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José Antonio

Pereiro-Morejón,

Jorge Fernandez-

de-Cossio-Diaz,

Roberto Mulet

mulet@fisica.uh.cu

Highlights
Inference of metabolic

fluxes from a minimal set

of measurements

Application to Escherichia

coli experimental data

A dynamical model of the

chemostat explains the

performance of the

method

Pereiro-Morejón et al.,
iScience 25, 105450
December 22, 2022 ª 2022
The Authors.

https://doi.org/10.1016/

j.isci.2022.105450

mailto:mulet@fisica.uh.cu
https://doi.org/10.1016/j.isci.2022.105450
https://doi.org/10.1016/j.isci.2022.105450
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105450&domain=pdf


ll
OPEN ACCESS
iScience
Article
Inference of metabolic fluxes in nutrient-limited
continuous cultures: A Maximum Entropy
approach with the minimum information

José Antonio Pereiro-Morejón,1,2 Jorge Fernandez-de-Cossio-Diaz,3 and Roberto Mulet1,4,*
1Group of Complex Systems
and Statistical Physics,
Physics Faculty, University of
Havana, San Lazaro y L,
Vedado, La Habana 10400,
Cuba

2Biology Faculty, University of
Havana, San Lazaro y L,
Vedado, La Habana 10400,
Cuba

3Laboratory of Physics of the
Ecole Normale Superieure,
CNRS UMR 8023, PSL
Research, 24 rue Lhomond,
75005 Paris, Ile de France,
France

4Department of Theoretical
Physics, University of Havana,
San Lazaro y L, Vedado, La
Habana 10400, Cuba

*Correspondence:
mulet@fisica.uh.cu

https://doi.org/10.1016/j.isci.
2022.105450
SUMMARY

The study of cellular metabolism is limited by the amount of experimental data
available. Formulations able to extract relevant predictions from accessible mea-
surements are needed. Maximum Entropy (ME) inference has been successfully
applied to genome-scale models of cellular metabolism, and recent data-driven
studies have suggested that in chemostat cultures of Escherichia coli (E. coli),
the growth rate and uptake rates of limiting nutrients are the most informative
observables. We propose the thesis that this can be explained by the chemostat
dynamics, which typically drives nutrient-limited cultures toward observable
metabolic states maximally restricted in the dimensions of those fluxes. A prac-
tical consequence is that relevant flux observables can nowbe replaced by culture
parameters usually controlled. We test our model by using simulations, and then
we apply it to E. coli experimental data wherewe evaluate the quality of the infer-
ence, comparing it to alternative formulations that rest on convex optimization.

INTRODUCTION

The study of cellular metabolism is a research field with a direct impact on the biotechnological industry.

Indeed, cell culture-derived products are a major part of a multi-billion market.1 These products are ob-

tained by exploiting the capabilities of cellular metabolism to produce molecules with a wide range of

chemical complexity. Cells are cultured in three common modes: batch, fed-batch, and continuous.2 In

batch, the culture starts with a medium rich in nutrients that are consumed by the cells, often until starva-

tion. Similarly, fed-batch cultures start with a nutrient pool, which is resupplied in discrete time intervals,

maintaining the cells alive for longer periods of time. On the other hand, in continuousmode, freshmedium

constantly replaces culture fluid at a given rate.3

The chemostat is a prototypical continuous cultivation device developed in the 50s.4,5 Chemostats are

often operated at constant volume and in the steady state, which is reached when macroscopic variables

of the culture stay constant in time (basically cell and extracellular metabolite concentrations). It is also

common to specify which medium component is limiting cell growth. Although the advantages of contin-

uous cell culture have been widely discussed in the literature6,7,8,9,10 the use of these techniques over batch

or fed-batch is hampered by the complexity of continuous systems, i.e. culture heterogeneity, hysteresis,

multi-stability or sharp transitions betweenmetabolic states11,12,13,14,15,16,.17 This complexity negatively im-

pacts the yield of bio-processes. In particular, culture heterogeneity is estimated to generate losses of

more than 30% in industrial-scale fermentation.18

Culture performance is an emergent property derived from the individual metabolic state of each cell,19

but also the result of interactions between cells. It is fundamental to connect metabolic states at the indi-

vidual cell level, to macroscopic properties at the culture level. This connection can guide efforts to under-

stand cellular metabolism in a continuous regime and suggest strategies to improve production

efficiency.20

In this task, the community has been assisted by an increasing number of accurate experimental techniques

that generate large amounts of data. In particular, information about cellular metabolism, at the level of

individual reactions, has led to the development of genome-scale metabolic networks (GEMs)21,22,.23

Although at present a full characterization of cellular metabolism is not feasible, Constraint-Based
iScience 25, 105450, December 22, 2022 ª 2022 The Authors.
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Modeling (CBM) approaches help to integrate a variety of data types (e.g. stoichiometric, thermodynamic,

dynamic, genetic, and so forth) that restrict as much as possible the space of feasible phenotypes that the

metabolic network can display.

Constraint-based methods such as Flux Balance Analysis (FBA) have been extensively used to predict a

wide range of metabolic observables (e.g. culture growth rate, ATP production, and so forth), especially

for bacterial batch cultures in the exponential growth phase.24,25,26,27 FBA can also be exploited in

combination with experimental data if the latter provides only partial knowledge about the macro-

scopic properties of the culture. For example, if the growth rate or metabolic fluxes are known from

experimental data, this information can be introduced in the FBA framework to refine predictions about

other fluxes in the network.28 However, as we will discuss in more detail later in discussion, typical FBA

formulations can hardly provide any insights about important culture properties such as cellular

heterogeneity.

A more general methodology makes use of the Maximum Entropy (ME) Principle.29 The ME principle has

been used, with mixed results, in several fields including Biology30,31,.32 In the context of metabolic

modeling it has been fruitfully combined with constraint-based models.33,34,35,36 In short, these methods

formulate a probabilistic description of the metabolic state of cells by parameterizing an ME distribution

that matches a subset of the available culture observables and maximizes the (statistical) entropy.29 The

distribution performance is then tested against the rest of the available experimental data or used to

make further analysis. This way it has been shown that ME distributions provide a better fit to measured

flux observables than plain FBAmodels.33 Also, ME-derived growth rate distributions have been compared

to experiments with good results, using single-cell data at different sub-inhibitory antibiotic concentra-

tions.33 In ref. 37 the authors used ME to exploit all available experimental data and learn the most prob-

able distribution that describes the feasible flux solution space. In turn, the ME distribution can be used to

explore the relationship between fitness and heterogeneity of bacteria batch cultures. Moreover, the ME

principle is ubiquituous in other fields as well, including physics,38 ecology39,40, neuroscience,41 among

others. See31 for a critical review.

To avoid any confusion with other usages of the term in the literature of metabolic networks, it is important

to remark here that we use Entropy purely in the information-theoreetic,42 statistical, sense, and make no

statement about ‘‘thermodynamic entropy’’ or ‘‘entropy production’’ in metabolic reaction networks, which

has been studied by other authors.43 Although deeper connections may be drawn between these con-

cepts29,38, this is out of scope in the present work.

Most of these methods rely on direct measurements of many external metabolic fluxes in the cell popula-

tion which is a costly practice. Therefore, an important question that we address in this work, is: What is the

minimum number of external observables that we need to know to provide a proper description of the sys-

tem? In order to tackle this, we begin by carefully re-examining formulations of ME in the context of a che-

mostat culture. We introduce two metabolic spaces, describing the states of individual cells, and of the

population, respectively. Building on previous models coupling cell metabolism with the dynamics of

extracellular observables,17,36 similar also in spirit to the code recently developed in the general context

of bacteria communities.44 We advance the thesis that the chemostat dynamics drives the culture observ-

ables toward states maximally constrained in least two dimensions: the observable growth rate and the

limiting nutrient uptake. We show that this implies that other uptake observables are essentially redundant

and the limiting nutrient uptake can be replaced by information about the cell density and the media

composition. By using a minimal set of readily available quantities, our approach greatly extends the

possible applications of ME metabolic modeling for continuous cultures. In addition, we show that this

mechanism is consistent with the results obtained through data-oriented techniques45 suggesting that

the most informative parameters of an ME distribution are related to the observable cell growth and

limiting nutrient uptake rates. Finally, we explore the effects of culture heterogeneity in the flux inference

process and highlight some possible sources of bias in common ME formulations.

In short, we support the idea that with the knowledge of only external parameters (using a minimum set of

experimental data): the chemostat dilution rate, cellular concentration, and the concentration of the

limiting metabolite in the feed medium; we can obtain a description of the metabolism of a continuous cul-

ture at a steady state equivalent to those which use direct uptake experimental measurements.
2 iScience 25, 105450, December 22, 2022
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The rest of thework is organized as follows. In the next section, we introduce themain concepts of constraint

modeling techniques for metabolism and how they can be applied to continuous cultures with limiting nu-

trients. Then, we introduce Flux Balance Analysis and the Maximum Entropy Principle and explain how they

canbeused to infer themetabolic fluxes usingexperimental data from this kindof cultures. Later, wepresent

the results of our work. We first make an analysis of the consequences of imposing different constraints in

FBA andME. Then, we exploit the MEmethod to infer the metabolic state of a simulated chemostat culture

using a simple model of cellular metabolism. We also show the application of our ME formulation on a

genome-scale network, inferring a set of literature-available experimental flux observables from glucose-

limited E. coli chemostat cultures. For completeness, we compare and discuss the results obtained with

our methodology (ME) with the solutions obtained through different FBA approximations and previous

ME formulations. Finally, we additionally compare our ME formulation with a previous one to evaluate

the impact of specific assumptions over the inferred distribution.

CONSTRAINT-BASED METABOLIC MODELS

The formulation of models able to describe, from first principles, the evolution, and properties of biological

networks (such as GEM s) is in general an open problem. Among the limitations are the complexity of in-

teractions between its many components, the large number of parameters (usually prohibitively large)

required to formulate a complete description of the system, and the fact that they are subject to evolution.

The latter means that the models need to be continuously updated.23 Therefore, it is common to study the

metabolism considering only the known effect of constraints over the possible physiological states of the

system. These constraints can be physicochemical, spatial, topological, environmental, or regulatory in na-

ture. This approach, called Constraint-Based Modeling ðCBMÞ, leads to the formulation of solution spaces

rather than the computation of a single solution.23

Metabolic networks and constraint-based modeling

A metabolic network is built by connecting metabolites as described by the stoichiometry of the reactions

in the cell. If the network includes a significant portion of the known chemical reactions comprehended in

the organism genome, it is called a Genome-Scale Metabolic Network. It constitutes the basis to formulate

a constraint-based model of cellular metabolism46 where the rate of change of the concentration of any

metabolite depends on the combined effect of all reactions that involve it.

For a network with N reactions and M metabolites, a balance equation can be written as:

dmi

dt
=

XN
j

Sij vj (Equation 1)

where 1% i%M, 1% j%N,mi is the concentration of metabolite i, vj is the flux value assigned to reaction j,

and S˛RM3N is the stoichiometric matrix where Sij is the stoichiometric coefficient of metabolite i in reac-

tion j. The common convention is that Sij = 0 means that the metabolite does not participate in the reac-

tion, Sij < 0 that the metabolite participates as a reactant, and Sij > 0 that it participates as a product. The

information required to model the time dependency of vj is not commonly available. Therefore, it is usual

to introduce a quasi-steady state assumption for intracellular metabolites,23 that separates the time scales

in the system and allows writing Equation 1 as:

0 =
XN
j

Sijvj (Equation 2)

A particular flux configuration is specified by the vector v ˛RN of all flux values vj included in the network. In

practice, besides the biochemical reactions (e.g. catalyzed by enzymes), this vector may contain additional

reactions (often artificial) that are included according to a variety of modeling reasons. An example are ex-

change reactions ðu ˛RMÞ, which model the transport of metabolites between the system and its environ-

ment. Another important component of v is the biomass reaction ðz ˛RÞ, which represents the synthesis of

new biomass (and secondary products) from a set of precursors. The exchanges and the biomass reaction,

represent the boundary of the system. The rest are considered to be internal reactions ðr ˛RN�M� 1Þ, in
short vhðu; r; zÞ.

Equation 2 constitutes the first set of constraints that restricts the flux configurations of the network. They

form a linear system of equations. Any solution is a vector v that satisfies the balance of mass for each
iScience 25, 105450, December 22, 2022 3



Figure 1. Schema of a chemostat

Fluxes of matter are indicated by an arrow. The most important chemostat parameters are listed: dilution rate D, cell

concentration X , exchange of a metabolite between the cells and themedium ui , and the concentration of a metabolite in

the feed medium ci and in the culture vessel si . Adapted from.17
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metabolite. However, a typical network has more reactions than metabolites ðM <NÞ, which leads to fewer

constraints than variables (fluxes).23 The system is then under-determined. An infinite set of vectors v sat-

isfies the system of equations.

These constraints lead to unbounded solution space. Therefore, it is common to add a set of inequalities to

impose bounds on v, such as:

lbr % r%ubr

lbu %u% ubu

0% z%ubz

(Equation 3)

where lbr and ubr are the lower and upper bounds of the internal reactions, which typically contain infor-

mation about thermodynamic irreversibility and catalytic capacity. On the other hand, lbu and ubu are the

bounds of the exchange reactions controlling the metabolites that the network can consume or produce,

and are linked to properties of the cell membrane (e.g. the presence of transporters, ion channels, and so

forth). Finally, the biomass reaction can be upper bounded by ubz , if necessary.

In general, any new information about the culture is integrated by adding balance-like equations (e.g.

Equation 2) or changing the bounds of the reaction fluxes (e.g. Equation 3).47 For example, we can define

a new constraint that accounts for physical and spatial restrictions resulting from the limited resources

accessible to the cell (e.g. cell volume, membrane area, enzyme solubility, proteome, and so

forth)48,49,50,51,.52 It can be formulated as:

XN
j

�
a+
j r

+
j + a�j r

�
j

�
%1 (Equation 4)

where each internal reaction rj in the network is split into its forward and backward components such that

rj = r +j � r�j and r +j ; r�j R 0 where a+
j ; a�j R 0 are normalized cost coefficients associated with each compo-

nent of the reaction j respectively. From the mathematical point of view, it is important to note that these

constraints define a convex and bounded space of feasible flux configurations.53
Constraint-based modeling of the chemostat

In ref. 17,36 we developed a constraint-based model of genome-scale metabolic networks coupled to the

dynamical equations governing a chemostat. Here we go a step further, linking culture observables with

the constraints that affect the metabolic spaces at the steady state. In a chemostat, a cell culture is main-

tained in a continuous regime where the fresh medium is pumped into the culture vessel at the same rate

that it is extracted, such that the working volume remains constant.54 In Figure 1 we present a schematic

picture of the chemostat. The dynamics of cell and metabolite concentrations in the vessel, X
4 iScience 25, 105450, December 22, 2022
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ðgCDW 3l� 1Þ (CDW : cellular dry weight) and si ðmMÞ, for a classic well-mixed chemostat with a single spe-

cies, can be expressed as17:

dX

dt
= ðm � DÞX (Equation 5)
dsi
dt

= � uiX + ðci � siÞD (Equation 6)

where Dðh� 1Þ is the dilution rate, m ðh� 1Þ is the observable culture growth rate, ci ðmMÞ and ui
ðmmol3g� 1

CDW 3h� 1Þ are the concentration in the fresh medium and the observable exchange rate of

metabolite i, respectively. Here and in what follows, we will use an overbar (as in ui) to distinguish the

average value of flux across all the cells in the culture, from its value in single cells ðuiÞ. Equation 5 says

that the rate of change of X is determined by the culture growth rate and its elimination due to medium

exchange. Similarly, Equation 6 reflects that the rate of change of any metabolite concentration in the

vessel is a balance between its average exchange with the cells (a positive ui means uptake) and how

much of it is being pumped in and out of the vessel.

The culture growth rate (usually the relevant observable) m, can be modeled to include any metabolic pro-

cess that impacts the average growth rate of the culture (e.g. toxicity, cellular death rate, and so forth). In

this work, we only consider the biomass production rate z ðh� 1Þ, so:

m = z

where, as mentioned before, z is just a component of the flux vector v and z is its average value on the cell

population. It models the flux requirement for cellular division.

The contribution of the negative terms in Equations 5 and 6 (right-hand side) enables the possibility of a

steady state regime. One of the main applications of the chemostat is that cultivation can be sustained

for a long time in a pseudo-constant environment. This fact is exploited to decouple cellular physiology

from extracellular dynamical processes. This is a major difference with batch cultures, where cells are in

a constantly changing environment.56 Therefore, for a chemostat in the steady state, two new constraints

can be derived from Equations 5 and 6:

ui % ciD =X (Equation 7)
z = m = D (Equation 8)

The first Equation 7 simply states that si R 0 in a steady state.17

With this, the full stack of equations needed to define the constraint-based model for a chemostat, in a

steady state, is complete. The set of Equations 2-4 reflect the metabolic constraints within each cell, and

Equations 7 and 8 constraint the average values of the fluxes in the culture.
Metabolic flux spaces

In the previous sub-sections, we presented two types of constraints. Depending on the source of the in-

formation encoded, they can restrict the flux configurations at a single-cell level or at a culture level. For

instance, if a metabolic reaction is considered to be thermodynamically irreversible, a constraint enforc-

ing such behavior must be applied to all cells in the culture. On the other hand, data derived from exper-

imental measurements made at a population level (e.g. culture growth rate), are interpreted differently:

as the average over the configurations of all cells in the culture. But these latter constrains do not neces-

sarily imply that a particular restriction must be fulfilled at a single-cell level. For example, if a culture is

considered to be growing at a given rate, this does not imply that all cells are growing at such speed.

Some cells might be growing faster, and some slower: it is the population average that defines the

measured value.

Therefore, it is convenient to introduce two spaces:V as the space of all feasible flux configurations v that a

particular cell metabolism can display, andV as the space of all feasible average flux configurations v. If the

nature of all constraints acting over the system is linear, as it is in our case, both V and V are convex poly-

topes.53 The convexity of V implies that V4V. That is, any observable feasible flux configuration v at the
iScience 25, 105450, December 22, 2022 5



Figure 2. Projections of V and V on the 2D plane ðz;ugÞ for a chemostat in steady state

The solid and dashed lines represent the constraints defining V, which is shown in gray. The dotted lines indicate the

constraints definingV. The left panel (A) shows a situation where the exchange bound is so tight that the projection ofV

on the ðz; ugÞ plane is reduced to a single point (white circle). Meanwhile, in the right panel (B), the projection is a line

(black solid vertical wide segment). In both cases, the circle marks a point v where the culture is glucose limited. In panel B,

the triangle marks the state of maximum yield (z/ ug) and the square marks the unfeasible state which maximizes z within

the given ug limit.
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population level, is a feasible flux configuration for single cells v, and no unfeasible single-cell flux config-

uration can be observed at the population level.

The explicit distinction between both spaces, V and V, plays a key role in the definitions of the inference

models in the next sections. In our context, the final formulation for these spaces can be written as:

V = fvjSv = 0; v ˛ ½lbv ;ubv �;XN
j

�
a+
j r

+
j + aj

�rj
�
�
% 1; r +j ; rj

� R0; r +j � rj
� = rj ˛ v

)

V = fv ˛Vjui % ciD=X ; z = D; ui; z˛ vg

(Equation 9)

An important remark about our definition of V is that it is independent of the chemostat dynamics, it is a

property of the cells. The environmental conditions are taken into account only in the definition ofV through

Equations 7 and 8. Moreover, since usually in a chemostat, D and c (the feed medium composition)

are controlled by the researcher, X alone encodes all the information dependent on the chemostat

dynamics.

Nutrient-limited cultures

As we already mentioned, we will focus our attention on chemostat cultures with a known limiting

nutrient.56 In practice, this means that from all the exchange constraints defined in Equation 7, only one,

associated with this limiting nutrient, is constraining the network. In all the experiments presented here,

glucose is the limiting nutrient. That is, the only constraints affecting V are z = D and ug % cgD=X , where

ug is the observable uptake rate of glucose and cg is its concentration in the feed medium.

The rest of the constraints over V are considered to be non-restrictive and therefore do not influence the

culture. In this context, we can build a simpler definition of V:

V =
�
v ˛V

��ug % cgD
�
X; z = D; ug; z˛ v

�
where, for simplicity, we are not showing the trivial constraints ui % 0 for the uptakes of metabolites missing

in the feed medium ðci = 0Þ.

Now, the chemostat constraints are directly affectingV only in the ðz;ugÞ subspace. Figure 2 shows a sche-

matic representation of this subspace and the two typical scenarios that can occur in a nutrient-limited cul-

ture. In the horizontal axis we plot the growth rate of the cell and in the vertical axis the glucose consump-

tion rate. The shadowed area represents the projection of V, the space of feasible flux configurations, on

this plane: cells do not display a ðz;ugÞ pair outside this area. Moreover, since in a chemostat at a steady

state the average growth rate of the culture is set by the dilution rate D, all the possible solutions should

be consistent with distributions where z = D (see vertical dotted lines on both panels of the figure). This

reduces the possible degeneracy of V in this subspace only to the ug dimension, where the average con-

sumption rate should be lower than cgD=X (i.e. the system is restricted to those distributions where ug rests

below the horizontal dotted line in the panels).
6 iScience 25, 105450, December 22, 2022
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Such a combination of constraints leads to two typical scenarios. One is represented in Panel A, where the

size ofV is reduced to the minimum volume allowed by the environmental constraints (Equations 7 and 8).

There,V projection is reduced to a single point (white circle in the figure). In these conditions, the culture is

growing with the maximum possible z/ ug yield and larger values of X are not feasible given the nutrient

feed rate ðcgDÞ and the definition of V. We stress that, although V is determined in the (z, ug) plane in

this example, that does not imply that V is not degenerate in other dimensions. The other scenario is rep-

resented in Panel B of Figure 2. In this case X is not optimal, and we have a degenerateV even in the (z, ug)

subspace (continuous vertical line). Amajor difference between both scenarios is that in Panel A, the culture

reaches the full carrying capacity of the medium at the given dilution rate, while in Panel B it does not.

Inference of the metabolic state

Most constraint-based frameworks consist of two stages: I) the specification of the constraints and the defi-

nition of the feasible spaces, and II) the methods to formulate a description of metabolism from them.57 In

the previous section we already discussed point I, here we focus the attention on the second step, present-

ing two standard approaches.

Flux balance analysis

Flux Balance Analysis (FBA) is a widely used methodology that addresses the typical degeneration of the

metabolic solution space by choosing an objective function ðf Þ (or a stack of them) that the cell metabolism

‘‘optimizes.’’ This assumption is not necessarily based on experimental data, but it is an educated guess

about the evolutionary pressures to which the biological system is exposed.47

FBA has been applied, for several decades now, to model cell cultures at optimal growth conditions with

remarkable results.58,59,60,61 A popular formulation for bacterial cultures is to set the objective function

equal to the biomass production rate, z. This is justified in rich medium batch cultures, during the exponen-

tial growth phase, where the fastest growing cells end up dominating the population. In these circum-

stances, FBA models have proven to predict the growth rate of E. coli cultures24 for single carbon source

conditions, and even the priority of nutrient intake for more complex media.48

From a computational point of view, FBA has the advantage that, if the proposed objective function is

formulated as a linear function over a convex space, the optimum flux configurations can be found effi-

ciently using Linear Programming.62 Typically, FBA formulations24,57,26,63 do not make an explicit distinc-

tion between population and single-cell level metabolic spaces. All constraints are applied over a unique

space. Using our notation, this is formally equivalent to making VhV, which typically conceals an implicit

culture homogeneity assumption. For FBA formulations this can be justified because generally, the goal is

just to infer an observable flux configuration vwhich optimizes the objective function and the convex set of

constraints let to V4V. The problem to solve can then be stated as:

optimizeargv f ðvÞ
subject to : v ˛V

(Equation 10)

However, in general, the correct objective function is unknown and determining it can be a focus of study by

itself.26 In more complex scenarios, like cancer or tissues, the problem is particularly challenging and con-

stitutes a severe limitation for the application of FBA models. This is aggravated because these complex

scenarios are in fact the norm in nature, while optimal growth conditions are the exception. To make mat-

ters more complicated, it may well be the case that the evolution of metabolism leads to overall robustness

across many conditions rather than a single condition-specific objective.64

Maximum entropy principle and metabolism

As mentioned before, FBA models extract from the available information (the constraints defining the

metabolic spaces) a candidate flux configuration based on a given objective function. However, an impor-

tant limitation is that they provide little insights into other features such as cultural heterogeneity. Addition-

ally, the FBA solution is only affected by constraints that are directly involved in defining the optimal objec-

tive value. The remaining constraints are irrelevant, and the information encoded in them is not used.

A more general framework can be conceived using the Maximum Entropy Principle (ME)29 to develop a

probabilistic representation of the metabolic state of the culture. Here, the state of the system is not rep-

resented by a flux configuration vector, but by its distribution PðvÞ over the space of all possible
iScience 25, 105450, December 22, 2022 7
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configurations. This framework has been recently used to model the phenotypic distribution of cells in cul-

ture for several growth conditions and cultivation regimes.35,33 In the context of our constraint-based

model, the Maximum Entropy Principle may be formulated as follows:

maximizeargP

�
�

Z
V

PðvÞlnðPðvÞÞdv
	

subject to:
v ˛V

v =

Z
V

vPðvÞdv ˛V

(Equation 11)

which means that from all the feasible distributions P we must find a distribution, which we call PME , that
maximizes the (statistical) entropy subject to specific constraints. Following Jayne’s29 interpretation of the

principle, ME is the least biased distribution encoding all the information that we have about the system. In

other words, in absence of a mechanistic model, we consider PME to be our best guest of the real P, given
the available information.

IfV is bounded and the constraints applied overV have the simple forms v i % ai or v i = ai, where a˛ RN is

a constant vector (such as Constraints 7 and 8), it can be proved that PME belongs to the exponential

family33,65:

PMEðvÞfebT v (Equation 12)

where b˛RN is a vector (bT is its transpose) of Lagrange multipliers, where each bj is associated with the jth

reaction, used to select the appropriate PME . See Section 9.3.4 for a more formal discussion.

An important point to notice is that the ME probabilistic description of the culture metabolism allows, just

like in FBA, the inference of a representative flux configuration v. More precisely, having found PðvÞ from
11, we can compute the predicted average values as v =

R
V
vPðvÞdv. However, although both methods

use the same input data (the metabolic spaces), ME can be additionally queried about other metabolic fea-

tures like e.g. cell-to-cell growth variability, flux correlations, information variation (e.g. due to regulation),

and so forth.33,66 This is a major advantage of ME over FBA, the former exploits better the information avail-

able in the constraints.

In part, this is possible because we can effectively decouple the constraints defining the different spaces.

Constraints at the single-cell level are used in the definition of V and constitute the support of the distri-

butions in P. Constraints at the population level (which defineV) reduce the set of feasible distributions P,
from which the one that maximizes the entropy is selected. It is also important to remark that the ME meth-

odology is not limited to the codification of constraints over flux averages. Other types of population con-

straints can be included (e.g. constraints over flux variances). A review of the utilization of ME as a general

inference technique in biological problems can be found in.34

A downside of Maximum Entropy methods, in comparison with constraint-based modeling such as Flux

Balance Analysis, is that solving ME models can be computationally challenging. Considerable efforts

have been dedicated to develop methods capable of tackling this and related problems67,35, but some dif-

ficulty remains, specially in comparison with the fast and robust Linear Programming methods that are

needed to solve FBA models. As we will see later in discussion, we overcome this challenge by employing

a variant of Expectation Propagation.68
RESULTS

This section contains the main results of our work. It is divided into four sub-sections. We first present a

minimalist model where we explicitly discuss the difference between V and V and the impact of its defini-

tions on the ME solution. Then, we introduce a toy model of the metabolism and connect it with the dy-

namics of a chemostat considering a heterogeneous culture. The numerical data about the macroscopic

quantities obtained with this model will allow us to finally expose how the understanding of the chemostat

dynamics, and its influence over the cellular metabolism, can explain the data-driven findings of.45 Addi-

tionally, the artificial data generated will be used to feed FBA and ME to evaluate the effects of heteroge-

neity and the metabolic spaces definitions over the inference. In this controlled scenario, we will compare

the outputs of these two approaches to clarify the differences between both of them. Finally, we will make a
8 iScience 25, 105450, December 22, 2022



Figure 3. Schemes of three different formulations of a one-dimensional toy model

In each panel, the segments (solid black lines) at the top, represent the definitions ofV˛R andV˛R respectively. Those

spaces are projected into the x-axis of the graphs (following the dotted lines). Each graph contains three PMEf ebv

distributions, mapped over V, labeled by its b˛R values: b1= 0, b2 ˛ ð0; +NÞ and b3/+N. The solid black circles mark

themean of the distributions (only its x-axis coordinates havemeaning) and the solid squaremark the value of an optimum

FBA solution. Panel A shows a formulation where V = V, whereas Panels B and C show two different formulations for

encoding a real constraint over V, v% a (dashed lines in the segments).
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similar comparison with data obtained from real continuous cultures experiments for E. coli. With this, we

test the feasibility of using ME for genome-scale metabolic networks and further support the analysis done

in the toy model.
The minimum picture

In order to gain insights into a few basic aspects of theME formulation, we will use amodel with a single free

reaction, v ˛R (see Figure 3), which is affected by only one constraint ðlbv % v % ubvÞ. This greatly sim-

plifies the problem because the encoding of some equations (such as (2) and (4)) is not necessary.

For this model, the distribution (12) has the exact form:

PMEðvÞ = ebvjðvÞ=Z
where Z =

R PMEðvÞdv is the normalization constant, b is a scalar, and jðvÞ is an indicator function that re-

turns one when v ˛V and zero otherwise.

In Figure 3 we show a schematic representation of three different formulations of V and V for this one-

dimensional model. Each panel contains a graph with the characteristic PME distributions for three distinc-

tive b values. When b = b1 = 0, PME is the homogeneous distribution overV. Essentially, the exponential

plays no role at all and each flux value v is equally likely. This is the regime of the largest entropy and

maximum heterogeneity. On the other hand, at b = b3/+N, PME becomes a Dirac’s delta, which con-

centrates all the biomass density at the upper extreme of V. An analogous situation is found, but at the

lower extreme, if the sign of b3 is negated. A Dirac’s delta has the lowest possible entropy, and the system

is fully determined. Finally, for b = b2 ˛ ð0; +NÞ, any intermediate average flux value can be achieved by

finding the appropriate b value.

With these concepts clear, we can now start to dissect the differences between the three panels and their

implications in the inference results for ME and FBA.

First, let’s look at panel A. There we do not impose any extra constraints on the average fluxes and so Vh

V. This resembles the common constraint-based modeling (CBM) formulations for describing exponential

growth phases of batch cultures in rich media, where the culture (once defined which metabolites are avail-

able) is restricted only by the intrinsic capabilities of the cell metabolism (single-cell level constraints).58 In

this scenario, each of the PME distributions (one for each b value) are feasible and all its mean values (black

circles) fall inside the feasible space (shadow area). If we consider an FBA formulation which maximizes v

over V, its solution (black square) is recovered by ME at b = b3/+N. This distribution is a Dirac’s delta,

so our model is describing the culture as a homogeneous system (i.e. all cells display the same metabolic

state). It is important to remark that at bi/GNMEwill always find amean flux vector that optimizes the flux

i in V, so it can be viewed as a generalization of FBA.35
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The situation becomes more subtle when we introduce more restrictions (e.g. provided by data obtained

from measurements in the culture). Consider for example the new bound v% a (where a is a constant,

resembling Equation 7) that is supposed to be only applicable over V. Panels B and C in Figure 3 show

two alternative ways to introduce such constraints and their consequences. A first approach does not

distinguish between the spaces ðVhVÞ. In our two spaces formalism, this is equivalent to apply all con-

straints always over V (gray dashed line in Panel B). Although V is reduced accordingly, to affect V this

way is unjustified because this reduction does not follow the rationality leading to the constraint

ði:e v % a v % aÞ. On the other hand, Panel C shows the alternative scenario where the distinction is

made and V is unaffected. Note that in both cases we have the same V, therefore, any inference method

that relies only on this space produces the same results (e.g. FBA).

The comparison of the ME solutions over these two panels illustrates the consequences of adding an un-

justified assumption into the space’s formulation. Although V is the same in both cases, and the average

flux value reported by FBA and ME solutions are not affected, other features of the solution (such as het-

erogeneity) do differ. For instance, in panel B, the FBA’s solution is reached at b = b3/+N, whereas in

the right panel, PME achieved the same mean at a finite b value, b = b2. Therefore, the PME at these b

values are quite different. Although in the case of Panel B the system is fully determined, the more

rigorous definition used in panel C shows that it is impossible to completely determine the system with

the available constraints. FBA formulations usually use the more simple Panel B’s scenario because its

goal is to infer an optimum flux configuration, which hides the inconsistency, but ME formulations must

take extra care if further analysis is intended. In the particular scenario of a nutrient-limited chemostat cul-

ture at the steady state, it is not difficult to incur such biased ME formulations. As we already discussed in

Section 2.4, Equations 7 and 8 impose strong constraints over V, generally leading to a situation where

V3V.

However, in the literature, it is not usual to find ME formulations making explicit distinction between mul-

tiple spaces. For instance, in,69 the growth rate and the glucose uptake are directly encoded into V. Both

reaction’s upper and lower bounds in Equation 3 are set to be equal to the reported experimental measure-

ment. Another example can be found at.36 There, a similar chemostat model is used, but only the observ-

able growth rate ðz = DÞ is encoded accordingly intoV. Themodel uses a single scalar b parameter, and all

the constraints over the exchanges are enforced by restricting V directly. Precisely, a further simplification

ui % ciD=X is made (note that the originally derived from the dynamic model is ui % ciD=X ), which might

lead to a situation analogous to the one represented in Panel B of Figure 3. In Section 4.5 we discuss

some consequences of such simplifications.

With this understanding, we reformulate the ME model at.36 We respect the original form of the con-

straints over V for the observable growth rate, but we also add the corresponding constraint over the

uptake of the limiting nutrient. The formulation will have two Lagrange multipliersb’s (i.e., two non-zero

components in the b vector of Equation 12). One to enforce the biomass constraint ðz = DÞ and the other

to enforce the mean glucose uptake constraint ðug % cgD=XÞ, see Section 9.3.4 for more details. Given

that most continuous cultures are nutrient-limited, this has the advantages of potentially avoiding all

biases related to the uptakes by adding only an extra parameter. Additionally, it leads us halfway from

reconciling our formulation with the data-driven results from.45 It correctly suggests that the relevant b

parameters of the distribution are related to the growth rate and the limiting nutrient uptake rate, but

the latter is still free to vary. Next, we explicitly show, using a simple model that in fact, it can be further

constrained.
A simple mechanistic model accounting for the chemostat dynamics

In order to gain a deeper insight into the effects of the chemostat dynamics on the form of the metabolic

spaces in a controlled system, we introduce a simple model to mimic the metabolism of the cell. In this

model, the cell metabolism is reduced to a small size network (see Section 9.3.3) resembling the core

(fermentation/respiratory/pentose phosphate) metabolic pathways. The model has 3� of freedom, which

we choose to call z, representing the growth rate of the cell, ug the uptake of a nutrient (glucose), and

uo the uptake of oxygen (a non-limiting nutrient).

To consider the presence of metabolic noise (heterogeneity) we reformulate Equation 5. Such reformula-

tion will highlight the key advantage of ME over FBA-based models. In the new formulation we account for
10 iScience 25, 105450, December 22, 2022
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the time evolution of the biomass associated with each feasible flux configuration v, and introduce a source

of heterogeneity ε ˛ ð0; 1�. This defines in an idealized manner, a stochastic biomass redistribution overV,

accounting for, e.g., metabolic switches,49 proteome re-allocations,52 mutations.70 The final, non-discre-

tized version, of the dynamic equations for the chemostat are:

dX


z;ug;uo

�
dt

= ð1 � εÞzX
z;ug; uo

�
+

ε

jVj
Z
V

z0X
�
z0; u0

g;u
0
o

�
dz0du0

gdu
0
o

�DX


z;ug; uo

�
(Equation 13)
dsg
dt

= �
Z
V

ugX


z;ug; uo

�
dzdugduo +



cg � sg

�
D (Equation 14)

where Xðz;ug; uoÞ is the biomass concentration (more precisely the biomass concentration density)

associated with the given flux configuration and
��V�� = R

V
dzdugduo is the volume of V. Equations for the

evolution of other metabolites can be stated analogous to (14), but we will focus our attention only on

the limiting nutrient. For computational purposes, the metabolic space V was discretized (details at Sec-

tion 9.3.3).

Equation 13 expresses that the rate of change of the biomass concentration associated with a given flux

configuration depends on the balance between cellular growth (first two terms) and the extraction of

biomass due to the chemostat dilution rate (last term). The two growth terms differ in that the first is related

to the growth potential associated with the given flux configuration (local) while the second depends on the

growth capacity of the whole culture (global). The global term is just the average of all local terms scaled by

ε. At any particular time, it contributes equally to the growth of the biomass associated with each flux

configuration. The diffusion parameter ε is used to control how much of the Xðz;ug; uoÞ growth is due to

its local capacity or because of the relocation of biomass from the rest of the culture. In the extreme

ε = 1, all flux configurations have the same growth potential irrespective of its own z value, which leads,

if feasible, to the larger heterogeneity of the system. In the opposite case, when ε/0, Xðz; ug; uoÞ evolves
depending exclusively on its local growth potential ðzÞ, and there is negligible biomass reallocation.

The biomass associated with each flux configuration allows the computation of the biomass distribution P
at every time step of the simulation, by defining P as:

P
z;ug;uo

�
= X



z; ug;uo

��
X (Equation 15)

where X =
R
V
Xðz;ug; uoÞdzdugduo is the total biomass concentration of the culture at a given time.

Notice also that any constraint acting upon an observable restricts the set of feasible biomass distributions

and influences all other observables. For instance, Equation 14 is affected by the implicit constraint sg R 0

and since, D, cg and V are time independent, such constraint can only be implemented by dynamically

transforming P to guarantee that ug % cgD=X when sg/0. Then, to enforce the constraints over V, we

must add an explicit transformation over P that links (13) and (14) together.

The transformation that we use is explained in detail in Section 9.3.3, but in practice it reduces to: at any

instant of time in which sgz0 and ug > cgD=X we enforce equality ug = cgD=X to be true by re-scaling P.
With this, we link both (13) and (14) together, keeping X bounded while the culture reaches non-trivial

steady states in all the feasible regions of themodel. It is important to remark that modeling amore realistic

normalization procedure for P is out of the scope of this work. Our only requirement is that the system, at a

steady state, should be subject to the defined constraints, while avoiding any additional unjustified restric-

tions onV orV. Thus, although this term models the dependency of an observable metabolite uptake rate

with its external concentration71 and its interplay with many complex intracellular processes that contribute

tometabolic heterogeneity in cells, such asmetabolic shifts72,52 or mutations,70, we here select the simplest

(though highly idealized) rule that serves this purpose.

Using these dynamics for the chemostat we performed extensive simulations of Equations 13 and 14 for

different values of D and ε keeping a constant cg, and initial X, sg and P (a uniform distribution over V).
iScience 25, 105450, December 22, 2022 11



Figure 4. Dynamic simulation of the chemostat

Panels (A) and (B) show the time series from the dynamic simulations of the total cell concentration ðXÞ and the nutrient

concentration in the vessel ðsgÞ respectively for a given D and different ε values. The width of the lines is proportional to

ε˛ ½0:001;1�.
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As an example of the output, Panels A and B of Figure 4 show the time series for the total cell and glucose

concentration (the limiting nutrient) in the chemostat, obtained at a constant D for differentε’s. When the

simulations reach a non-trivial steady state we computed the flux distributions and the observables needed

to characterize both, the metabolism of the culture and the chemostat environment.

In Figure 5, Panel A, we show a heatmap that represents the volume ofV in the (z, ug) subspace as a function

of the constraint bounds D and cg D=X . Darker areas in the map mean that the culture steady state config-

uration is near to the maximal restrictive power of the environmental constraints (and so the minimalV vol-

ume). The markers in the figure represent the location of the chemostat parameters of a set of simulations

at a steady state. The size of the markers are proportional to ε˛ ½0:001;1�.

As can be appreciated, for a particularD value, the larger the ε used in the simulation the larger the volume

of V at a steady state. This can be explained by the combination of two factors: i) The tendency of the cul-

ture to reach a steady state when the limiting nutrient is depleted, and ii) the redistribution of biomass over

V due to heterogeneity. The first factor can be explained by the feasible dynamic’s tendency to increment

X indefinitely in a nutrient-unlimited condition (see Section 4.6). The culture will only stop growing (and

so the steady state reached) when the limiting nutrient is almost depleted. For the simulations, this implies

that at the steady state, the culture will be consuming glucose at a rate close to the upper limit ðcgD= XÞ.
Panel B of Figure 5 shows a correlation that directly supports this claim. Note that this behavior is indepen-

dent of the metabolic noise, it is a consequence of the nutrient-limited condition.

The second factor can be explained if we study the relation between X and ug at a steady state. From the

uptake constraint ðug % cgD =XÞ we can see that at a given glucose feed rate ðcgDÞ, X reaches a maximum

when ug is minimal. This is equivalent to say that X will be maximal when all cells are consuming glucose at

its maximum feasible z =ug yield (dashed line in Figure 5). Such necessary homogeneity directly links the

culture’s heterogeneity with X at a steady state. If the stochastic redistribution of biomass is not null

ðε > 0Þ, metabolic states with lower yields will be occupied by the cells (see global term in Equation 13).

In those cases the culture will still tend to maximize X , but the heterogeneity will prevent it from reaching

the optimum value (and so the minimumV volume) at a steady state. Panel C of Figure 5 shows such a ten-

dency by correlating the results from the simulations with the theoretical maximum X . This is estimated by

computing the minimum ug value compatible with the given growth rate z = D and using the glucose-

limited uptake bound ðmaxðXÞ = cgD =minðugÞÞ.

Given those results, if we revisit Figure 2, all glucose-limited steady states will be located inside V at the

circle markers ðug zcgD =XÞ. Additionally, a culture with minimal heterogeneity ðε/0Þ will display a V

configuration at a steady state as represented in Panel A. Any other (z, ug) pair is disallowed due to the

z = D constraints and the maximization of X . If significant heterogeneity is introduced ðε [ 0Þ, the steady

state will be configured as represented in Panel B. Note that the culture (z, ug) will be far from the optimum

z =ug yield (marked as a solid triangle in Figure 2). It is important to remark that no constraints (other than

the ones defining V) are being formulated to control the distribution into other free dimensions of V.

These ideas match the data-driven results reported at.45 In their formulation, they exploited all the exper-

imental observable fluxes for learning the relevant parameters of their model and showed that only two of

these were actually relevant to minimize the inference error, one related to the growth rate and another
12 iScience 25, 105450, December 22, 2022



Figure 5. : Study of the toy model dynamic simulation steady state

Panel (A) shows a heatmap measuring the volume of V in the (z, ug) subspace (length of the vertical short solid line in

Figure 2 Panel B) as a function of the steady state parameters D and ug upper bound. Darker regions mean smaller

volumes (log scale). Over the map, the locations of the steady state parameters of a set of simulations are represented by

markers. Panel (B) shows a correlation between the dynamic ug at the steady state and the glucose uptake upper bound

value cgD=X. Panel C shows a correlation between the dynamic X at steady state and the theoretical maximal X given the

constraints bound values. The size of the markers are proportional to ε˛ ½0:001;1�.
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with the limited nutrient observable uptake. Alternatively, we just showed why the dynamics of the chemo-

stat leads typically to a steady state where ugzcgD =X and m = D. Now, the relevant parameters ðbÞ can be

determined using chemostat controlled information (D, cg) and the cell concentration ðXÞ as the only cul-

ture-dependent magnitude. It implies that no other external experimental values are required for param-

eterizing the distributions and that the data-driven approach has been explained with a mechanistic-moti-

vated model. Actually, in a culture with minimal heterogeneity, X will approach the theoretical maximum

which is computable a priori from the network and the known nutrient supply using FBA.

Metabolic noise, degeneration, and flux inference

Inspired by these results we now exploit the simulations to additionally evaluate the impact of the definition

of the spaces and the heterogeneity on the inference of observable fluxes. Moreover, in addition to ME, we

test five different formulations of FBA. The firstFBA’s objective function we use is the commonmaximization

of biomass. Note that in this case, we do not force the constraint over the growth mean ðz = DÞ. The other

four FBA stacks of objective functions account for each one of theV’s vertices. Because of the simplicity of

the toy model and the chemostat constraints at steady state,V has only four vertices. This means that FBA

(as formulated in 10) must yield a single one of these four possible optima (one for each vertex47) for any

objective function.

Figure 6 shows the correlations between the artificial data and the models for all simulations that reached a

non-trivial steady state condition. The mean value for each free flux ðz; ug; uoÞ is computed from the dy-

namic biomass distribution (15) at the steady state, the inferred ME distribution (11), and the solution of

the FBA optimization (10). In this case, each PME is inferred by finding the two beta parameters that

made the distribution fulfill both observable constraints (z = D and ug % cgD=X) and maximize the entropy

(see Section 9.3.4). Each row corresponds to a different inference technique and each column to a free flux.

The first row of the figure presents the results for FBAðM00Þ formulation (see Figure 6 caption for notation

details), which maximizes the biomass rate. This formulation consistently overestimates z (recall that z =

D was not enforced this time), but correctly predicts the glucose uptake ug. The maximization of ug and

the additional overestimation of uo in FBAðM00Þ is consistent with the structure of the network and the maxi-

mization of z. For instance, the consumption rate of glucose and oxygen is proportional to the ATP produc-

tion rate, which is a reactant in the biomass equation (see Section 9.3.3). As a reference, in Figure 2 Panel B,

this solution is located in the squaredmarker. In our model, for such a solution to be feasible (and the objec-

tive function to be valid), either ε/0 or D = ubz .

From the second to the fifth row of Figure 6 the results of the rest of FBA’s formulations are shown. These

formulations respect the chemostat constraint over z, as is trivially appreciated in the correlations of the first

column. Here, the main result is that although the formulations maximize ug (FBA
ðfMmÞ and FBAðfMMÞ) repro-

duce two of the three free fluxes of the simulations, in general, FBA was unable of capturing the whole

metabolic state of the culture. In particular, the formulations were unable to infer uo. Although for

FBAðfmMÞ and FBAðfmmÞ the error is less significant given that the minimization of ug also reduces the uo
iScience 25, 105450, December 22, 2022 13



Figure 6. Inference of observable flux configurations for the toy model dynamic simulations

Correlations between the dynamic (x axis) and inferred mean values (y axis) for the free fluxes z, ug and uo of the toy

network. Each row shows the results of one inference method, and each column of one free flux. In the case of the

FBA formulations, we specify the sequence of objective functions required to determine a solution by using a
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Figure 6. Continued

character triple where: ‘‘m’’ means minimization, ‘‘M’’ maximization, ‘‘f’’ that the flux was fixed to a given value, and ‘‘0’’

that no further action was required. The position of the character expresses the action over z, ug or uo respectively (Ex:

‘‘M00’’ means that the maximization of z lead to a single solution). The size of the markers encodes the value of ε˛
½0:001;1�.
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feasible range. A possible explanation is that as stated before, the chemostat steady state and the nutrient-

limiting condition are only constrainingV in the (z, ug) subspace. IfV is degenerate in other dimensions, the

observed value is not enforced to be an optimum. Additionally, the error induced increases with ε (in Figure

6, the value of ε is proportional to the size of the markers). Stochasticity leads to more degeneracy and this

influences negatively the performance of FBA. This is especially significant given that, as we mentioned,

these formulations exhaust the space of possible solutions that linear objective functions can yield for

this simple model. That is, it is not the ignorance of the correct FBA’s optimization function that is causing

these results, it is the fact that the culture is not well described by any optimal metabolic state.

On the other hands, in the last row of Figure 6 we present the results of ME. The panels show that, ME re-

produces all the observables independently of the stochasticity of the metabolism. Notice however, that it

does so, without explicit inputs about any optimization function followed by the cell. Such good inference

results support the idea that the simulation observables were affected significantly only by the constraints

used in the definition of the metabolic spaces included in ME. More importantly, it suggests that adding

further assumptions will likely bias the ME’s solution rather than improve it.

One of the advantages of ME over FBA is that its solution is a full probabilistic description of the metabolic

state of the culture. Figure 7 shows the marginal distributions for the free fluxes at different values of ε for

simulations at a fixed D. The upper row presents the ‘‘real’’ distributions produced by the dynamical simu-

lation, and the lower row the ones inferred using ME. As we already showed before, ME infers correctly the

mean values (dotted lines) of the distribution, but although we can see that it also describes quite well the

real shape of the distributions, there are differences.

This gives us an important insight: even if we encode correctly the constraints that are defining V and V,

and if these definitions really describe the boundary of the experiments (the simulations), our ME formula-

tion does not include information about constraints acting over higher order moments of the distributions.

In this particular case, the arbitrary P transformation introduced on the dynamic for enforcing the moment

constraints, although not affecting V or V, is probably generating a non-uniform effect that differentiates

the distribution computed directly from the simulations from the one inferred through ME, PME . If those
extra constraints were encoded in the model, ME is expected to recover the distributions completely.65

Another interesting feature of the results is that even at a very low metabolic noise ðε/0Þ, the distributions

show a high variance. This is a direct consequence of the definition of the metabolic spaces and the culture

parameters. In the typical case, where V3V, (see Panel C in Figure 2) the feasible (non-trivial) distribution

with minimum entropy is still degenerated (the optimum is reached at bs+N). This can be reduced further

only by adding more restrictions. The stochasticity ðεÞ just adds more entropy on top of this threshold.

Observable flux configuration inference in E. coli

In this section, we reproduce an analysis similar to the one made previously, but using a genome-scale

metabolic network55 and a set of real experimental observations obtained during E. coli glucose-limited

continuous cultures73,74,.75

In our model,V is constrained only in the (z, ug) subspace (see Section 2.4). Aiming to elucidate how much

the observable space is restricted in real glucose-limited cultures, we contextualized the genome-scale

metabolic network according to the experimental conditions (see Section 9.3.1 for details). Later, we

compute the volume of theV (z, ug) subspace. Figure 8, panel A, shows a heatmap that illustrates such vol-

ume as a function of the parameters of the chemostat steady state (analogous to the one in Figure 5). The

area outside the heatmap (shadow area) represents the unfeasible fluxes. As can be noticed, all experi-

ments (triangular markers) are very close to the limit of the feasible space at the darkest region of the

map. In this case, we say that the set of steady state parameters approaches the restrictive limit imposed

by the chemostat’s constraints (minimumV volume), similarly to the scenario described in panel A of Figure

2. The heatmap shows the results for one dataset, but the others displayed a similar behavior.
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Figure 7. Toy model steady state marginal distributions

Steady state marginal distributions for z (left column), ug (center column) and uo (right column) from the toy model

dynamic (top row) and ME (bottom row). All results are at a fixed D value, while distributions at different ε are shown. The

dotted lines mark the mean for each distribution. The width of the lines is proportional to ε˛ ½0:001;1�.
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Although, in principle, the experiments can be located at any point within the feasible space, they all sit at

the border of the feasible/unfeasible transition. As mentioned before, this transition occurs with the

maximum theoretical value expected for X. Panel B of Figure 8 supports this idea: the cultures are close

to the theoretical maximum X derived from the experimental conditions and the used metabolic network.

Again, the maximum is computed by finding the minimum ug compatible with the given growth rate z = D

and deriving it from the glucose-limited uptake bound ðmaxðXÞ = cgD =minðugÞÞ.

As stated before, such maximization of X is only possible if the culture is consuming glucose at a rate that

nearly matches the nutrient input feed rate ðcgDÞ, which implies that most of the residual glucose in the

vessel is depleted. For completeness, in Panel C of the figure, the reported concentration of residual

glucose in the vessel sg relative to the feed concentration cg is shown. As can be observed, all experiments

had imperceptible or small amounts of glucose at the steady state (for the higher values, it is less than 4% of

the feed concentration).

Finally, we used ME to infer a biomass distribution PME for each experimental condition. In order to do

that, and in analogy with the simple model above, we computed the two free components on the b vector

that allow us to enforce the moment constraints (z = D and ug % cgD =X ) and maximize the entropy (see

Section 9.3.4). Due to the large number of variables involved in this case, the PME functional becomes

intractable. To overcome this difficulty we use the Expectation Propagation (EP)68,76,37 algorithm in order

to approximate these distributions (see Section 9.3.5 for details). Additionally, we used a set of four FBA

formulations as a reference to compare the performance of ME. Although this time, for a genome-scale

network, V is not as simple as in the toy model and the full set of possible lineal FBA solutions becomes

intractable. We first introduced two objective functions common in the literature. It has been found

that for chemostat cultures, the maximization of atp or biomass yield (the later equivalent to the minimi-

zation of ug) objectives provide better results approximating experimental data than other tested func-

tions.26 In addition to those two, we defined the maximization of the glucose uptake ug (motivated by

the glucose-limited condition) and the traditional maximization of biomass rate as objective functions

to be tested.

In Figure 9 we show the correlations between a set of inferred fluxes (exchanges and internals) and the one

experimentally reported in different experimental conditions. The bottom row shows the results for all con-

ditions together. The first four columns represent the different versions of FBA and the later results ob-

tained using ME.
16 iScience 25, 105450, December 22, 2022



Figure 8. Study of E. coli chemostat culture steady state

The left panel (A) shows a heatmap of the polytope (z, ug) projection box volume (log scale) as a function of the steady

state parameters, D and cgD=X . The triangles show the experiment location in such space. Dark regions correspond with

the scenario described in Figure 8 Panel A. Data shown only for Nanchen74, but the rest of the datasets displayed similar

behavior. On the central panel (B), it is shown a correlation (log scale) of the theoretical maximum X as computed using

the metabolic network with respect to the experimentally reported. Finally, the right panel (C) shows the residual glucose

in the culture ðsgÞ relative to its concentration in the feed medium ðcgÞ for all experiments. Marker shape denotes the

experimental data source.
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The first thing to notice is that there are significant differences between the results of the FBA formu-

lations. This highlights the sensitivity of FBA to the definition of the objective functions in the

presence of a degenerate solution space. Interestingly, biomass optimization appears to be the func-

tion with better performance. But, since it lacks the z = D constraint, this formulation significantly

overestimates the biomass production rate at a steady state (there are similar findings at37). This can

be corroborated in Figure 10 where the Absolute Relative Error ðAREÞ for all experiments is shown.

Another promising FBA approach is the maximization of ug. In this case, although the growth rate

is constrained to match D, the formulations overestimate ug. Given glucose was the limiting

nutrient affecting the growth rate of the network, a mirror effect between these two formulations is

expected.

On the other hand, the remaining two FBA formulations show major deviations from the experimental

values. As shown in Figure 10, the minimization of ug has the worst correlations for the reactions of the

Krebs cycle and is not that good for the pentose phosphate pathway. In the case of the maximization of

ATP, it has at the same time, the best performance for the Krebs cycle but the worst for the pentose phos-

phate pathway from all formulations.

Furthermore, the FBA model that maximizes ug and ME inferred non-zero acetate production rates

(see Figure 9) for all datasets, although the ME ill-prediction is less pronounced. For all the studied

cultures the dilution rate was smaller than 0.5 h� 1 (below the acetate switch52) and therefore,

experiments do not report acetate production. Additionally, all methods show poor correlations for

the produced CO2 (blue square markers). A sustained overproduction of CO2 is predicted consistently

by the network. However, the data source reporting gas exchanges come from a culture where the

experimental carbon recovery was satisfactory ð > 93%Þ, and no carbon-rich byproduct, other than

CO2 and biomass itself, was produced.73 This suggests that the inferred overproduction of carbon-

rich byproducts can be related to an underestimation of the carbon requirements in the biomass

equation, which can also affect the ill-prediction of acetate mentioned before. Moreover, only

two of the reported internal fluxes were predicted significantly wrong and consistently by all methodol-

ogies: the flux through the glyoxylate cycle (pink markers) and the pyruvate kinase PYK (dark green

markers) (see Figure 10). However, notice that ME always predicted a non-zero flux, whereas FBA

generally assigned an exact zero value through them. The glyoxylate cycle, in particular, is notoriously

known to be difficult to predict by linear optimization formulations33,69, which frequently assign a zero

flux to it.

Finally, contrasting with the lack of generality of the evaluated FBA formulations, ME performs among the

best in all the studied subsystems (see Figure 10). It is comparable with the best FBA formulation (biomass

optimization), but it also resolves satisfactorily z and ug. This is an important result if we recall that ME uses

less information than FBA (lack of objective function). Such a situation resembles the results obtained in the

toy model section, suggesting again that the metabolic state of such cultures might be not well described

by a polytope vertex (an optimum).
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Figure 9. Inference of observable flux configurations for E. coli chemostat cultures

Experimental (x axis) v.s.model predicted (y axis) absolute relative fluxes, for a set of FBA formulations andME. All fluxes are normalized by the experimental

glucose uptake. The first row shows exchange fluxes reported in73,74,.75 The rest of the rows show some inner fluxes reported in.74 Each row corresponds to a

different dilution rate ðh� 1Þ. The last row includes all internal flux correlations. Different subsystems are signalized by the shape of the marker, meanwhile

different colors denote individual reactions. The legend is as follows: acetate exchange (gray), CO2 exchange (blue square), glyoxylate cycle (pink), pyruvate

kinase PYK (dark green), Krebs cycle (diamond shaped), glycolysis (circle shaped) and pentose phosphate pathway (triangle shaped).
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Figure 10. Inference error of observable flux configurations for E. coli chemostat cultures

Inference quality measured by the Absolute Relative Error ðAREÞ of internal fluxes, ug and z for all experimental

conditions. The reactions are grouped by subsystems, from left to right: glucose transport, biomass, glycolysis, pentose

phosphate pathway, Krebs cycle, and glyoxylate cycle. Reaction acronyms are taken from.55 AREi = K� 1
PK

k

��1 �
vmodel
ik =vexpik

��, is the error of flux i across K samples ðK > 10Þ. Large ARE values are cut to 1.
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Study of additional biases

As discussed in Section 3.2, an advantage of ME over FBA is that it uses more effectively all the informa-

tion contained in the constraints, which allows inferring properties of the culture metabolic state other

than the observable flux configuration. But, it also makes ME more sensible to the introduction of unno-

ticed biases. To gain a deeper insight, we replicate the same analysis over the E. coli experimental data

using the ME formulation described at.36 The new model (called in this section ME1) uses a single beta

parameter (the super index accounts for the number of non-zero b parameters). The only difference

with our model (called ME2 in this section) is that the nutrient limiting constraint is simplified from

ug % cgD=X to ug % cgD=X .

Figure 11 presents the comparison between both formulations. In the left column of the figure, we show

the marginal distributions (for one experimental condition) for three selected fluxes. The first marginal

(top-left) is the one corresponding to the uptake of glucose. As mentioned before, the codification of

the chemostat constraint of this flux is the only difference between the two formulations. As can be

seen, both marginals differ substantially. This subtle difference, to consider that the knowledge of an

observable restricts V, is sufficient to produce a major difference in the solution of ME (e.g. the hetero-

geneity of the culture). Additionally, because the network imposes a structural constraint that is reflected

in a correlation between the fluxes, this discrepancy is propagated to others. This can be noticed in the

marginal of the biomass reaction (bottom-left). In both cases, the reduction of V in ME1 formulation re-

sulted in distributions with smaller degeneracy. A large-scale study of such an effect is shown in the right

column of the same figure. There, we show a comparison between both formulation averages (top-right)

and variances (bottom-right) for all the fluxes in all experimental conditions. As can be seen, the averages

are not particularly affected, but the variances (which are shown in a log scale) are consistently smaller for

the ME1 formulation.

Although ME2 is more rigorous, this formulation might be not totally free from biases associated with

the exchanges. For instance, Equation 7 shows that a metabolite not present in the feed medium should

have a negative or zero average exchange rate, which means that the culture can only potentially pro-

duce it, not consume it. Even though this is an observable constraint, we made the assumption that

ðci = 00ui % 0Þ. As mentioned before, the correct formal methodology for encoding such observable

constraints is by moving its corresponding components in the b vector so that the selected PME does

satisfy with the restrictions and V stays properly unaffected. Because this needs to be done for all the

metabolites that the network might produce, it would increase the number of free non-zero b
iScience 25, 105450, December 22, 2022 19



Figure 11. Study of the effect of the different ME formulations on the inferred flux distributions

The left column shows selected marginals of the glucose uptake flux, ug, the acetate production, ua, and the biomass

production rate, z, for both ME formulations in an experiment (rep. 4) from .Nanchen74 In the right column, it is shown the

correlations of all flux averages (top) and all flux variances (log scale) between both formulations for all data sources.
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components that need to be tuned for inferring the PME distribution, which would make its computation

more challenging.

An example of such phenomena can be appreciated for the acetate exchange rate, whose marginal is

shown in the left column of Figure 11 (middle panel). The acetate exchange marginal is abruptly cut at

zero. This provokes that, in case of any degeneration, its average gets a value greater than zero. This de-

pends on the assumption that cells can not consume acetate, which is not directly derived from any

constraint imposed by the chemostat. As discussed before, ME predicts a wrong non-zero acetate produc-

tion rate (see Figure 10 top-right panel). This might be another possible cause of discrepancy with the

experiments.
Unlimited culture dynamic

In this section, we study the dynamic of the chemostat when Equations 13 and 14 are decoupled. This can

be done by running simulations in a nutrient-unlimited environment ðcg; co = +NÞ. In this case, no

feedback is produced between the observables and the only significant environmental parameter will be

the dilution rate. Figure 12 shows a heatmap with the X value at the end of such simulations as a function

of D and ε. The simulations were stopped if either a non-trivial steady state condition was hit (dX=dt/ 0

and X > 0), the culture X grew forever (dX=dt > 0 and X > 106) or the culture died (dX=dt < 0 and X < 10� 6).

From the figure, we can observe that the nutrient-unlimited dynamic typically leads to either an unbounded
20 iScience 25, 105450, December 22, 2022



Figure 12. Study of the dynamics of a nutrient-unlimited chemostat

Heat map that represents the evolution of X in a nutrient-unlimited simulation ðcg = +NÞ as a function of D and ε.
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growth or a wash-out. Non-trivial steady states are only possible at the interface between the two regions.

But, this interface represents an unstable regime. Small perturbations on eitherD or εwill make such steady

state unfeasible. It is this tendency to increment X which leads the culture to deplete all the nutrients once

the limited condition is reestablished, which implies that the culture nutrient uptake at a steady state will be

close to the input rate ðug zcgD =XÞ.
DISCUSSION

In the context of metabolic models, the data necessary for formulating environmental constraints are

commonly available (e.g. medium composition, cellular concentration, culture observables, and so forth).

However, although progress in this area has been substantial, metabolic models generally lack the infor-

mation needed for a complete formulation of internal constraints (e.g. kinetic parameters of enzymes, in-

fluence of the regulatory network, completeness of the stoichiometric network, and so forth).23 As a conse-

quence, the relative relevance of both types of constraints in a particular experimental condition

determines the effectiveness of the inference method.

For example, in a batch culture grown in a rich medium, the environmental constraints are not too strong. The

cells are growing in a context without limiting nutrients, and therefore they can potentially display a wide range

of phenotypic behaviors ðVhVÞ. In this case, the unknown non-environmental constraints (e.g.regulatory or

kinetic) are defining the behavior of the culture. If this is the case, an ME formulation that lacks such decisive

constraints must lead to a solution that poorly describes the observed phenotypic state of the culture. Tradi-

tionally, this issue has been addressed by introducing further constraints based on the available experimental

data (e.g. fixing a fraction of the fluxes45,69,37) or in the case of FBA by defining an objective function (or a stack

of them).59 In the latter case, the objective function tries to encode these (unknown) non-environmental con-

straints that are driving the system to a specific state inside the very degenerate feasible solution space.On the

other hand, in nutrient-limited chemostat culture at steady state, the known environmental constraints (as

defined in our model) typically lead to a restricted observable space ðV3VÞ. So, the unknown constraints

have less room to significantly affect the observables. In this case, it is natural to assume that anME formulation

that includes such information should be a better descriptor of the culture metabolic state.

Such a scenario was modeled into the chemostat simulation presented in Section 4.2 where, by construc-

tion, V was restricted only by known constraints. As a consequence, ME described accurately the steady
iScience 25, 105450, December 22, 2022 21
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state v of the system (see results in Figure 10). In this case, the chemostat constraints potentially deter-

mined V in only two of three free dimensions, so V was generally degenerated. Such a situation had

catastrophic consequences for FBA. Due to the degeneracy, the system will eventually occupy all the

feasible states due to the introduced stochasticity (which resembles the natural noisy phenomena charac-

teristics of cellular cultures77,78,79,80,81). There is no reason to justify that the third dimension needs to be

optimum. In other words, no extra assumptions (optimization) need to be formulated for describing the

properties of the system. All the required information was already contained in the metabolic spaces

formulations.

Furthermore, by increasing the stochasticity in the simulations (beyond minimal space degeneration), we

study the more general case where V is degenerate even in the (z, ug) subspace. Such stochasticity affects

two important features of the steady state: I) its feasibility, and II) how large can beX (see results in Figure 5).

The study revealed a link between the heterogeneity and the size of V at steady state. As mentioned, the

optimum X can only be reached by a culture displaying a maximum z/ ug yield (for a glucose-limited case).

The stochasticity prevents that from happening by forcing the culture to allocate biomass at suboptimal

states. We stress that this result might suggest a relation between an accessible experimental magnitude

ðXÞ, and a culture property that is difficult to evaluate (heterogeneity).19 Finally, this model provides a

mechanistic explanation on how the steady state constraints become so relevant, supporting the results

of ref. 45. The simulations demonstrated that the system, when feasible, displays a typical tendency to

use the full carrying capacity of the medium (accumulating X until the limiting nutrient is depleted).

Although we provided a very simple dynamical model to test this idea, the results can be generalized to

more realistic scenarios. For example, by introducing a biomass rate maximization constraint (a popular

regulatory constraint for bacteria64), the dynamics of the system will change, but the space of observables

is still determined by the same environmental constraints (z = D and ug % cgD =X). This means that un-

known and complex constraints could be driving the dynamic phase of the culture, but at the steady state,

its consequences overV are ultimately summarized in the value of X. This is because, as mentioned before,

V, D and c are usually considered constant during the culture, and X is the only variable dependent on the

dynamics that influence the chemostat constraints. A similar picture was discussed in,17 where a related

model is studied. There, the authors established that the ratio between cell concentration and dilution

rate is the control parameter fixing the steady state properties of the chemostat. The conclusion was

also extended to more complex scenarios such as multi-stable regimes and perfusion.

We may extrapolate some insights gained from studying the simple model to the interpretation of the

results obtained using a genome-scale metabolic network of E. coli and the experimental data. The first

noticeable result was that the location of the experiments appeared close to the maximal theoretical X , as

defined by the metabolic network and the culture conditions (see Figure 7). In the simulation, the culture’s

heterogeneity was inversely proportional to X (see Figure 5). So, its maximization in the experiments sug-

gests that the E. coli cultures are close to the minimal possible heterogeneity (in terms of z =ug yield) as a

result of the restrictions imposed by the chemostat constraints. This also means that the experimentally

feasible V is minimum, i.e. it is the more informative state yield by the environmental constraints.65 Is this

enough information for describing the culture observables? As mentioned before, a positive answer

would imply that ME must be able to recover such observables. The correlations result in Figure 10,

although not conclusive due to the noted limitations of our model (see Section 5.1), point into this direc-

tion. We might be in the desirable situation where the most significant restrictions are the known environ-

mental constraints. An extra detail related to the experimental conditions, which might support such

rationale, is that the studied cultures were run at small dilution rates ðD < 0:5 h� 1Þ. This locates the cul-

tures in a regime of slow growth rate (wild E. coli can growth at > 2:2 h� 1 58) and below the acetate

switch.52 This is relevant because the lower the growth rate, the less pressure is expected over the cellular

resources, and thus, internal regulations such as enzyme cost constraint (see Equation 4) might lose

significance48,52,.82

Notice also that our framework makes a distinction between constraints at the single-cell level and con-

straints at the population level. In practice, although our works focus the attention on the difficulties of in-

terpreting the measurements made at the population level, the framework used here can be used for sin-

gle-cell measurements. In this case, the population level constraints ðVÞ are not present, but still one must

interpret the heterogeneity in the single-cell metabolism, as a temporal property, provided that the system

is ergodic. It is certainly a direction of future interest, also in the context of increasing interest in the
22 iScience 25, 105450, December 22, 2022
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distinction of bulk and single-cell measurements83,84 and promising new single-cell experimental tech-

niques such as Nanoscale secondary ion mass spectrometry (NanoSIMS).85

Limitation of the study

In previous sections, we highlighted the relevance of codifying the different constraints into their corre-

sponding spaces. Although we properly handle the constraints related to the chemostat dynamics, we

introduced several simplifications to the definition of V. We take information that is actually based on

macroscopic measurements to be representative of each cell. This hides a culture homogeneity assump-

tion. The most significant is related to the definition of the biomass equation, which is determined by

experimentally measuring the average cellular composition.64 In principle, this constraint (dashed line in

Figure 2) should be considered to be affecting only V. But we made the widely adopted simplifica-

tion17,78,35,45,37 of taking it as a hard constraint over V. In the current formulation, ME is only capable to

encode average constraints over the reaction bounds (like Equations 7 and 8), not balance constraints

such as the biomass equation. In the particular case of a limiting-nutrient chemostat culture, this might

be a fundamental source of bias, given the tendency of the culture to maximize z/ ug (see results in Figure 7

Panel A). At this point, the degeneracy of V is minimal, and so, the variability lost by the biomass simplifi-

cation might be significant. We leave this question open for future studies. A similar situation occurs in the

formulation of the cost constraints in Equation 4. In particular, the definition of each cost weight a+
j and aj

�

depends on the total observable protein mass fraction of the cells.48 This is another balance constraint that

can not be encoded into V using the current ME formulation.

Regarding the evaluated experimental data, although the available fluxes are representative of important

metabolic pathways, the system is still heavily under-determined. We only have access to approximately

101 experimental fluxes in a network with more than 103 reactions (rank 102). Additionally, our methods

depend on how well the used network is a good representation of the metabolism of E. coli. Although

we use all available experimental data for a better contextualization of the network, many of the param-

eters used were the generic defaults shipped with the model. The presence of relevant outliers in the

correlations actually suggest that there is information missing or bias. All that prevents us from having

a conclusive argument on the inference quality for both ME and FBA and the comparison between

them. For another conceptual comparison between optimization-based and ME methods, we refer to

also to.69

Finally, it is important to notice that there are several artifacts that might affect a reconstructed network,

even if it was manually curated. One affecting both FBA and ME are thermodynamically infeasible cycles

(TICs)86,69. Those are sets of reactions that can carry arbitrary flux without breaking the common stoichio-

metric/boundary constraints. They will increase the overall entropy of an ME distribution, and more signif-

icant for our work, the marginal moments of the involved reactions. Such a phenomenon, however, is not a

limitation of our approach, but a limitation of the constraints we are imposing (the data). When TIC’s are

important, it just means that we are lacking relevant constraints. In practice, our methodology is compat-

ible with any further lineal constraints that might be added for addressing TICs. In our model, we used enzy-

matic cost constraints that automatically penalize these cycles (see (4)). Another well-studied limitation of

FBA models is their failure to properly explain an overflow metabolism phenotype observed in bacteria

(and other organisms) at higher growth-rates, where rapid carbon intake from glucose consumption is di-

verted from biomass and CO2 into the production of lactate or ethanol.27,48,82,49 It has been argued that

accounting for enzymatic costs necessary to sustain metabolic fluxes can explain the observed switch,82,49

which we include in our model in Equation 4.

Conclusions

To conclude, in this work, we exploit the Maximum Entropy Principle to provide a probabilistic description

of the culturemetabolism that can be used to infer the set of observable average fluxes, as well as a descrip-

tion of the heterogeneity. We showed, exploiting a simple mechanistic model, that at steady state and in

limiting nutrient conditions, two external parameters are enough to capture the same information as the

boundary flux observables. These parameters correspond to two important constraints of the chemostat

environment: one derived from the biomass mass balance, and the other from the limiting nutrient mass

balance. The explanation is consistent with data-driven results found in the literature for the studied con-

ditions. The technique was applied to a dynamical model of the chemostat, where the external conditions

of the culture were linked with the internal cellular metabolism. Also, it was applied to a genome-scale
iScience 25, 105450, December 22, 2022 23



ll
OPEN ACCESS

iScience
Article
metabolic network and tested against experimental data from E. coli cultures. We compare the results of

our techniques with different variants of FBA. Although the quality of the data makes it difficult to define

which techniques provide a better inference of the fluxes, the results suggest that ME is more robust

than the different variants of FBA, which support the hypothesis that the metabolism is not necessarily

well described by an optimum state. Finally, by relying on a readily available set of minimal experimental

quantities describing the system (feed media composition, dilution rate, and steady state cell density), we

think that our results may enlarge the space of applications of ME based metabolic modeling.
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iJR904 GEM Kayser et al.,55 http://bigg.ucsd.edu/static/models/iJR904.mat

Chemostat culture data Nanchen et al.,; Folsom et al.,; Braunstein et al.,73,74,75 N/A

Software and Algorithms

Chemostat_EColi.jl this work https://doi.org/10.5281/zenodo.7186870

julia (v1.7.3) Bezanson et al.,87 https://julialang.org
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Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Roberto Mulet (mulet@fisica.uh.cu).

Materials availability

This study did not generate new unique data.

Data and code availability

FBA was implemented using traditional linear programming and ME distributions were approximated us-

ing an adaptation of the ExpectationPropagation algorithm reported in.36 All necessary raw data and im-

plementation code (written in Julia87) can be found at GitHub (https://github.com/josePereiro/

Chemostat_EColi.jl) or Zenodo (https://doi.org/10.5281/zenodo.7186870). Follow the README.md in-

structions for a complete reproduction of the results of this work.

METHODS DETAILS

E. coli continuous cultivation experimental data

In order to test the predictive power of the different formulations, data of E. coli glucose-limited contin-

uous cultures were taken from literature. Three different data sources were used Kayser73, Nanchen74:

and . Folsom75

E. coli metabolic network

The metabolism of E. coli was modeled using the metabolic network iJR904.73 The network was down-

loaded from http://bigg.ucsd.edu/static/models/iJR904.mat but it is included as raw data in our code

package (see Section 9.2.3). The metabolic network was appropriately contextualized using the available

experiment-specific data in the source publications. If specific biomass composition data was available,

the generic biomass equation in themetabolic network was also updated. Additional enzymatic constraints

were added according to.48 For defining a boundedV space, a few exchanges limits were added according

to the largest values found at.58 Those bounds were non-limiting for all studied experimental conditions

(with respect to the observables) and played the numerical role of ‘‘infinity’’.

Chemostat dynamic simulation

The toy network used on the dynamics comprehends the follow reactions:

1. glyc: ð � 1:0ÞGlc/ð2:0ÞAtp+ ð4:0ÞNADH+ ð1:0ÞAcCoa
2. ppp: ð � 1:0ÞGlc/ð2:0ÞNADH+ ð1:0ÞAcCoa
3. resp: ð � 2:0ÞNADH+ ð � 1:0ÞOxy/ð5:0ÞAtp
4. tac: ð � 1:0ÞAcCoa/ð1:0ÞAtp+ ð4:0ÞNADH
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5. ferm: ð � 1:0ÞAcCoa/ð1:0ÞAtp+ ð1:0ÞAc
6. ua: )ð1:0ÞAc
7. ug: /ð1:0ÞGlc

8. uo: /ð1:0ÞOxy

9. atpm: ð � 8:4ÞAtp/
10. z: ð � 14:7ÞGlc + ð � 59:8ÞAtp/

The biomass requirement was defined as ðYX=GlcÞGlc + ðGAMÞAtp where YX=Glc = 14:7ðmmol3g� 1
CDW Þ is the

biomass/glucose yield58 and GAM = 59:8 ðmmol3g� 1
CDW Þ is the growth associated ATP maintenance de-

mand.88 The non-growth associated ATP maintenance demand ðNGAM = 8:4 ðmmol3g� 1
CDW ÞÞ88 was

modeled at the atpm reaction. All reactions are irreversible (as indicated by the single arrows) and

open, except atpm which both bounds were fixed to one. The only limiting bound was at the glucose ex-

change ðugÞ where , ubg = 20 ðmmol3g� 1
CDW 3h� 1Þ58 the rest was set to an arbitrary large number. The

model has 3� of freedom that we choose to be z, ug and uo.

We performed a dynamic simulation of the chemostat following Equations 13 and 14. For computation, we

discretize V (and so V) using a quantum d so:

z˛ f0;1d;2d;.g
ug ˛ f0;1d; 2d;.g
uo ˛ f0;1d; 2d;.g

Refactoring Equation 13, so we include flux and time discretization we have:

DX


z;ug;uo

�
Dt

= ð1 � εÞzX
z;ug;uo

�

+
ε��Vjd

XV
z0 ;u0g ;u0o

z0X
�
z0;u0

g; u
0
o

�

�DX


z;ug;uo

�
(Equation 16)

where
��Vjd ˛N is the total number of discrete regions contained at V.

Making a similar analysis, we can determine how any external metabolite in the vessel evolves. Here the

case for glucose:

Dsg
Dt

= �
XV

z;ug ;uo

ugX


z;ug; uo

�
+


cg � sg

�
D (Equation 17)

Additionally, giving the values of Xðz;ug;uoÞ we can compute a probability mass function:

P


z;ug; uo

�
= X



z;ug;uo

��
X

where X =
PV

z;ug ;uo
Xðz;ug;uoÞ.

As stated on Section 4.2, Equations 16 and 17 are not sufficiently connected so the simulation respects

the implicit restriction of sg R 0 (on the other hand, so R 0 is guaranty by construction given co
sufficiently large, that is, non-limiting). In order to enforce the constraint, we introduce a transformation

over P such:

P 0
z;ug; uo

�
=

P


z;ug;uo

�

g � ug

�
Ug

�
PV

z0 ;u0g ;u0o

P
�
z0;u0

g;u
0
o

��
g � u0

g

.
Ug

� (Equation 18)

where Ug is ug global maximum and g˛R;g> 1 is a parameter that ensures
PV

z;ug ;uo
ugP

0ðz;ug;uoÞzcgD=X

at constant X. Such transformation is applied over P at every step of the simulation, where sgz 0 andPV
z;ug ;uo

ugPðz;ug;uoÞ>cgD=X (when the moment inequality constraint is about to be broken).
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ME algorithm

The complete set of constraints defining V (see Equations 2, 3 and 4) can be expressed as:

Sv = b
lb% v%ub

where v ˛RN, lb˛RN, ub˛RN, S˛RM3N and b˛RM.

A uniform distribution mapped over V can be written as76:

UðvÞfdðSv � bÞ
YN
n

jðvnÞ

where dðSv �bÞ is a Dirac’s delta with a non-zero value when v solves the linear system (encoding the exact

constraints), and jðvnÞ is an indicator which equals one if lbn % vn % ubn and zero otherwise (encoding the

relaxed constraints).

The extra constraints which define V (see Equations 7 and 8) can be written as:

v% h

where v ˛V and h˛RN is a constant.

Given that V3RN is a convex space and the constraints over V are linear, it can be proven that the distri-

bution over V which maximizes the entropy belong to the exponential family.29 Such exponential take the

following form36:

PðvjbÞfeðbT vÞUðvÞ (Equation 19)

where the vector b˛RN contains the selection coefficients of each reaction flux in the network so v% h

(where v =
R
V
vPðvjbÞdv) is meet, and the entropy is maximized. A remark worth making is that the func-

tional form of (19) is generally intractable, so in this work, an approximated distribution obtained by Expec-

tation Propagation (EP) is used instead.76 Such procedure is explained in details in the next section, and it is

transparent for the current analysis.

In this work, we are trying to enforce two constraints over the mean values, and so, the model has two free pa-

rameters (two non-zero components in the b vector on 19). One, ðbzÞ, is used to restrict the average growth rate

toequal thedilution rate ðz = DÞ, and theother, ðbug Þ, is used to restrict the averageuptakeofglucose in accor-

dance with the glucose supply rate ðug % cgD=XÞ. Equation 19 can be rewritten to make this more explicit:

P
�
v
���bz ; bug

�
feðbz zÞeðbug ugÞUðvÞ

Both moments z and ug depend on the selected values of ðbz;bug Þ. If the corresponding constraint is ful-

filled, the beta is called valid, bvz or bvug respectively. Our goal is to find a pair of valid beta values, so the

entropy is also maximal. In order to do that, we use the following algorithm:
Algorithm 1. ME Algorithm

1: procedure MAXENT2D

2: Init bz and bug at zero

3: Compute z and ug usingPðvj0; 0Þ
4: ifConstraints ðzzDÞ and ðug(cgD=XÞ are fulfilled then

5: return bz and bug
6:

7: Update (grad. descend) bz so constraint ðzzDÞ is fulfilled
8: Compute z and ug usingPðvjbz ;0Þ
9: if Constraints ðzzDÞ and ðug(cgD=XÞ are fulfilled then

10: return bz andbug
11:

12: while Constraints ðzzDÞ and ðug zcgD=XÞ are NOT fulfilled do

13: Update (grad. descend) bz so constraint ðzzDÞ is fulfilled
14: Update (grad. descend) bug so constraint ðug zcgD=XÞ is fulfilled
15: Compute z and ug using Pðv

���bz ;bug Þ
16: return bz and bug
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where each beta update was performed using a simple gradient descent until the given target was

approximated.

As can be noticed, the entropy is not explicitly maximized in any of the gradient descents. But, the algo-

rithm ensures that each returned pair ðbvz ;bvug Þ does specify the distribution with the maximal entropy

from all valid ones. Indeed, the above algorithm is nothing but standard maximization of entropy

(following78), with the only peculiarity that we must also deal with inequality constraints on average values

of the distribution, such as vi % hi for some flux i. The above algorithm is based on the idea that if this

constraint is not satisfied automatically when one solves the ME problem without including it, then the

optimal solution (when considering also this constraint), will satisfy instead the equality constraint vi =

hi . The proof states as follows:

Proof. Let PðvÞ be a distribution over fluxes v ˛V. The entropy:

S½P� = �
Z
V

lnðPðvÞÞPðvÞdv

is a concave functional of P. Let P be any convex space of probability distributions. For instance, P can be

the space of probability distributions with support V. We are interested in finding the solution of a ME

problem, of the form:

maximizeargP ˛P S½P�
subject to:
vi % hi

We denote by Pc and vc (c stand for constrained) the resulting distribution and its average vector. Addi-

tionally, we define Pg and vg to be the solution of the problem if we ignore the average constraint.

Clearly, S½Pg�RS½Pc � because S½Pc � has the additional inequality constraint (g stand for global

maximum). If vgi %hi, both problems have the same solution, that is, Pc = Pg and vc = vg (which is the

case on lines 3 and 6 on the algorithm 1). If vgi > hi, the two solutions necessarily differ. We show that

in this case vci = hi necessarily. Suppose, to the contrary, that vci < hi. This means that Pc is a local opti-

mum of the entropy within P. However, since the entropy is concave and P is a convex space, then Pc

must also be a global optimum, that is, Pc = Pg. But then we have a contradiction, hi < vgi = vci < hi .

Therefore, vci < hi is impossible, and we must have vci = hi, as stated (which is the case for the line 16

on the algorithm 1).
Expectation Propagation

As stated in the last section, an ME distribution directly derived from the definition ofV andV has the form:

PjðvÞfeðbT vÞdðSv � bÞ
YN
n

jðvnÞ

Through Gaussian elimination, we can transform the matrix S to a row echelon form:

Sh½IjG�
where I˛RM3M is an identity matrix and G˛RM3ðN�MÞ.

The structure of the linear constraint induced by the row echelon representation suggests splitting the v

variable vector into two sets of variables: the first M variables (dependent) and a second set of N-M vari-

ables (independent). To do so, we define:

vh


vðdÞ; vðiÞ�

where, as we said, vðdÞ ˛RM and vðiÞ ˛RN�M and

vðdÞ = b0 � GvðiÞ

where b0 ˛RM is the transformed (after G. elimination) version of b.
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We rewrite the probability density function in terms of the new variable definitions:

Pj



vðdÞ; vðiÞ�fe



bðiÞ

T
vðiÞ
�
e


bðdÞ

T
vðdÞ

�
3 d



IvðdÞ +GvðiÞ � b0�

3
YM
m

j


vðdÞ
m

� YN�M

n

j


vðiÞ
n

�
We now can compute the vðiÞ marginal as:

Pj



vðiÞ�fZ h

e


bðiÞ

T
vðiÞ
�
e


bðdÞ

T
vðdÞ

�
3 d



IvðdÞ +GvðiÞ � b0�

3
YM
m

j


vðdÞ
m

� YN�M

n

j


vðiÞ
n

�#
dvðdÞ

Note that the delta makes this integral to have a single non-zero contribution at vðdÞ = b0 � GvðiÞ, so it

solves to:

Pj



vðiÞ�fe



bðiÞ

T
vðiÞ
�
e


bðdÞ

Tðb0 �GvðiÞÞ
�

3
YM
m

j


b0
m � �

GvðiÞ

m

� YN�M

n

j


vðiÞ
n

� (Equation 20)

The indicators priors j makes the marginals of this distribution hard to compute, so we instead use the

approximate multivariate Gaussian fðv; a;dÞ with mean vector ahðaðdÞ; aðiÞÞ and variance vector d h

ðdðdÞ;dðiÞÞ to formulate an approximated join distribution:

Pf



vðiÞ�fe



bðiÞ

T
vðiÞ
�
e


bðdÞ

Tðb0 �GvðiÞÞ
�

3f
�
b0 � GvðiÞ; aðdÞ;dðdÞ

�
f
�
vðiÞ; aðiÞ;dðiÞ

� (Equation 21)

which is a multivariate Gaussian distribution that can be expressed in standard form as:

Pf



vðiÞ�

fexp
h

vðiÞ � vðiÞ�TSðiÞ� 1


vðiÞ � vðiÞ�i
SðiÞ

=
�
DðiÞ +GTDðdÞG

�� 1

vðiÞ = SðiÞ
�
GTDðdÞ
b0 � aðdÞ

�
+DðiÞaðiÞ � GTbðdÞ +bðiÞ

�
where DðdÞ ˛RM3M and DðiÞ ˛RðN�MÞ3ðN�MÞ are matrices where all entries are zero and the diagonals

equals 1=dðdÞ and 1=dðiÞ receptively.

The parameters of the dependent variables are easily derived from the independents as:

SðdÞ = GSðiÞGT

vðdÞ = b0 � GvðiÞ

Now, we are in conditions to apply Expectation Propagation as described in76 to find the parameters a and

d of the Gaussian priors that better approximate (21) to (20).
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