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2 Université Paris Cité, CNRS, IRIF, Paris, France

Abstract. Quantitative monitoring mitigates two issues observed in ex-
haustive, qualitative verification approaches, namely the state-space ex-
plosion problem, and the rigidity of their binary verdicts. This is achieved
through (i) analysing individual executions instead of building the whole
state-space and (ii) providing a robustness measure instead of yes/no
answers. In this paper, we consider real-time systems where executions
and specifications are modelled as timed signals and Signal Temporal
Logic (STL) formulae, respectively. We propose a new temporal robust-
ness measure δ for STL, based on a new distance that we define over
timed signals. In contrast with existing measures, δ provides a precise
quantification of distances between the monitored signal and the bound-
ary separating faulty and non-faulty executions w.r.t. an STL property.
Thus, δ is suitable for a wide range of real-life perturbations, such as those
affecting exclusively a particular time window within a signal. Though
we prove that computing δ is NP-hard in general, we provide efficient
algorithms for a practical fragment of STL. In particular, this fragment
includes the key property of bounded response.

1 Introduction

Context & Motivation. A real-time system (RTS), e.g., a mobile robot or a
self-driving car, is typically safety-critical: its failure may lead to catastrophic
human, environmental or financial damages. Formally verifying that an RTS
satisfies a specification, i.e., a set of real-time properties, is therefore crucial. In
exhaustive qualitative approaches such as model checking, a mathematical model
of the RTS, representing all its possible executions, is formally verified against
real-time properties, formalised in a timed logic [3]. Despite their success with
relatively large industrial applications (see e.g., [9]), these approaches suffer from
two major drawbacks. First, the complexity of the underlying RTS often leads to
state-space explosion [4]. Second, even if building the state space scales, the veri-
fication result is binary (the RTS satisfies/violates the properties), whereas more
information is often needed (e.g., how close was the RTS to satisfying/violating
a property?). Quantitative monitoring [14,16,5,12] is an alternative that tackles
both limitations above through (i) analysing individual executions instead of
building the whole state-space and (ii) providing a robustness measure instead



of yes/no answers. Distance-based robustness, exploiting the notion of distances
between functions (e.g., the Fréchet distance [10], the Skorokhod distance [18],
and Dynamic Time Warping [6]), gained significant popularity since Fainekos
and Pappas [7] (see below), and is the focus of this paper3. Typically, in this
context, the RTS executions are real-valued timed signals and properties are
formalised in the Signal Temporal Logic (STL) [14]. The verification verdict is
therefore a real number indicating “how far the execution at hand is from sat-
isfying/failing a property”. In the following, let ω be a real-valued timed signal
representing an RTS execution, and ϕ an STL property.

Fainekos and Pappas [7] pioneered a notion of robustness based on the dis-
tance between ω and the boundary of the set of signals satisfying/violating ϕ.
They focused on spatial robustness rather than temporal robustness, i.e., on per-
turbations that affect what happened in ω, rather than when. They noted that
computing distances to measure such robustness is hard, and used therefore
approximations. Several robustness measures incorporating different notions of
temporal robustness were defined later on, in particular in [5] and [17]. Temporal
robustness measures in [5] and [17] are based on a notion of distance correspond-
ing to the overall deviation of ω from ϕ, through projecting ω on predicates over
ϕ. These measures are efficiently computable but relatively rigid: they cannot
capture some real-life temporal perturbations, e.g., when a particular section of ω
slows down or speeds up independently of the rest of ω (more in Sect. 5). There is
therefore a lack of a notion of efficiently computable temporal robustness, based
on precise distances between ω and the set of signals satisfying/violating ϕ.

Contributions & Outline. In this paper, we show that by focusing on Boolean
(timed) signals, obtained from real-valued ones, and restricting STL to a set of
practical properties, we can define a precise, efficiently computable robustness
measure. We first define a new distance d, that captures precisely how far a
Boolean signal ω (i.e., a function from a dense-time interval to a finite set) is
from another Boolean signal, for which we provide a linear algorithm. Inspired
by the Hausdorff distance and its extension to timed words [2], two signals are
d apart if d is the least amount of time within which any value in one signal has
a matching value in the other signal. Thus, d accounts for perturbations such as
stretching/shrinking constant-valued segments within ω by some amount of time,
which corresponds to a temporal perturbation that is restricted to a particular
time window within the execution. Using d, we define a new temporal robustness
measure δ, as the distance of ω to the boundary between the language of a
property and its complement. While we prove that, in general, the computation
of δ is NP-hard, we provide efficient algorithms to achieve it for a practical
fragment of STL, linear in the product of signal and formula sizes, including the
bounded response property. We therefore provide the first temporal robustness
measure on Boolean signals that is both precise and efficiently computable on a
practical fragment of STL.

3 Verification approaches where the verdict is still binary but the underlying model of
the RTS is robust, e.g., [11], are out of this paper’s scope.



The rest of this paper is organised as follows. We introduce notions and
formalisms used in this paper, namely signals and STL in Sect. 2. Then, the core
of our contribution is detailed. First, we present our distance d, and an efficient
linear algorithm to compute it (Sect. 3). Afterwards, we present our temporal
robustness measure δ, results on its complexity, as well as efficient algorithms
to compute it for a fragment of STL (Sect. 4). We then discuss related work in
Sect. 5, and wrap up with concluding remarks (Sect. 6). Due to space constraints,
most proofs and algorithms are provided in the Appendix.

2 Preliminaries

2.1 Boolean signals

To define signals, we first set up some notation. We say that a function f defined
over the domain [0, T ] ⊂ R is piecewise constant (resp. piecewise linear) if there
exists a finite collection of connected subsets of [0, T ], namely {Si}i≤N such that⋃
i≤N Si = [0, T ] and ∀i ≤ N , f when restricted to Si is constant (resp. linear).

A function f over [0, T ] ⊂ R is called càdlàg if, for every element t of its
domain, f has both a left limit and a right limit, and the latter equals f (t):

∀t ∈ [0, T ] : ∃ lim
t′→t−

f(t′) ∧ f(t) = lim
t′→t+

f(t′).

Definition 1 (Signals). An h-dimensional Boolean timed signal is a piecewise
constant càdlàg function ω : [0, T ]→ {0, 1}h.

The domain of ω is [0, T ], the range of ω is {y ∈ {0, 1}h|∃x ∈ [0, T ] ω(x) = y},
and the inverse image of a value v ∈ {0, 1}h under ω is ω−1(v) = {t|ω(t) = v}.

Note that ω in Def. 1 can be obtained through applying the predicates
p1?, . . . , ph? (over a set of propositional variables P = {p1, . . . ph}) to a real-
valued signal and transforming to càdlàg (see e.g., [14]). Accordingly, ω rep-
resents the behaviour of each pi ∈ P over time: pi(t) = πi(ω(t)) for any i ∈
{1, . . . h}, t ∈ [0, T ], where πi is the projection onto the ith component of ω.
Hereafter, we refer to Boolean timed signals simply as “signals”.

Given a signal ω over a domain [0, T ], we define the restriction of the signal
between [a, b] to be the signal ω|ba over the domain [0, b− a] such that ω|ba(t) =
ω(t+ a). We also define the concatenation of two signals ω1 over domain [0, T1]
and ω2 over [0, T2] as a signal ω1 · ω2 over the domain [0, T1 + T2], such that

∀ t ∈ [0, T1), ω1 · ω2(t) = ω1(t) and ∀t ∈ [T1, T1 + T2], ω1 · ω2(t) = ω2(t− T1).

2.2 Signal Temporal Logic

To express timed properties overs signals, we use Signal Temporal Logic (STL)[14].
Note that, since we consider Boolean signals (that can be obtained from real-
valued ones, Sect. 2.1), the definitions we provide for STL coincide with those
of MITL[1].



Definition 2 (Syntax). An STL formula ϕ has the following form :

ϕ := > | p | ¬ϕ |ϕ ∧ ϕ |ϕ U[a,b] ϕ,

where p ∈ P , a, b ∈ Q≥0 and a ≤ b.

Other modalities like ♦[a,b] and �[a,b] are introduced in the standard manner:

♦[a,b]ϕ := > U[a,b] ϕ and �[a,b]ϕ := ¬♦[a,b]¬ϕ.

Definition 3 (Qualitative semantics). The qualitative semantics of STL is
given by the function χ defined below.

χ(ω,>, t) = 1;

χ(ω, pi, t) = πi(ω(t));

χ(ω,¬ϕ, t) = 1− χ(ω, ϕ, t);

χ(ω, ϕ1 ∨ ϕ2, t) = max(χ(ω, ϕ1, t), χ(ω, ϕ2, t));

χ(ω, ϕ1 U[a,b] ϕ2, t) = max
t′∈[t+a,t+b]

{min( min
t′′∈[t,t′]

(χ(ω, ϕ1, t
′′)), χ(ω, ϕ2, t

′))}.

A signal ω satisfies a formula φ, denoted ω � ϕ, iff χ(ω, ϕ, 0) = 1.

3 The Distance d

We will now define our distance d between two signals. Informally, d is the least
amount of time within which any value in one signal has a matching value in the
other signal. Our distance d is based on the Hausdorff distance dH , a standard
distance over sets of points X and Y :

dH(X,Y ) = max{sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|}.

Definition 4 (Distance d). Given two signals (of the same dimension)
s : [0, T1]→ {0, 1}h , r : [0, T2]→ {0, 1}h we define the directed distance:

−→
d ((s, r) = sup

x∈[0,T1]

inf
r(y)=s(x)

|x− y|.

Distance d over the same signals is defined by symmetrising
−→
d :

d(s, r) = max(
−→
d (s, r),

−→
d (r, s)).

Therefore, d is computed using the Hausdorff distances between the sets of in-
tervals where the signals have the same value. Note that d is inspired by the
distance on timed words in [2], which we call dABD (after its authors). However,
an intuitive encoding of signals into timed words shows that d and dABD are
incomparable, and consequently that dABD is not suitable for signals (Sect. 5).

Proposition 1. For any fixed dimension h, d is a metric (with finite or infinite
values) on h-dimensional signals.



3.1 Algorithm to compute d efficiently

Computational settings The complexity of our algorithms is measured under
the computational model of a multi-tape Turing machine.

Given a signal ω : [0, T ] → {0, 1}h, we define a data structure to store
and manipulate ω. We use a list of triples representing the segments of ω, i.e.,
{(0 = t0, v0, t1), (t1, v1, t2), . . . , (tn−1, vn−1, tn = T )} where ω takes the value vj
on the interval [tj , tj+1) ([tj , tj+1] if j = n−1). The dimension of the signal (and
thus of each value vj , for all 0 ≤ j < n) equals h, so by definition each vj can
be represented by a binary string of length h by simply listing its value on each
component.

As per standard practice, the points of discontinuity of any signal (i.e., the set
of points where its value changes, {t0, t1, . . . tn}) are rational numbers. Given a

signal ω, the numbers, {t1, . . . tn} are written as fractions, {p
′
1

q1
, . . .

p′n
qn
} such that

∀i ≤ n p′i and qi are coprime. Let q = lcm({q1, q2, . . . qn}), and for all i ≤ n,
rewrite ti as the equivalent fraction pi

q . Let the least number of bits required

to write any element of the set {p1, p2, . . . pn, q} be b. We say accordingly that
ω has size (n, h, b). The bit size of such a representation is O(n(b + h)). Fig. 1
illustrates an example of a two-dimensional signal ω. Its representation and size
following the data structure above are given in the caption.

0 2 4 9

1
1

x

p
1
(x

)

0 1 5 9

1
1

x

p
2
(x

)

Fig. 1. A 2-dimensional signal ω with representation
{(0, 11, 1), (1, 10, 2), (2, 00, 4), (4, 10, 5), (5, 11, 9)}, size (5, 2, 4).

Proposition 2. A signal ω of size (n, h, b) satisfies |Range(ω)| ≤ min(n, 2h).

In order to efficiently implement the distance algorithm, we perform a pre-
processing step that turns our signal representation into a convenient list of lists
of intervals. Each interval of the signal is assigned to its list based on the value
of the signal on the interval (Alg. 1). Note that, in Alg. 1, we use parenthesis to
denote the triples “interval lower bound, value, interval upper bound”; the speci-
fities on whether the interval is closed or open at each of its ends are implicitly
driven by the càdlàg nature of the signal.

For each signal s, we compute the preimage PreImv, the set of intervals that
evaluate to a vector v′ that has v as a prefix. We do so inductively, starting with
the 0-dimensional vector ⊥, whose preimage is the whole signal. At the ith step,



Algorithm 1 Partitioning the signals: RangeSort(s)

1: Let s = {(t0, v0, t1), (t1, v1, t2), . . . (tn−1, vn−1, tn)}
2: {PreIm⊥} ← L0 = {(t0, v0, t1), (t1, v1, t2), . . . (tn−1vn−1, tn)}
3: i← 0
4: while i ≤ h do
5: Li ← ∅
6: for all v ∈ Li−1 do
7: PreImv0 ← {(tj , vj , tj+1)|v0 is a prefix of vj}
8: PreImv1 ← {(tj , vj , tj+1)|v1 is a prefix of vj}
9: Li ← Li ∪ {PreImv0, P reImv1}

10: return Lh

we start with a list Li−1 = {PreImv1 , P reImv2 , . . . P reImvr} where each vj is
an (i − 1)-dimensional Boolean vector. Given Li−1, we compute Li by reading
through each PreImvj once, comparing the ith component of their vector values,
and separating the tuples of PreImvj into two sets, PreImvj0 and PreImvj1

respectively, which are then inserted into Li. This procedure terminates within
h stages, with each step taking at most O(n(h+ b)) time.

Efficient computation of d

Theorem 1. Given two signals ω and ω′ with size parameters (n, h, b), d(ω, ω′)
can be computed in O(hn(h+ b)) (equivalently O(h(|ω|+ |ω′|)) time.

As previously noted, our distance d can be written in terms of the Hausdorff
distance between real sets:

−→
d (s, r) = sup

x∈[0,T1]

inf
r(y)=s(x)

|x− y|

= max
v∈Range(s)

{ sup
s(x)=v

inf
r(y)=v

|x− y|}

= max
v∈Range(s)

−→
dH(s−1{v}, r−1{v}).

Let S the topological closure of set S, and note that
−→
dH(s−1({v}), r−1({v})) =

−→
dH(s−1({v}), r−1({v})). Our overall Alg. 2 is based on the above observations.
The scheme is:

– partition the two signals into lists of intervals, corresponding to s−1(v) and
r−1(v) for each v ∈ Range(s);

– compute the Hausdorff distance over such unions of intervals, for each v;

– maximise over all v ∈ Range(s).

The first step is done in O(hn(h+ b)) time, and the third in O(nb) time. Next,
we show how to achieve O(nb)-time complexity for the second step as well.



Algorithm 2 Overall Distance Computation: Dist(s, r)

1: Let s, r be two signals
2: (s, r)← RangeSort(s, r)
3: d← 0
4: if Range(s) 6= Range(r) then
5: return ∞
6: for all v ∈ Range(s) do
7: d← max(d,HDist(s−1(v), r−1(v)),HDist(r−1(v), s−1(v)))
8: return d

Computing Hausdorff distance over real intervals Suppose we seek to

compute
−→
dH(S,R) where S and R are unions of disjoint, increasing intervals in

R, i.e., S =
⊔

1≤i≤n[lsi, usi] and R =
⊔

1≤j≤m[lrj , urj ].
A useful auxiliary function in this setting is the notion we define below as

close. close : R × P(R) → R takes a point x in R and a closed subset S of R,
and returns the closest possible point in S to x, i.e.,

close(x, S) = arg min
y∈S

|x− y|.

This allows us to rewrite the directional Hausdorff distance as

−→
dH(S,R) = sup

x∈S
|x− close(x,R)|.

We introduce two lemmas regarding the directional Hausdorff distance in
some simpler cases:

Lemma 1. Given two real intervals s = [ls, us] and r = [lr, ur], the directional

Hausdorff distance between these is given by
−→
dH(s, r) = max(0, lr− ls, us− ur).

Proof. Consider distance to r overall as a function of each point, i.e., the function

dr : R → R≥0 such that ∀t ∈ R, dr(t) =
−→
dH({t}, r). For a fixed r, dr is a real

convex function, so it can only attain a maximum over s at one of its endpoints.

Hence, for all ls < t < us,
−→
dH({t}, r) ≤ max(

−→
dH({ls}, r),

−→
dH({us}, r)), so we

have reduced the problem to computing dr(ls) and dr(us).
We proceed by considering four cases, corresponding to the relative positions

of the endpoints of s and r.
Case 1 : lr ≤ ls ≤ us ≤ ur.
In this case, clearly s ⊆ r, so

−→
dH(s, r) = 0.

Case 2 : lr ≤ ls < ur < us.
In this case, dr(ls) = 0 and dr(us) = us− ur.
Case 3 : ls < lr < us ≤ ur.
In this case, dr(ls) = lr − ls and dr(us) = 0.
Case 4 : ls < lr < ur < us.
In this case, dr(ls) = lr − ls and dr(us) = us− ur.



Overall, we can conclude that,

−→
dH(s, r) = sup

t∈s

−→
dH({t}, r) = max(dr(ls), dr(us)) = max(0, lr − ls, us− ur).

Example 1. We consider two signals s and r presented on Fig. 2.

0 5 8

1
1

x

s(
x

)

0 3 8

1
1

x

r(
x

)

Fig. 2. Two one-dimensional signals

Let us compute
−→
d (s, r) using the auxiliary function close(). For all points

x belonging to [0, 3], their value in s is one, and the closest point in r with the
same value is close(x, r−1(1)) = 3. For x ∈ [3, 5], signals s and r have the same
value, i.e., close(x, r−1(1)) = x; this segment does not contribute to the overall
distance. For x ∈ [5, 8], s(x) equals zero and the nearest point with the same
value in r is also 3, i.e., close(x, r−1(1)) = 3. Therefore:

−→
d (s, r) = max( sup

x∈[0,3]
(|x− 3|), 0, sup

x∈[5,8]
(|x− 3|)) = 5

Similarly, we can compute
−→
d (r, s) = max(supx∈[0,3](|x − 5|), 0, supx∈[5,8](|x −

5|)) = 5 and finally d(s, r) = max(
−→
d (s, r),

−→
d (r, s)) = 5.

As this illustrates, close() allows us to refine the domain of s until each
segment either has a single closest point or has an identical valued segment in
r. We implement close() using the easier to manipulate closeInt : S → [m],
denoting the closest interval to a point: closeInt(x) = min{j| close(x,R) ∈ Rj}.

Lemma 2. Given any point t ∈ R and a set of closed intervals in increasing
order [lr1, ur1] . . . [lrm, urm], we define the bucket sequence {ri}i≤m:

r0 = −∞, ∀ i ∈ [m− 1] : ri =
lri+1 + uri

2
, rm =∞.

We have the following equivalence: closeInt(t) = i ⇐⇒ ri−1 ≤ t ≤ ri.

Proof. The bucket sequence is named such because it divides the real line into
m buckets. Because these buckets cover all of R, it is clear that ∀t ∈ R, ∃j ≤
m, rj−1 < t ≤ rj .

We seek to prove that closeInt(t) = i ⇐⇒ i = j as defined above.



We begin by remarking that ∀t ∈ R, if closeInt(t) = i then for all j 6= i, we
know t 6∈ [lrj , urj ] as then closeInt(t) = j.

Now, we consider the following two cases based on the relative positions of
the closest segment to t and the bucket it belongs to.

Case 1 : closeInt(t) = i > j Since this implies that the i-bucket is to the
right of the j-bucket, we infer that

ri−1 − t = ri−1 − rj + rj − t ≥ rj − t

Now, using the above and Lem. 1 we can conclude that

−→
dH(t, [lri, uri]) ≥ lri − t ≥ ri−1 − t ≥ rj − t ≥

−→
dH(t, [lrj , urj ])

Case 2 : closeInt(t) = i < j Since this implies that the i-bucket is to the
left of the j-bucket, we infer that

t− ri = t− rj−1 + rj−1 − ri ≥ t− rj−1

Now, using the above and Lem. 1 we can conclude that

−→
dH(t, [lri, uri]) ≥ t− uri ≥ t− ri ≥ t− rj−1 ≥

−→
dH(t, [lrj , urj ])

Both these cases result in a contradiction, hence i = j, the closest interval is
the one in the bucket of t.

Algorithm 3 Hausdorff Distance Computation: HDist(S,R)

1: Let S =
⊔

1≤i≤n[lsi, usi] and R =
⊔

1≤j≤m[lrj , urj ]

2: i, j,← 1 , l← ls1, B ← ∅, S′ ← ∅, B[0]← −∞
3: for all i < m do
4: B[i]← lri+1+uri

2

5: B[m]← +∞, i← 0
6: while i ≤ n do
7: while j ≤ m do
8: if Bj ≤ l then
9: j ← j + 1

10: else if usi ≤ Bj then
11: S′ ← (l, usi, j), i← i+ 1, l← lsi
12: else
13: S′ ← (l, Bj , j), j ← j + 1, l← urj
14: for all (l, u, j) ∈ S′ do
15: d← max(d, lrj − l, u− urj)
16: return d

Using Lem. 1 and Lem. 2, Alg. 3 efficiently computes
−→
dH . In brief, we sort

all the points in S into buckets between ri and ri+1, resulting in at most m+ n
segments in S. The distance of each such segment to the appropriate segment in
R is computed in O(b) time.



4 Distance-based Temporal Robustness δ

Our temporal robustness δ is based on the distance between a signal and the
language of a formula. We first recall the standard definitions in this setting.
Def. 6 is the temporal version of robustness in [7].

Definition 5 (Point-to-set distance). Given a metric d, a point ω and a set
S, we define d(ω, S) = inf

ω′∈S
d(ω, ω′). As a special case, d(ω, ∅) =∞.

Definition 6 (Temporal robustness). Given a signal ω and an STL formula
ϕ, the distance-based notion of temporal robustness, δ, is defined as

δ(ω, ϕ) =

{
d(ω,L(¬ϕ)), if ω � ϕ;

−d(ω,L(ϕ)), if ω 2 ϕ.

Applying these definitions to our distance d, our robustness measure δ shows
how far a signal ω is to the closest boundary point of the language of a property
ϕ. If ω 2 ϕ, then −δ(ω, ϕ) is the minimum distance between ω and any signal
ω′ that satisfies ϕ (i.e., in any such ω′, there is a value where ω and ω′ are
mismatched by at least |δ(ω, ϕ)|). Conversely, if ω � ϕ, then δ(ω, ϕ) is the
minimum distance ω has from any signal ω′ violating ϕ.

We first argue that computing δ is intractable in general, as we prove that
even estimating whether it is finite given a one-dimensional signal is NP-hard
(Sect. 4.1). Then, we identify a tractable fragment of STL, including the bounded
response property, for which we provide linear algorithms (in the product of the
signal and formula sizes) to compute δ (Sect. 4.2).

4.1 Hardness of computing δ

Theorem 2. Given a one-dimensional signal ω and an STL formula ϕ, deciding
whether δ(ω, ϕ) is finite or not is NP-hard.

Proof. (sketch) The proof of NP-hardness proceeds via a reduction from CNF-
SAT. Given ψ, a propositional logic formula in conjunctive normal form with
variables {x1, . . . , xn}, we first check whether it is satisfied by assigning all the
variables the value 0, or all 1. If this is not the case, we map formula ψ to an
STL formula φ over a one-dimensional signal ω, replacing each xi by �[i−0.5,i]p.

We claim that φ is satisfiable iff ψ is. Indeed, any satisfying assignment v of
ψ can be mapped to a one-dimensional signal on [0, n] having ω(t) = v(qi) for
t ∈ [n−1, n), which satisfies ϕ. In the other direction, given a signal ω satisfying
ϕ, we can build a satisfying assignment for ψ taking v(xi) = χ(ω,�[i−0.5,i]p, 0).

To finish the proof, we consider a one-dimensional signal ω0, taking both
values 0 and 1. By the previous, if ψ is satisfiable then δ(ω0, ϕ) is finite, otherwise
infinite, this concludes the reduction.

For example, in order to check whether ψ = (x1 ∨ x2) ∧ (¬x1) is satisfiable,
we consider the STL formula ϕ = (�[0.5,1]p ∨�[1.5,2]p) ∧ (�[0.5,1]¬p).



4.2 A tractable fragment of STL

We show in the following that computing δ(ω, ϕ, t) with ϕ a formula in STLr,
a restricted fragment of STL, has linear complexity in the product of the signal
and formula sizes (i.e. O(|ϕ| · |ω|)).

STLr, albeit restrictive, contains practically relevant properties such as bounded
response. The latter has in general the form �(B1 =⇒ ♦[0,b]B2), which means
that every request (specified by propositional formula B1) is granted (as specified
by B2) within b time units. This non trivial property, with nested constrained
liveness and safety modalities, is crucial in practice [8], [15], [13].

Before introducing STLr, we first define the domain of an STL formula as
an over-approximation of the time intervals that determine its satisfiability. The
addition operator over intervals X,Y ⊆ R is the classical one i.e., X + Y :=
{x+ y |x ∈ X , y ∈ Y }.

Definition 7 (Domain of a formula). Given an STL formula ϕ, we define
its domain, dom(ϕ), inductively as follows :

dom(>) = ∅;
dom(p) = [0, 0];

dom(¬ϕ) = dom(ϕ);

dom(ϕ1 ∨ ϕ2) = dom(ϕ1) ∪ dom(ϕ2);

dom(ϕ1 U[a,b] ϕ2) = (dom(ϕ1) + [0, b]) ∪ (dom(ϕ2) + [a, b]).

Using Def. 7, the domain of an STL formula ϕ can be computed inductively
on the structure of ϕ, in time O(|ϕ|). Informally, the satisfaction of ϕ by a signal
only depends on its values in dom(ϕ).

Proposition 3. If ω1|dom(ϕ) = ω2|dom(ϕ) then ω1 |= ϕ⇔ ω2 |= ϕ.

Definition 8 (STLr). Given the set of atomic Boolean propositions P , STLr
is the set of all ϕ defined using the following grammar:

B := p ∈ P |B ∨B|¬B;

ϕ := B |�[a,b]B |B U[a,b] B |�(B =⇒ ♦[0,b]B)|¬ϕ|ϕ1 ∨ ϕ2,

whenever |dom(ϕ1) ∩ dom(ϕ2)| ≤ 1.

Algorithms for computing δ on STLr

Theorem 3. Given a signal ω with size parameters (n, h, b) and a property ϕ ∈
STLr, computing δ(ω, ϕ) is in O(n(h+ b) · |ϕ|)-time.

We prove this theorem by providing an algorithm that achieves the claimed
complexity, by induction over the structure of ϕ using several linear-time algo-
rithms. The top-level procedure is given in Alg. 4.



Algorithm 4 Computing δ(ω, ϕ) with ϕ ∈ STLr

1: Let ω : [0, T ]→ {0, 1}d, sign← −1
2: if (ϕ = ϕ1 ∨ ϕ2) then
3: return max(δ(ω, ϕ1), δ(ω, ϕ2))
4: else if (ϕ = ¬ϕ′) then
5: return −(δ(ω, ϕ′))
6: if ϕ = B,�[a,b]B,B1 U[a,b] B2,�(B1 =⇒ ♦[0,b]B2) then
7: if ϕ = B,�[a,b]B then
8: (ω, ϕ)← colour(ω, ϕ,B)
9: else

10: (ω, ϕ)← colour(ω, ϕ,B1, B2)
11: if ω � ϕ then
12: sign ← +1, ϕ← ¬ϕ
13: return sign·d(ω, ϕ) . call the function corresponding to ϕ

The function Alg. 6 is called explicitly by Alg. 4 if ϕ uses some Boolean
combination of propositional variables (i.e., as we have defined it, B). Alg. 6
corresponds to a preprocessing step, that we call “colouring” ω, through a change
of variables (both in ω and ϕ), considering each maximal Boolean subformula as
a new propositional variable. This substitution trick is sound, i.e., the distance
to the original language of ϕ is the same as the distance of the coloured signal
to the simplified formula. The last line of the main algorithm (Alg. 4) calls a
function corresponding to one of the algorithms Algs. 16, 5 to 7 and 13 to 15 in
order to compute d(ω, ϕ) depending on the syntax of ϕ. In the following, we give
a high-level presentation of the simplest (resp. hardest) case, i.e., when ϕ is a
proposition (resp. bounded response), in which Alg. 5 (resp. Alg. 16) is called.
The pseudocode for the remaining algorithms (called by Alg. 4) can be found in
the Appendix, alongside proofs of correctness and complexity for all algorithms.

Propositions Alg. 5 pertains to the simplest case, i.e., where ϕ is a proposition
p. We claim that the distance can be found as the leftmost point of the first
interval where ω takes some boolean value a satisfying p. Indeed, any trace ω′

that satisfies p at 0 is at least at distance t from ω, which implies d(ω, p) ≥ t.
On the other hand, taking the witness trace ω′ coinciding with ω everywhere
except a small interval [0, ε] where it equals a, we get a distance d(ω, ω′) = t
with ω′ � p, hence d(ω, p) ≤ t.

Algorithm 5 d(ω, ϕ) where ϕ = p

1: Let ω = (0, t1, a1)(t1, t2, a2) . . . (tn−1, tn, an) where ∀ i ∈ [n] : ai ∈ {0, 1}.
2: i← min{k : ak � p}
3: return d = ti−1
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Fig. 3. a signal ω (a); its approximation satisfying ϕ1 on [0, 3] (b) and on [5, 9] (c).

Bounded response Let ϕb = �(p =⇒ ♦[0,b]q) with propositions p (modelling a
“call”) and q (modelling a “response”), and let us focus on a signal ω such that
ω 2 ϕ. In order to isolate where the calls without response live in the signal,
we informally describe below a partition of the signal using neighbourhoods.
No (¬p ∧ ¬q) or (¬p ∧ q)-valued segment has a call that needs a response, and
any (p ∧ q)-valued segment provides each call with a response instantaneously.
Hence, there must be a (p∧¬q)-valued segment, whose left endpoint is more than
b away from the nearest q-satisfying segment to its right, as otherwise every call
in the signal has been satisfied. We call each section of the signal with such
(p ∧ ¬q)-valued segment up to its nearest response a region of fault. Regions of
fault come in three types, initial (like [0, t], so the 0 point does not satisfy q,
middle (a segment that contains a fault, and has no q points, except for at both
ends), or final (of the form [t, T ] where [0, T ] was the domain, such that the T
does not satisfy q).

By the following lemma, we see that we can compute the distances of different
regions of fault independently, and then maximise over all of them to obtain the
overall distance.

Lemma 3 (Decomposition lemma). Given a signal ω 2 ϕ over the do-
main [0, T ], consider the following decomposition of the domain: t0 = 0 ≤
t1 < · · · ≤ t2n = T, where ∀i ∈ [n], (t2i, t2i+1) contains no regions of fault
and [t2i+1, t2i+2] is a region of fault. Given such a decomposition, d(ω, ϕ) =
max1≤i≤n d(ω|t2it2i−1

, ϕ).

To illustrate, consider ω in Fig. 3(a) and ϕ1 (ϕb with b = 1). Here we use red
segments for calls without immediate responses, while green and orange segments



Algorithm 16 d(ω, ϕ) where ϕ = �(p =⇒ ♦[0,b]q)

1: Let ω = (0, t1, a1)(t1, t2, a2) . . . (tn−1, tn, an) where ∀ i ∈ [n] : ai ∈ {0, 1}.
2: R← ∅, i← 1, u, v ← 0
3: for all (i ≤ n) do
4: if ω(ti) 2 q then
5: v ← ti
6: else
7: if u < v then
8: R← R ∪ [u, v]
9: u← ti

10: i← i+ 1
11: R← R ∪ [u, T ], i← 1
12: if (R = {[0, tn}}) then
13: d←∞
14: else
15: for all [u, v] ∈ R do
16: if (u = 0) ∧ ω(0) 2 q then . Initial ROF
17: l← v −min{t ∈ [u, v] |ω(t) � p}
18: if ∃ t ∈ [u, v], ω(t) = ¬p ∧ ¬q then
19: c← −δ(ω,�

[v−l,v−l+( l−b
2

)]
¬p)

20: d← max(d, ( l−b
2

), c)
21: else
22: d← max(d, (l − b))
23: else if (ω(u) � q) ∧ (ω(v) � q) then . Middle ROF
24: l← v − u
25: m← max{t ∈ [u, v] | (t ≤ l−b

2
) ∧ (ω(t) = p ∧ ¬q)}

26: m′ ← min{t ∈ [u, v] | (t ≥ l−b
2

) ∧ (ω(t) = p ∧ ¬q)}
27: c← max{r ∈ R≥0 |ω � �

[ l−b
2
−r, l−b

2
+r]

p ∧ ¬q}
28: d← max(d, 0.5×max(m, l − b−m′, c))
29: else . Final ROF
30: l← max{t ∈ [u, v] |ω(t) � p} − u
31: if ∃ t ∈ [u, v], ω(t) = ¬p ∧ ¬q then
32: c← −δ(ω,�[v−( l

2
),v]¬p)

33: d← max(d, c, ( l
2
))

34: else
35: d← max(d, l)
36: return d

are responses. The initial red segment makes [0, 3] a region of fault as the call
at 0 has no response. Given this, locally speaking, the closest signal satisfying
bounded response is given on Fig. 3(b). This gets rid of (resp. retains) as much
as necessary of the red segment i.e., in the interval [0, 1) (resp. [1, 2)) in order to
satisfy ϕ. The overall distance to the language here is 1.

The second region of fault corresponds to [5, 9], as the red segments starting
at 5 and 7 constitute calls that do not always receive timely responses. The
closest signal here, locally, is given on Fig. 3(c). This signal provides thin spikes



of responses at 5.5 and at 8.5, thereby satisfying all the calls in the signal. Notice
how the spike is green at 5.5 but orange at 8.5, this is to obtain the closest signal
to ω in this region that satisfies ϕ1: the closest response to point 5.5 (resp. 8.5) in
ω is at its left (resp. right) i.e., the green response up to 5 (resp. orange response
from 9). The signal in Fig. 3(c) also minimally shifts the red segment that used
to start at 7 to now start at 7.5, providing an overall distance of 0.5.

By gluing these two together, we find a signal that satisfies bounded response
globally, and is at the minimum possible distance of 1 from the original signal.
Alg. 16 separates the domain into regions of fault (lines 3-11), then depending
on the type of fault (initial, middle or final), finds closest signals for the regions
of the fault. It then efficiently computes the distance incurred by each region,
maximises over all regions, and returns the result. The efficiency lies in the fact
that in a given region of fault, irrespective of how many segments it contains,
the overall distance is governed by a constant number of parameters.

5 Related Work

The literature on quantitative monitoring and distance-based robustness is abun-
dant. We compare our contributions with the closest works to ours.

From a conceptual point of view, our distance d is heavily inspired by dABD,
a distance on time-event sequences, proposed by Asarin, Basset and Degorre[2].
One could think that time-event sequences and timed Boolean signals are two for-
malisations of the same phenomenon and that d and dABD, both Hausdorff like,
should therefore coincide. However, an intuitive encoding of Boolean signals into
timed-event sequences shows that d and dABD are actually incomparable. The
proof is detailed in the Appendix. In other words, although these distances look
quite similar, they in fact measure very different aspects of timed behaviours.

As for robustness, the most relevant semantics for our setting was [7], which
defined the spatial robustness measure ρ, computed inductively on the struc-
ture of the formula of interest. The authors however did not study temporal
robustness. Using similar inductive principles, a temporal robustness measure
θ was defined in [5], which was used in conjunction with ρ to yield space-time
robustness. Another temporal robustness measure η was later defined by [17].
Both θ and η are more generic than our δ, in the sense that they cover all STL,
with fully inductive procedures in the case of θ. However, they have two main
disadvantages compared to δ. First, they are both restrictive in terms of the
perturbations one permits on the signal. For instance, neither is able to capture
perturbations affecting a particular time window in the signal. Second, our δ,
providing a precise distance between a signal and the boundary between the sets
of signals satisfying/violating the property of interest, is more precise than θ
and η, both relying on an overall deviation between a signal and a formula. This
results in e.g., a large satisfaction (positive robustness) measure for a signal that
can easily violate the property of interest under a very small perturbation. We
give examples regarding both points above in the Appendix, and prove that θ



and η are incomparable with δ. In particular, we prove that θ and η are not
suitable as upper (or lower) bounds for our δ.

6 Conclusion

In this article, we define a distance d over the space of multi-dimensional timed
Boolean signals and use it to develop a robustness measure δ for evaluating
signals with respect to STL specifications. We provide efficient algorithms for
computing this distance between signals, linear in the number of intervals in the
signals. We provide a lower bound for the complexity of computing δ for general
STL formulae, by showing that even the problem of estimating whether it is finite
is NP-hard. Despite this, we provide as the main result efficient algorithms, with
linear complexity in the product of the signal and formula sizes, to compute δ
for a class of practical STL formulae, notably including the bounded response
property. This means that in a number of real-world instances, δ is efficiently
computable and can assist in the analysis and repair of RTSs, contributing to
the ongoing effort of quantitative verification for STL specifications.

The main direction for future work consists in extending our efficient algo-
rithms to a larger class of specifications and to real-valued signals. Implemen-
tation and experimental evaluation of the approach over real-life case studies,
and comparison to other robustness measures is of primary interest. It would be
also interesting to obtain an exact complexity of computing δ for general STL
formulas, and explore fixed-parameter tractability of the problem.
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4. Clarke, E.M., Klieber, W., Novácek, M., Zuliani, P.: Model checking and the state
explosion problem. In: Tools for Practical Software Verification, LASER. pp. 1–30.
Springer (2011). https://doi.org/10.1007/978-3-642-35746-6_1
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Appendix

A Distance for Boolean Timed Signals

A.1 Properties of d

Proposition 1. For any fixed dimension h, d is a metric (with finite or infinite
values) on h-dimensional signals.

Proof. We prove that d has the three properties of a metric.
1. Symmetry: d is symmetric by definition.
2. Two signals s and r are 0 apart iff s = r:

(⇒) By contradiction. Let s and r be two signals s.t. d(s, r) = 0 (and therefore
d(r, s) = 0, by symmetry). This implies that s and r have the same domain
[0, T ] and that for all t ∈ [0, T ], infr(t′)−s(t){|t − t′|} = 0. It follows that for
every v ∈ Range(s), every point of s−1(v) is a limit point of r−1(v). As both
r and s are piecewise constant and càdlàg, the only limit points of r−1(v), for
some v ∈ Range(s), are the right endpoints of constant segments. For s and r to
be inequal, there must exist such limit point t that does not belong to r−1(v).
Suppose t exists. If t belongs to s−1(v), then as s is càdlàg, we know that the
right-limit at t exists and is equal to t, so there is an open neighbourhood to
its right where the value of s is v, let ε be the radius of this neighbourhood.
Let t′ = min{t′′|t′′ ≥ t, ∧ r(t′′) = v}. Knowing that r(t) 6= v, we deduce that
t′ − t = δ > 0. Consider now ts = t + 0.5 × min(ε, δ). We see that s(ts) = v
but there are no points tr such that r(tr) = v ∧ |tr − ts| ≤ 0.25 × max(ε, δ),
which contradicts d(s, r) = 0. It follows that every point of r−1(v) belongs to
s−1(v) and vice versa, for all v ∈ Range(s) = Range(r), which boils down to
the equality s = r.
(⇐) Trivial (d(s, s) = 0 for all signals s).

3. Triangle inequality: We prove that for any three arbitrary signals x, y, z,
the following holds :

d(x, z) ≤ d(x, y) + d(y, z)

The first case is when d(x, z) = ∞. Here, we can easily deduce that one
of d(x, y), d(y, z) must also be infinite as their ranges must differ. The above
inequality therefore holds.

Otherwise, if d(x, z), d(x, y) and d(y, z) are all finite, then the ranges of the
three signals coincide. We can therefore fall back on the above inequality using
the triangle inequality for Hausdorff distance :

d(x, z) = max
v

dH(x−1(v), z−1(v)) ≤

max
v

(
dH(x−1(v), y−1(v)) + dH(y−1(v), z−1(v))

)
≤

max
v

dH(x−1(v), y−1(v)) + max
v

dH(y−1(v), z−1(v)) =

d(x, y) + d(y, z),

where v takes all values in the common range of the signals.
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Fig. 4. Metrics on signals and timed words are incomparable

Proposition 4. The distance dABD [2] is incomparable with d even up to con-
stant factors, i.e. for any constant K there exist two couples of one-dimensional
signals s, r and u, v such that

d(s, r) ≥ K · dw(sl, rl) and dw(ul, vl) ≥ K · d(u, v).

Proof. To prove the above proposition, we first recall that a timed word over
an alphabet Σ is a sequence (a1, t1)(a2, t2) . . . (an, tn) with ai ∈ Σ (events) and
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn real-valued timestamps. There is a standard way of
encoding a (one-dimensional) signal s : [0, T ] → {0, 1} as a timed word sl over
the alphabet {↑, ↓} (rising and falling edges). The word sl contains a letter (↑, t)
whenever s switches from 0 to 1 at time t, and a letter (↓, t) whenever s switches
from 1 to 0. We also use special letters b0 and b1 to denote whether the signal
starts off at 0 or 1 respectively.

We begin by proving the first assertion,

∀K ∈ N, ∃s, r, d(s, r) ≥ K · dw(sl, rl)

To do so, consider the following two signals, s and r as defined by Fig. 4.
Let sl and rl be their timed word encodings. Let us set k = 2i+ 2, m = 2i+ 3,
n = 2i+4. Our timed word counterparts for the same are sl = (b1, 0)(↓, 1)(↑, 2)(↓
, 3)(↑, 2i+ 3)(↓, 2i+ 4) and rl = (b1, 0)(↓, 1)(↑, 2)(↓, 2i+ 2)(↑, 2i+ 3)(↓, 2i+ 4).
Computing our signal distance yields d(s, r) = i. On the other hand, computing
the corresponding distance on the timed words yields dABD(sl, rl) = 2. Hence
for each constant K, setting i to be 3K in this example yields d(s, r) ≥ K ·
dABD(sl, rl).

Now, let us prove by example the second assertion,

∀K ∈ N, ∃u, v, dw(ul, vl) ≥ K · d(u, v).



To prove existence, consider the signals u, v defined on the same figure and their
timed word encodings ul, vl. Our timed word counterparts for the same are
ul = (b1, 0)(↓, 1)(↑, n+ 1) and vl = (b1, 0)(↓, 1)(↑, 2)(↓, 3)(↑, n+ 1).

Computing our signal distance yields d(u, v) = 2. On the other hand, comput-
ing the corresponding distance on the timed words yields dABD(ul, vl) = n− 1.
Hence for each constant K, setting n to be 2K + 2 in this example yields
dABD(ul, vl) ≥ K · d(u, v).

A.2 Algorithm for computing d efficiently

Theorem 1. Given two signals ω and ω′ with size parameters (n, h, b), d(ω, ω′)
can be computed in O(hn(h+ b)) (equivalently O(h(|ω|+ |ω′|)) time.

Proof. Alg. 2 first partitions the two signals, then for each vector in their range,
performs the Hausdorff computation on the vector’s preimages. The partitioning
step is simple, so the correctness of Alg. 2 lies in the correctness of Alg. 3. Alg. 3
partitions S into S′ such that each segment in S′ has its associated bucket, and
computes the distance segment by segment. By Lemmas 1 and 2, this procedure
is correct, hence Alg. 3 is correct, hence, Alg. 2 is correct.

As for complexity, Alg. 3 takes at most O(|S| + |R|) steps. This is because
the for loop takes |R| steps and the while loop takes at most O(|S|+ |R|) steps
(either i or j are incremented each pass).

The complexity of Alg. 2 is similarly O(|s| + |r|). This is because, for each
element of the range, it calls Alg. 3 which takes at mostO(|S|+|R|) steps for each
preimage pair S,R. So overall, Alg. 2 takes the sum of the number of segments
in the preimage of each vector, summed over all vectors, which is exactly the
sum of the sizes of the signal. Accounting for the preprocessing step, this makes
the overall algorithm take O(hn(h+ b)) time.

B Distance-based Temporal Robustness

B.1 Comparing δ with other Temporal Robustness Measures

In this subsection, we compare our temporal robustness measures with others
present in the literature, both intuitively and by incomparability.

Let us first define these robustness measures: the synchronous (θ) [5] and
asynchronous (η) [17].

Definition 9 (Two measures of temporal robustness). given a signal ω
and an STL formula ϕ, the directed robustness measures theta± and η± are



0 3 4 10

1
1

x

ω
(x

)

0 3 4− ε 10

1
1

x

ω
′ (
x

)

0 4 5 10

1
1

x

ω
′ ϕ
1
(x

)

0 2 5 10

1
1

x

ω
′ ϕ
2
(x

)

0 4 7 10

1
1

x

ω
′ ϕ
(x

)

Fig. 5. Comparing robustness measures.

defined inductively as follows :

θ±p (ω, t) = χp(ω, t) · sup{τ ≥ 0|∀t′ ∈ {t} ± [0, τ ]χp(ω, t) = χp(ω, t
′)};

θ±¬ϕ(ω, t) = −θ±¬ϕ(ω, t);

θ±ϕ1∨ϕ2
(ω, t) = max{θ±ϕ1

(ω, t), θ±ϕ2
(ω, t)};

θ±ϕ1 U[a,b] ϕ2
(ω, t) = sup

t′∈t+[a,b]

{min( inf
t′′∈[t,t′]

{θ±ϕ1
(ω, t′′)}, θ±ϕ2

(ω, t′))}, and

η±ϕ (ω, t) = χϕ(ω, t) · sup{τ ≥ 0|∀t′ ∈ {t} ± [0, τ ]χϕ(ω, t) = χϕ(ω, t′)}.

Their symmetric counterparts are θϕ(ω, t) = χϕ(ω, t) ·min{|θ−ϕ (ω, t)|, |θ+ϕ (ω, t)|},
and similarly for η.

We start with two examples that informally demonstrate cases where δ seems
to be better at capturing how much a signal needs to be perturbed to start
satisfying/failing a formula.

Example 2. Say our specification is the STL formula ϕ = ♦�[0,1] ¬p, and we
wish to examine the robustness of the one-dimensional signal ω given on Fig. 5.
By the definition above, calculations result in ηϕ(ω, 1.5) = 1.5, but signal ω′,
very close to ω, does not satisfy ϕ. This suggests that ω is not very robust even
when subject to arbitrarily small perturbations. On the other hand, δ(ω, ϕ) = 0,
which seems to agree with how precarious ω’s satisfaction is.

Example 3. Similarly, consider the STL formula ϕ = ϕ1 ∧ ϕ2 where ϕ1 =
p U[4,5] ¬p and ϕ2 = ♦(¬p U[3,4] p). When one computes θ for the initial sig-
nal ω, we first see that θϕ(ω, t) = min{θϕ1

(ω, t), θϕ2
(ω, t)}.
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On the one hand, θϕ1
(ω, t) gives -1, and θϕ2

(ω, t) comes out to be -1 as well.
This suggests that satisfying both ϕ1 and ϕ1 would be about as difficult since
the definition of θ implies that θϕ(ω, t) = −1.

On the other hand, if we study the signal itself, satisfying just ϕ1 or just ϕ2

can be done using signals ω′ϕ1
or just ω′ϕ2

on the same figure. But, in order to
satisfy both at once, the closest signal necessarily differs from the original in the
entire domain between [3, 7], (see ω′ϕ on Fig. 5), which intuitively should result
in a robustness measure of ω w.r.t. φ of at least −2. Meanwhile, δ(ω, ϕ) = −3
which seems to reflect how satisfying the conjuction is harder than just satisfying
either subformula.

Hence, these examples show that the above robustness measures do not cap-
ture some reasonable types of perturbations, thereby missing signals that are in
some sense very close to a given signal. They also show that these measures are
sometimes too optimistic, assuming that satisfying two properties is as hard as
satisfying the harder of the two, which in practice does not always hold, since
satisfying both at the same time can be much harder than just satisfying either
one.

Proposition 5. |δ| is incomparable with both |η| and |θ|.

Proof. By incomparable, we mean that none of the following inequalities hold
for all signals and formulae :

δ(ω, ϕ) ≥ θ(ω, ϕ)

δ(ω, ϕ) ≤ θ(ω, ϕ)

δ(ω, ϕ) ≥ η(ω, ϕ)

δ(ω, ϕ) ≤ η(ω, ϕ)

We prove this by providing four examples of cases where each of these inequalities
fail.

Case 1 :∃ω, ϕ, δ(ω, ϕ) < η(ω, ϕ).
The example on Fig. 5 already demonstrated a signal ω and a formula ϕ such

that |δ(ω, ϕ, t)| < |η(ω, ϕ, t)|.
Case 2 :∃ω, ϕ, δ(ω, ϕ) > η(ω, ϕ).
For the other direction, consider ϕ = �¬p∨p U[7,9] ¬p, t = 1.5 and the signal

ω on Fig. 6.



η(ω, ϕ, 1.5) = −1.5, as the signal when restricted to [3, 9] satisfies ϕ. On the
other hand, δ(ω, ϕ, t) = 4 as the only way for a signal that is at a finite distance
of ω to satisfy ϕ is to satisfy p U[7,9] ¬p. Hence, the two measures of robustness
|δ| and |η| are incomparable. Case 3 :∃ω, ϕ, δ(ω, ϕ) > θ(ω, ϕ).

As for comparison with θ, similarly, we note that the example on Fig. 5 shows
a case where |δ(ω, ϕ, t)| > |θ(ω, ϕ, t)|.

Case 4 :∃ω, ϕ, δ(ω, ϕ) < θ(ω, ϕ).
For the other direction, consider ϕ = �¬p∨p U[7,9] ¬p, t = 1.5 and the signal

ω as in the previous proof. It is known that |θ(ω, ϕ, t)| ≤ |η(ω, ϕ, t)| (Theorem
4.10, [17]), so since |η(ω, ϕ, t)| < |δ(ω, ϕ, t)|, we have that in this example

|θ(ω, ϕ, t)| < |δ(ω, ϕ, t)|.

B.2 Hardness of computing δ

Theorem 3. Given a signal ω with size parameters (n, h, b) and a property ϕ ∈
STLr, computing δ(ω, ϕ) is in O(n(h+ b) · |ϕ|)-time.

In order to do so, we analyse the functions that Alg. 4 (also reproduced here)
calls.

Algorithm 4 Computing δ(ω, ϕ) where ϕ ∈ STLr

1: Let ω : [0, T ]→ {0, 1}d, sign← −1
2: if (ϕ = ϕ1 ∨ ϕ2) ∧ (dom(ϕ1) ∩ dom(ϕ2) 6= ∅) then
3: return max(δ(ω, ϕ1), δ(ω, ϕ2))
4: else if (ϕ = ¬ϕ′) ∧ (|ϕ′| < |ϕ|) then
5: return −(δ(ω, ϕ′))
6: if ϕ = B,�[a,b]B,B1 U[a,b] B2,�(B1 =⇒ ♦[0,b]B2) then
7: if ϕ = B,�[a,b]B then
8: (ω, ϕ)← colour(ω, ϕ,B)
9: else

10: (ω, ϕ)← colour(ω, ϕ,B1, B2)
11: if ω � ϕ then
12: sign ← +1, ϕ← ¬ϕ
13: return sign·d(ω, ϕ)

We begin with the colouring algorithm, Alg. 6.

B.3 Colouring the signal

Recall that every h-dimensional signal is a function s : [0, T ] → {0, 1}|P |. The
distance we have defined over signals treats every vector in the range of the
signals separately, and computes the Hausdorff distance on each such level before
taking the overall maximum. Each vector in the range of the signal, however,
represents an assignment for all the propositional variables in P , and one can
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evaluate B on each such assignment. Hence, for every level of the signal in
the flattened form, either B is true or false, so we can colour each of those
segments either red or blue respectively. In this manner, if there is just one B in
the question, we can effectively view the d dimensional signal with potentially
2d different values, as a one-dimensional signal. On the other hand, if there
are two such terms to consider, B1 and B2, then we consider all four possible
combinations for the two, namely using a separate colour for each segment that
satisfies B1∧B2, B1∧¬B2, ¬B1∧B2 and ¬B1∧¬B2. Note that no assignment can
satisfy two distinct colours, and the combinations are cumulatively exhaustive,
hence each level gets exactly one colour.

Example 4. Fig. 7 represents a two-dimensional signal and two colourings thereof.

Clearly, the colouring procedure takes time linear in the size of the signal
times the size of B each time, which is O(|ω| · |ϕ|)

The purpose of this precomputation is to simplify the δ computation moving
forward, as we can now effectively use the recoloured version, and treat various
combinations of the relevant Boolean terms B almost like atomic propositions.
This is sound, as the distance from the original signal to the language of the
formula is the same as distance of the recoloured signal to the language of the
formula over the space of signals that use Bi as the propositional variables. For
our purposes, we only need how to colour for two terms at a time, as our fragment
does not necessitate more.

Lemma 4 (Colouring Lemma). Consider a signal ω : [0, T ] → {0, 1}|P |,
and an STLr formula ϕ that contains n > 0 maximal Boolean combinations of
propositional variables B1, . . . Bn. Denote the coloured, 2n-leveled version of ω
one obtains using Alg. 6 by π(ω) : [0, T ] → {0, 1}n. Take n fresh propositional



Algorithm 6 Colouring Algorithm

1: Let ω : [0, T ]→ {0, 1}|P | be the signal
2: Let {B1, . . . Bn} be Boolean combinations of variables in P .
3: R← Range(ω)
4: ∀a ∈ {0, 1}n Sa ← ∅ . These store preimages of values in ω′

5: for all v ∈ R do
6: ∀i ∈ [n] , bi ← (v � Bi)
7: Sb1...bn ← ω−1(v)
8: ∀a ∈ {0, 1}n , ∀ t ∈ Sa : ω′(t) = a
9: ϕ′ ← ϕ[∀i ∈ [n], Bi 7→ pi]

10: return (ω′, ϕ′)

variables p′1, . . . p
′
n, and consider the simplified version of ϕ that rewrites each

Bi with the proposition pi. Call this simplified formula c(ϕ), i.e., c(ϕ) = ϕ[∀i ∈
[n] : Bi 7→ pi]. Then, we have that

δ(ω, ϕ) = δ(π(ω′), c(ϕ′)).

Proof. Let the map π : {0, 1}|P | → {0, 1}|B| that takes vectors v ∈ {0, 1}|P | to
their valuations under each Bi, i.e.,

π(v)i = 1 ⇐⇒ v � Bi.

The colouring map composes π after the original signal, i.e. colour(ω) =
ω ◦ π = π(ω).

We seek to prove that

δ(ω, ϕ) = δ(π(ω′), c(ϕ)).

In order to do so, we first prove that sign(δ(ω, ϕ, t)) = sign(δ(π(ω′), c(ϕ), t)).
And then we prove that d(ω, ϕ) = d(π(ω′), c(ϕ)).
1. Checking that the signs of δ(ω, ϕ) and δ(π(ω′), c(ϕ)) match.
To do so, we show that if ω � ϕ ⇐⇒ π(ω) ` c(ϕ), by induction on the

structure of ϕ.
Base case : ϕ = B. In this case, the claim clearly holds.
Inductive hypothesis : Assume for all subformulae ψ of φ, the claim

holds.
Case 1 :ϕ = ¬ϕ1.
In this case, since ω � ϕ1 ⇐⇒ π(ω) ` c(ϕ1) the claim holds.
Case 2 :ϕ = ϕ1 ∨ ϕ2.
In this case, since ω � ϕ1 ⇐⇒ π(ω) ` c(ϕ1) and ω � ϕ2 ⇐⇒ π(ω) ` ϕ′2,

if either one is true the coloured result is true, and if neither hold, then neither
can the coloured result.

Case 3 :ϕ = B1 U[a,b] B2.
In this case, there exists a point t ∈ [a, b] such that ∀t′ ∈ [0, t]ω(t′) � B1 and

ω(t) � B2. This implies that ∀t′ ∈ [0, t]π(ω)(t′) � p1 and π(ω)(t) � p2 implying
that π(ω) � p1 U[a,b] p2.



For the other direction, similarly if there exists a point t ∈ [a, b] such that
∀t′ ∈ [0, t]π(ω)(t′) � p1, then ∀t′ ∈ [0, t]ω(t′) � B1 as that is exactly when
π(ω) � B1, and π(ω)(t) � p2 implies that ω(t) � B2, so ω � B1 U[a,b] B2 ⇐⇒
π(ω) � p1 U[a,b] p2.

This concludes the induction, showing that for all signals ω and STLr for-
mulae ϕ, the result holds.

2. The distance from a signal to a language is also preserved :
d(ω, ϕ) = d(π(ω′), c(ϕ)).

In this section, we assume without loss of generality that ω 2 ϕ. In order to
prove the above, we first try to show that

d(ω, ϕ) ≥ d(π(ω), c(ϕ)).

(≥) Consider any two signals ω, ω′ : [0, T ] → {0, 1}|P |, let d(ω, ω′) = x.
Then, for every t ∈ [0, T ], ∃t′ such that |t − t′| ≤ x and ω(t) = ω′(t′) and vice
versa. But, ω(t) = ω′(t′) =⇒ π(ω(t)) = π(ω′(t′)), so we can conclude that
d(π(ω), π(ω′)) ≤ x, i.e., d(π(ω), π(ω′)) ≤ d(ω, ω′).

This means that for any pair of signals, colouring them cannot make them
further apart. Now, consider a signal ω and a formula ϕ. By definition, the
following two equations hold.

d(ω, ϕ) = inf
β∈L(ϕ)

(d(ω, β))

d(π(ω), c(ϕ)) = inf
γ∈L(c(ϕ))

(d(ω, γ))

From the fact that colouring preserves the sign of δ, we know that π(L(ϕ)) =
L(c(ϕ)).

But, by the previous observation, we know that

∀β ∈ L(ϕ), d(ω, β) ≥ d(π(ω), π(β))

=⇒ d(ω, ϕ) ≥ d(π(ω), c(ϕ)).

(≤) Secondly, suppose d(π(ω), c(ϕ)) = x. Then, for every ε ≥ 0, consider a
signal µ : [0, T ] 7→ {0, 1}|B| such that µ ∈ L(c(ϕ)) and d(π(ω)) ≤ x+ ε. We will
define a signal ω′ with values in {0, 1}|P | that is meant to represent the preimage
of µ that is closest to ω. We define this signal, ω′ : [0, T ] 7→ {0, 1}|P | as follows :

∀t ∈ [0, T ], ω′(t) = arg min
v|π(v)=π(µ(t))

{
−→
dH({t}, ω−1(v))}.

Next, we seek to show that d(ω, ϕ) ≤ x + ε. We will now show that ω′ is a
satisfying signal in L(ϕ), such that d(ω, ω′) ≤ x+ ε.

We first show that −→
dH(ω, ω′) ≤ x+ ε.

For all t ∈ [0, T ], if ω(t) = v, then there exist (possibly) several t′ such that
|t − t′| ≤ x + ε, and µ(t′) = π(v). Consider the timestamp t′ that minimises



|t − t′|. Then, ω′(t′) = v. This is because if ω′(t′) = v′ 6= v, then we know that

π(v′) = π(v) but
−→
dH({t′}, ω−1(v)) ≥

−→
dH({t′}, ω−1(v′)), which contradicts the

fact that t′ was the closest to t.
We now show that −→

dH(ω′, ω) ≤ x+ ε.

On the other hand, if t ∈ [0, T ], if ω′(t) = v, then there exist (possibly) several
t′ such that |t− t′| ≤ x+ ε, and π(ω(t′)) = π(v). Consider the timestamp t′ that
minimises |t− t′|. Then, ω(t′) = v by definition.

Hence, we conclude that

∀ε, ∃ω′ ∈ L(ϕ), d(ω, ω′) ≤ x+ ε

=⇒ d(ω,L(ϕ)) ≤ x.
Hence, d(ω, ϕ) ≤ d(π(ω), c(ϕ)), and hence, we see that the distance to the lan-
guage is preserved.

As both the sign and the distance are preserved, δ is preserved under colour-
ing.

Now that we have this lemma, we can conduct the preprocessing step and
focus on computing δ for the following, much simpler set of cases. Note that in
Alg. 4 we only ever run alg:colour with up to 2 Boolean terms, so even though in
general for n Boolean terms the running time of this algorithm is O(2n|ϕ| · |ω|),
n is never greater than 2 in STLr, so each call takes time O(|ϕ| · |ω|).

B.4 Auxiliary Constructions

Before we proceed with these algorithms for computing δ on STLr, we take a
moment to study a few constructions on signals that will assist in computing δ.
We will argue that given a signal with n segments, each of these constructions
can be computed in O(n)-time, so we can use them in our computations.

Spikes. Given a signal ω and a formula ϕ such that ω 2 ϕ, when comput-
ing d(ω,L(ϕ)), often there will not exist a single signal ω′ ∈ L(ϕ) such that
d(ω, ω′) = d(ω,L(ϕ)). Instead, the witness to the fact that the distance between
ω and L(ϕ) is at most d(ω,L(ϕ)) is a limit point of the language, which is to
say a sequence of signals whose distances to ω tend to d(ω,L(ϕ)). The simplest
type of such limit phenomena in our metric space is what we call a spiked signal,
an object that resembles an existing signal exactly, except for its value at one
time instant, where it has a spike (or a segment of length almost zero). This
object is the limit of a sequence of signals that only differ around vanishingly
small neighbourhoods of one fixed time instant.

Definition 10 (Spike). Given a signal ω : [0, T ], a time instant ts ∈ [0, T ],
and a value v 6= ω(ts). We define Spike(ω, ts, v) to be a sequence of signals
σ = {si}i∈N over the same domain such that

∀i ∈ N, si(t) =

{
v |t− ts| ≤ 1

2i ;

ω(t) otherwise.



Using the following lemma, whenever we want to construct a limit point that
differs only at one time instant from a given signal, we can simply use the spiked
version of the signal, and we know how to compute distances to this limiting
sequence.

Lemma 5. For any two signals ω, α over the domain [0, T ] such that Range(ω) =
Range(α), a time instant ts ∈ [0, T ], and value v 6= ω(ts), it holds that

d(α, Spike(ω, ts, v)) = max( min
α(t)=v

|t− ts|, d(ω, α)).

Proof. Begin by noting that if the value of the spike, v, is not in the range of α,
then the above statement is true as both sides evaluate to infinity. Henceforth,
we assume that v ∈ Range(α).

Let ωs = Spike(ω, ts, v). We wish to prove that

d(ωs, α) = max(d(ω, α), min
α(t)=v

|t− ts|)

We first remark that given two subsets S,R of R, the Hausdorff distance between
sets is the distance between the closures of the sets, i.e.

dH(S,R) = dH(S,R)

and that hence removing a limit point p of S will not change the Hausdorff
distance, i.e.,

dH(S,R) = dH(S − {p}, R)

Secondly, if one adds a point p to S, then using the properties of the supre-
mum operator, the distance increases, if at all, by exactly the distance of this
new point to R, i.e.

dH(S ∪ {p}, R) = max(dH({p}, R), dH(S,R))

Now, we notice that by definition,

d(ωs, α) = max
u∈Range(ωs)

sup
ωs(x)=u

inf
α(y)=u

|x− y|

and
d(ω, α) = max

u∈Range(ωs)
sup

ω(x)=u

inf
α(y)=u

|x− y|

Let ω(ts) = v0. The above two equations only differ on the component of the
maximum taken over the vectors v and v0, so we will focus on these. We also
note that since ω−1(v0) = ω−1s (v0)− {ts},

dH(ω−1(v0), α−1(v0)) = dH(ω−1s (v0), α−1(v0))

In addition, since ω−1s (v) = ω−1(v) ∪ ts,

dH(ω−1s (v), α−1(v)) = max(dH({ts}, α−1(v)))dH(ω−1s (v), α−1(v))

Hence,
d(ωs, α) = max(d(ω, α), min

α(t)=v
|t− ts|)



Clearly we can add multiple spikes to a signal so long as we make sure we
place them at distinct time instants, as the above argument only cares about a
small enough neighbourhood around each spike.

Other operations are defined in Table 1.

Operation name Notation Definition

Next Value Match Next(ω, v) g(t) = min{t′ ≥ t|ω(t′) = v}
Previous Value Match Prev(ω, v) g(t) = max{t′ ≤ t|ω(t′) = v}

Current Value Segment CurrSeg(ω, v) g(t) = Next(ω,¬v)(t)− Prev(ω,¬v)(t)
Constant Function Const(a) g(t) = a

Time Dilation TDilate(f, a) g(t) = f
(

t
a

)
Space Dilation SDilate(f, a) g(t) = f(t)

a

Time Translation TTranslate(f, a) g(t) = f(t− a)
Space Translation STranslate(f, a) g(t) = f(t) + a
Identity Difference IdDiff(f) g(t) = t− f(t)

Maximum Max(f, g) g(t) = max(f(t), g(t))
Minimum Min(f, g) g(t) = min(f(t), g(t))
Anti-value Anti(f) g(t) = −f(t)

Table 1. Definition of operations. Given a signal ω : [0, T ] → {0, 1}h, a function
f : [0, T ] → R, a value v ∈ {0, 1}h, and a ∈ R, the operations produce a function
g : [0, T ]→ R as defined in the third column.

Given a signal (or a piece-wise linear function f : [0, T ] → R, henceforth
known as a plot) with n segments, it is easy to see that each of the operations
in Table 1 aside from Max or Min can be computed in O(n)-time, and returns
a signal (respectively, a plot) with at most n segments. Given two plots with m
and n segments respectively, Max and Min can be computed in O(m+ n)-time,
and returns a plot with at most m+ n segments.

With the notation developed in Table 1, we can define a generalisation of the
function close defined in Sect. 3 for subsets of R to signals. Closest(ω, t, α) is the
closest point to t in α that matches in value to ω(t). If no singular point exists,
the limit of a sequence of points that match is returned.

Closest(ω, t, α) =

{
Prev(α, ω(t))(t) t− Prev(α, ω(t))(t) < Next(α, ω(t))(t)− t
Next(α, ω(t))(t) otherwise

Now, we focus on computing δ for STLr formulae. As seen in Appendix B.3,
we can assume these signals and formulae have already been coloured, so the
problem has been reduced to computing d(ω, ϕ) where ω is at most 2-dimensional,
ω 2 ϕ and ϕ is assumed without loss of generality to be one of the following
seven formulae:

{p,♦[a,b]p,�[a,b]p, p U[a,b] q,¬(p U[a,b] q), G(p⇒ ♦[0,b]q),¬(G(p⇒ ♦[0,b]q))}.

We provide individual algorithms for computing d(ω, ϕ), in each case, prove
their correctness, and demonstrate that they also run in O(|ω|) - time.



Before we embark on proving the correctness of individual algorithms, we
provide here a blueprint of the general logic present in all of these proofs, for
easier parsing.

Blueprint for proving that the result of an algorithm d(ω, ϕ) ≥ Res.
There are two elements to any such proof, broadly.

1. The first step is to show that ∀β ∈ L(ϕ), d(ω, β) ≥ Res. This ensures that
the overall distance d(ω, ϕ) ≥ Res.

2. The second step is ensuring that Res is a feasible distance to ω from either
a signal or a limiting sequence of signals α ∈ (L(ϕ)). This ensures that the
overall distance d(ω, ϕ) ≥ Res since

d(ω, ϕ) = inf
β∈L(ϕ)

(d(ω, β)) ≤ d(ω, α) = Res.

With these two steps satisfied, we can conclude that d(ω, ϕ) ≥ Res. All the
proofs of correctness from here on out follow this broad structure.

B.5 Propositions, Finally and Globally

In the next three subsections, let ω = {(0, a1, t1)(t1, a2, t2) . . . (tn−1, an, tn = T )}
where ∀ i ∈ [n] : ai ∈ {0, 1} or ∀ i ∈ [n] : ai ∈ {0, 1}2 as is applicable.

Algorithm 5 d(ω, ϕ) where ϕ = p(a)

1: l← IdDiff(Prev(ω, p))(a)
2: r ← Anti(IdDiff(Next(ω, p)))(a)
3: return d = min(l, r)

Lemma 6. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = p such that
ω 2 ϕ, Alg. 5 computes d(ω,L(ϕ)), and runs in O(n) time.

Proof. In order to prove that d(ω, p) = min(Next(ω, p)(a)−a, a−Prev(ω, p)(a)),
we first prove that d(ω, p) ≥ min(Next(ω, p)(a)− a, a− Prev(ω, p)(a)), and then
prove that there exists an element or a limit point of L(ϕ) such that its distance
to ω is min(Next(ω, p)(a)− a, a− Prev(ω, p)(a)).

1. Given a signal ω and a time instant a ∈ [0, T ] such that ω(a) 6= 1, con-
sider any signal α such that α � p(a). Closest(α, a, ω) must either be the
next p match after a, or the previous one. Hence, ∀α ∈ L(ϕ), d(ω, α) ≥
min(Next(ω, p)(a)− a, a− Prev(ω, p)(a))

d(ω, p) ≥ min(Next(ω, p)(a)− a, a− Prev(ω, p)(a))

2. ωs = Spike(ω, a, p) is a limit point of the set of signals satisfying p(a), and
d(ω, ωs) = min(Next(ω, p)(a)− a, a− Prev(ω, p)(a))

=⇒ d(ω, p) ≤ min(Next(ω, p)(a)− a, a− Prev(ω, p)(a))



Hence, we can conclude that

d(ω, p) = min(Next(ω, p)(a)− a, a− Prev(ω, p)(a)).

Algorithm 6 d(ω, ϕ) where ϕ = ♦[a,b]p

1: l← IdDiff(Prev(ω, p))(a)
2: r ← Anti(IdDiff(Next(ω, p)))(b)
3: return d = min(l, r)

Lemma 7. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = ♦[a,b]p such
that ω 2 ϕ, Alg. 6 computes d(ω,L(ϕ)), and runs in O(n) time.

Proof. In order to prove that d(ω, p) = min(Next(ω, p)(b)− b, a−Prev(ω, p)(a)),
we first prove that d(ω, p) ≥ min(Next(ω, p)(b)− b, a− Prev(ω, p)(a)), and then
prove that there exists an element or a limit point of L(ϕ) such that its distance
to ω is min(Next(ω, p)(b)− b, a− Prev(ω, p)(a)).

1. Given a signal ω and an interval [a, b] ⊆ [0, T ] such that ∀t ∈ [a, b] ω(t) 6= 1,
consider any signal α such that α � ♦[a,b]p.

Closest(α, a, ω) must the previous p-value in ω, and similarly Closest(α, b, ω)
must the next match for p in ω .

Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ min(Next(ω, p)(b)− b, a− Prev(ω, p)(a))

d(ω, p) ≥ min(Next(ω, p)(b)− b, a− Prev(ω, p)(a))

2. Without loss of generality let Next(ω, p)(b)− b ≥ a− Prev(ω, p)(a).

ωs = Spike(ω, a, p) is a limit point of the set of signals satisfying ♦[a,b]p, and
d(ω, ωs) = min(Next(ω, p)(b)− b, a− Prev(ω, p)(a)), so

d(ω, p) ≤ min(Next(ω, p)(b)− b, a− Prev(ω, p)(a)).

Hence, we can conclude that

d(ω, p) = min(Next(ω, p)(b)− b, a− Prev(ω, p)(a)).

Lemma 8. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = �[a,b]p such
that ω 2 ϕ, Alg. 7 computes d(ω,L(ϕ)), and runs in O(n) time.

Proof. In order to prove that d(ω, p) = max(lc, rc, lm, rm), we first prove that
d(ω, p) ≥ max(lc, rc, lm, rm), and then prove that there exists an element or a
limit point of L(ϕ) such that its distance to ω is max(lc, rc, lm, rm).



Algorithm 7 d(ω, ϕ) where ϕ = �[a,b]p

1: lm← Prev(ω,¬p)
(
a+b
2

)
− a

2: rm← b− Next(ω,¬p)
(
a+b
2

)
3: lc← min(Next(ω, p)(a)− a, CurrSeg(ω,¬p)(a)

2
)

4: rc← min(b− Prev(ω, p)(b), CurrSeg(ω,¬p)(b)
2

)
5: return d = min(lm, rm, lc, rc)

1. Since ω 2 ϕ, we know there exists some point t0 in [a, b] that does not
satisfy p. ∀α � ϕ, the closer t0 is to the center of the interval [a, b], the
greater d(ω, α) will be, as Closest(ω, t0, α) must be outside [a, b]. If we pick
the t0 to be the point in [a, b] that is as close to a+b

2 while not satisfying p,
then |Closest(ω, t0, α)− t| is exactly max(lm, rm).
In addition, suppose there is a segment [u,¬p, v) in ω such that v−u = c, and
this segment contains exactly one endpoint of the interval, suppose without
loss of generality it is incident on a. In α, [a, v) evaluates to p, and the closest
for any of these points is either v or u. Calculating the distance incurred in
this segment, we find

−→
dH([a, v], ω−1(p)) ≥ min

( c
2
, v − a

)
as either all the points find their closest at v, or they split appropriately
between u and v. This is computed by lc and rc.
Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ max(lc, rc, lm, rm)

d(ω, p) ≥ max(lc, rc, lm, rm)

2. Consider the constant signal Const(p) over the domain [0, T ].
Given these, we construct the signal ω1 = ω|a0 ·Const(p)|ba ·ω|Db . We then add
spikes of value ¬p at a and b. Let the result of these operations be α.
We claim that d(ω, α) = max(lc, rc, lm, rm) as defined in the algorithm.
For every timestamp outside [a, b], there are instantaneous matches in ei-
ther signal. For ω, the timestamps that don’t have instantaneous matches
are those in [a, b] with value ¬p. Their closest points are either a or b (at
the spikes) in α, and this maximises precisely at max(lm, rm). For α, the
timestamps that don’t have instantaneous matches are the ones that used
to have value ¬p in ω, in [a, b], and the spikes. The distance incurred by the
spikes is not more than max(lm, rm). For every segment [u, v) with value
¬p in ω between [a, b], if the segment was wholly inside [a, b], it is either
to the left of Prev(ω,¬p)

(
a+b
2

)
or to the right of Next(ω,¬p)

(
a+b
2

)
. Either

ways, the distance such a segment incurs at worst, is v−u
2 which is less than

lm or rm, as is applicable. Lastly, if the segment is not wholly within [a, b],
then it contains either a or b, and the distance it incurs to its closest points
is exactly what is accounted for with max(lc, rc). Hence, d(ω, α) is exactly
max(lc, rc, lm, rm), where α is a limit point of the language.

=⇒ d(ω, p) ≤ max(lc, rc, lm, rm)



Hence, we can conclude that

d(ω, p) = max(lc, rc, lm, rm).

For the rest of the fragment, we will often wish to know the cost of ensuring
that a subformula ϕ holds for a constant length segment, but not be sure where
said segment of time begins or ends. This introduces the idea of calculating
d(ω, ϕ(t)) where t is a parameter that determines the domain of the formula
ϕ = p, F,G as the case may be. In the settings that will be relevant, the result
of d(ω, ϕ(t)) is a plot, which we can calculate using our predefined auxiliary
constructions, still in linear time in the size of the input signal. Below, we present
some algorithms for the same.

Algorithm 8 d(ω, ϕ) where ϕ = p(t)

1: LPlot← IdDiff(Prev(ω, p))
2: RPlot← Anti(IdDiff(Next(ω, p)))
3: return d = Min(LPlot, RP lot)

Lemma 9. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = p such that
ω 2 ϕ, Alg. 8 computes the function d(ω,L(ϕ)), and runs in O(n) time.

Proof. At each value of t, this algorithm computes

min(Next(ω, p)(t)− t, t− Prev(ω, p)(t))

in agreement with the value that Alg. 5 yields. Clearly this takes O(n) time, and
the resulting plot has O(n) segments since the set of segments of Prev and Next
have the same endpoints.

Algorithm 9 d(ω, ϕ) where ϕ = ♦[t+a,t+b]p

1: ωa ← TTranslate(ω,−a)
2: LPlot← IdDiff(Prev(ωa, p))

3: ωb ← TTranslate(ω,−b)
4: RPlot← Anti(IdDiff(Next(ωb, p)))

5: return d = Min(LPlot, Rplot)

Lemma 10. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = ♦[t+a,t+b]p
such that ω 2 ϕ, Alg. 9 computes the function d(ω,L(ϕ)), and runs in O(n)
time.



Proof. At each value of t, this algorithm computes

min(Next(ω, p)(t+ b)− t+ b, t+ a− Prev(ω, p)(t+ a))

in agreement with the value that Alg. 6 yields. Clearly this takes O(n) time,
and the resulting plot has O(n) segments since each of Prev and Next have n
segments.

In case only one endpoint of F ’s domain varies, the corresponding plot (LPlot
or RPlot) would just receive the constant value (l or r respectively) computed
in Alg. 6.

Algorithm 10 d(ω, ϕ(t)) where ϕ = �[t+a,t+b]p

1: ωm ← TTranslate(ω,−a+b
2

)
2: MPrev ← Prev(ωm,¬p)
3: LmPlot← STranslate(Anti(IdDiff(MPrev)), b−a

2
)

4: MNext← Next(ωm,¬p)
5: RmPlot← STranslate(IdDiff(MNext), b−a

2
)

6: ωa ← TTranslate(ω,−a)
7: ANext← Next(ωa, p)
8: ACurr ← SDilate(CurrSeg(ωa,¬p), 2)
9: LcP lot← Min(Anti(IdDiff(ANext), ACurr))

10: ωb ← TTranslate(ω,−b)
11: BPrev ← Prev(ωb, p)
12: BCurr ← SDilate(CurrSeg(ωb,¬p), 2)
13: LcP lot← Min(IdDiff(BPrev), BCurr)

14: return DPlot = Min(LmPlot, RmPlot, LcP lot, RcP lot)

Lemma 11. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = �[t+a,t+b]p
such that ω 2 ϕ, Alg. 10 computes the function d(ω,L(ϕ)), and runs in O(n)
time.

Proof. ∀t, we wish to prove this algorithm computes d(ω,L(�[t+a,t+b]p)).
At the end of line 3, LmPlot computes

Prev(ω,¬p)
(
t+

(
a+ b

2

))
−
(
t+

(
a+ b

2

))
−
(
b− a

2

)
= Prev(ω,¬p)

(
t+

(
a+ b

2

))
−(t+a)

Which agrees with lm as computed in Alg. 7.
Similarly, RmPlot computes(

t+

(
a+ b

2

))
−Next(ω,¬p)

(
t+

(
a+ b

2

))
−
(
b− a

2

)
= (t+b)−Next(ω,¬p)

(
t+

(
a+ b

2

))



LcP lot computes

min

(
CurrSeg(ω,¬p)(t+ a)

2
,Next(ω, p)(t+ a)− (t+ a)

)
RcP lot computes

min

(
CurrSeg(ω,¬p)(t+ b)

2
, (t+ b)− Prev(ω, p)(t+ b)

)
Each of these agrees with rm, lc and rc as computed in Alg. 7, so the overall

algorithm is correct.
Clearly this takes O(n) time, and the resulting plot has O(n) segments since

each of Prev and Next have n segments, and the operations at most double the
number of segments.

Algorithm 11 d(ω, ϕ(t)) where ϕ = �[a,t+b]p

1: ωm ← TTranslate(TDilate(ω, 2),−(a+ b))
2: MPrev ← Prev(ωm,¬p)
3: MPrev ← STranslate(MPrev, a+ b)
4: MPrev ← SDilate(MPrev, 2)
5: LmPlot← STranslate(MPrev,−a)

6: MNext← Next(ωm,¬p)
7: MNext← STranslate(MNext, a+ b)
8: MNext← SDilate(MNext, 2)
9: RmPlot← STranslate(IdDiff(MNext), b)

10: LcP lot← Const(min(Next(ω, p, a)− a, CurrSeg(ω,¬p,a)
2

))

11: ωb ← TTranslate(ω,−b)
12: BPrev ← Prev(ωb, p)
13: BCurr ← SDilate(CurrSeg(ωb,¬p), 2)
14: LcP lot← Min(IdDiff(BPrev), BCurr)

15: return DPlot = Min(LmPlot, RmPlot, LcP lot, RcP lot)

Lemma 12. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = �[a,t+b]p
such that ω 2 ϕ, Alg. 11 computes the function d(ω,L(ϕ)), and runs in O(n)
time.

Proof. ∀t, we wish to prove this algorithm computes d(ω,L(�[a,t+b]p)).
At the end of line 5, LmPlot should compute

Prev(ω,¬p)
(
t+ a+ b

2

)
− a



in order to agree with lm as computed in Alg. 7, substituting t + b for b. This
holds if and only if at the end of line 4, MPrev stores

Prev(ω,¬p)
(
t+ a+ b

2

)
This is true because at the end of line 4, MPrev stores

(Prev(ωm,¬p)) + (a+ b)

2

where

ωm(t) = ω

(
t+ a+ b

2

)

Prev(ωm,¬p) = max{t′|(t′ < t)∧(ωm(t) = ¬p)} = max{t′|(t′ < t)∧(ωm

(
t+ a+ b

2

)
= ¬p)} =

max{t′|(t′ < 2t′′−(a+b))∧(ω(t′′) = ¬p)} = 2 max{t′|(t′ < t′′)∧(ω(t′′) = ¬p)}−(a+b)

Which is precisely the result of lines 1-4.
Similarly, in accordance with Alg. 7 RmPlot computes

t+ b− Next(ω,¬p)
(
t+ a+ b

2

)
Which is true because by an analogous argument,

Next(ω,¬p)
(
t+ a+ b

2

)
=

(Next(ωm,¬p)) + (a+ b)

2

Exactly as in Alg. 7, LcP lot computes

min

(
CurrSeg(ω,¬p)(a)

2
,Next(ω, p)(a)− (a)

)
And exactly as in Alg. 10, RcP lot computes

min

(
CurrSeg(ω,¬p)(t+ b)

2
, (t+ b)− Prev(ω, p)(t+ b)

)
Each of these agrees with rm, lc and rc as computed in Alg. 7, so the overall

algorithm is correct.
Clearly this takes O(n) time, and the resulting plot has O(n) segments since

each of Prev and Next have n segments, and the operations at most double the
number of segments.

Lemma 13. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = �[t+a,b]p
such that ω 2 ϕ, Alg. 12 computes the function d(ω,L(ϕ)), and runs in O(n)
time.



Algorithm 12 d(ω, ϕ(t) where ϕ = �[t+a,b]p

1: ωm ← TTranslate(TDilate(ω, 2),−(a+ b))
2: MPrev ← Prev(ωm,¬p)
3: MPrev ← STranslate(MPrev, a+ b)
4: MPrev ← SDilate(MPrev, 2)
5: LmPlot← STranslate(Anti(IdDiff(MPrev),−a))

6: MNext← Next(ωm,¬p)
7: MNext← STranslate(MNext, a+ b)
8: MNext← SDilate(MNext, 2)
9: RmPlot← STranslate(−(MNext), b)

10: ωa ← TTranslate(ω,−a)
11: ANext← Next(ωa, p)
12: ACurr ← SDilate(CurrSeg(ωa,¬p), 2)
13: LcP lot← Min(Anti(IdDiff(ANext), ACurr))

14: RcP lot← Const(min(b− Prev(ω, p, b), CurrSeg(ω,¬p,b)
2

))

15: return DPlot = Min(LmPlot, RmPlot, LcP lot, RcP lot)

Proof. ∀t, we wish to prove this algorithm computes d(ω,L(�[t+a,b]p)).

At the end of line 5, LmPlot should compute

Prev(ω,¬p)
(
t+ a+ b

2

)
− (t+ a)

in order to agree with lm as computed in Alg. 7, substituting t+ b for b. This is
true because as seen in the proof of correctness for Alg. 11 at the end of line 4,
MPrev stores

Prev(ω,¬p)
(
t+ a+ b

2

)
Similarly, in accordance with Alg. 7 RmPlot computes

t+ b− Next(ω,¬p)
(
t+ a+ b

2

)
Which is true because

Next(ω,¬p)
(
t+ a+ b

2

)
=

(Next(ωm,¬p)) + (a+ b)

2

Exactly as in Alg. 10, LcP lot computes

min

(
CurrSeg(ω,¬p)(t+ a)

2
,Next(ω, p)(t+ a)− (t+ a)

)



And exactly as in Alg. 7, RcP lot computes

min

(
CurrSeg(ω,¬p)(b)

2
, b− Prev(ω, p)(b)

)
Each of these agrees with rm, lc and rc as computed in Alg. 7, so the overall

algorithm is correct.
Clearly this takes O(n) time, and the resulting plot has O(n) segments since

each of Prev and Next have n segments, and the operations at most double the
number of segments.

B.6 Until, Not Until, and Not Bounded Reponse

In this subsection, we compute the distance of a signal to the languages of
the formulae p U[a,b] q ¬p U[a,b] q and ¬(�(p ⇒ ♦[0,b]q), the negation of the
bounded response property.

We group these together due to the similarity in the technique we use to com-
pute the robustness. We compute the distance by first rewriting these languages
in terms of equivalent but easier to compute formulae, and then computing dis-
tances to those formulae using the variable domain algorithms introduced in the
previous subsection.

Algorithm 13 d(ω, ϕ) where ϕ = p U[a,b] q
1: QPlot← d(ω, q(t))
2: GPlot← d(ω,�[0,t]p)
3: DPlot← Max(QPlot,GP lot)

4: return d = mint∈[a,b]DPlot

Lemma 14. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = p U[a,b] q
such that ω 2 ϕ, Alg. 13 computes the function d(ω,L(ϕ)), and runs in O(n)
time.

Proof. In order to prove that d(ω, p) = mint∈[a,b]DPlot, we first prove that
d(ω, p) ≥ mint∈[a,b]DPlot, and then prove that there exists an element or a
limit point of L(ϕ) such that its distance to ω is mint∈[a,b]DPlot.

1. We know that ω 2 ϕ. Let tu = arg mint∈[a,b]DPlot.
Consider any signal α ∈ L(ϕ). Since α � p U[a,b] q, by definition we know
that ∃t ∈ [a, b] (α ∈ L(q(t) ∧�[0,t)p)).
We now note that the result of the algorithm mint∈[a,b]DPlot =
mint∈[a,b] d(ω, q(t) ∧�[0,t]p))) by definition.
Distance to the set �[0,t]p, or �[0,t)p is identical, so ∀α ∈ L(ϕ) mint∈[a,b]DPlot ≤
d(ω, α).



Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ mint∈[a,b]DPlot

d(ω, p) ≥ min
t∈[a,b]

DPlot

2. As for feasibility, we see that a signal α that is identical to ω’s nearest signal
in �[0,tu)p except for a q value spike at tu has the property (α � ϕ)∧d(ω, α) ≤
mint∈[a,b]DPlot.

=⇒ d(ω, p) ≤ min
t∈[a,b]

DPlot

Hence, we can conclude that

d(ω, p) = min
t∈[a,b]

DPlot.

It uses four linear time operations, and hence overall runs in O(n) time.

Algorithm 14 d(ω, ϕ) where ϕ = ¬p U[a,b] q
1: PQPlot← d(ω, (¬p ∧ ¬q)(t))
2: GPlot← d(ω,�[a,t]¬q)
3: DPlot← Max(PQPlot,GP lot)

4: d← min(d(ω,�[a,b]¬q), d(ω,♦[0,a]¬p))
5: return d = min(d,mint∈[a,b]DPlot)

Lemma 15. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = ¬p U[a,b] q
such that ω 2 ϕ, Alg. 14 computes the function d(ω,L(ϕ)), and runs in O(n)
time.

Proof. In order to prove that d(ω, p) = d, we first prove that d(ω, p) ≥ d, and
then prove that there exists an element or a limit point of L(ϕ) such that its
distance to ω is d.

1. Consider any signal α ∈ L(ϕ). Since α � ¬(p U[a,b] q), by definition we know
that either α � ♦[0,a]¬p, or α � �[a, b]¬q, or ∃t ∈ [a, b] (α ∈ L((¬p∧¬q)(t)∧
�[a,t)¬q)). This is because in order to violate p U[a,b] q, one of three things
must happen.
The first possibility is that there is no q in the interval [a, b].
The second, is that there was a moment where ¬p held in the initial ”neces-
sary” interval [0, a].
The third, is that if both the first and the second possibilities did not occur,
then it must be true that before the first q in [a, b] (i.e. at some moment t
when �[a,t)¬q was true, p did not hold (i.e., (¬p ∧ ¬q)(t)).



Whichever of the three possibilities α falls into, due to lines 1-3 it is clear
that d ≤ d(ω, α)
Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ d

d(ω, p) ≥ d

2. Now, we seek to prove feasibility. Note that the first two possibilities are
formulae with effectively disjoint domains, and the third need only be con-
sidered within in the complement of the union of the first two. Hence, de-
pending on which term is lower, we can find a witness signal α such that
d(ω, α) = d by either gluing together the witness signals for the first two
cases, or using the witness for the third.

=⇒ d(ω, p) ≤ d

Hence, we can conclude that

d(ω, p) = d.

Algorithm 15 d(ω, ϕ) where ϕ = ¬(�(p⇒ ♦[0,b]q))

1: PPlot← d(ω, p(t))
2: GPlot← d(ω,�[t+0,t+b]¬q)
3: DPlot← Max(PPlot,GP lot)

4: return d = mint∈[0,T ]DPlot

Lemma 16. Given a signal ω : [0, T ] → {0, 1} and a formula ϕ = ¬(�(p ⇒
♦[0,b]q)) such that ω 2 ϕ, Alg. 15 computes the function d(ω,L(ϕ)), and runs in
O(n) time.

Proof. In order to prove that d(ω, p) = mint∈[0,T ]DPlot, we first prove that
d(ω, p) ≥ mint∈[0,T ]DPlot, and then prove that there exists an element or a
limit point of L(ϕ) such that its distance to ω is mint∈[0,T ]DPlot.

1. Consider any signal α ∈ L(ϕ). Since α � ¬(�(p⇒ ♦[0,b]q), by definition we
know that

∃t α � p(t) ∧�[t,t+b]¬q

Due to lines 1 and 2 we see that d = mint∈[0,T ]DPlot ≤ Max(PPlot(t), GP lot(t)) ≤
d(ω, α).
Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ mint∈[0,T ]DPlot

d(ω, p) ≥ min
t∈[0,T ]

DPlot



2. Now, we seek to prove feasibility. Once again, the two conditions are formulae
with effectively disjoint domains, so we can find a witness signal α such that
d(ω, α) = mint∈[0,T ]DPlot by gluing together the witness signals for the two
conditions.

=⇒ d(ω, p) ≤ min
t∈[0,T ]

DPlot

Hence, we can conclude that

d(ω, p) = min
t∈[0,T ]

DPlot.

B.7 Bounded Response

Now, we focus on computing δ for the bounded response property, a very useful
STL specification that promises that whenever a request of some sort (p) appears,
the system will grant it a response (q) within an appropriate time interval.

Hence, we can present again the algorithm for computing δ for the bounded
response property.

Before we prove the correctness of Alg. 16, we take a moment to set up some
notation and prove some lemmas about the properties of the algorithm.

Let us denote by Res(ω, b, val) the signal that greedily places a thin spike at
every multiple of b, with value val.

Lemma 17. When the entire domain [0, T ] of ω is a region of fault, one of the
following cases occur

1. It is an initial region of fault, and there is a point with value ¬p ∧ ¬q in
[T − l, T − l + l−b

2 ], in which case d(ω, ϕ) = max(c, l−b2 ).
2. It is an initial region of fault, and there is no point with value ¬p ∧ ¬q in

that range, in which case d(ω, ϕ) = l − b.
3. It is a middle region of fault, in which case d(ω, ϕ) = 1

2 ·max(m, l−b−m′, c)
4. It is an final region of fault, and there is a point with value ¬p∧¬q, in which

case d(ω, ϕ) = max(c, l2 ).
5. It is an final region of fault, and there is no point with value ¬p ∧ ¬q, in

which case d(ω, ϕ) = l.

Where l,m,m′ and c are as defined in the algorithm.
Moreover, as calculated above, for any ωi ·ω ·ωf , i.e. an extension of ω, and

any other signal ω′′ � ϕ over the domain [0, T ], d(ω′′, ωi · ω · ωf ) ≤ d(ω, ϕ).

Proof. We proceed case by case, as indicated by the lemma.

1. In order to prove that d(ω, p) = max(c, l−b2 ), we first prove that d(ω, p) ≥
max(c, l−b2 ), and then prove that there exists an element or a limit point of

L(ϕ) such that its distance to ω is max(c, l−b2 ).



Algorithm 16 d(ω, ϕ) where ϕ = �(p⇒ ♦[0,b]q)

1: Let ω = (0, t1, a1)(t1, t2, a2) . . . (tn−1, tn, an) where ∀ i ∈ [n] : ai ∈ {0, 1}.
2: R← ∅, i← 1, u, v ← 0
3: for all (i ≤ n) do
4: if ω(ti) 2 q then
5: v ← ti
6: else
7: if u < v then
8: R← R ∪ [u, v]
9: u← ti

10: i← i+ 1
11: R← R ∪ [u, T ], i← 1
12: if (R = {[0, tn}}) then
13: d←∞
14: else
15: for all [u, v] ∈ R do
16: if (u = 0) ∧ ω(0) 2 q then . Initial ROF
17: l← v −min{t ∈ [u, v] |ω(t) � p}
18: if ∃ t ∈ [u, v], ω(t) = ¬p ∧ ¬q then
19: c← −δ(ω,�

[v−l,v−l+( l−b
2 )]¬p)

20: d← max(d,
(
l−b
2

)
, c)

21: else
22: d← max(d, (l − b))
23: else if (ω(u) � q) ∧ (ω(v) � q) then . Middle ROF
24: l← v − u
25: m← max{t ∈ [u, v] | (t ≤ l−b

2
) ∧ (ω(t) = p ∧ ¬q)}

26: m′ ← min{t ∈ [u, v] | (t ≥ l−b
2

) ∧ (ω(t) = p ∧ ¬q)}
27: c← max{r ∈ R≥0 |ω � �

[ l−b
2
−r, l−b

2
+r]

p ∧ ¬q}
28: d← max(d, 0.5×max(m+ a, l − b−m′, c))
29: else . Final ROF
30: l← max{t ∈ [u, v] |ω(t) � p} − u
31: if ∃ t ∈ [u, v], ω(t) = ¬p ∧ ¬q then
32: c← −δ(ω,�

[v−( l−a
2 ),v]¬p)

33: d← max(d, c,
(
l−a
2

)
)

34: else
35: d← max(d, l)
36: return d



(a) In this case, consider any ω′ � ϕ, and let t = min{t|ω′(t) � q}.
Since ω′ � ϕ, we know that for all t′ ∈ [0, t − b] ω′(t′) 2 p. Hence, the
closest match for the value at T − l in ω is after t−b. On the other hand,
the closest match for the value of ω′ at t is at T . Hence,

d(ω, ω′) ≥ max{t− b− T + l, T − t} ≥ l − b
2

= m.

Moreover, for any segment in [T − l, T − l + l−b
2 ] with value p ∧ ¬q, the

cost of erasing them all is at least c.
This holds even if ω were extended left and right.
Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ max(c, l−b2 )

d(ω, p) ≥ max(c,
l − b

2
)

(b) In order to achieve max(c, l−b2 ), consider the signal (¬p∧¬q)|m0 ·ω|m+b
m ·

(ω(T ))|Tm+b. This is both a limit point of the language of ϕ, and also is
at the required distance from ω.

=⇒ d(ω, p) ≤ max(c,
l − b

2
)

Hence, we can conclude that

d(ω, p) = max(c,
l − b

2
).

2. In order to prove that d(ω, p) = l− b, we first prove that d(ω, p) ≥ l− b, and
then prove that there exists an element or a limit point of L(ϕ) such that
its distance to ω is l − b.
(a) In this case, consider any α � ϕ, and let t = min{t|α(t) � q}. If t− b > 0

then the value of 0 must not be p ∧ ¬q, and any such value’s closest is
at the very least at T , so the distance is already maximal. Hence, it is
more efficient to let t− b ≤ 0, and so that the closest(T ) is not too far,
t = b. This holds even if ω were extended left and right.
Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ l − b

d(ω, p) ≥ l − b

(b) In order to achieve this, consider the signal (¬p ∧ ¬q)|b0 · (ω(T ))|Tb . This
is both a limit point of the language of ϕ, and also is at the required
distance from ω.

=⇒ d(ω, p) ≤ l − b

Hence, we can conclude that

d(ω, p) = l − b.



3. In order to prove that d(ω, p) = 1
2 ·max(m, l− b−m′, c), we first prove that

d(ω, p) ≥ 1
2 ·max(m, l−b−m′, c), and then prove that there exists an element

or a limit point of L(ϕ) such that its distance to ω is 1
2 ·max(m, l−b−m′, c).

(a) In this case, consider any α � ϕ, and let m, m′ and c be defined as in
lines 25-27.

We first focus on the case where c = 0. Without loss of generality, sup-
pose m ≥ l − b−m′, set m′ to l − b−m instead.

As in previous cases, we consider the timestamp t in ω such that t =
max{t ≤ m|α(t) � p}. Closest point to m in α is hence t, and the closest
point to t in ω is 0, so d(ω, ϕ) ≥ m

2 . This holds even if ω were extended
left and right, and a similar argument shows the lower bound for the m′

case. .

On the other hand, suppose c > 0. In this case, m = m′ = l−b
2 . If c ≤ l−b

2
then the above cases argument remains sufficient. On the other hand, if
c is larger, then consider the midpoint of c, call it tc. Since c is large, we
can see that tc ∈ [m2 ,

l−b+m
2 ], which means if it remains valued p ∧ ¬q

then its response would incur more than c
2 distance to its closest in ω,

and if it is valued anything else, its own closest incurs at least c
2 distance,

hence d(ω, ϕ) ≥ c
2 All these lowerbounds hold even if ω were extended

left and right.

Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ 1
2 ·max(m, l − b−m′, c)

d(ω, p) ≥ 1

2
·max(m, l − b−m′, c)

(b) In order to achieve this when c = 0, consider the signal Res(ω|m0 , b, ω(0))·
(¬p∧¬q)|m′m ·Res(ω|Tm′ , b, ω(T )). This is both a limit point of the language
of ϕ, and also is at the required distance from ω.

In order to achieve this when c 6= 0 we consider the same witness signal
as in the previous case if there are any points valued ¬p ∧ ¬q in this
region of fault. If not, let m = c

2 and m′ = T − c
2 , we consider the signal

ω′ = (ω(0))|m0 · (p ∧ ¬q)|m
′

m · (ω(T ))|Tm′ , and we find that it achieves the
required distance.

=⇒ d(ω, p) ≤ 1

2
·max(m, l − b−m′, c)

Hence, we can conclude that

d(ω, p) =
1

2
·max(m, l − b−m′, c).

4. In order to prove that d(ω, p) = max(c, l2 ), we first prove that d(ω, p) ≥
max(c, l2 ), and then prove that there exists an element or a limit point of

L(ϕ) such that its distance to ω is max(c, l2 ).

(a) In this case, consider any α � ϕ, and let t = max{t|α(t) � q}.



Since α � ϕ, we know that for all t′ ∈ [t, T ] α(t′) 2 p. Hence, the closest
match for the value for t in ω is 0. On the other hand, the closest match
for the value of ω at l is at t. Hence,

d(ω, α) ≥ l

2
= m.

Moreover, for any segment in [ l2 , l] with value p∧¬q, the cost of erasing
them all is at least c.
This holds even if ω were extended left and right.
Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ max(c, l2 )

d(ω, p) ≥ max(c,
l

2
)

(b) In order to achieve this distance,let m = l
2 , consider the signal ω|m0 ·

(¬p ∧ ¬q)|Tm with a spike of value ω(0) at m. This is both a limit point
of the language of ϕ, and also is at the required distance from ω.

=⇒ d(ω, p) ≤ max(c,
l

2
)

Hence, we can conclude that

d(ω, p) = max(c,
l

2
).

5. In order to prove that d(ω, p) = l, we first prove that d(ω, p) ≥ l, and then
prove that there exists an element or a limit point of L(ϕ) such that its
distance to ω is l.
(a) In this case, consider any α � ϕ, and let t = min{t|α(t) � q}. If t < l

then the value of l must not be p∧¬q, and any such value’s closest is at
the very least at 0, so the distance is already maximal. Hence, it is more
efficient to let t = l. This holds even if ω were extended left and right.
Hence, ∀α ∈ L(ϕ), d(ω, α) ≥ l

d(ω, p) ≥ l

(b) In order to achieve this, consider the signal Res(ω, b, ω(0)). This is both
a limit point of the language of ϕ, and also is at the required distance
from ω.

=⇒ d(ω, p) ≤ l
Hence, we can conclude that

d(ω, p) = l.

Lemma 3 (Decomposition lemma). Given a signal ω 2 ϕ over the do-
main [0, T ], consider the following decomposition of the domain: t0 = 0 ≤
t1 < · · · ≤ t2n = T, where ∀i ∈ [n], (t2i, t2i+1) contains no regions of fault
and [t2i+1, t2i+2] is a region of fault. Given such a decomposition, d(ω, ϕ) =
max1≤i≤n d(ω|t2it2i−1

, ϕ).



Proof. For all i ∈ [n] let ωi = ω|t2it2i−1
. Suppose there existed a signal ω′′ � ϕ such

that d(ω′′, ω) < maxi∈[n] d(ωi, ϕ) = d. Then, let ωk be the region of fault with
the greatest distance, i.e., d(ωk, ϕ) = d. Let ω′′k be ω′′ restricted to the same
domain as ωk. We know that d(ω′′k , ω) ≤ d(ω′′, ω) < d.

But, by Lem. 17, we know that ωk is locally optimal for ω even though the
domain of ω is extended. Hence, this provides a contradiction.

Lemma 18. Given a signal ω : [0, T ] → {0, 1}2 and a formula ϕ = �(p ⇒
♦[0,b]q) such that ω 2 ϕ, Alg. 16 computes d(ω,L(ϕ)), and runs in O(n) time.

Proof. Given Lem. 3, we see that splitting the signal into regions of fault to
compute distance individually is sound, and Lem. 17 showed the correctness of
the distance computation on each region of fault, so overall the algorithm is
correct.

As for its complexity, it runs in linear time as each local computation is linear
in the size of its region of fault, and the overall computation as a result runs in
time linear in the number of segments in the entire signal.

Now, we are ready to prove Thm. 3.

Theorem 3. Given a signal ω with size parameters (n, h, b) and a property ϕ ∈
STLr, computing δ(ω, ϕ) is in O(n(h+ b) · |ϕ|)-time.

Proof. The fact that δ(ω,¬ϕ) = −δ(ω, ϕ) follows from the definition of δ, and
when domains are disjoint, as we have seen, witness signals only differ from
signals within their domains, so d(ω, ϕ ∨ ϕ′) = max(d(ω, ϕ), d(ω, ϕ′)) since we
can construct a non-conflicting combined witness signal.

Aside from these facts, it follows that Alg. 4 is correct because of Lemmas 4,
6 to 8, 14 to 16 and 18.

As for overall complexity, since each subroutine runs in O(|ϕ| · |ω|) and only
2 non-constant time algorithms are run per instance, the overall procedure has
the same running time.
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