
HAL Id: hal-04622269
https://hal.science/hal-04622269

Submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Taming the Variability of Browser Fingerprints
Maxime Huyghe, Clément Quinton, Walter Rudametkin, Walter Rudametkin

To cite this version:
Maxime Huyghe, Clément Quinton, Walter Rudametkin, Walter Rudametkin. Taming the Variability
of Browser Fingerprints. SPLC’24 - 28th International Systems and Software Product Lines Confer-
ence, Sep 2024, Luxembourg, Luxembourg. pp.1-6. �hal-04622269�

https://hal.science/hal-04622269
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Taming the Variability of Browser Fingerprints
Maxime Huyghe

maxime.huyghe@univ-lille.fr
Univ. Lille, CNRS, Inria, Centrale Lille,

UMR 9189 CRIStAL
Lille, France

Clément Quinton
clement.quinton@univ-lille.fr

Univ. Lille, CNRS, Inria, Centrale Lille,
UMR 9189 CRIStAL

Lille, France

Walter Rudametkin
walter.rudametkin@irisa.fr

Univ. Rennes, CNRS, Inria, IRISA
IUF

Rennes, France

ABSTRACT
Browser fingerprinting has become a prevalent technique for track-
ing and identifying users online, posing significant privacy risks.
The increasing variability in web browser configurations, coupled
with the continuous evolution of browser features, presents com-
plex challenges in understanding and mitigating the impact of
fingerprinting. In this paper, we introduce a novel approach that
combines feature modeling techniques with tree-based representa-
tions to capture the intricate relationships and constraints within
browser fingerprints. By translating 22, 773 fingerprints into a fea-
ture model with 34, 557 nodes, we enable a comprehensive analysis
of their variability and uniqueness across 1, 519 switches and 596
flags on 7 headless and headful browser versions. Our methodology
facilitates various use cases, such as generating representative fin-
gerprints for testing, detecting anomalies, and identifying discrim-
inating attributes. We aim to provide developers and researchers
with a powerful tool for studying browser fingerprints and devel-
oping effective strategies to enhance user privacy in the face of
evolving tracking techniques.

CCS CONCEPTS
• Security and privacy→ Privacy protections; • Software and its
engineering→ Software product lines.

KEYWORDS
Browser Fingerprinting, Configuration, Variability, Feature Model
Synthesis
ACM Reference Format:
Maxime Huyghe, Clément Quinton, and Walter Rudametkin. 2024. Taming
the Variability of Browser Fingerprints. In Proceedings of 28th ACM Interna-
tional Systems and Software Product Line Conference (SPLC ’24). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The browser is the primary interface through which we interact
with online services and applications. However, the increasing com-
plexity and variability of web browser configurations poses signifi-
cant privacy and security challenges. Web browsers expose informa-
tion about the user’s device [6, 12, 22], operating system, fonts [10],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

extensions [28, 32], and various other characteristics. These can be
used to create a unique identifier known as a browser fingerprint.
While this information, exposed mainly through JavaScript APIs
and attributes, allows websites to enhance and customize the user
experience, it also raises concerns about their potential for track-
ing and profiling purposes. As web technologies evolve and new
features are rapidly introduced, the variability of browser configu-
rations increases, making it challenging to understand and manage
the potential risks associated with the exposure of the browser’s
JavaScript attributes. Traditional approaches to studying browser
configurations, such as storing them in JSON format [3, 23, 26, 27],
do not adequately capture the complex relationships and constraints
between different attributes nor their mappings to the browser’s
configuration.

We propose a novel approach that leverages feature modeling
techniques to represent browser fingerprints in a structured and
comprehensive manner. By translating each fingerprint into a tree
structure and incorporating their constraints, we aim to gain a
deeper understanding of the variability and uniqueness of browser
fingerprints across different browser configurations. This represen-
tation allows for a more fine-grained analysis of the relationships
between browser attributes and their impact on fingerprint distinc-
tiveness. The main contributions of this paper are as follows:

• We introduce the idea of representing the browser finger-
print variability using the well-known technique of feature
modeling for software variability [18].
• We propose algorithms for building individual feature trees
from configurations and merging them into a unified tree,
creating a comprehensive representation of the browser con-
figuration landscape.
• We generated 22, 773 browser fingerprints from Chromium.
Our fingerprint dataset explores 1, 519 switches and 596 flags
from 7 versions of both headless and headful Chromium,
which we use to build a feature model with 34, 557 nodes.
• We provide insights into browser fingerprinting and discuss
the implications of our approach for developing privacy-
enhancing tools and assisting developers.

The remainder of this paper is structured as follows. Section 2
provides background information on web browser configurations
and motivates the need for a structured representation. Section 3
explains how fingerprint variability is captured , and details the
process of building and merging browser fingerprint feature trees.
Section 4 describes various use cases of our approach and discusses
the insights gained from our analyses. Section 5 presents related
work in browser variability and feature model synthesis. Finally,
Section 6 concludes the paper and outlines future research direc-
tions.

https://orcid.org/0009-0006-8582-0017
https://orcid.org/0000-0003-3203-6107
https://orcid.org/0000-0003-2903-7600
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Maxime Huyghe, ClémentQuinton, and Walter Rudametkin

2 BACKGROUND AND MOTIVATION
Web browsers are used by billions of users worldwide and continu-
ously change to adapt to new demands. Browser vendors integrate
new functionalities by either developing them or by including third-
party dependencies [20], resulting in increasingly complex source
code. To adapt to demands, there is a growing number of alterna-
tive browsers, each offering their own sets of features. Some of
these browsers have derivatives for mobile devices, ARM-based
systems, and various operating systems. End users can tailor their
browsing experience through the use of extensions, settings, and
scripts. Each of these modifications contributes to the creation of
unique configurations of the web browser, and every alteration has
the potential to impact the browser’s fingerprint.

2.1 Browser Fingerprinting
Users employ web browsers for a wide range of activities, including
browsing, streaming media, administrative tasks, social networking,
and gaming. Each visited website can potentially retrieve a finger-
print [9] from the browser, enabling them to identify and track the
device without relying on cookies or login information [8, 14]. A
browser fingerprint is a unique set of attributes (keys) and their cor-
responding values, generated locally within the user’s web browser
and transmitted to the server, where it is stored and remains outside
of the user’s control. Certain attributes, such as the Canvas [17, 19]
and the User Agent [13], are particularly popular and highly dis-
criminating. The usage of browser fingerprinting has been increas-
ing over time due to various factors, including for security, adver-
tising, attacking, as well as for substituting or complementing the
use of cookies due to increased user awareness about them and
third-party cookie deprecation. As users continue to customize
their browsing experiences, the uniqueness of their browser finger-
prints increase. This technique has gained notoriety as a method
for re-identifying users on the web, raising concerns about privacy
and the potential for misuse.

Browser fingerprints originate from the Browser Object Model
(BOM).1 Not to be confused with the Document Object Model
(DOM), which focuses on the content of a web page, the BOM is a
programming interface to interact with the browser and BOM pro-
vides access to objects, attributes, properties and methods related
to the browser’s window. For instance, screen size is accessible
through the window.screen.width and window.screen.height
attributes, and the language through window.navigator.language,
which provide values such as 1920, 1080, and en_US, respectively.
These values allow developers to adapt their applications to the
device, but can also be used to identify the browser, or more specif-
ically, the device. The risk increases as more attributes are consid-
ered.

2.2 Motivating Examples
The browser exposes a large set of attributes that can be exploited
by attackers [8, 13]. Depending on the browser’s version and con-
figuration, 14, 000 attributes can be collected [23]. In the state of the
art, it is understood that browser fingerprints can be impacted by
hardware components such as the CPU [22], audio setup [6], screen
resolution [4], GPU [12], and others.They can also be affected by the
1https://en.wikipedia.org/wiki/Browser_Object_Model

(a) Attribute differences between consecutive browser versions.

(b) Cumulative attribute differences over consecutive browser versions.

Figure 1: Attribute evolution of Chromium’s default configu-
ration from versions 109 (baseline) to 115. Many attributes
are added and values change, while few are removed.

operating system, fonts [10], and extensions [28, 32]. Furthermore,
the variability in browser configurations (from switches2 to flags,
thousands of configuration parameters are available3) presents com-
plex challenges in terms of user privacy and security. Fingerprints
change as the browser evolves [31]. As depicted in Figure 1a, even
with the same configuration, BOM attributes are added, removed,
or their values changed between browser versions. Over 7 versions,
as shown in Figure 1b, we observed many new attributes being
added, few being removed.

Various use cases can leverage browser fingerprints. For example,
for testing and debugging purposes, developers could randomly
select and execute browser configurations that are representative
of their user bases, or even attempt to approximate configurations
that exhibit bugs. Also, anomalies and inconsistencies in finger-
prints [30] may indicate potential security threats, e.g., attributes
that indicate bots or crawlers. Moreover, by analyzing the charac-
teristics of browser fingerprints, it is possible to identify the most
discriminating attributes, i.e., rare attributes, attributes specific to
some configurations, or attributes with high entropy. Identifying
thesewould help developers reduce privacy risks. Finally, tomanage
the complexity of the BOM, the thousands of sources of variability,
and the speed at which browser’s evolve, developers require new
approaches and automated support to analyze browser fingerprints.

2https://peter.sh/feed/chromium-command-line-switches/
3https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md

https://en.wikipedia.org/wiki/Browser_Object_Model
https://peter.sh/feed/chromium-command-line-switches/
https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md

Taming the Variability of Browser Fingerprints SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

Figure 2: FeatureModel Synthesis for Browser Fingerprints.We convert our dataset of fingerprints to feature trees.We record the
list of configurations that contain a feature, which we call feature inclusions. Each feature tree is merged into a feature model.
Mandatory, optional, XOR and OR constraints are calculated using parent-child relationships from the tree in conjunction
with the list of feature inclusions.

3 CAPTURING FINGERPRINT VARIABILITY
To manage the complexity and changing nature of browser fin-
gerprints, we propose an approach to synthesize a feature model
that captures fingerprint variability4. This approach is threefold,
as depicted by Figure 2. First, one feature tree is built from each
fingerprint. Then, one by one, each feature tree is merged. The final
feature tree is then refined with parent-child constraints that are
calculated using the list of feature inclusions extracted from the
fingerprints.

3.1 Building Feature Trees
A browser fingerprint is a set of attributes with values (i.e., key-
value pairs). We build a tree from a fingerprint using the following
rules:

- Each attribute is translated into a node;
- Each value is translated into a leaf node;
- Each attribute contained in another attribute results in a
parent-relationship for their respective nodes.

Figure 2 depicts the translation of 4 browser fingerprints into their
respective feature trees. For instance, 𝐹𝑃2 consists of attributes
window.A and window.C.D and two values, a2 and d1. When ap-
plying the rules, a feature tree is created with window as the parent
of both A and C, the latter being the parent of D, and two leaves, a2
and d1. The same process is applied to each fingerprint, resulting
in as many trees as fingerprints in the dataset. To build feature
trees for the entire dataset (22, 773 fingerprints), we parallelized
4https://doi.org/10.5281/zenodo.11519529

the process using 24 threads, with each thread handling approxi-
mately 1, 000 fingerprints. This approach reduced the building time
to around 30 minutes on a desktop computer equipped with an
AMD Ryzen 9 7900X and 32GB of RAM.

3.2 Merging Trees
To build the tree that represents all the fingerprints in the dataset,
each fingerprint tree is merged according to Algorithm 1. We start
with one tree from the dataset (line 3) and, for every remaining
tree (lines 4 – 14), nodes are merged into the tree (lines 5 – 9). The
addition of each new node is performed by looking for its parent
(using its name, as each attribute name is unique) and adding that
node as a child of the parent node (lines 7 – 9). If no parent exists,
the node is the root (line 11). In practice window is always the root.
Merging trees built from the 22, 733 fingerprints results in a final
tree with 34, 557 nodes. The merging process can be applied to any
new feature tree, enabling the continuous evolution of the final tree
over time.

3.3 Refining the Feature Model
Once all feature trees are merged, we apply a refinement process
to identify the parent-child constraints (i.e., mandatory, optional,
alternative or exclusive features). We rely on the concept of feature
inclusion, which is similar to feature degree defined by Metzger et
al. [16]. We define a feature inclusion 𝐹𝐼 (𝑓), for a given feature
𝑓 , as the set of configurations that contain 𝑓 . More precisely, we
compute the feature inclusion for every feature by recording the set
of fingerprints 𝐹𝑃 = {𝐹𝑃1, ..., 𝐹𝑃𝑛} that contain the feature, in order

SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Maxime Huyghe, ClémentQuinton, and Walter Rudametkin

Algorithm 1Merge trees
1: Input: trees ⊲ the set of feature trees
2: Output: mergedTree
3: mergedTree← trees.get(0)
4: for tree ∈ trees\trees.get(0) do
5: for node ∈ tree.nodes() do
6: if ¬(mergedTree.contains(node)) then
7: if node.hasParent() then
8: parentNode← node.getParent()
9: mergedTree.get(parentNode).addChild(node)
10: else
11: mergedTree.setRoot(node)
12: end if
13: end if
14: end for
15: end for
16: return mergedTree

to determine the constraints (see bottom-right of 2). To identify
mandatory and optional constraints, we use the following:

- Mandatory constraint. 𝐹𝐼 (𝑓) = 𝐹𝐼 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡), that is, when
a node is present in all configurations where its parent node
is also present, then it is marked as mandatory in regards to
its parent in the feature model. For instance, feature A is al-
ways present when window is present and is thus mandatory
in regards to window.

- All other features are marked optional and, if their parent
node has more than one optional child, will be checked for
the stricter XOR and OR constraints.

For features that have more than one optional child feature, we
refine the parent-child relationship. Let us consider𝑂𝑃𝑇 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡) =
{𝑜𝑝𝑡𝑐ℎ𝑖𝑙𝑑1 , ..., 𝑜𝑝𝑡𝑐ℎ𝑖𝑙𝑑𝑛 } the set of optional children of a parent fea-
ture 𝑓𝑝𝑎𝑟𝑒𝑛𝑡 . Then, for all fingerprints in 𝐹𝑃 and for all𝑂𝑃𝑇 sets in
a fingerprint:

- XOR constraint. If in every configuration where the parent
node exists, there is always one optional child node for that
parent node, that is, 𝐹𝐼 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡) =

⋃
𝑖∈𝑂𝑃𝑇 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡) 𝐹𝐼 (𝐹𝑐ℎ𝑖𝑙𝑑𝑖),

and the child nodes never overlap among themselves, that
is, ∀𝑥,𝑦 ∈ 𝑂𝑃𝑇 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡), 𝑥 ≠ 𝑦 : 𝐹𝐼 (𝑥) ∩ 𝐹𝐼 (𝑦) = ∅ then the
children of that parent node are mutually exclusive, other-
wise known as XOR.

- OR constraint. Similarly, if in every configuration where a
parent node exists, there is an optional child node for that par-
ent node, that is, 𝐹𝐼 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡) =

⋃
𝑖∈𝑂𝑃𝑇 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡) 𝐹𝐼 (𝐹𝑐ℎ𝑖𝑙𝑑𝑖),

but there exists at least one child node that overlaps with an-
other, that is,∀𝑥,𝑦 ∈ 𝑂𝑃𝑇 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡), 𝑥 ≠ 𝑦 : ∃𝐹𝐼 (𝑥)∩𝐹𝐼 (𝑦) ≠
∅, then the children of that parent node are in an OR rela-
tionship.

- Optional constraint. All remaining features are given the
optional constraint. Thismeans that, in general, 𝐹𝐼 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡) ≠⋃

𝑖∈𝑂𝑃𝑇 (𝑓𝑝𝑎𝑟𝑒𝑛𝑡) 𝐹𝐼 (𝐹𝑐ℎ𝑖𝑙𝑑𝑖), that is, there is at least one child
that does not respect a strict XOR relationship or a weaker
OR relationship.

4 PRACTICAL APPLICATIONS
We have applied our feature model synthesis to a dataset of 22, 773
browser fingerprints that we generated from 7 versions of the
Chromium browser from 1, 519 switches and 596 flags, on Linux,
in two variants (graphical and headless), for a total of 14 browsers.
To generate the fingerprints, we systematically explored distinct
configuration parameters. The fingerprint dataset, with each file
stored in a JSON format, uses 29 GB of space. Interestingly, the
feature model version uses 3.2 GB (i.e., 9 times smaller) when stor-
ing feature inclusions (i.e., the list of configurations that initially
contained the feature). If we remove the feature inclusions, which
are only necessary for calculating constraints, the size decreases to
2 MB, which is approximately 14, 500 times smaller. The resulting
feature trees range from 12, 311 to 16, 018 features, with a constant
depth of 8.

The feature model can be leveraged to address various scenarios,
such as random sampling for testing or debugging purposes, de-
tecting anomalies, tracking the evolution of browser fingerprints,
or identifying discriminating attributes.

4.1 Sampling Fingerprints
As discussed in Section 2.2, web application developers may benefit
from randomly selecting and executing different browser configu-
rations for application testing or for validating security and privacy
functions. However, fingerprint datasets are often too small or
not representative of user devices. Researchers often rely on small
datasets [4, 35] or collaborate with popular websites to include their
scripts to collect real browser fingerprints [11]. Projects such as
Electronic Frontier Foundation (EFF)5 or Am I Unique6 are also dedi-
cated to fingerprint collections, but the datasets from these sites are:
(i) not shared for privacy concerns, (ii) not exhaustive because it is
challenging to collect a set of configurations large-enough to cover
variations in hardware, user settings, operating systems, browser
versions, and other factors, (iii) not representative of average users
since visitors to such sites are more likely to be aware of browser
fingerprinting techniques and take privacy measures to counter
them. Additionally, privacy and user consent concerns can pose
significant challenges in collecting and using browser fingerprint
data. To tackle these issues, an alternative approach consists of gen-
erating fingerprints. However, fingerprint generation may result
in invalid browser fingerprints [30]. By leveraging the synthesized
feature model and applying existing sampling approaches [34], one
can create a valid and relevant set of browser fingerprints to be
used for testing purposes.

4.2 Fingerprint Evolution
Figure 1a illustrates the attribute changes in browser fingerprints
from Chromium versions 109 to 115. In particular, version 114 looks
like a turning point: attributes were removed regularly until this
version, while added attributes increased from here. To observe
fingerprint evolution, we first synthesize a feature model from
the default browser version, i.e., a browser configuration devoid
of switches or modified flags, and we then compute the feature
model differences between two of these versions [2]. Relying on
5https://coveryourtracks.eff.org/
6https://amiunique.org

Taming the Variability of Browser Fingerprints SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

the set of synthesized feature models, we can thus track removed
features (e.g., due to BOM deprecation), or measure the impact on
user privacy when new features are added to the browser.

Our experiments show that the number of nodes increases over
time. Between Chromium versions 109 and 115, i.e., 7 releases over 6
months, we observed an increase of 1, 333 new nodes, from 28, 926
to 30, 259 nodes. By leveraging the feature model of each browser
version and applying random sampling techniques, browser devel-
opers can assess the privacy impact of newly implemented features.
This approach allows them to explore a wide range of configura-
tions, identify potential privacy risks, and make informed decisions
about the design and implementation of new functionality.

4.3 Configuration Identification
To generate our fingerprint dataset, we exhaustively explored the
following runtime configuration spaces7:

- Switches8 are command-line arguments initialized before
the browser’s launch. We explored 1, 519 switches.

- Flags are experimental features accessible via the browser’s
chrome://flags page. We explored 596 flags.

We observed that fingerprint feature nodes appear or disappear
depending on the (de)activation of certain configuration parameters.
These observations raised questions regarding whether these nodes
could be identifiable and linked to the browser’s configuration. To
facilitate the identification of these configuration parameters, we
computed differences between a feature tree resulting from the de-
fault configuration and feature trees generated from configurations
where switches and flags were activated one by one. Computing
these differences was performed relying on the method proposed
in [2]. A switch or flag parameter was thus considered to impact
the fingerprint when added or removed nodes resulted from that
diff operator.

We stored a mapping for each switch and flag to their fingerprint.
Some of these configuration parameters are highly identifiable be-
cause they enable or disable features in the web browser that impact
the browser fingerprint and therefore our feature model. We also
generated new browser fingerprints in more recent versions on dif-
ferent hardware and operating systems using switches that we knew
were identifiable. Subsequently, we attempted to verify whether
we could identify the switch used from the browser fingerprint. In
the majority of cases, we successfully identified the switch from
the browser fingerprint. In instances where we did not correctly
identify it, the set of nodes was too close or identical to another
case. With this information, we should be able to identify browser
configurations from their fingerprints and potentially provide tips
on how to make the configuration more privacy-friendly, if desired.
Another use case is for developers. If a user reports a bug and gen-
erates a report, we can easily add the browser fingerprint to the
report. This allows the developer to reproduce the user’s configura-
tion, gaining a better understanding of the bug, and correcting it
more efficiently.

7https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md
8https://peter.sh/feed/chromium-command-line-switches/

5 RELATEDWORK
On Browser Variability. In the context of browser configurations,

Swanson et al. [29] proposed the REFRACT framework to avoid
failures. Their approach involves adding guards to monitor each
configuration and creating valid configurations when failures occur.
While their work focuses on configuration testing, it highlights the
importance of managing browser variability. Beyond the software
engineering domain, the application of feature modeling has been
explored in other fields. Cashman et al. [5] proposed importing
the software product line approach to the Biobrick repository in
the biological domain, facilitating the planning of DNA element
reuse. This demonstrates the potential of applying feature modeling
techniques to diverse problem domains that involve managing
variability, similar to the challenges faced in browser fingerprinting.

Feature Model Synthesis. Ryssel et al. [21] employed concept
analysis to generate feature models that incorporate or-groups and
xor-groups. Their work automatically extracts meaningful feature
relationships from existing configurations. Similarly, She et al. [25]
tackled the problem of automatic model synthesis from proposi-
tional constraints, proving its NP-hardness and proposing enhanced
formulas in both conjunctive normal form (CNF) and disjunctive
normal form (DNF). The application of evolutionary algorithms
to reverse engineer feature models has been explored by Lopez-
Herrejon et al. [15]. Their study provides valuable insights into the
potential for reconstructing feature models from existing systems.
Acher et al. [1] proposed a systematic procedure for extracting
feature models from product descriptions, enabling a more struc-
tured and efficient modeling process. In the domain of requirements
engineering, Weston et al. [33] introduced a comprehensive frame-
work to support software product line engineers in constructing
feature models based on natural language requirements. Their work
aims to bridge the gap between textual specifications and formal
feature representations. Additionally, She et al. [24] presented a
novel procedure that simplifies the reverse engineering process
of feature models. They introduced a ranking heuristic to identify
parent candidates and automated procedures for detecting manda-
tory features, feature groups, and implies/excludes relationships.
Czarnecki et al. [7] proposed an algorithm based on binary decision
diagrams for synthesizing feature models from logical formulae,
thus leveraging formal methods to automate the feature modeling
building process.

6 CONCLUSION
In this work, we introduced a novel approach for capturing the
variability and complexity of browser fingerprints through the ap-
plication of feature modeling and tree-based representations. By
employing this novel feature modeling approach, we have devel-
oped a structured methodology for comprehensively capturing the
nuances of browser fingerprints. This not only enhances our un-
derstanding of fingerprint variability but also paves the way for
developing more effective privacy-preserving solutions and anom-
aly detection techniques. We successfully created a feature model
with 34, 557 nodes from 22, 773 browser fingerprints generated from
the exhaustive exploration of 1, 519 switches and 596 flags in both
headless and GUI variants of 7 versions of Chrome.

https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md
https://peter.sh/feed/chromium-command-line-switches/

SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Maxime Huyghe, ClémentQuinton, and Walter Rudametkin

REFERENCES
[1] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles

Vanbeneden, Philippe Collet, and Philippe Lahire. 2012. On extracting fea-
ture models from product descriptions. Proceedings of the 6th International
Workshop on Variability Modeling of Software-Intensive Systems (2012). https:
//doi.org/10.1145/2110147.2110153

[2] Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe
Lahire, and Philippe Merle. 2012. Feature Model Differences. In Advanced Infor-
mation Systems Engineering, Jolita Ralyté, Xavier Franch, Sjaak Brinkkemper, and
Stanislaw Wrycza (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 629–645.
https://doi.org/10.1007/978-3-642-31095-9_41

[3] Peter Baumann, Stefan Katzenbeisser, Martin Stopczynski, and Erik Tews. 2016.
Disguised chromium browser: Robust browser, flash and canvas fingerprinting
protection. In Proceedings of the 2016 ACM onWorkshop on Privacy in the Electronic
Society. 37–46.

[4] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. 2012.
User Tracking on the Web via Cross-Browser Fingerprinting. In Information
Security Technology for Applications, Peeter Laud (Ed.). Springer, Springer Berlin
Heidelberg, Berlin, Heidelberg, 31–46. https://doi.org/10.1007/978-3-642-29615-
4_4

[5] Mikaela Cashman, Justin Firestone, Myra B. Cohen, Thammasak Thianniwet, and
Wei Niu. 2019. DNA as Features: Organic Software Product Lines. In Proceedings
of the 23rd International Systems and Software Product Line Conference - Volume A
(Paris, France) (SPLC ’19). Association for Computing Machinery, New York, NY,
USA, 108–118. https://doi.org/10.1145/3336294.3336298

[6] Shekhar Chalise, Hoang Dai Nguyen, and Phani Vadrevu. 2022. Your speaker
or my snooper? measuring the effectiveness of web audio browser fingerprints.
In Proceedings of the 22nd ACM Internet Measurement Conference (Nice, France)
(IMC ’22). Association for Computing Machinery, New York, NY, USA, 349–357.
https://doi.org/10.1145/3517745.3561435

[7] K. Czarnecki and Andrzej Wąsowski. 2007. Feature Diagrams and Logics: There
and Back Again. 11th International Software Product Line Conference (SPLC 2007)
(2007), 23–34. https://doi.org/10.1109/SPLC.2007.19

[8] Peter Eckersley. 2010. How unique is your web browser?. In Privacy Enhancing
Technologies: 10th International Symposium, PETS 2010, Berlin, Germany, July 21-23,
2010. Proceedings 10. Springer, 1–18. https://doi.org/10.1007/978-3-642-14527-8_1

[9] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA, 2016-10-24) (CCS
’16). Association for Computing Machinery, 1388–1401. https://doi.org/10.1145/
2976749.2978313

[10] David Fifield and Serge Egelman. 2015. Fingerprinting Web Users Through
Font Metrics. In Financial Cryptography and Data Security, Rainer Böhme and
Tatsuaki Okamoto (Eds.). Vol. 8975. Springer Berlin Heidelberg, 107–124. https:
//doi.org/10.1007/978-3-662-47854-7_7 Series Title: Lecture Notes in Computer
Science.

[11] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in
the crowd: an analysis of the effectiveness of browser fingerprinting at large
scale. In Proceedings of the 2018 world wide web conference. 309–318. https:
//doi.org/10.1145/3178876.3186097

[12] Tomer Laor, Naif Mehanna, Antonin Durey, Vitaly Dyadyuk, Pierre Laperdrix,
Clémentine Maurice, Yossi Oren, Romain Rouvoy, Walter Rudametkin, and Yuval
Yarom. 2022. DRAWN APART : A Device Identification Technique based on
Remote GPU Fingerprinting. In Proceedings 2022 Network and Distributed System
Security Symposium (San Diego, CA, USA, 2022). Internet Society. https://doi.
org/10.14722/ndss.2022.24093

[13] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020.
Browser fingerprinting: A survey. ACM Transactions on the Web (TWEB) 14,
2 (2020), 1–33. https://doi.org/10.1145/3386040

[14] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
Beast: Diverting modern web browsers to build unique browser fingerprints. In
37th IEEE Symposium on Security and Privacy (S&P 2016). San Jose, United States.
https://inria.hal.science/hal-01285470

[15] Roberto Erick Lopez-Herrejon, José A. Galindo, David Benavides, Sergio Segura,
and Alexander Egyed. 2012. Reverse Engineering Feature Models with Evolu-
tionary Algorithms: An Exploratory Study. In International Symposium on Search
Based Software Engineering. https://doi.org/10.1007/978-3-642-33119-0_13

[16] Andreas Metzger, Clément Quinton, Zoltán Ádám Mann, Luciano Baresi, and
Klaus Pohl. 2020. Feature Model-Guided Online Reinforcement Learning for
Self-Adaptive Services. In Service-Oriented Computing, Eleanna Kafeza, Boualem
Benatallah, Fabio Martinelli, Hakim Hacid, Athman Bouguettaya, and Hamid
Motahari (Eds.). Springer International Publishing, Cham, 269–286. https://doi.
org/10.1007/978-3-030-65310-1_20

[17] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. Proceedings of W2SP (2012). https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=3208feae829cba6bd319421fe1fea58962da8fd9

[18] Damir Nešić, Jacob Krüger, undefinedtefan Stănciulescu, and Thorsten Berger.
2019. Principles of feature modeling. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
Association for Computing Machinery, New York, NY, USA, 62–73. https:
//doi.org/10.1145/3338906.3338974

[19] Muath A. Obidat. 2021. Canvas Deceiver-A New Defense Mechanism Against
Canvas Fingerprinting. https://www.iiisci.org/journal/pdv/sci/pdfs/SA899XU20.
pdf

[20] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.
2020. Slimium: Debloating the Chromium Browser with Feature Subsetting. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event USA, 2020-10-30). ACM, 461–476. https://doi.org/10.1145/
3372297.3417866

[21] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. 2011. Extraction of feature
models from formal contexts. In Software Product Lines Conference. https://doi.
org/10.1145/2019136.2019141

[22] Takamichi Saito, Koki Yasuda, Takayuki Ishikawa, Rio Hosoi, Kazushi Takahashi,
Yongyan Chen, andMarcin Zalasiński. 2016. Estimating CPU Features by Browser
Fingerprinting. In 2016 10th International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS) (2016-07). 587–592. https:
//doi.org/10.1109/IMIS.2016.108

[23] Michael Schwarz, Florian Lackner, and Daniel Gruss. 2019. JavaScript Template
Attacks: Automatically Inferring Host Information for Targeted Exploits. In
Proceedings 2019 Network and Distributed System Security Symposium (San Diego,
CA, 2019). Internet Society. https://doi.org/10.14722/ndss.2019.23155

[24] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and K. Czarnecki.
2011. Reverse engineering feature models. 2011 33rd International Conference
on Software Engineering (ICSE) (2011), 461–470. https://doi.org/10.1145/1985793.
1985856

[25] Steven She, Uwe Ryssel, Nele Andersen, Andrzej Wąsowski, and Krzysztof Czar-
necki. 2014. Efficient synthesis of feature models. Information and Software
Technology 56, 9 (2014), 1122–1143. https://doi.org/10.1016/j.infsof.2014.01.012
Special Sections from “Asia-Pacific Software Engineering Conference (APSEC),
2012” and “ Software Product Line conference (SPLC), 2012”.

[26] Anatoly Shusterman, Zohar Avraham, Eliezer Croitoru, Yarden Haskal, Lachlan
Kang, Dvir Levi, Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom.
2021. Website Fingerprinting Through the Cache Occupancy Channel and its
Real World Practicality. IEEE Transactions on Dependable and Secure Computing
18, 5 (2021), 2042–2060. https://doi.org/10.1109/TDSC.2020.2988369

[27] Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, and
Jason Polakis. 2022. The dangers of human touch: fingerprinting browser ex-
tensions through user actions. In 31st USENIX Security Symposium (USENIX
Security 22). 717–733. https://www.usenix.org/conference/usenixsecurity22/
presentation/solomos

[28] Oleksii Starov and Nick Nikiforakis. 2017. XHOUND: Quantifying the Fingerprint-
ability of Browser Extensions. In 2017 IEEE Symposium on Security and Privacy
(SP) (2017-05). 941–956. https://doi.org/10.1109/SP.2017.18 ISSN: 2375-1207.

[29] Jacob Swanson, Myra B. Cohen, Matthew B. Dwyer, Brady J. Garvin, and
Justin Firestone. 2014. Beyond the rainbow: self-adaptive failure avoidance
in configurable systems. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE
2014). Association for Computing Machinery, New York, NY, USA, 377–388.
https://doi.org/10.1145/2635868.2635915

[30] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
{Fp-Scanner}: The Privacy Implications of Browser Fingerprint Inconsistencies.
In 27th USENIX Security Symposium (USENIX Security 18). 135–150.

[31] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
Fp-stalker: Tracking browser fingerprint evolutions. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 728–741. https://doi.org/10.1109/SP.2018.00008

[32] Antoine Vastel, Walter Rudametkin, and Romain Rouvoy. 2018. FP-TESTER:
Automated Testing of Browser Fingerprint Resilience. In IWPE 2018 - 4th Inter-
national Workshop on Privacy Engineering (London, United Kingdom, 2018-04)
(Proceedings of the 4th International Workshop on Privacy Engineering (IWPE’18)).
1–5. https://hal.inria.fr/hal-01717158

[33] Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. 2009. A framework for
constructing semantically composable feature models from natural language
requirements. In Software Product Lines Conference. https://dl.acm.org/doi/10.
5555/1753235.1753265

[34] Yi Xiang, Xiaowei Yang, Han Huang, Zhengxin Huang, and Miqing Li. 2022.
Sampling configurations from software product lines via probability-aware di-
versification and SAT solving. Automated Software Engineering 29, 2 (2022), 54.
https://doi.org/10.1007/s10515-022-00348-8

[35] Sebastian Zimmeck, Jie S Li, Hyungtae Kim, Steven M Bellovin, and Tony Jebara.
2017. A privacy analysis of cross-device tracking. In 26th USENIX Security Sym-
posium (USENIX Security 17). 1391–1408. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/zimmeck

https://doi.org/10.1145/2110147.2110153
https://doi.org/10.1145/2110147.2110153
https://doi.org/10.1007/978-3-642-31095-9_41
https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1145/3336294.3336298
https://doi.org/10.1145/3517745.3561435
https://doi.org/10.1109/SPLC.2007.19
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1007/978-3-662-47854-7_7
https://doi.org/10.1007/978-3-662-47854-7_7
https://doi.org/10.1145/3178876.3186097
https://doi.org/10.1145/3178876.3186097
https://doi.org/10.14722/ndss.2022.24093
https://doi.org/10.14722/ndss.2022.24093
https://doi.org/10.1145/3386040
https://inria.hal.science/hal-01285470
https://doi.org/10.1007/978-3-642-33119-0_13
https://doi.org/10.1007/978-3-030-65310-1_20
https://doi.org/10.1007/978-3-030-65310-1_20
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3208feae829cba6bd319421fe1fea58962da8fd9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3208feae829cba6bd319421fe1fea58962da8fd9
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1145/3338906.3338974
https://www.iiisci.org/journal/pdv/sci/pdfs/SA899XU20.pdf
https://www.iiisci.org/journal/pdv/sci/pdfs/SA899XU20.pdf
https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1145/2019136.2019141
https://doi.org/10.1145/2019136.2019141
https://doi.org/10.1109/IMIS.2016.108
https://doi.org/10.1109/IMIS.2016.108
https://doi.org/10.14722/ndss.2019.23155
https://doi.org/10.1145/1985793.1985856
https://doi.org/10.1145/1985793.1985856
https://doi.org/10.1016/j.infsof.2014.01.012
https://doi.org/10.1109/TDSC.2020.2988369
https://www.usenix.org/conference/usenixsecurity22/presentation/solomos
https://www.usenix.org/conference/usenixsecurity22/presentation/solomos
https://doi.org/10.1109/SP.2017.18
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.1109/SP.2018.00008
https://hal.inria.fr/hal-01717158
https://dl.acm.org/doi/10.5555/1753235.1753265
https://dl.acm.org/doi/10.5555/1753235.1753265
https://doi.org/10.1007/s10515-022-00348-8
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zimmeck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zimmeck

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Browser Fingerprinting
	2.2 Motivating Examples

	3 Capturing Fingerprint Variability
	3.1 Building Feature Trees
	3.2 Merging Trees
	3.3 Refining the Feature Model

	4 Practical Applications
	4.1 Sampling Fingerprints
	4.2 Fingerprint Evolution
	4.3 Configuration Identification

	5 Related Work
	6 Conclusion
	References

