5 222.49∗ 286.45 30.60 5 5.5 1.32% -45.40%

a4-24 375.02∗ 375.02 159.64 1 19.0 310.84∗ 388.83 76.88 1 25.0 3.55% -107.66%

a4-32 485.50∗ 485.50 165.20 1 98.1 393.95∗ 502.34 68.80 1 143.2 3.35% -140.10%

a4-40 557.69∗ 557.69 167.65 1 240.2 453.84∗ 562.44 128.04 1 653.0 0.84% -30.94%

a4-48 668.82∗ 668.82 333.24 3 1108.0 554.54∗ 697.85 124.60 1 1334.4 4.16% -167.45%

a5-40 498.41∗ 498.41 296.37 1 194.2 414.51∗ 524.75 83.78 21 448.3 5.02% -253.73%

a5-50 686.62∗ 686.62 395.64 67 7028.2 559.17∗ 712.28 99.81 1 496.2 3.43% -296.38%

Avg 452.16 184.72 6.1 730.1 465.51 83.00 2.7 319.3 2.68% -134.06%

γ = 0.4 Obj
′′

Obj
′′
1 Obj

′′
2 N

′′
node CPU

′′
Obj

′
Obj

′
1 Obj

′
2 Nnode CPU

′
(s) Gap1 Gap2

a2-16 294.25∗ 294.25 72.98 1 6.2 237.38∗ 299.26 51.73 1 12.7 1.67% -41.08%

a2-20 347.67∗∗ 347.67 87.81 3 99.6 280.70∗ 350.06 72.63 1 93.8 0.68% -20.90%

a2-24 432.13∗∗ 432.13 157.41 1 279.9 347.04∗ 434.36 85.08 1 267.8 0.51% -85.03%

a3-18 300.48∗ 300.48 119.06 1 2.2 236.82∗ 304.34 34.24 1 5.3 1.27% -247.68%

a3-24 344.83∗ 344.83 120.31 1 50.6 274.80∗ 355.78 31.87 1 69.7 3.08% -277.47%

a3-30 494.92∗ 494.92 198.53 1 308.3 413.34∗ 500.80 150.99 1 306.9 1.19% -28.97%

a3-36 583.67∗∗ 583.67 273.05 5 2993.6 482.75∗ 598.16 136.51 13 5154.1 2.42% -100.01%

a4-16 282.68∗ 282.68 44.49 1 1.7 222.49∗ 286.45 30.60 5 3.3 1.32% -45.40%

a4-24 375.02∗ 375.02 159.64 1 8.0 311.03∗ 394.48 60.68 1 18.4 4.93% -163.08%

a4-32 485.90∗ 485.90 165.20 1 81.8 394.26∗ 502.74 68.80 1 199.3 3.35% -140.10%

a4-40 557.69∗ 557.69 167.65 1 258.4 453.84∗ 562.44 128.04 1 792.0 0.84% -30.94%

a4-48 670.17∗ 668.59 334.93 3 1963.5 554.60∗ 697.93 124.60 1 2292.0 3.98% -168.81%

a5-40 498.41∗ 498.41 296.37 1 220.0 414.50∗ 524.75 83.78 3 323.6 5.02% -253.73%

a5-50 687.25∗ 693.84 395.64 53 7162.0 559.51∗ 712.74 99.81 1 1957.1 3.57% -296.38%

Avg 453.93 184.95 5.3 959.7 466.02 82.81 2.3 821.1 2.42% -135.68%

γ = 0.7 Obj
′′

Obj
′′
1 Obj

′′
2 N

′′
node CPU

′′
Obj

′
Obj

′
1 Obj

′
2 Nnode CPU

′
(s) Gap1 Gap2

a2-16 298.63∗ 298.63 72.98 3 23.3 240.66∗ 303.64 51.73 1 20.8 1.65% -41.08%

a2-20 363.27∗ 363.27 92.58 1 625.6 293.27∗ 372.95 54.20 5 1758.6 2.03% -33.43%

a2-24 440.70∗∗ 440.70 194.73 19 4508.6 353.18∗ 442.55 85.08 1 1241.9 0.42% -128.90%

a3-18 303.71∗ 303.71 115.54 13 44.5 240.58∗ 309.36 34.24 1 14.1 1.83% -237.40%

a3-24 346.38∗∗ 346.38 120.31 1 124.7 275.97∗ 357.33 31.87 1 100.8 3.06% -277.47%

a3-30 506.43∗ 506.43 211.76 3 1722.8 424.93∗ 515.66 152.74 3 1893.3 1.79% -38.64%

a3-36 599.75∗ 599.75 261.41 15 2513.0 494.04 618.01 122.12 20 7200.0 2.95% -114.06%

a4-16 282.68∗ 282.68 44.49 1 3.4 223.13∗ 282.68 44.49 1 8.4 0.00% 0.00%

a4-24 381.70∗ 381.70 149.72 1 31.5 316.65∗ 401.98 60.68 7 164.4 5.05% -146.72%

a4-32 491.23∗ 491.23 165.20 7 398.6 397.87∗ 504.80 77.08 9 1638.6 2.69% -114.32%

a4-40 575.97∗ 575.97 178.15 9 3610.8 467.72∗ 580.46 129.49 9 3987.4 0.77% -37.58%

a4-48 NA NA NA 1 7200.0 NA NA NA 1 7200.0 NA NA

a5-40 507.48∗∗ 507.48 255.15 9 1535.3 418.75∗ 531.14 81.60 15 1572.0 4.54% -212.67%

a5-50 NA NA NA 1 7200.0 690.79 815.45 316.82 1 7200.0 NA NA

Avg 424.83 155.17 6.0 2111.6 464.31 95.55 5.4 2428.6 NA NA

a: Due to incorrect big M values, some of the reported results of Bongiovanni et al. (2019) are higher than the actual optimal

values. We add with two asterisks (∗∗) to our values in column Obj
′′

to distinguish the concerned instances;
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Table C.9 B&P results on type-u instances under γ = 0.1, 0.4, 0.7: minimizing total travel time only v.s. minimizing

the weighted sum of total travel time and total excess user ride time

γ = 0.1 Minimizing total travel time only Minimizing the weighted-sum objective Gaps on objectives

Instance Obj
′′

Obj
′′
1 Obj

′′
2 N

′′
node CPU

′′
Obj

′
Obj

′
1 Obj

′
2 Nnode CPU

′
(s) Gap1 Gap2

u2-16 73.77∗ 73.77 12.21 3 18.1 57.61∗ 76.81 0.00 3 22.2 3.96% -∞
u2-20 71.56∗ 71.56 15.19 1 65.2 55.59∗ 73.70 1.24 1 69.3 2.90% -1123.65%

u2-24 115.98∗ 115.98 16.91 3 1118.0 90.66∗ 118.49 7.43 7 1649.0 2.12% -127.53%

u3-18 66.98∗ 66.98 9.18 1 30.2 50.74∗ 67.65 0.00 1 14.0 0.99% -∞
u3-24 83.95∗ 83.95 29.16 1 40.3 67.56∗ 86.08 12.01 1 107.0 2.47% -142.74%

u3-30 99.22∗ 99.22 21.77 3 1002.0 76.75∗ 100.83 4.50 1 570.8 1.60% -384.03%

u3-36 127.97∗ 127.97 45.23 13 6927.9 104.04∗ 133.79 14.80 11 4204.6 1.79% -88.55%

u4-16 65.24∗ 65.24 28.07 1 10.7 53.58∗ 68.76 8.06 1 1.9 5.11% -248.34%

u4-24 115.10∗ 115.10 16.13 1 39.9 89.83∗ 118.21 4.67 1 25.5 2.63% -245.40%

u4-32 126.71∗ 126.71 29.81 3 423.5 99.29∗ 129.19 9.59 1 366.2 1.92% -210.93%

u4-40 165.56∗ 165.56 62.84 1 1788.6 133.11∗ 168.40 27.25 1 1376.6 1.68% -130.63%

u4-48 181.01∗ 181.01 66.09 1 7196.3 148.08 185.69 32.34 1 7200.0 2.52% -104.40%

u5-40 150.51∗ 150.51 43.60 1 774.7 121.86∗ 153.38 27.28 1 496.9 1.87% -59.81%

u5-50 177.40 177.40 51.88 26 7200.0 142.82 180.08 31.08 7 7200.0 1.48% -66.93%

Avg 116.20 29.83 4.2 1902.5 118.66 12.90 9.5 1659.8 2.24% -∞
γ = 0.4 Obj

′′
Obj

′′
1 Obj

′′
2 N

′′
node CPU

′′
Obj

′
Obj

′
1 Obj

′
2 Nnode CPU

′
(s) Gap1 Gap2

u2-16 73.77∗ 73.77 12.21 9 68.3 57.65∗ 76.86 0.00 1 53.2 4.02% -∞
u2-20 71.56∗ 71.56 15.19 1 96.2 56.34∗ 73.76 5.22 3 281.3 2.99% -190.93%

u2-24 116.70∗ 116.70 14.14 5 1413.0 91.16∗ 116.70 14.14 25 6917.0 0 0

u3-18 66.98∗ 66.98 9.18 1 18.7 50.74∗ 67.65 0.00 1 15.0 0.99% -∞
u3-24 83.95∗ 83.95 29.16 1 127.9 67.56∗ 86.08 12.01 1 58.5 2.47% -142.74%

u3-30 99.22∗ 99.22 20.77 3 977.0 76.75∗ 100.83 4.50 1 500.2 1.60% -361.79%

u3-36 128.77 128.67 51.09 12 7200.0 104.06∗ 132.22 19.57 1 1769.0 2.61% -161.03%

u4-16 65.24∗ 65.24 28.07 1 3.1 53.58∗ 68.76 8.06 1 2.2 5.11% -248.34%

u4-24 115.10∗ 115.10 16.13 1 19.9 89.83∗ 118.21 4.67 1 30.8 2.63% -245.40%

u4-32 126.55∗ 126.55 29.81 3 609.0 99.29∗ 129.19 9.59 1 393.4 2.05% -210.93%

u4-40 165.97∗ 165.97 62.84 1 1907.3 133.78 169.34 27.25 32 7200.0 1.99% -130.63%

u4-48 181.38 181.38 66.09 3 7200.0 147.63 188.73 28.28 1 7200.0 3.90% -133.74%

u5-40 150.51∗ 150.51 43.60 1 1380.5 121.96∗ 153.52 27.28 1 723.7 1.96% -59.81%

u5-50 177.40 177.40 51.88 11 7200.0 142.84 180.08 31.08 1 7200.0 1.48% -66.93%

Avg 115.94 32.15 3.8 2015.8 118.68 13.70 5.1 2310.2 2.38% -∞
γ = 0.7 Obj

′′
Obj

′′
1 Obj

′′
2 N

′′
node CPU

′′
Obj

′
Obj

′
1 Obj

′
2 Nnode CPU

′
(s) Gap1 Gap2

u2-16 76.08∗ 76.08 13.56 53 1432.3 59.19∗ 78.93 0.00 39 679.8 3.61% -∞
u2-20 73.92∗ 73.92 16.24 7 890.1 56.86∗ 75.40 1.24 1 337.0 2.19% -1207.73%

u2-24 117.54∗ 117.54 16.91 5 6336.3 92.01 120.20 7.43 30 7200.0 2.21% -127.53%

u3-18 67.44∗ 67.44 4.56 9 94.5 50.99∗ 67.99 0.00 3 45.2 0.81% -∞
u3-24 84.10∗ 84.10 33.58 1 119.5 68.34∗ 87.12 12.01 27 541.9 3.67% -179.52%

u3-30 99.97∗ 99.97 34.71 44 6928.0 77.41∗ 101.72 4.50 5 1725.5 1.72% -671.92%

u3-36 131.80∗ 131.80 47.84 8 7164.0 105.79 134.53 19.57 15 7200.0 2.02% -144.43%

u4-16 65.86∗ 65.86 28.07 3 11.0 53.87∗ 69.14 8.06 1 4.0 4.74% -248.34%

u4-24 115.10∗ 115.10 16.13 1 38.5 89.96∗ 118.40 4.67 1 82.3 2.79% -245.40%

u4-32 126.99∗ 126.99 29.81 23 4991.2 99.50∗ 128.58 12.26 1 1028.6 1.24% -143.23%

u4-40 169.09 169.09 62.84 28 7200.0 135.76 173.75 21.79 43 7200.0 2.68% -188.43%

u4-48 NA NA NA 1 7200.0 185.16 230.49 49.17 1 7200.0 NA NA

u5-40 151.24∗ 151.24 49.50 7 7130.7 122.93∗ 153.78 30.40 7 6513.9 1.64% -62.85%

u5-50 246.81 246.81 92.38 1 7200.0 195.72 254.17 20.38 1 7200.0 2.90% -353.29%

Avg 117.37 34.32 13.6 4052.6 128.68 14.60 12.4 3354.1 2.46% -∞
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Appendix D. Experimental results of initializing column pool with a single iteration of DA algorithm

In this section, we present the B&P results with only 1 iteration of the DA algorithm to initialize the column

pool. These results are compared with our B&P results in Section 5.2.2, which initializes the column pool with 500

iterations of the DA algorithm.

Table D.10 B&P results on type-a instances: initializing column pool with 1 iteration DA v.s. 500 iterations DA

γ = 0.1 initializing with 1 DA iteration initializing with 500 DA iterations Bongiovanni et al., (2019) results a

Instance Obj1iter LB1iter LB1iter% N1iter
node CPU1iter(s) Obj

′
LB

′
LB

′
% Nnode CPU

′
(s) Obj2 LB2 LB2% CPU(s)

a2-16 237.38∗ 237.38 0 1 42.0 237.38∗ 237.38 0 1 11.1 237.38∗ 237.38 0 1.2

a2-20 279.08∗ 279.08 0 1 130.6 279.08∗ 279.08 0 1 70.9 279.08∗ 279.08 0 4.2

a2-24 346.21∗ 346.21 0 1 328.4 346.21∗ 346.21 0 1 243.3 346.21∗ 346.21 0 9.0

a3-18 236.82∗ 236.82 0 1 10.2 236.82∗ 236.82 0 1 5.0 236.82∗ 236.82 0 4.8

a3-24 274.80∗ 274.80 0 1 83.1 274.80∗ 274.80 0 1 81.2 274.80∗ 274.80 0 13.8

a3-30 413.27∗ 413.27 0 1 310.7 413.27∗ 413.27 0 1 221.7 413.27∗ 413.27 0 102.0

a3-36 481.17∗ 481.17 0 1 691.7 481.17∗ 481.17 0 1 730.8 481.17∗ 481.17 0 106.8

a4-16 222.49∗ 222.49 0 5 3.5 222.49∗ 222.49 0 5 5.5 222.49∗ 222.49 0 3.6

a4-24 310.84∗ 310.84 0 3 43.2 310.84∗ 310.84 0 1 25.0 310.84∗ 310.84 0 31.2

a4-32 393.95∗ 393.95 0 1 225.3 393.95∗ 393.95 0 1 143.2 393.96∗ 393.96 0 612.0

a4-40 453.84∗ 453.84 0 1 555.9 453.84∗ 453.84 0 1 653.0 453.84∗ 453.84 0 517.2

a4-48 554.54∗ 554.54 0 1 2117.2 554.54∗ 554.54 0 1 1334.4 554.54 526.96 5.04% 7200.0

a5-40 414.50∗ 414.50 0 9 1306.4 414.50∗ 414.50 0 21 448.3 414.51∗ 414.51 0 1141.8

a5-50 559.17∗ 559.17 0 1 2502.0 559.17∗ 559.17 0 1 496.2 559.17 531.15 5.01% 7200.0

Avg 0 2.0 596.4 0 2.7 319.3 0.72% 1210.5

γ = 0.4 Obj1iter LB1iter LB1iter% N1iter
node CPU1iter(s) Obj

′
LB

′
LB

′
% Nnode CPU

′
(s) Obj2 LB2 LB2% CPU(s)

a2-16 237.38∗ 237.38 0 1 18.3 237.38∗ 237.38 0 1 12.7 237.38∗ 237.38 0 1.8

a2-20 280.70∗ 280.70 0 1 174.1 280.70∗ 280.70 0 1 93.8 280.70∗ 280.70 0 49.8

a2-24 347.04∗ 347.04 0 1 437.8 347.04∗ 347.04 0 1 267.8 348.04∗ 348.04 -0.29% 25.2

a3-18 236.82∗ 236.82 0 1 6.7 236.82∗ 236.82 0 1 5.3 236.82∗ 236.82 0 4.2

a3-24 274.80∗ 274.80 0 1 153.9 274.80∗ 274.80 0 1 69.7 274.80∗ 274.80 0 16.8

a3-30 413.34∗ 413.34 0 1 409.4 413.34∗ 413.34 0 1 306.9 413.37∗ 413.37 -0.01% 99.0

a3-36 482.75∗ 482.75 0 11 4950.0 482.75∗ 482.75 0 13 5154.1 484.14∗ 484.14 -0.06% 306.6

a4-16 222.49∗ 222.49 0 3 3.6 222.49∗ 222.49 0 5 3.3 222.49∗ 222.49 0 5.4

a4-24 311.03∗ 311.03 0 3 54.1 311.03∗ 311.03 0 1 18.4 311.03∗ 311.03 0 39.6

a4-32 394.26∗ 394.26 0 1 466.7 394.26∗ 394.26 0 1 199.3 394.26∗ 394.26 0 681.6

a4-40 453.84∗ 453.84 0 1 640.8 453.84∗ 453.84 0 1 792.0 453.84∗ 453.84 0 417.6

a4-48 554.60∗ 554.60 0 1 4991.9 554.60∗ 554.60 0 1 2292.0 554.60 529.22 4.58% 7200.0

a5-40 414.51∗ 414.51 0 3 1116.2 414.51∗ 414.51 0 3 323.6 414.51∗ 414.51 0 1221.0

a5-50 559.51∗ 559.51 0 1 2686.0 559.51∗ 559.51 0 1 1957.1 560.50 528.91 5.47% 7200.0

Avg 0 2.1 1150.7 0 2.3 821.1 0.74% 1233.5

γ = 0.7 Obj1iter LB1iter LB1iter% N1iter
node CPU1iter(s) Obj

′
LB

′
LB

′
% Nnode CPU

′
(s) Obj2 LB2 LB2% CPU(s)

a2-16 240.66∗ 240.66 0 1 35.2 240.66∗ 240.66 0 1 20.8 240.66∗ 240.66 0 5.4

a2-20 293.27∗ 293.27 0 7 2525.4 293.27∗ 293.27 0 5 1758.6 NA 287.17 2.08% 7200.0

a2-24 353.18∗ 353.18 0 1 767.6 353.18∗ 353.18 0 1 1241.9 358.21∗ 358.21 -1.42% 961.2

a3-18 240.58∗ 240.58 0 1 23.0 240.58∗ 240.58 0 1 14.1 240.58∗ 240.58 0 48.0

a3-24 275.97∗ 275.97 0 1 197.8 275.97∗ 275.97 0 1 100.8 277.72∗ 277.72 -0.63% 152.4

a3-30 424.93∗ 424.93 0 3 2158.5 424.93∗ 424.93 0 3 1893.3 NA 417.06 1.85% 7200.0

a3-36 494.04 493.79 0.10% 22 7200.0 494.04 494.01 0.01% 20 7200.0 494.04 485.91 1.65% 7200.0

a4-16 223.13∗ 223.13 0 1 3.4 223.13∗ 223.13 0 1 8.4 223.13∗ 223.13 0 67.2

a4-24 316.65∗ 316.65 0 7 222.8 316.65∗ 316.65 0 7 164.4 318.21∗ 318.19 -0.49% 1834.8

a4-32 397.87∗ 397.87 0 7 905.9 397.87∗ 397.87 0 9 1638.6 430.07 387.99 2.48% 7200.0

a4-40 467.72∗ 467.72 0 9 3053.4 467.72∗ 467.72 0 9 3987.4 NA 443.62 5.15% 7200.0

a4-48 NA 470.15 NA 1 7200.0 NA 476.54 NA 1 7200.0 NA 524.92 NA 7200.0

a5-40 418.75∗ 418.75 0 7 2013.7 418.75∗ 418.75 0 15 1572.0 447.63 405.99 4.78% 7200.0

a5-50 NA 179.35 NA 1 7200.0 NA 176.58 NA 1 7200.0 NA 522.37 NA 7200.0

Avg 0 4.9 2393.3 0 5.4 2428.6 1.70% 4333.5

Summary #opt #bestlb LB1iter% N1iter
node #bestub #opt #bestlb LB′% Nnode #bestub #opt #bestlb LB2% #bestub

39 39 0.003% 3.0 40 39 40 0 3.5 40 24 26 1.06% 28
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Table D.11 B&P results on type-u instances: initializing column pool with 1 iteration DA v.s. 500 iterations DA

γ = 0.1 initializing with 1 DA iteration initializing with 500 DA iteration Bongiovanni et al., (2019) results a

Instance Obj1iter LB1iter LB1iter% N1iter
node CPU1iter(s) Obj

′
LB

′
LB

′
% Nnode CPU

′
(s) Obj2 LB2 LB2% CPU(s)

u2-16 57.61∗ 57.61 0 3 84.1 57.61∗ 57.61 0 3 22.2 57.61∗ 57.61 0 21.0

u2-20 55.59∗ 55.59 0 1 765.2 55.59∗ 55.59 0 1 69.3 55.59∗ 55.59 0 9.6

u2-24 90.66∗ 90.66 0 13 4524.2 90.66∗ 90.66 0 7 1649.0 91.27∗ 91.27 -0.67% 432.0

u3-18 50.74∗ 50.74 0 1 94.6 50.74∗ 50.74 0 1 14.0 50.74∗ 50.74 0 10.8

u3-24 67.56∗ 67.56 0 1 309.3 67.56∗ 67.56 0 1 40.3 67.56∗ 67.56 0 130.2

u3-30 76.75∗ 76.75 0 1 1753.4 76.75∗ 76.75 0 1 570.8 76.75∗ 76.75 0 438.0

u3-36 104.04∗ 104.04 0 5 5375.1 104.04∗ 104.04 0 11 4204.6 104.04∗ 104.04 0 1084.8

u4-16 53.58∗ 53.58 0 1 62.4 53.58∗ 53.58 0 1 1.9 53.58∗ 53.58 0 48.0

u4-24 89.83∗ 89.83 0 1 60.4 89.83∗ 89.83 0 1 25.5 89.83∗ 89.83 0 13.2

u4-32 99.29∗ 99.29 0 1 717.1 99.29∗ 99.29 0 1 366.2 99.29∗ 99.29 0 1158.6

u4-40 133.11∗ 133.11 0 1 3273.5 133.11∗ 133.11 0 1 1376.6 133.11∗ 133.11 0 185.4

u4-48 NA NA NA 1 7200.0 148.08 147.02 0.72% 1 7200.0 148.30 134.48 9.18% 7200.0

u5-40 121.86∗ 121.86 0 1 1542.1 121.86∗ 121.86 0 1 496.9 121.86 114.12 6.35% 7200.0

u5-50 142.82 142.75 0.05% 3 7200.0 142.82 142.75 0.05% 7 7200.0 143.10 132.69 7.09% 7200.0

Avg 2.4 2354.4 0.06% 9.5 1659.8 1.66% 1795.1

γ = 0.4 Obj1iter LB1iter LB1iter% N1iter
node CPU1iter(s) Obj

′
LB

′
LB

′
% Nnode CPU

′
(s) Obj2 LB2 LB2% CPU(s)

u2-16 57.65∗ 57.65 0 3 72.6 57.65∗ 57.65 0 1 53.2 57.65∗ 57.65 0 25.8

u2-20 56.34∗ 56.34 0 5 793.9 56.34∗ 56.34 0 3 281.3 56.34∗ 56.34 0 12.0

u2-24 91.16∗ 91.16 0 9 3304.4 91.16∗ 91.16 0 25 6917.0 91.63∗ 91.63 -0.52% 757.2

u3-18 50.74∗ 50.74 0 1 47.2 50.74∗ 50.74 0 1 15.0 50.74∗ 50.74 0 13.8

u3-24 67.56∗ 67.56 0 1 257.7 67.56∗ 67.56 0 1 58.5 67.56∗ 67.56 0 220.8

u3-30 76.75∗ 76.75 0 1 1027.7 76.75∗ 76.75 0 1 500.2 76.75∗ 76.75 0 336.6

u3-36 104.06∗ 104.06 0 1 4816.7 104.06∗ 104.06 0 1 1769.0 104.06∗ 104.06 0 2010.0

u4-16 53.58∗ 53.58 0 1 14.8 53.58∗ 53.58 0 1 2.2 53.58∗ 53.58 0 44.4

u4-24 89.83∗ 89.83 0 1 67.9 89.83∗ 89.83 0 1 30.8 89.83∗ 89.83 0 28.2

u4-32 99.29∗ 99.29 0 1 1256.7 99.29∗ 99.29 0 1 393.4 99.29∗ 99.29 0 2667.6

u4-40 133.78 133.62 0.12% 32 7200.0 133.78∗ 133.70 0.06% 32 7200.0 133.91∗ 133.91 -0.10% 2653.2

u4-48 194.97 67.69 NA 1 7200.0 147.63 146.37 0.85% 1 7200.0 NA 133.86 9.33% 7200.0

u5-40 121.96∗ 121.96 0 1 2621.6 121.96∗ 121.96 0 1 723.7 122.23 112.58 7.69% 7200.0

u5-50 157.55 142.76 9.39% 6 7200.0 142.84 142.75 0.06% 1 7200.0 143.14 134.09 6.13% 7200.0

Avg 4.6 2562.9 0.07% 5.1 2310.3 1.70% 2169.3

γ = 0.7 Obj1iter LB1iter LB1iter% N1iter
node CPU1iter(s) Obj

′
LB

′
LB

′
% Nnode CPU

′
(s) Obj2 LB2 LB2% CPU(s)

u2-16 59.19∗ 59.19 0 53 1149.8 59.19∗ 59.19 0 39 679.8 59.19∗ 59.19 0 338.4

u2-20 56.86∗ 56.86 0 1 1627.6 56.86∗ 56.86 0 1 337.0 56.86∗ 56.86 0 72.0

u2-24 92.01 92.00 0.01% 33 7200.0 92.08 91.60 0.52% 30 7200.0 NA 90.83 1.36% 7200.0

u3-18 50.99∗ 50.99 0 5 293.5 50.99∗ 50.99 0 3 45.2 50.99∗ 50.99 0 24.0

u3-24 68.34∗ 68.34 0 49 1412.9 68.34∗ 68.34 0 27 541.9 68.39∗ 68.39 -0.07% 400.2

u3-30 77.41∗ 77.41 0.02 19 4378.1 77.41∗ 77.41 0 5 1725.5 78.14∗ 78.14 -0.94% 3401.4

u3-36 105.79 105.69 0.09% 14 7200.0 105.79 105.78 0.01% 15 7200.0 105.79 104.37 1.34% 7200.0

u4-16 53.87∗ 53.87 0 1 22.2 53.87∗ 53.87 0 1 4.0 53.87∗ 53.87 0 88.8

u4-24 89.96∗ 89.96 0 3 166.5 89.96∗ 89.96 0 1 82.3 89.96∗ 89.96 0 22.8

u4-32 99.50∗ 99.50 0 1 1428.9 99.50∗ 99.50 0 1 1028.6 99.50∗ 99.50 0 2827.2

u4-40 136.59 135.00 1.16% 42 7200.0 135.80 134.99 0.22% 43 7200.0 NA 133.01 2.46% 7200.0

u4-48 NA NA NA 1 7200.0 185.16 -216.07 NA 1 7200.0 NA 132.49 NA 7200.0

u5-40 122.93 122.91 0.02% 5 7200.0 122.93∗ 122.93 0 7 6513.9 NA 109.28 11.88% 7200.0

u5-50 NA NA NA 1 7200.0 195.72 132.79 NA 1 7200.0 144.36 133.33 7.64% 7200.0

Avg 16.3 3834.2 0.09% 12.4 3354.1 1.97% 3598.2

Summary #opt #bestlb LB1iter% N1iter
node #bestub #opt #bestlb LB′% Nnode #bestub #opt #bestlb LB2% #bestub

31 0.10% 7.8 32 39 0.07% 9 39 25 27 1.78% 28
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Appendix E. Experimental results of allowing unlimited visits to each recharging station

In this section, we conduct experiments on type-a, -u, and -r instances by allowing unlimited visits to each

recharging station (Ns
max = ∞) under different values of γ. The corresponding results are shown in Table E.12, E.13,

and E.14.

Table E.12 Allowing unlimited visits to each recharging station: B&P algorithm

results on Type-a instances under γ = 0.4, 0.7

γ = 0.4 Unlimited charging visits At-most-one visit

Instance Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

a2-16 237.38∗ 237.38 0 1 1 34.6 237.38∗ 0

a2-20 280.70∗ 280.70 0 1 1 255.4 280.70∗ 0

a2-24 346.28∗ 346.28 0 1 2 964.6 347.04∗ 0.21%

a3-18 236.82∗ 236.82 0 1 1 30.1 236.82∗ 0

a3-24 274.80∗ 274.80 0 1 2 86.7 274.80∗ 0

a3-30 413.28∗ 413.28 0 1 3 742.9 413.34∗ 0.02%

a3-36 481.17∗ 481.17 0 1 3 1522.8 482.75 0.33%

a4-16 222.49∗ 222.49 0 1 0 9.6 222.49∗ 0

a4-24 311.03∗ 311.03 0 1 0 34.5 311.03∗ 0

a4-32 394.26∗ 394.26 0 1 2 205.0 394.26∗ 0

a4-40 453.84∗ 453.84 0 1 1 1027.1 453.84∗ 0

a4-48 554.54∗ 554.54 0 1 3 4630.9 554.60∗ 0.01%

a5-40 414.51∗ 414.51 0 1 2 539.0 414.51∗ 0

a5-50 559.48∗ 559.48 0 1 2 2661.4 559.51∗ 0.004%

Avg 0 1.0 1.6 909.6 0.04%

γ = 0.7 Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

a2-16 240.66∗ 240.66 0 1 1 225.4 240.66∗ 0

a2-20 285.86∗ 285.86 0 1 2 469.6 293.27∗ 2.53%

a2-24 350.32∗ 350.32 0 1 3 3513.6 353.18∗ 0.81%

a3-18 238.82∗ 238.82 0 1 3 62.1 240.58∗ 0.73%

a3-24 275.20∗ 275.20 0 1 2 244.7 275.97∗ 0.28%

a3-30 413.35∗ 413.35 0 1 4 1556.4 424.93∗ 2.70%

a3-36 483.08∗ 483.08 0 1 3 1254.4 494.04 2.22%

a4-16 222.49∗ 222.49 0 1 2 11.0 223.13∗ 0.29%

a4-24 315.40∗ 315.40 0 7 2 193.63 316.65∗ 0.39%

a4-32 394.94∗ 394.94 0 1 4 427.7 397.87 0.74%

a4-40 457.76∗ 457.76 0 1 4 1604.2 467.72∗ 2.13%

a4-48 570.31 556.99 1.95% 1 4 7200.0 NA NA

a5-40 415.88∗ 415.88 0 1 4 1171.2 418.75∗ 0.69%

a5-50 580.00 565.89 2.30% 1 4 7200.0 NA NA

Avg 0.30% 1.4 3 1795.3 1.13%

Summary #opt #bestub LB% Nnode Ns
max CPU(s) #bestub BKS′%

26 26 0.15% 1.2 2.3 1352.4 10 0.59%
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Table E.13 Allowing unlimited visits to each recharging station: B&P algorithm

results on Type-u instances under γ = 0.1, 0.4, 0.7

γ = 0.1 Unlimited charging visits At-most-one visit

Instance Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

u2-16 57.61∗ 57.61 0 1 1 69.5 57.61∗ 0

u2-20 55.59∗ 55.59 0 1 1 215.3 55.59∗ 0

u2-24 90.66∗ 90.66 0 1 1 1649.0 90.66∗ 0

u3-18 50.74∗ 50.74 0 1 0 46.0 50.74∗ 0

u3-24 67.56∗ 67.56 0 1 1 109.6 67.56∗ 0

u3-30 76.75∗ 76.75 0 1 0 750.8 76.75∗ 0

u3-36 103.93∗ 103.93 0 1 2 4326.5 104.04∗ 0.11%

u4-16 53.58∗ 53.58 0 1 0 6.5 53.58∗ 0

u4-24 89.83∗ 89.83 0 1 1 63.2 89.83∗ 0

u4-32 99.29∗ 99.29 0 1 1 416.4 99.29∗ 0

u4-40 133.11∗ 133.11 0 1 1 2586.1 133.11∗ 0

u4-48 147.33 146.74 0.40% 1 2 7200.0 148.08 0.51%

u5-40 121.86∗ 121.86 0 1 1 1591.2 121.86∗ 0

u5-50 142.82 142.75 0.05% 1 1 7200.0 142.82 0

Avg 0.03% 1.0 0.93 2270.1 0.04%

γ = 0.4 Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

u2-16 57.65∗ 57.65 0 1 1 35.7 57.65∗ 0

u2-20 56.34∗ 56.34 0 1 1 329.9 56.34∗ 0

u2-24 90.84∗ 90.84 0 1 2 2408.5 91.27 0.47%

u3-18 50.74∗ 50.74 0 1 1 62.6 50.74∗ 0

u3-24 67.56∗ 67.56 0 1 1 141.0 67.56∗ 0

u3-30 76.75∗ 76.75 0 1 1 1457.8 76.75∗ 0

u3-36 104.06∗ 104.06 0 1 1 3729.6 104.06∗ 0

u4-16 53.58∗ 53.58 0 1 0 7.1 53.58∗ 0

u4-24 89.83∗ 89.83 0 1 1 39.0 89.83∗ 0

u4-32 99.29∗ 99.29 0 1 1 438.3 99.29∗ 0

u4-40 133.36∗ 133.36 0 1 2 1581.5 133.78 0.31%

u4-48 147.56 146.97 0.40% 1 2 7200.0 147.63 0.05%

u5-40 121.96∗ 121.96 0 1 1 1073.8 121.96∗ 0

u5-50 142.83∗ 142.83 0 1 1 6587.9 142.84 0.007%

Avg 0.03% 1.0 1.14 1927.5 0.06%

γ = 0.7 Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

u2-16 58.17∗ 58.17 0 1 2 172.2 59.19∗ 1.72%

u2-20 56.86∗ 56.86 0 1 1 397.0 56.86∗ 0

u2-24 91.33∗ 91.33 0 1 2 5250.1 92.17 0.91%

u3-18 50.99∗ 50.99 0 1 1 47.4 50.99∗ 0

u3-24 68.06∗ 68.06 0 1 2 558.9 68.44 0.48%

u3-30 77.29∗ 77.29 0 1 2 807.9 77.41∗ 0.16%

u3-36 106.72 104.85 1.07% 1 2 7200.0 106.50 -0.88%

u4-16 53.87∗ 53.87 0 1 1 16.7 53.87∗ 0

u4-24 89.83∗ 89.83 0 1 2 74.6 89.96∗ 0.14%

u4-32 99.50∗ 99.50 0 1 1 1600.3 99.50∗ 0

u4-40 134.38 134.16 0.16% 45 3 7200.0 135.29 0.67%

u4-48 152.72 145.99 2.35% 1 2 7200.0 185.16 17.52%

u5-40 123.00 122.72 0.23% 1 1 7200.0 123.82 0.66%

u5-50 142.89∗ 142.89 0 1 2 5628.9 144.36 1.02%

Avg 0.27% 4.1 1.71 3096.7 1.60%

Summary #opt #bestub LB% Nnode Ns
max CPU(s) #bestub BKS%

35 40 0.11% 2.0 1.3 2431.4 26 0.57%
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Table E.14 Allowing unlimited visits to each recharging station: B&P algorithm

results on Type-r instances under γ = 0.1, 0.4, 0.7

γ = 0.1 Unlimited charging visits At-most-one visit

Instance Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

r5-60 683.39∗ 683.39 0 1 0 13941.5 683.39∗ 0

r6-48 506.45∗ 506.45 0 1 0 1675.1 506.45∗ 0

r6-60 689.45∗ 689.45 0 9 3 3305.3 689.45∗ 0

r6-72 761.91 740.87 2.76% 1 1 18000.0 761.34 -0.07%

r7-56 612.02∗ 612.02 0 1 1 2452.9 612.02∗ 0

r7-70 754.28∗ 754.28 0 21 1 10204.4 754.28 0

r7-84 870.21 861.39 1.01% 1 1 18000.0 889.38 2.16%

r8-64 632.22∗ 632.22 0 1 0 4005.4 632.22∗ 0

r8-80 788.99∗ 788.99 0 1 1 4883.0 788.99 0

r8-96 1098.12 807.04 NA 1 1 18000.0 1053.11 -4.27%

Avg 0.42% 3.8 0.9 9446.8 -0.22%

γ = 0.4 Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

r5-60 683.58∗ 683.58 0 1 3 14205.2 684.49∗ 0.13%

r6-48 506.45∗ 506.45 0 1 0 1225.8 506.45∗ 0

r6-60 689.46∗ 689.46 0 1 2 5133.0 689.46∗ 0

r6-72 762.65 756.44 0.81% 1 3 18000.0 NA NA

r7-56 612.02∗ 612.02 0 3 1 846.1 612.02∗ 0

r7-70 754.28∗ 754.28 0 19 1 10630.8 754.28∗ 0

r7-84 891.44 864.14 3.06% 1 3 18000.0 1081.76 17.59%

r8-64 632.22∗ 632.22 0 1 1 5757.1 632.22∗ 0

r8-80 788.99∗ 788.99 0 1 4 11757.7 788.99 0

r8-96 1144.15 881.91 NA 1 3 18000.0 NA NA

Avg 0.39% 3.0 2.1 10355.6 1.77%

γ = 0.7 Obj LB LB% Nnode Ns
max CPU(s) BKS′ BKS′%

r5-60 688.84 684.03 0.70% 1 5 18000.0 NA NA

r6-48 508.10∗ 508.10 0 1 4 2027.7 NA NA

r6-60 689.55∗ 689.55 0 1 7 6604.7 NA NA

r6-72 788.83 749.70 4.96% 1 4 18000.0 NA NA

r7-56 616.16∗ 616.16 0 59 7 14247.4 NA NA

r7-70 765.49 754.14 1.48% 1 6 18000.0 NA NA

r7-84 1004.81 787.22 NA 1 4 18000.0 NA NA

r8-64 632.61∗ 632.61 0 1 6 4962.2 NA NA

r8-80 794.41 794.41 0 1 8 15051.3 NA NA

r8-96 1174.49 755.46 NA 1 4 18000.0 NA NA

Avg 0.81% 6.8 5.5 13289.3 NA

Summary #opt #bestub LB% Nnode Ns
max CPU(s) #bestub BKS%

18 28 0.54% 4.5 2.8 11030.6 14 0.79%
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Appendix F. Supplementary Material

Several solutions are found by our B&P algorithm that are strictly better than the optimal solutions reported

in Bongiovanni et al. (2019). In this section, we analyze why the model proposed in the original paper leads to

incorrect results. To facilitate illustration, we take our obtained solution of instance a2-24-0.4 as an example, where

we get an optimal solution value of 347.04 while the reportedly optimal solution is 348.03. The solution gap is

higher than the 0.01% default tolerance gap of Gurobi. To find the conflicting constraints in the MIP model, we set

the binary variables xk
i,j to the solution we found as constraints and use “compute conflict” in Julia and print the

conflicting constraints.

The optimal solution we obtained is:

(1) route 1: [51, 7, 31, 11, 35, 10, 34, 56, 5, 29, 4, 21, 20, 28, 45, 44, 1, 25, 12, 8, 36, 32, 54]

(2) route 2: [52, 17, 41, 19, 43, 22, 46, 18, 2, 42, 26, 15, 39, 6, 30, 16, 13, 40, 37, 23, 47, 14, 38, 57, 3, 27, 24, 9, 48, 33, 55, 53]

Appendix F.1. Error: Incorrect Value for Big “M”

The problematic constraints in Bongiovanni et al. (2019) are:

Ek
s ⩽ T k

s − ti,s − T k
i +Mk

i,s

(
1− xk

i,s

)
, ∀s ∈ S, i ∈ D ∪ S ∪Ok, k ∈ K, i ̸= s (F.1)

Ek
s ⩾ T k

s − ti,s − T k
i −Mk

i,s

(
1− xk

i,s

)
, ∀s ∈ S, i ∈ D ∪ S ∪Ok, k ∈ K, i ̸= s (F.2)

where Ek
s are the decision variables indicating the recharging time at recharging station s for vehicle k. T k

i and T k
s

are the decision variables indicating the time at which vehicle k starts its service at location i and s, respectively.

In their real implementation, constraints (F.1) and (F.2) are implemented as constraints (F.3) and (F.4). Indeed,

as the time windows on the recharging visits are not binding, we need to consider the path from s to i to restrict the

recharging time at station s. The recharging time constraints are formulated as follows:

Ek
s ⩽ T k

i − ts,i − T k
s +Mk

s,i

(
1− xk

s,i

)
, ∀s ∈ S, i ∈ P ∪ S ∪ F, k ∈ K, i ̸= s (F.3)

Ek
s ⩾ T k

i − ts,i − T k
s −Mk

s,i

(
1− xk

s,i

)
, ∀s ∈ S, i ∈ P ∪ S ∪ F, k ∈ K, i ̸= s (F.4)

That is, we have the following constraints always hold:

T k
i − ts,i −Mk

s,i(1− xk
s,i) ⩽ T k

s + Ek
s ⩽ T k

j − ts,j +Mk
s,j(1− xk

s,j), (F.5)

∀s ∈ S, i ∈ P ∪ S ∪ F, k ∈ K, i ̸= s

However, the value of big “M” used in Bongiovanni et al. (2019) is: Mk
i,j = max{0, li + si + ti,j − ej}. With this

value of big “M”, it will not hold for some cases. We take an example with our obtained solution of a2-24-0.4, where

x1
56,24 = 0, x1

56,5 = 1, M1
56,24 = 127.20, M1

56,5 = 445.32, t56,24 = 15.86, t56,5 = 4.98. As the earliest time window at

node 24 is 603.0, the latest time window at node 5 is 302.85, the time window constraints on node 24 and node 5 are:

T 1
24 ⩾ 603.0, T 1

5 ⩽ 302.85 (F.6)
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Recharging time constraints are:

T 1
24 − t56,24 −M1

56,24(1− x1
56,24) ⩽ T 1

56 + E1
56 (F.7)

T 1
56 + E1

56 ⩽ T 1
5 − t56,5 +M1

56,5(1− x1
56,5) (F.8)

Introducing constraints (F.6) and x1
56,24 = 0, x1

56,5 = 1, M1
56,24 = 127.20, M1

56,5 = 445.32, t56,24 = 15.86,

t56,5 = 4.98 to constraint (F.7) and (F.8), we have:

459.94 ⩽ T 1
56 + E1

56 ⩽ 297.87 (F.9)

which is a contradiction!

To obtain the correct big “M” value, we calculate a lower bound for big “M” parameters from constraints (F.3)

as follows:

Ek
s − T k

i + ts,i + T k
s ⩽ Mk

s,i (F.10)

The maximum value of the left-hand side is obtained when Ek
s = Q

α , T
k
i = ei, T

k
s = Tp, where Tp is the planning

horizon. We obtain:

Q

α
− ei + ts,i + Tp ⩽ Mk

s,i −→ Mk
s,i = min{Q

α
− ei + ts,i + Tp, Tp} (F.11)

We take Tp directly as the value of big “M” and the contradiction is solved.

Appendix F.2. Typo: Incorrect Value of Big “G”

Furthermore, there is also a typo related to the value of big “G” in Bongiovanni et al. (2019) with the following

constraints:

Lk
i + lj +Gk

i,j

(
1− xk

i,j

)
⩾ Lk

j , ∀i ∈ V \ F, j ∈ V \Ok, i ̸= j, k ∈ K (F.12)

The big “G” values used in Bongiovanni et al. (2019) is Gk
i,j = min{Ck, Ck + li}. With this value, the solutions

that have continuously visited Ck times drop-off nodes are cut off. For example, our obtained solution has three

continuous visits of drop-off nodes: 28->45->44, and we have x1
28,45 = x1

45,44 = 1.0 and x44,28,1 = 0.0. As these

nodes are drop-off nodes, the loads on these nodes are negative: l45 = l44 = l28 = −1.0. The maximal vehicle

capacity Ck(k = 1) equals three. Based on constraints (F.12), we have:

L1
28 + l45 ⩾ L1

45 (F.13)

L1
45 + l44 ⩾ L1

44 (F.14)

L1
44 + l28 +G1

44,28 ⩾ L1
28 (F.15)
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However, with the defined value in Bongiovanni et al. (2019), G1
44,28 must satisfy:

G1
44,28 ⩽ C1 + l44 (F.16)

Introducing constraint (F.14), (F.15), and (F.16) into constraints (F.13) leads to contradiction:

−1.0 = C1 + l44 + l45 + l28 ⩾ 0 (F.17)

The correct value is Gk
i,j = max{Ck, Ck + li}.
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