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Abstract

Unit testing is essential in software development to ensure code functionality and prevent the introduction
of bugs. However, challenges such as time constraints and insufficient resource allocation often impede
comprehensive testing efforts, leaving software systems vulnerable to regression. To address this issue,
we introduce Modest, a language-agnostic approach to unit test generation that uses metamodels and
execution traces. This method ensures non-regression by replaying scenarios captured from real-world
executions. We demonstrate the application of Modest to Pharo codebases by generating unit tests for
two projects.
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1. Introduction

Unit testing is an essential part of software development, serving as a critical mechanism for
verifying code functionality and mitigating the risk of introducing bugs. Despite its importance,
time constraints and inadequate resource allocation often prevent the widespread adoption of
unit testing practices. This can result in codebases that lack proper testing, leaving software
systems vulnerable to bugs, issues, and regressions [1, 2].

While existing approaches [3, 4, 5] showed promising results in test generation, they have
some limitations, such as being specific to a particular programming language or testing
framework. To address this issue, we propose Modest, a language-agnostic approach to test
generation. This approach involves the use of metamodels to facilitate the representation
and generation of unit tests. The use of metamodels provides a solution that is independent
of the programming language and testing framework. It enables automated transformation
and code generation. Specifically, we use three metamodels: the unit test metamodel, which
represents unit test elements; the code metamodel, which represents the codebase; and the
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value metamodel, which specifies the values used to test the codebase. Our approach is not
intended to replace test-driven development or classic development practices where tests are
written during the development phase. Our approach aims to generate unit tests on legacy
software systems where tests are partially or completely missing. The generated tests help
manage regression and identify new software bugs in existing areas of a system after changes
have been made.

Furthermore, we aim to generate maintainable test code that is easy for humans to understand.
Human-readable and maintainable tests make it easier for developers to understand how the
code works and to make changes to the codebase with confidence [6]. In addition, human-
readable tests can be helpful when onboarding new developers to a project, or when maintaining
code written by others. Ultimately, maintainable tests can reduce the amount of time spent
debugging and fixing issues in the codebase.

To generate realistic tests, we use application traces consisting of method arguments and
return values to leverage values from real business scenarios. Traces refer to the sequential
recording of actions or operations in a system during its execution. This information is critical
because it provides an accurate representation of how the software behaves at runtime.

In our previous work [7], we introduced two metamodels: the Value metamodel for rep-
resenting runtime values, and the Unit Test metamodel. Our approach is based on Moose, a
platform for software and data analysis1. This infrastructure allows us to extract knowledge
from software systems and to apply our approach across programming languages.

In this paper, we present our five-step approach in Section 2. In Section 3 we explain the
implementation of some steps in the case of test generation in Pharo. Section 4 presents some
results on concrete Pharo applications. We discuss related works in Section 5 In Section 6,
conclusions are drawn and perspectives are proposed.

2. Modest: a Unit test Generation Approach

Modest uses method execution traces to generate unit tests. This approach assumes that the
current version of the software system for which tests are being generated is correct, allowing
execution traces to be used as an oracle. The process relies on five steps to generate unit tests,
as shown in Figure 1.

2.1. Prerequisites

There are two independent requirements that must be met before the test generation process
can begin.
Step 1: Obtain a model of the application. Using the capabilities of the Moose platform,

we create a comprehensive model of the application for which tests are to be generated. This
model captures the structural aspects of the application, such as its classes and methods, and
their relationships.

Step 2: Produce traces of the application. Data about the execution of the current version
of the software system is recorded as a trace. Each trace corresponds to a specific method

1https://moosetechnology.org/
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Figure 1: The 5 steps of the Modest approach. Entities representing the code to be tested are shown in

green (left column), entities representing runtime information are shown in orange (middle column),

and entities representing the generated tests are shown in blue (right column).

execution and must contain the following information: method identity, arguments, return
value, and the receiver object. The method identity is a way to know exactly which method was
executed. This is critical because multiple methods in the system can have the same signature
due to polymorphism. This identity consists of the fully qualified class name and the method
signature, including parameter types in the case of statically typed languages.

For a given project, any method that has no side effects and returns a value is a candidate for
instrumentation. Side effects include use of the file system, graphical interfaces, network, global
states, and randomness. Each execution of an instrumented method can result in a generated
test. Thus, for a given executable comment or existing test, multiple tests can be generated that
differ in the value of the arguments and the return value.

2.2. Test Generation Process

Once the prerequisites are met, the following steps are performed iteratively for each test
generation cycle.
Step 3: Import and parse trace data. Traces are imported into Modest and reified to

conform to a specific format. This ensures that the imported traces are represented consistently,
regardless of the original storage format. The serialized data contained in each trace is parsed
to extract relevant information. This parsed data is then reified using our Value metamodel,
transforming it into a standard format for further processing. The Value metamodel bridges
static code elements, such as method parameters, with dynamic runtime values, such as method
arguments.
Step 4: Build a unit test model. The Unit Test metamodel presented in [7] is agnostic to

the language and the testing framework used. It is built around the Arrange Act Assert (AAA)
pattern, a widely used approach to structuring unit tests. We use the trace of a particular method
execution to determine the test class and method, as well as the arrange, act, and assert phases
of a unit test. The executed method determines the test method, while its class determines the
test class. The method arguments determine the arrange and act phases of the test, where they
are set up, used, and torn down. Finally, the result obtained from the trace determines the assert
phase. We use the result as a test oracle, and the actual return value obtained in the act phase is

3
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compared to the expected value from the trace.
Step 5: Export the unit test model into concrete tests. The unit test model is translated

into executable test code specific to the target language and the specific testing framework.
This translation involves converting the model into Abstract Syntax Tree (AST) nodes. Finally,
the AST nodes are used to generate the actual unit tests.

3. Adapting the Modest Approach to Pharo

In this section, we outline our methodology for generating unit tests for Pharo software sys-
tems. The Moose platform is used for application modeling, and a Pharo implementation
of OpenTelemetry is used to produce execution traces. Consequently, details are given for
language-dependent steps, i.e. steps 2, 3, and 5.

Step 2: Produce traces of the application. We use a Pharo implementation2 of Open-
Telemetry to generate execution traces of the application. OpenTelemetry3 is an open-source
observability framework and standard designed to generate, collect, and export telemetry data
such as traces. It provides tools and APIs for instrumenting applications to monitor and analyze
their behavior. Our implementation uses MetaLinks [8, 9], which allows the execution of instru-
mentation code before and after the method on which it is installed. We use this mechanism
to record the method identity, arguments, return value, and the receiver. The instrumentation
does not propagate to outgoing calls, only the targeted methods are traced.

This preliminary step is only concerned with generating trace data. These traces will be
fed into Modest in the following step, which will take place at a later date and possibly in a
different Pharo image. Thus, the recorded data must be serialized for storage. In addition, we
require that the serialized objects contain enough information to be correctly represented by
the value metamodel, such as their runtime type.

The STON library4 encodes the runtime type data we need, but it is not able to serialize all
types of objects. In addition, STON allows developers to define a custom serialization format for
their class. While this customization is useful, it makes the object encoding opaque to external
tools such as Modest. Consequently, we developed a custom library inspired by Jackson5,
called PharoJackson6, with the goal of being able to serialize any object to JSON in a consistent
way. Similar to STON and Jackson, our library includes metadata to express the object type and
handles circular references.

Step 3: Import and parse trace data. When the execution traces are imported into Modest,
the data they contain is parsed to extract the relevant information. First, the method identity is
used to determine the origin of the trace, corresponding to the method to be tested. For Pharo,
this consists of the method selector and the name of the defining class.

Then, the serialized data containing the method arguments, return value, and receiver is
deserialized from JSON to basic data structures: dictionaries, arrays, strings, numbers, booleans,

2https://github.com/Gabriel-Darbord/opentelemetry-pharo
3https://opentelemetry.io/
4https://github.com/svenvc/ston
5https://github.com/FasterXML/jackson
6https://github.com/Modest-Project/PharoJackson
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and null values. Except for dictionaries, all these basic data structures represent instances of
their corresponding class in Pharo. For example, a JSON array corresponds to an instance of a
Pharo Array.

Listing 1: User and Session objects serialized with PharoJackson
1 {
2 "@type": "User",
3 "@id": 1,
4 "name": "John Doe",
5 "session": {
6 "@type": "Session",
7 "@id": 2,
8 "active": true,
9 "user": { "@ref": 1 }

10 }
11 }

Dictionaries are a special case because they are used to represent objects. Their key-value
pairs correspond to attribute names and values (e.g. in Listing 1, the name attribute on line 4). In
addition, metadata is added by PharoJackson: the @type value indicates the class of the object
(e.g. line 2 indicates it is an instance of the User class), and the @id value is an identifier for
handling circular dependencies (e.g. line 3). If the same object is referenced more than once, it
is subsequently represented by a dictionary with a @ref value indicating the identifier of the
corresponding object (e.g. line 9).

Thus, deserializing the trace data returns a graph of basic data structures. The importer of
the Value metamodel is designed to interpret this specific format. It traverses the graph and
instantiates the corresponding Value entities into a model.

Step 5: Export the unit test model into concrete tests. The unit test model is translated
into executable test code specific to the Pharo language and the SUnit testing framework. Each
element of the model is systematically visited.

Test classes are created using Pharo’s built-in class creation API. For clarity and separation
from existing tests, newly created test classes are named by appending ModestTest to the
name of the tested class, e.g. in Listing 2. As part of the class creation process, each test class
is then assigned to an appropriate package. Following Pharo’s naming conventions, the test
package is named after the package of the tested class, with the suffix -Tests added. If the
specified test package does not exist, it will be created automatically.

Listing 2: Definition of the generated test class for the DataFrame class, from the package of
the same name.

TestCase <<#DataFrameModestTest
slots: {};
package: ’DataFrame-Tests’

After visiting a test class within the unit test model, the process moves on to exporting its
test methods along with their associated arrange, act, and assert entities. These three entities
are linked to value entities, which are visited by a specialized visitor responsible for generating

5
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the AST to recreate the values as code, e.g. in Listing 3. Both visitors work together to generate
the AST of the test method, which is then materialized and installed in the test class.

Listing 3: Generated code recreating the object from Listing 1.
1 (user := User new)
2 name: ’John Doe’;
3 session: (Session new
4 active: true;
5 user: user;
6 yourself);
7 yourself

4. Modest in Action on Pharo Projects

In this section we evaluate our approach on real Pharo projects. First, relevant projects were
selected. Then they were instrumented to generate traces. Finally, we present the generated
test cases and the benefits of our approach.

4.1. Selection of Projects

As explained earlier, our approach is based on execution traces. There are several ways to get
them in Pharo, such as manually executing the software to be tested. However, this can be
difficult if we are not a user or developer of the software system; it requires expert knowledge.
Therefore, alternative ways to generate execution traces are needed. As it happens, there are
other ways to run valid execution scenarios: tests and examples, such as executable comments
or class-side examples using the <example> pragma. Such examples are very common in kernel
packages and graphical projects. However, since our approach uses metalinks to generate the
trace, it is not possible to select projects from the kernel that are used by the instrumentation
itself, such as the Boolean or Collection packages, as this would break the image. Also, as
explained in Section 2, our approach does not currently deal with graphical applications, as
it requires that the tested method returns a value. Side effects and randomness are also not
handled yet, which limits the choice of projects.

Two projects were selected: DataFrame7 and LabelContractor8. DataFrame is a tabular data
structure for data analysis in Pharo. It organizes and represents data in a tabular format, similar
to a spreadsheet or database table. It also provides several algorithms for data manipulation.
For our evaluation we only considered the DataFrame class. The LabelContractor project is
used to reduce the size of labels for graphical interfaces using different strategies. It currently
provides 13 different contraction strategies and two ways to combine them. For our evaluation,
we considered the project’s main class, a tokenizer class, a helper class, and seven strategies.
We report information about the selected classes in Table 1.

In the case of Dataframe, traces result from running existing tests. In the case of Label-
Contractor, traces result from running existing tests and executable comments. In both cases,
7https://github.com/PolyMathOrg/DataFrame
8https://github.com/moosetechnology/LabelContractor
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Project

Tested

Classes
Methods

Existing

Tests

Executable

Comments

Covered

Methods

Mutation

Coverage (%)

DataFrame 1 187 275 0 144 59

LabelContractor 10 64 31 18 44 56

Table 1

Selected Pharo projects and the number of evaluated classes. The table shows the number of methods,

existing tests, and executable comments for the selected classes. It also shows the number of methods

covered by tests and comments, representing the methods for which tests were generated. The mutation

coverage achieved by the existing tests is shown as a percentage.

our approach generates tests from these traces. Since tests already exist for these projects, it is
possible to compare them with our generated tests in terms of mutation coverage. To obtain
these measurements, we used the MuTalk9 library.

4.2. Results

We generated tests for the previously introduced projects and classes. To reduce the number of
generated tests, we recorded only the first execution of each instrumented method. An example
of an existing test is shown in Listing 4, and the trace that was generated from its execution is
shown in Listing 5.

We now evaluate how the mutation coverage of the existing tests compare to our generated
tests. We also look at how the coverage evolves when both existing and generated tests are
considered. Our results are reported in Table 2.

Listing 4: Existing test from the tokenizer class of the LabelContractor project.
1 testTokenize
2

3 self
4 assert: (LbCTokenizer new tokenize: ’CK123J’)
5 equals: #( ’C’ ’K123’ ’J’ ) asOrderedCollection

Listing 5: Test generated from the execution trace of Listing 4.
1 testTokenize
2

3 | expected aString lbCTokenizer actual |
4 expected := OrderedCollection withAll: { ’C’. ’K123’. ’J’ }.
5 aString := ’CK123J’.
6 lbCTokenizer := LbCTokenizer new.
7 actual := lbCTokenizer tokenize: aString.
8 self assert: actual equals: expected

The reason for failed tests is that there are still some objects that are not serializable by our
library, such as closures. The DataFrame project has a higher number of failed tests compared to

9https://github.com/pharo-contributions/mutalk
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Project

Generated

Tests
Passes Fails

Mutation

Coverage (%)

DataFrame 144 114 30 43 (64)

LabelContractor 44 42 2 43 (59)

Table 2

Generated tests for selected Pharo projects and their results. The table shows the number of generated

tests, the number of tests that passed and failed, and the mutation coverage achieved by these tests.

The mutation coverage in brackets indicates the coverage when both existing and generated tests are

evaluated together. All coverage values are in percent.

LabelContractor. This difference can be attributed to the greater complexity of the DataFrame
project, which contains more currently unserializable objects.

For DataFrame, the mutation coverage achieved by the generated tests is lower than that of
the existing tests (43% compared to 59%). However, when both existing and generated tests are
combined, the mutation coverage improves to 64%. For LabelContractor, the mutation coverage
achieved by the generated tests is 43%, lower than the existing test coverage of 56%. When
combined, the mutation coverage also improves slightly to 59%.

These results indicate that combining generated and existing tests leads to higher mutation
coverage for both projects. The increase can be attributed to the use of a recursive comparison
between the actual and expected results in the generated tests. This exhaustive comparison
helps to identify and kill more mutants than a standard equality check.

A threat to the validity of the generated tests is their reliance on execution traces. These
traces are derived from specific scenarios, and the coverage and effectiveness of the generated
tests are inherently tied to the completeness of those scenarios. If the execution traces do not
cover relevant code paths or edge cases, the generated tests will also lack coverage in these
areas.

5. Related Works

EvoSuite [3] is characterized by its ability to generate JUnit test cases using evolutionary al-
gorithms, with a specific focus on Java. One of its strengths is achieving high levels of code
coverage, including branch and line coverage. However, its generated unit tests often have
a distinct style that differs from human-written tests, which can affect their readability [10].
SmallEvoTest [11] generates unit tests for dynamically typed programming languages, specif-
ically Pharo and GToolkit, by using a type-profiling mechanism and a genetic algorithm to
evolve the unit tests. In contrast to these language-specific, evolutionary algorithm-driven
approaches, our approach aims to be language-agnostic and uses execution traces to generate
tests. We also focus on generating code that is more comprehensive for humans.

Several research studies have explored the use of execution traces for software testing,
recognizing the valuable insight they provide into the behavior of a program at runtime. One
web testing approach generates test cases from user execution traces [12]. To improve the
test suite, mutation operators were applied to these test cases, simulating potential real-world
failures. Tests that yielded different results were kept because they revealed additional behavior

8
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in the web application being tested. Techniques such as Daikon’s invariant inference, which
identifies likely invariants from execution traces, demonstrate the effectiveness of trace-based
testing [13]. In the future, we could use similar methods to identify interesting test scenarios
from traces.

In recent years, test generation tools using deep learning have attracted considerable interest.
Among these tools, AthenaTest [4] stands out for its ability to generate unit test cases for Java
programs by learning from actual methods and developer-written tests. Developer surveys
indicate that AthenaTest outperforms other tools such as EvoSuite in both test coverage and
readability. Building on AthenaTest, A3Test [5] introduces improvements by integrating asser-
tion knowledge and ensuring consistency in naming and test signatures, resulting in improved
correctness and method coverage. CodeT [14] presents a method that uses pre-trained language
models to automatically generate test cases to evaluate the quality and correctness of code
solutions. Despite these advances, deep learning-based tools still face notable challenges because
they require extensive training data and significant computational resources.

6. Conclusion

In this paper, we introduced Modest, a language-agnostic approach to test generation that
uses metamodels to generate unit tests. This approach ensures non-regression by replaying
scenarios captured by execution traces. Finally, we showed how Modest can be applied to
Pharo by generating unit tests for two projects.

Looking ahead, several avenues for further development of Modest are possible. These
include experimenting with trace selection and mutation [12], mining for invariants [13],
optimizing the generated test suite through coverage modeling, and pruning recreated objects
to focus on relevant data. In addition, we plan to evaluate our approach on a larger scale to
better understand its effectiveness and applicability. A key aspect of future work will be the
criteria for selecting relevant scenarios or traces, which are currently determined by the user.
By addressing these areas, we aim to further refine Modest and increase its utility in managing
regression in software systems.
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