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THE EQUATIONS OF

EXTENDED MAGNETOHYDRODYNAMICS

NICOLAS BESSE AND CHRISTOPHE CHEVERRY

Abstract. Extended magnetohydrodynamics (XMHD) is a fluid plasma model [14] generalizing

ideal MHD by taking into account the impact of Hall drift effects [23] and the influence of electron

inertial effects [26]. XMHD has a Hamiltonian structure which has received over the past ten years a

great deal of attention among physicists [1, 8, 11, 25, 32], and which is embodied by a non canonical

Poisson algebra on an infinite-dimensional phase space. XMHD can alternatively be formulated as

a nonlinear evolution equation. Our aim here is to investigate the corresponding Cauchy problem.

We consider both incompressible and compressible versions of XMHD with, in the latter case, some

additional bulk (fluid) viscosity. In this context, we show that XMHD can be recast as a well-posed

symmetric hyperbolic-parabolic system implying pseudo-differential operators of order zero acting

as coefficients and source terms. Along these lines, we can solve locally in time the associated initial

value problems, with moreover a minimal Sobolev regularity. We also explain the emergence and

propagation of inertial waves [2, 32].

Keywords. Hyperbolic-parabolic symmetric systems of conservation laws; Initial value problem

for nonlinear systems of PDEs; Partially elliptic systems; Compressible and incompressible fluid me-

chanics; Plasma physics; Hall, Inertial and Extended Magnetohydrodynamics; Pseudo-differential

operators; Weyl quantization.
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1. Introduction

Extended magnetohydrodynamics (XMHD in abbreviated form) is a system of nonlinear
evolution equations in the (3 + 1)-dimensional spacetime R

3
x ×Rt, which was first initiated

by Lüst [26]. It can be obtained [1] from a two-fluid model (electrons plus ions), under the
assumptions of quasi-neutrality and smallness of the electron mass compared to the ion
mass, by imposing an auxiliary ordering on the equations of motion; it can be recovered
from kinetic theory [18]; or, starting with a Lagrangian picture carried by some adequate
two-fluid functional, it can be derived from action principles [8, 21].

Extended MHD can be formulated as a (non-canonical) Hamiltonian system [1, 11] which
subsumes ideal MHD, Hall MHD, as well as inertial MHD models. It is equipped with a non
canonical Poisson bracket [11], a conserved energy [22], Casimir invariants and topological
properties which are investigated in [15, 25] and references therein.

Extended MHD is motivated by its great importance in astrophysics and geophysics. It has
proven to be useful in several contexts, like solar wind [2] and neutron stars [3]. It is also
driven by nuclear fusion science since the Hall effect and the electron inertia are currently
identified [15, 16] as potential reconnection mechanisms in collisionless plasmas. Now,
reconnection is a dynamical process. Hence, the importance of developing the Eulerian
approach in parallel to the aforementioned Lagrangian viewpoint. This is precisely the
position of this article, namely to explain how the XMHD evolution equations can be
solved starting from initial data.

Normalizing variables in the standard Alfvén units, with the convention ∇ ≡ ∇x, extended
MHD is built with the continuity equation (on the total mass density ρ and the center-of-
mass velocity v),

(1.1) ∂tρ + ∇ · (ρ v) = 0 ,

and with the equation for the momentum density

(1.2) ρ
(
∂tv + (v · ∇)v

)
+ ∇p −  × B + d2

e ( · ∇)(/ρ) = 0 ,

where p : R+ → R is a smooth function of ρ representing a pressure, B is the magnetic
field and  is the current density. The two equations (1.1) and (1.2) must be completed
with the Maxwell-Ampère equation (where the displacement current ∂tE can be dropped
under the assumption that our system is not relativistic)

(1.3)  = ∇ × B ,

with the Maxwell–Faraday equation

(1.4) ∂tB + ∇ × E = 0 ,

and with a generalized Ohm’s law [22], which gives the electric field E in terms of the other
unknowns ρ, v, B,  and the electron pressure pe according to (see [1, 15])

(1.5)
E + v × B = − di

ρ
∇pe + di



ρ
× B − di d2

e

( 

ρ
· ∇
) 

ρ

+ d2
e

[
∂t

( 

ρ

)
+ (v · ∇)

( 

ρ

)
+
( 

ρ
· ∇
)
v
]

.
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The above two dimensionless parameters de and di are independent. They are non-negative
(de ≥ 0 and di ≥ 0). They represent respectively the normalized electron and ion skin
depths. In practice (see Remark 5), they are often found to be adjusted in such a way that
0 ≤ de ≤ di ≪ 1. Knowing that, the relation (1.5) appears clearly as a perturbation of the
ideal Ohm’s law (E + v × B = 0).

In Subsection 1.1, we recall the state of knowledge concerning the mathematical results
about ideal, Hall and extended MHD. In Subsections 1.2 and 1.3, we present our main
outcomes concerning respectively the incompressible and compressible frameworks. This
is also an occasion to outline the plan of the text and to emphasize some key ideas.

1.1. Mathematical background. Exploiting (1.3), we can express  in terms of B, and
replace  inside (1.2) and (1.5) accordingly. Then, we can substitute the electric field E
thus obtained at the level of (1.4). When doing this, we can collect the quantities which
undergo a time derivative, namely

∂tB + d2
e ∇ × ∂t

( 

ρ

)
= ∂t

[
B + d2

e ∇ ×
(∇ × B

ρ

)]
.

By this way, the expression

(1.6) B∗ = B + d2
e ∇ ×

(∇ × B

ρ

)
.

acquires the status of a dynamical variable. The notation B∗ is very common [1, 14, 25].
From there, the unknowns are ρ, v and B∗, while the constitutive relation (1.6) is aimed
to express B in terms of B∗. After some calculations, or see directly the three equations
(1)-(5)-(6) in [25], we obtain the version of XMHD which is highlighted in [1, 11, 25] and
which is delivered in the form

(1.7)





∂tρ + (v · ∇)ρ + ρ ∇ · v = 0 ,

∂tv + (v · ∇)v +
∇p

ρ
+ B∗ × ∇ × B

ρ
+ d2

e ∇
( |∇ × B|2

2 ρ2

)
= ν d2

e ∇(∇ · v) ,

∂tB
∗ + ∇ ×

(
B∗ ×

(
v − di

∇ × B

ρ

))
+ d2

e ∇ ×
(

(∇ × v) × ∇ × B

ρ

)
= 0 .

In physics textbooks, these equations are often supplemented by

(1.8) ∇ · B∗ = 0 , ∇ · B = 0 .

The equations (1.6) and (1.7) are derived (for ν = 0) in the contributions [1, 2, 3, 11, 22, 25]
which mainly focus on the Hamiltonian formalism while the Eulerian approach is not really
addressed. Individually, the equation (1.7) does not fall into usual mathematical categories
and its well-posedness does not appear to have been clarified. In fact, the system (1.6)-(1.7)
looks like a quasilinear equation with various second order terms whose different roles need
to be identified. The part ν d2

e ∇(∇ · v) where ν > 0 represents a bulk (fluid) viscosity.
It clearly provides some partial ellipticity on the component v, namely a control on ∇ · v.
But the other (nonlinear) second order terms (which are driven by de ≥ 0 and di ≥ 0) do
not. Let us consider what can be said about the influence of de and di.



4 N. BESSE AND C. CHEVERRY

First, assume that de = 0. Then, from (1.6), we deduce that B∗ = B, and two situations
may be distinguished. For di = 0, we recover the equations of compressible MHD [27],
whose theory is today (almost) completed. For di > 0, we incorporate the Hall current
term coming from the third equation of (1.7) which (for ρ ≡ 1) reduces to the contribution
di ∇ ×

(
(∇ × B) × B

)
. In particular, when ρ ≡ 1 and ∇ · v = 0, we find the incompressible

Hall-MHD system which has been introduced by Lighthill [23].

The situation de = 0 has been much studied by mathematicians in recent years, see for
instance [6, 10, 24, 38]. This has been achieved in the presence of dissipative terms, namely
a shear (fluid) viscosity (µ ∆v with µ > 0) and/or a magnetic resistivity (η ∆B with η > 0).
As soon as η > 0, the second order terms with di in factor can be absorbed, and the system
becomes locally well-posed. But when η = 0, Hall-MHD equations are today known to be
strongly ill-posed [7], even in Gevrey spaces [19], and even if some kinematic viscosity µ ∆v
with µ > 0 is added.

In this text, as prescribed by physicists [1, 11, 22, 25, 26], we work with de > 0. This
passage from de = 0 to de > 0 is very significant since it allows to include inertial effects
that are fundamental in plasma dynamics. We make progress in two directions:

• Looking at the content of (1.7), this improvement (from de = 0 to de > 0) is already quite
an achievement. Indeed, the situation de > 0 seems more complicated: the symmetric part
of ideal MHD is broken (since B is substituted for B∗); the Hall term (with its potential
instabilities [7, 19]) is still present; and there are extra nonlinear second order terms without
evident sign conditions. Clearly, supplementary derivative losses may be expected, while
the introduction of de does not furnish any dissipation. That is probably why the Cauchy
problem associated with (1.7) has not yet (to our knowledge) been investigated.

• In line with the preceding mathematical approaches, we use a touch of dissipation. We
impose a bulk (fluid) viscosity ν d2

e > 0. This condition is not demanding. In particular, it
disappears when the flow is incompressible. The key highlight is, unlike [6, 10, 24, 38], the
absence of shear (fluid) viscosity (µ ∆v with µ > 0) and magnetic resistivity (η ∆B with
η > 0). This means that the Hall instabilities [7, 19] can (locally in time) be compensated
by inertial effects (de > 0) without resorting to such additional dissipative terms.

The question is why ? Our claim is that (1.7) becomes locally well-posed once de > 0 and
(in the compressible case) once ν > 0 for the following two principal reasons:

- About the influence of de > 0. The analysis of derivative losses (when de = 0) does
not include the constitutive relation (1.6) doing everything completely differently
by modifying the role of B from B ≡ B∗ (when de = 0) to some another B 6≡ B∗

(when de > 0) with a gain of derivatives. Despite appearances, by a change of
unknowns, the system (1.7) can be recast as a (foliation of) well-posed hyperbolic-
parabolic systems (whose coefficients and source terms take the form of zero order
pseudo-differential operators). In so doing, the inertial terms (those with de > 0
in factor) contribute to some (almost) symmetric structure, involving completely
new features. In this interpretation, they do not provide second order dissipative
perturbations. Instead, they contribute to the appearance of inertial waves.
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- About the influence of ν > 0. The introduction of a volume (fluid) viscosity (in
place of a magnetic resistivity) is sufficient (and seems also necessary as in other
contexts [31]) to absorb (for reasons like in [20]) the problematic contributions that
remain in the compressible framework, when performing energy estimates.

As a consequence:

- We will involve changes of variables that become singular when de ∈ R
∗
+ goes to

zero. Throughout the text, it is therefore essential to work with de > 0. Keep in
mind that there is no smooth passage from the case de > 0 to the case de = 0.
For instance, in (1.6), B is expressed in terms of B∗ through a (partially) elliptic
operator which will prove to be (on some appropriate subspace) of order −2 when
de > 0, and of order 0 when de = 0.

- It is essential to assume that ν > 0 when dealing with the compressible framework.

Knowing that de > 0, we can prefer a rescaled version of (1.7) that makes us forget the
role of de. To this end, we multiply x, v, B∗ and B by d−1

e , while p is multiplied by d−2
e .

In other words, we work with

d :=
di

de
, x :=

x

de
, v :=

v

de
, B∗ :=

B∗

de
, B :=

B

de
, p :=

p

d2
e

.

With these conventions, we find

(1.9)





∂tρ + (v · ∇)ρ + ρ ∇ · v = 0 ,

∂tv + (v · ∇)v +
∇p

ρ
+ B∗ × ∇ × B

ρ
+ ∇

( |∇ × B|2
2 ρ2

)
= ν ∇(∇ · v) ,

∂tB
∗ + ∇ ×

(
B∗ ×

(
v − d

∇ × B

ρ

))
+ ∇ ×

(
(∇ × v) × ∇ × B

ρ

)
= 0 ,

together with

(1.10) B∗ = B + ∇ ×
(∇ × B

ρ

)
.

Let ρ̄ ∈ R
∗
+ be a constant positive background density. At the initial time t = 0, we impose

(1.11) (ρ, v, B∗)(0, ·) = (ρ̄ + ρ0, v0, B∗
0) .

We work away from vacuum, say with

(1.12) 0 < ρ̄/2 ≤ ρ̄ + ρ0(x) .

Note that the parameter de is no more visible at the level of (1.9)-(1.10). It is in fact
hidden behind the definition of d and behind the preceding change of scales. It keeps of
course some influence. Indeed, let (ρ, v, B∗) be a solution to (1.9)-(1.10). We can adjust di

in such a way that di = d de for a fixed d ≥ 0, and consider that de can vary. Coming back
to the initial variables, we find that

(1.13) (ρ, v, B∗)(t, x) := (ρ, de v, de B∗)(t, x/de) , de ∈]0, 1] ,
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is a family of solutions to (1.7) which belongs (when de > 0 goes to 0) to a perturbative
concentrating regime (the periodic regime will not be investigated here) near the constant
solution (ρ̄, 0, 0). Indeed, the velocity and magnetic components (v and B∗) are of small
amplitude de while the profiles are in Hs (and thus they are decreasing functions, typically
compactly supported). Retain that de has a significant impact at the level of (1.7), when
looking at (ρ, v, B∗). However, de will not be apparent in our statements (which are uniform
with respect to de) since they are formulated in terms of (1.9)-(1.10).

As usual, we denote by F the Fourier transform and by

Hs := F−1(〈ξ〉s F L2) , s ∈ R , 〈ξ〉 := (1 + |ξ|2)1/2 ,

the standard Sobolev–Bessel potential space.

1.2. The incompressible situation. This entails looking at the pressure p : R+ → R as
a scalar function that plays the role of a Lagrange multiplier. This also requires to start
with initial data as in (1.11) with ρ0 = 0 as well as

(1.14) ∇ · v0 = 0 , ∇ · B∗
0 = 0 .

Equivalently (see Subsection 2.1), the incompressible situation implies that:

i) The density ρ is a positive constant, say (without limiting the generality)

(1.15) ρ = ρ̄ = 1 .

ii) All the vector fields v, B∗ and B are solenoidal. They belong to Ds with

Ds :=
{

D ∈ Hs(R3;R3) ; ∇ · D = 0
}

.

In other words, we work with

(1.16) ∇ · v = 0 , ∇ · B∗ = 0 , ∇ · B = 0 .

iii) The set (1.9) of equations reduces to

(1.17)

{
∂tv + (v · ∇)v + ∇p + B∗ × (∇ × B) = 0 ,

∂tB
∗ + ∇ ×

(
B∗ × (v − d ∇ × B)

)
+ ∇ ×

(
(∇ × v) × (∇ × B)

)
= 0 .

iv) The constitutive relation is replaced by

(1.18) B = (Id − ∆)−1B∗ .

Theorem 1. [Local smooth wellposedness for incompressible XMHD] Fix the initial data
such that

(1.19) (v, B∗)(0, ·) = (v0, B∗
0) ∈ Ds(R3;R3) × Ds−1(R3;R3) , s > 5/2 .

Then, we can find some time T > 0 depending only on the Hs×Hs−1-norm of (v0, B∗
0) such

that the Cauchy problem built with (1.16)-(1.17)-(1.18) together with the initial condition
(1.19) has a unique local solution on [0, T ], which is smooth in the following sense

(1.20) (v, B∗, B) ∈ C
(
[0, T ]; Ds(R3;R3) × Ds−1(R3;R3) × Ds+1(R3;R3)

)
.
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In (1.20), the level Hs of regularity for v does not match with the one Hs−1 obtained
for the dynamical variable B∗. This is because the presentation (1.17), though inherited
from physics, is not suitable from the perspective of initial value problems. This explains
probably why things have not yet worked in this way. To remedy this, we transform in
Section 2 the equations of (1.17). More precisely, we incorporate a new equation on the
vorticity w := ∇×v in order to obtain a system on (w, B∗) called the vorticity formulation.
Then, we derive energy estimates up to the proof of Theorem 1 (for s > 7/2).

1.3. The compressible framework. We present below our result concerning (1.9)-(1.10).
As a prerequisite, we assume a barotropic equation of state. In other words, the pressure p
is only a function of the density ρ. It is prescribed by a smooth given function p : R+ → R

whose derivative p′ is positive.

Theorem 2 (Local smooth wellposedness for compressible XMHD). Assume that ν > 0,
and fix any s > 5/2. Select some initial data as in (1.11)-(1.12), with moreover

(1.21) (ρ0, v0, B∗
0) ∈ Hs(R3;R)×Hs(R3;R3)×Hs−1(R3;R3) , ∇·B∗

0 ∈ Hs(R3;R3) .

Then, we can find some time T > 0 which is proportional to the parameter ν and inversely
proportional to the Hs × Hs × Hs−1 × Hs-norm of (ρ0, v0, B∗

0 , ∇ · B∗
0) such that the Cauchy

problem built with (1.9)-(1.10) together with (1.11)-(1.12)-(1.21) has a unique local solution
on [0, T ], which is smooth in the following sense

(1.22) (ρ, v, B∗, B) ∈ C
(
[0, T ]; Hs(R3;R)×Hs(R3;R3)×Hs−1(R3;R3)×Hs+1(R3;R3)

)
.

Let us suppose, as it is often the case in practice, that 0 < de ≤ di ≪ 1. Then, our analysis
indicates that the system (1.7) involves a mix of three interconnected regimes:

- For low frequencies |ξ| . 1, the solutions behave (approximately) as provided for
by compressible magnetohydrodynamics [4, 27, 35].

- For intermediate frequencies d−1
i . |ξ| ≪ d−1

e , the Hall effects come into play
[6, 10, 24, 23, 38], and various amplification mechanisms become to be implemented.
This includes a step towards the singularity formations detected by mathematicians
[7, 19] and the tearing modes studied by physicists [13, 15] in the perspective of
collisionless magnetic reconnection. However, in the weakly nonlinear regime (1.13)
and as long as the time remains finite, these instabilities do not induce the explosion
(of norms) and they do not jeopardize the construction of solutions.

- For large frequencies d−1
e . |ξ|, inertial aspects take the place and new speeds

(modes) of propagation appear. This means the emergence of inertial waves (see
Paragraph 2.3.2), whose impacts have been already observed by physicists [2, 32]
but which do not seem to have been mathematically well identified before.

It should be borne in mind that Theorem 1 is more accessible than Theorem 2. To some
extent, it can be viewed as a simplified version of it. This is why the analysis begins
in Section 2 with completing the incompressible situation. This makes the basic ideas
more accessible. This also furnishes clear guidelines in the perspective of the compressible
framework which is investigated in Section 3.
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Section 3 follows the same steps as in Section 2 but it faces new challenges:

- On the one hand, in comparison with (1.18), due to the variations of ρ, it is more
difficult to exhibit the properties of (partial) ellipticity which are hidden behind
the constitutive relation (1.10), see Subsection 3.1.

- On the other hand, the incompressible transformation must be adapted to the
compressible framework, see Subsection 3.2. We still add the vorticity w = ∇ × v.
Besides, we implement the divergence ∇ · v and one order derivatives of ρ. The
system thus obtained is called the compressible vorticity formulation.

- In subsection 3.3, we remark that the divergence of B∗ is a preserved quantity.
Taking advantage of this information, we show that there is no loss of hyperbolicity
and that energy estimates become available. This is the entry point to the proof
of Theorem 2 (at least for s > 7/2).

Another salient point should be reported. When dealing in space dimension d = 3 with
Sobolev solutions to quasilinear systems, the restriction s − 1 > 1 + (d/2) = 5/2 (or
equivalently s > 7/2) on the component B∗ would be expected [27, 35]. In Theorems 1

and 2, observe the presence of the relaxed condition B∗ ∈ H(3/2)+ instead of the usual
constraint B∗ ∈ H(5/2)+. There is a gain of one degree of regularity which is justified in
Section 4. To this end, instead of looking at derivatives of (ρ, v), we integrate the magnetic
field B∗. As a matter of fact, we consider the magnetic potential A∗ which is such that
∇ × A∗ = B∗ and ∇ · A∗ = 0. This leads to the potential formulation.

The potential formulation furnishes a self-contained system on (ρ, v, A∗), which can be
studied independently and which furnishes different types of supplementary information.
This corresponds to the most completed approach but also in some aspects to the most
challenging. This is why it is explained lastly. In fact, the potential formulation falls
(modulo adaptations) under the scope of Kawashima-Shizuta theory [20]. This leads to
the optimal regularity results (with s > 5/2) stated in Theorems 1 and 2.

Section 5 is to exhibit the various types of inertial waves that can arise, and to study their
properties. To this end, we first select special solutions (constant, in the form of Beltrami
fields, corresponding to null point configurations, two dimensional, or even moving). Then,
we look at the associated linearized equations and we focus on the regime of high frequencies
(with d−1

e . |ξ|). By this way, we can highlight the presence of inertial dispersion relations
which are of particular interest.

There is a short Appendix, in Section 6. It is about the div-curl system which appears
repeatedly throughout the text.

Given a state variable U , we often employ the notation U⋆
⋄ . The superscript ⋆ ∈ {i, c} is to

indicate that U is related respectively to the incompressible and compressible situations.
The subscript ⋄ ∈ {v, p} (where v and p must not be confused with the velocity v and the
pressure p) refers to the vorticity and potential formulations. We reserve the rsfs font P

for operators, with a symbol denoted by the standard font P , so that P = P (Dx). We
often put the subscript ∗ ∈ Z to specify that P⋆

∗ = P ⋆
∗ (Dx) is of (maximal) order ∗, while

the superscript ⋆ ∈ {i, c} may still be incorporated for the same reasons as before.
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2. The incompressible situation

In Subsection 2.1, we introduce the incompressible equations and some of its principal
features. In Subsection 2.2, we exhibit properties of ellipticity lying behind (1.18). In
Subsection 2.3, we perform a dependent change of unknowns which transforms (1.17). In
Subsection 2.4, we derive energy estimates in order to show Theorem 1.

2.1. The incompressible equations. The incompressible situation is strongly linked to
the system (1.9)-(1.10) of origin. To see how, starting from (1.9)-(1.10), we have to deduce
(1.15), (1.16), (1.17) and (1.18). To this end, we consider below successively the indents
i), · · · , iv) of Subsection 1.2.

i) Since ∇·v = 0, the first equation of (1.9) implies that the density ρ is just advected
along the characteristic curves generated by the vector field v. Hence it remains
constant, say ρ = ρ̄ = 1, if initially ρ0 = 0.

ii) As already explained, the term ∇p plays the role of a Lagrange multiplier which
ensures the propagation of the constraint ∇ · v = 0. On the other hand, it is
clear that the divergence-free condition imposed inside (1.14) on B∗ at time t = 0
is propagated via the divergence of the third equation of (1.9), and that it is
transmitted to B through (1.10).

iii) We can always incorporate the part |∇×B|2/2 ρ2 to the function p. Then, knowing
that ρ = 1 and ∇ · v = 0, the system (1.9) is exactly the same as (1.17).

iv) The link between B and B∗ is here simplified into B∗ = B + ∇ × (∇ × B). Now,
since ∇ · B = 0, we have ∇ × (∇ × B) = −∆B. After inversion, this yields (1.18).

Before proceeding, we remark that there is a conserved quantity which may be expressed
in terms of (v, B).

Lemma 3. [A conserved quantity] incompressible XMHD preserves the energy

(2.1) E i :=
1

2

ˆ

R3

(
|v|2 + |B|2 + |∇ × B|2

)
dx .

Proof. Take the L2-scalar product of the first equation of (1.17) with v. Using integration
by parts and the condition ∇ · v = 0, all terms vanish except B∗ × (∇ × B) giving

(2.2)
d

dt

(
1

2

ˆ

R3

|v|2 dx

)
+

ˆ

R3

v ·
(
B∗ × (∇ × B)

)
dx = 0 .

Take the L2-scalar product of the second equation of (1.17) with B (but not B∗). Perform
integration by parts (or exploit that the curl operator is self-adjoint), to see that the two
triple products vanish. There remains

(2.3)
d

dt

(
1

2

ˆ

R3

(
|B|2 + |∇ × B|2

)
dx

)
+

ˆ

R3

(∇ × B) · (B∗ × v) dx = 0 .

Summing (2.2) and (2.3), we obtain that dE i/dt = 0 as expected. �

Remark 4. [Similarities with Leray–α models] Incompressible XMHD equations may bear
some resemblance to Lagrangian averaged (or Leray–α) Euler equations [17, 29, 30], where



10 N. BESSE AND C. CHEVERRY

a parameter α is introduced and represents the spatial scale below which the dymanics are
averaged. But if the parameter de can be seen (to some extent) as playing the part of α in
Lagrangian averaged α–models, its introduction is driven by other considerations related to
two-fluid models [14, 18] and its handling is completely different.

We also come back to the introduction of d, and its significance.

Remark 5. [Comparison of electron and ion skin depths] Let ωpi and ωpe be the ion and
electron plasma frequencies. The ratio between di and de can be expressed in terms of
plasma parameters according to

d =
di

de
=

ωpe

ωpi
≃ 42, 72

√
ne√
ni

√
µ

Z
,

where ni and ne are the number densities of ions and electrons, µ = mi/mp is the ion
mass (expressed in units of the proton mass), and Z = qi/e equals to the atomic number.
In most plasmas, the parameters de and di are such that de ≪ di or even de ≤ 0, 1 × di.
However, these two parameters are completely independent, and there are situations (related
to magnetic reconnection, see the paragraph "Inertial MHD" in [25]-p.2402) where di and
de could be comparable, with di ∼ de.

2.2. The incompressible constitutive relation. The operator

∇ × ∇× : H2(R3;R3) → L2(R3;R3)

is not elliptic of order 2, since it has a nonzero kernel. To avoid this difficulty, it suffices
to restrict its action on a suitable subspace.

Lemma 6. [Underlying ellipticity when passing from B∗ to B through the relation (1.18)]
The differential operator

(2.4) L
i
2 := Id + ∇ × ∇× : Ds → Ds−2 , s ∈ R ,

is bijective and elliptic of order 2. Its inverse (L i
2)−1 : Ds−2 → Ds takes the form of a

Fourier multiplier which is elliptic of order −2.

Proof. Let
(
e1(ξ), e2(ξ), e3(ξ)

)
be a smooth orthonormal frame on R

3\{0} which is adjusted
such that e1(ξ) = ξ/|ξ|. Let O0(ξ) be the orthogonal matrix whose column vectors are e1(ξ),
e2(ξ) and e3(ξ). In other words

(2.5) O0(ξ) :=
(
e1(ξ), e2(ξ), e3(ξ)

)
, e1(ξ) = ξ/|ξ| , ei(ξ) · ej(ξ) = δij .

Since ξ × e1(ξ) = 0 whereas ξ × ξ × ej(ξ) = −|ξ|2 ej(ξ) for j ∈ {2, 3}, we have

(2.6) F (Id + ∇ × ∇×) F−1 = O0(ξ) Di
2(ξ) O0(ξ)−1, Di

2(ξ) :=




1 0 0

0 〈ξ〉2 0

0 0 〈ξ〉2


.

In other words, the action of Id + ∇ × ∇× on the whole space H2(R3;R3) is unitary
equivalent through a conjugation by O0 := O0(Dx) to the diagonal operator D i

2 := Di
2(Dx).

https://en.wikipedia.org/wiki/Plasma_parameters
https://en.wikipedia.org/wiki/Number_density
https://en.wikipedia.org/wiki/Plasma_parameters
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Introduce the L2-projectors P and Q, where Q := Id − P and P = P (Dx) is given by
the Leray projector whose matrix valued symbol is given by

(2.7) P (ξ) v :=
(
e2(ξ) · v

)
e2(ξ) +

(
e3(ξ) · v

)
e3(ξ) .

Recall that the operator L i
2 is defined by the restriction of its action to Ds, while the set

Ds may be characterized by

(2.8) Ds := P Hs(R3;R3) .

This implies that L i
2 does not see the eigenvalue 1 of Di

2(ξ). It just acts on the Fourier
side according to the multiplier

(2.9) F L
i
2 F−1 =

(
F (Id + ∇ × ∇×) F−1)

|F Ds ≡ 〈ξ〉2 Id , L
i
2 ≡ Id − ∆ ,

which is bijective and elliptic of order 2. From (2.9), we infer that

F (L i
2)−1 F−1 = 〈ξ〉−2 Id , (L i

2)−1 ≡ (Id − ∆)−1 .

This clearly confirms that resorting to (L i
2)−1 allows to gain two derivatives. �

With the above convention, we can deduce from (1.18) the incompressible constitutive
relation

(2.10) ∇ × B = K
i

−1 B∗ , K
i

−1 := (L i
2)−1 ∇× ≡ K

i
−1P .

This relation and Lemma 6 are essential because they allow to interpret all terms implying
∇ × B inside (1.17) as acting on B∗ like operators of order −1 (instead of 1 when de = 0).
This means that the expressions B and B∗ do not play similar roles. At the same time,
this invites to reconsider the hierarchy of terms when looking at (1.17). With this in mind,
in the next subsection, we apply the curl operator on the first equation of (1.17).

2.3. Transformation of the incompressible equations. The purpose of this subsection
is twofold. First, in Paragraph 2.3.1, we exploit (1.16) and (1.18) in order to recast (1.17).
Secondly, in Paragraph 2.3.2, we give a concrete meaning to the notion of inertial waves.

2.3.1. The incompressible vorticity formulation. The point is to implement the vorticity
w := ∇ × v as a new unknown. From (6.2) and (6.3), we can extract a derived system on
U i
v := (w, B∗), which is

(2.11)

{
∂tw + (v · ∇)w + (K i

−1 B∗ · ∇)B∗ = S iw
v0 U i

v ,

∂tB
∗ +

(
(v − d K

i
−1 B∗) · ∇

)
B∗ +

(
K

i
−1 B∗ · ∇

)
w = S

iB∗

v0 U i
v .

In (2.11), the velocity v must be deduced from w through the Biot-Savart law (6.5), while
the operator S i

v0 = (S iw
v0 , S iB∗

v0 ) is given by

S
iw
v0 U i

v := (B∗ · ∇)K i
−1 B∗ +

3∑

i=1

wi Mi
i(w) ,

S
iB∗

v0 U i
v := − d (B∗ · ∇)(K i

−1 B∗) + (w · ∇)(K i
−1 B∗) +

3∑

i=1

B∗
i Mi

i(w) ,



12 N. BESSE AND C. CHEVERRY

with Mi
i defined as in Lemma 23. By combining Lemmas 6 and 23, we obtain that S i

v0

is a (non linear) pseudo-differential operator of order zero. Hence, it can be viewed as a
source term. Observe that B has disappeared from (2.11). There is no longer any need for
(1.18), whereas (1.16) becomes

(2.12) ∇ · w = 0 , ∇ · B∗ = 0 .

For 0 < de ≪ 1, the inertial modifications appear at the level of (1.7) as perturbative
terms. As such, the impact of inertial terms could seem to be marginal. But this is not so:

- At high frequencies (for |ξ| ≥ 1/de), as suggested by (1.9), the inertial contributions
compete with the other influences.

- The constitutive relation (1.6) induces (through Lemma 6) a complete reordering of
the unknowns. The change is brutal from de = 0 to de > 0. Once de > 0, the terms
which manage in standard MHD the Alfven and Magnetosonic waves are relegated
inside the source term S i

v0 U i
v, where they play the role of zero order contributions.

Still, they participate to lower order dispersive effects.
- In XMHD, new terms become predominant. Emphasis is given to the symmetric

part which, in the left part of (2.11), involves K i
−1.

In other words, the passage from (1.7) to (1.9), and especially from (1.9) to (2.11), is very
singular (there is no smooth transition from de = 0 to de > 0). It makes appear the
(hidden) hyperbolic structure of XMHD. The consequence in terms of the occurrence and
organization of waves is as explained just after Theorem 2.

Remark 7. [Energy spectra] In [2, 32], using a Kolmogorov-like analysis and hypotheses
(regarding the energy and helicity cascades), the authors obtain the energy spectra of XMHD
in different (ideal, Hall and inertial) regimes. This study confirms that many types of waves
overlap in XMHD, while inertial features can overtake at high frequencies.

2.3.2. Inertial waves. Excluding for the moment the coupling induced by the source terms
and assuming that di = 0 (so that d = 0), the system (2.11) reduces to

(2.13)

{
∂tw + (v · ∇)w + (K i

−1 B∗ · ∇)B∗ = 0 ,

∂tB
∗ + (v · ∇

)
B∗ +

(
K

i
−1 B∗ · ∇

)
w = 0 .

Noting B0
± := B∗ ± w, this is the same as a nonlinear coupled system of two transport

equations, namely

∂tB
0
± + (v · ∇)B0

± ± 1

2

(
K

i
−1 (B0

+ + B0
−) · ∇

)
B0

± = 0 .

We can immediately recognize two distinct eigenvalues (which provide a first access to
inertial waves), each of multiplicity 3, which are

(2.14) λ± ≡ λ±(v, B0
+, B0

−, ξ) := v · ξ ± 1

2
K

i
−1 (B0

+ + B0
−) · ξ .

These eigenvalues λ± are formally genuinely nonlinear in the sense that

(B̃0
± · ∇B0

±
)λ±(v, B0

+, B0
−, ξ) = ±1

2
K

i
−1 B̃0

± · ξ 6≡ 0 .
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It turns out that the above elementary diagonalisation procedure can be generalized to the
whole system. Indeed, with

(2.15) Bd
± := B∗ + κd

± ∇ × v , vd
± := v − κd

∓ ∇ × B , κd
± :=

1

2

(
d ±

√
d2 + 4

)
,

the incompressible XMHD equations (1.17) can be recast as

(2.16) ∂tB
d
± + ∇ × (Bd

± × vd
±) = 0 .

The formulation (2.15)-(2.16) is implicit in [2, 25]. From (2.15), following the preceding
lines, we can extract

(2.17) vd
± = ∇ × (−∆)−1

(
Bd

+ − Bd
−

κd
+ − κd

−

)
− κd

∓ ∇ × (1 − ∆)−1
(

κd
+ Bd

− − κd
− Bd

+

κd
+ − κd

−

)
.

In other words, incompressible XMHD can also be seen as two incompressible transport
equations on Bd

± with velocities vd
±, where the latter are given in terms of Bd

± by the

generalized Biot–Savart type laws (2.17). The unknowns Bd
± = B∗ + κd

± w are made of
adequate linear combinations of B∗ and w, together with a link to v and therefore v± (in
order to close the system). As in (2.11), the unknowns are in fact the components of U i

v.
As in (2.11), the system (2.16) completed with (2.17) is a quasilinear symmetric system
whose both coefficients and source terms take the form of zero order pseudo-differential
operators. Working with (2.13) or (2.16) are two equivalent options. In this text, we select
the approach through (2.13).

At the level of (2.11), in terms of polarization, the influence of v and di is just diagonal,
while the impact of de is not. Let us now assume that d > 0. Select some special solution
(w̄, B̄∗) to the system (2.13). We can consider the (one order part of the) linearized
equations along (w̄, B̄∗) associated with (2.11), which are

(2.18)

{
∂tẇ + (v̄ · ∇)ẇ + (K i

−1 B̄∗ · ∇)Ḃ∗ = 0 ,

∂tḂ
∗ +

(
(v̄ − d K

i
−1 B̄∗) · ∇

)
Ḃ∗ +

(
K

i
−1 B̄∗ · ∇

)
ẇ = 0 .

Definition 8. The inertial waves (related to the choice of w̄ and B̄∗) are carried by the
two eigenvalues λ±(ξ) which are each with multiplicity 3 of the linear hyperbolic system
(2.18), namely

(2.19) λ± ≡ λ±(ξ) := v · ξ − κd
± (K i

−1 B̄∗) · ξ , κd
± :=

1

2

(
d ±

√
d2 + 4

)
.

To observe experimentally inertial waves, two conditions must be fulfilled:

- The plasma must be sufficiently energetic to trigger high frequencies |ξ| ≥ 1/de.
- The data must be expressed in terms of w and B∗ (or even better Bd

±). Indeed,
information collected just in terms of v could be difficult to interpret.
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2.4. Proof of Theorem 1. We start by showing Theorem 1 under the more restrictive
regularity assumption s > 7/2. We refer to Section 4 for the optimal result. In particular,
at time t = 0, we know that (with s̃ := s − 1)

(2.20) U i
v(0, ·) = U i

v0 = (w0, B∗
0) ∈ Ds̃(R3;R3)3 , w0 := ∇ × v0 , s̃ > 5/2 .

Any smooth solution to (1.16)-(1.17)-(1.18)-(1.19) leads to a solution to (2.11)-(2.12)-
(2.20), and conversely. We study below the time evolution of the L2-norm of U i

v (assuming
for the moment that U i

v is bounded in the large Hs̃-norm).

Lemma 9. [L2-energy estimate for the incompressible vorticity formulation] Let T > 0.
Assume that the function U i

v ∈ C([0, T ]; Ds̃) with s̃ > 5/2 is a solution to (2.11) with initial
data (2.20). Then, we can find a constant C depending only on the C([0, T ]; Hs̃)-norm of
U i
v such that

(2.21) ‖ U i
v(t, ·) ‖L2≤‖ U i

v0 ‖L2 eC t , ∀ t ∈ [0, T ] .

Proof. Multiply the first and second equation of (2.11) respectively by w and B∗, and then
integrate with respect to x. Since v ∈ Ds̃, the contributions issued from the (transport)
diagonal part involving v · ∇ disappear. After integrations by parts, there remains

1

2

d

dt

(ˆ

R3

|U i
v(t, ·)|2 dx

)
= − d

2

ˆ

R3

∇ ·
(
K

i
−1 B∗) |B∗|2 dx

+

ˆ

R3

∇ ·
(
K

i
−1 B∗) (w · B∗) dx +

ˆ

R3

U i
v · S

i
v0U i

v dx .

The Fourier multiplier (L i
2)−1 commutes with ∇·, while ∇ · ∇× ≡ 0. Thus

1

2

d

dt

(ˆ

R3

|U i
v(t, ·)|2 dx

)
=

ˆ

R3

U i
v · S

i
v0U i

v dx .

Below, we use the Sobolev embedding theorem Hs̃ →֒ L∞ (knowing that s̃ > 5/2). We
exploit the condition ∇ · v = 0 to deal with the sum of products wi Mi

i(w). We also
implement Lemmas 6 and 23 to get
∣∣∣∣
ˆ

R3

w · S
iw
v0 U i

v dx

∣∣∣∣ ≤ ‖ w ‖L∞

3∑

i=1

(
‖ B∗

i ‖L2 ‖ ∂iK
i

−1 B∗ ‖L2 + ‖ wi ‖L2 ‖ Mi
i(w) ‖L2

)

. ‖ U i
v ‖C([0,T ];Hs̃) ‖ U i

v ‖2
L2 ,

as well as
∣∣∣∣
ˆ

R3

B∗ · S
iB∗

v0 U i
v dx

∣∣∣∣ ≤ d ‖ B∗ ‖L∞

3∑

i=1

‖ B∗
i ‖L2 ‖ ∂iK

i
−1 B∗ ‖L2

+ ‖ B∗ ‖L∞

3∑

i=1

(
‖ wi ‖L2 ‖ ∂iK

i
−1 B∗ ‖L2 + ‖ B∗

i ‖L2 ‖ Mi
i(w) ‖L2

)

. ‖ U i
v ‖C([0,T ];Hs̃) ‖ U i

v ‖2
L2 .

By Grönwall’s inequality, we recover (2.21). �
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The proof of Lemma 9 serves to confirm that the source term is indeed of order 0. To
go further, we have to write down a scheme [5, 27] in order to use a fixed-point method.
To this end, we need to implement the linearized version of (2.11). Then, we have to
perform energy estimates in order to obtain a control in the large norm L∞([0, T ]; Hs̃),
and a convergence in the small norm L∞([0, T ]; L2).
When doing this, the coefficients (which are transparent in the above proof) are implied.
The only difficulty could come from the operator (K i

−1 B∗) · ∇ but the coefficient K i
−1 B∗

is of order 0 (and even of order −1) as required. Thus, L2-energy estimates are available
for the linearized equations along the same lines as above.
To get Hs̃-bounds, we have to commute the linearized equation with spatial derivatives ∂α

x

with |α| ≤ s̃, and exploit linear estimates of nonlinear functions. This falls under the scope
of the general strategy [5, 27] to solve quasilinear symmetric systems. The details, which
are standar and long, are not reproduced here. The conclusion is that the Cauchy problem
associated with (2.11) is well-posed in Hs̃ for s̃ > 5/2.
From the Hs̃-solutions to (2.11) with s̃ > 5/2, we recover solutions to (1.17), which are
such that (v, B∗)(t, ·) ∈ Hs × Hs−1 with s := s̃ + 1 > 7/2. Moreover, from Lemma 6
together with (2.10), we obtain that B(t, ·) ∈ Hs+1. This concludes the proof of Theorem
1 at least on condition that s > 7/2.

Remark 10. [Propagated L2-energy for (2.11) versus conserved quantity for (1.17)] From
Lemma 6, we know that ‖ ∇ × B ‖L2=‖ K i

−1 B∗ ‖L2.‖ B∗ ‖L2 . It is clear that, with E i as

in (2.1), we have E i .‖ U i
v ‖L2 . The opposite is false. In other words, Lemma 9 is not a

corollary of Lemma 3.

3. The compressible framework

In this section, p : R+ → R is a given strictly increasing smooth function of ρ. We extend
here (1.19) by putting aside the condition ∇ · B∗

0 = 0. As a matter of fact, we consider
general vector fields B∗. This is made possible by the following remark.

Lemma 11. [Conservation of the magnetic divergence] Any solution to (1.9)-(1.10)-(1.11)
is such that

(3.1) ∇ · B∗ = ∇ · B = ∇ · B∗
0 .

Proof. This is just because ∂t(∇ · B∗) = 0. �

The whole vector field B∗ (resp. B) can be reconstituted from ∇ · B∗ and ∇ × B∗ (resp.
from ∇ · B and ∇ × B) by solving the div-curl system (see Subsection 6.2). The parts
∇ · B∗ and ∇ · B are determined by (3.1). In particular, with P = P (Dx) where P is as
in (2.7), retain that

(3.2) B∗ = Q B∗
0 + P B∗ , Q = Id − P .

In other words, replacing everywhere B∗ as indicated above, the system (1.9) reduces to
an equation on (ρ, v, PB∗), while the constitutive relation (1.10) is aimed to deduce PB
from PB∗, or equivalently ∇ × B from ∇ × B∗.
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Lemma 11 is straightforward. It is however highlighted because it plays a crucial role for
the reason explained in the remark below.

Remark 12. [A consequence of the foliation by vector fields having a fixed divergence] Let
C be a smooth vector field viewed as a coefficient. From (6.2), we have the decomposition

(3.3) TC B∗ ≡ T B∗ := ∇ × (C × B∗) = T1 B∗ + T0 B∗

with

(3.4) T1 B∗ := (∇ · B∗) C − (C · ∇)B∗ , T0 B∗ := (B∗ · ∇)C − (∇ · C) B∗ .

The operator T0 is of order 0, while T1 is of order 1. The action of T1 is not skew-adjoint.
As such, it is not compatible with energy estimates. However, knowing (3.1), we should
opt for T B∗ = T̃1 B∗ + T̃0 B∗ with

(3.5) T̃1 B∗ := −(C · ∇)B∗ , T̃0 B∗ := (∇ · B∗
0) C + (B∗ · ∇)C − (∇ · C) B∗ .

The operator T̃1 is skew-adjoint. Contrary to T1, it can be dealt with in the energy estimates
without losses of derivatives. This trick will be repeatedly used. As a matter of fact, we
will systematically replace ∇ · B∗ by ∇ · B∗

0 .

In order to make the transition from ∇ × B∗ to ∇ × B, we have to exploit conveniently
the constitutive relation (1.10). To this end, we follow a plan similar to Section 2. In
Subsection 3.1, we come back to the content of (1.10) but this time when ρ is a non constant
function. In Subsection 3.2, we adapt to the compressible context the change of variables
of Subsection 2.3. In Subsection 3.3, we derive energy estimates to show Theorem 2 (for
s > 7/2). At each stage, in comparison with Section 2, we need to implement important
and difficult modifications.

3.1. The compressible constitutive relation. The difficulty here is to exploit (1.10)
in order to express PB in terms of PB∗. In this subsection, we fix a time t ∈ R+, and
we assume that the function ρ(t, ·) : R3 → R is bounded and positive. More precisely, we
impose

(3.6) ∃ (c, C) ∈ R
2 ; 0 < c ≤ ρ(t, x) ≤ C , ∀ x ∈ R

3 .

We also suppose that the function ρ(t, ·) is smooth enough, say in Hs(R3) with s > 7/2. By
this way, we can use the pseudo-differential calculus with coefficients in Hs, as developed
for instance in [28, 36]. In what follows, we will sometimes omit to mention the presence
of t. From (1.10), we get that

(3.7) ∇ × B∗ = L
c
2

(∇ × B

ρ(x)

)
, L

c
2 := ρ(x) Id + ∇ × ∇ × .

We look at L c
2 : L2(R3;R3) → L2(R3;R3) as an unbounded operator [9].

Lemma 13. [Inverse of L c
2 ] The operator (L c

2 )−1 : L2 → L2 is well-defined and bounded.
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Proof. Observe that L c
2 is symmetric and positive since

(3.8)

ˆ

(L c
2 u)(x) · ū(x) dx =

ˆ

ρ(x) |u(x)|2 dx

+

ˆ

|∇ × u(x)|2 dx ≥ c ‖ u ‖2
L2 , ∀u ∈ H2 .

The polar decomposition furnishes the existence of a densely defined, closed and self-adjoint
operator X c : L2 → L2 with domain Dom (X c) such that L c

2 = (X c)∗ X c, and therefore

‖ X c u ‖L2≥ √
c ‖ u ‖L2 , ∀ u ∈ Dom (X c) ,

‖ (X c)∗ u ‖L2≥ √
c ‖ u ‖L2 , ∀ u ∈ Dom

(
(X c)∗

)
.

Starting from there, the two operators X c and (X c)∗ are invertible (Theorem 3.3.2 in [12],

or see also [9]). The same applies to L c
2 with (L c

2 )−1 = (X c)−1 ◦
(
(X c)∗

)−1
. �

For smooth enough vector fields B∗, the relation (3.7) amounts to the same thing as

(3.9)
∇ × B

ρ(x)
= K

c
−1 B∗ , K

c
−1 := (L c

2 )−1 ∇× ≡ K
c

−1P .

The system (1.9) where ∇ × B/ρ is replaced everywhere as indicated in (3.9) is enough to
recover a self-contained system on t(ρ, v, PB∗). We can progress without introducing B
and without imposing ∇ · B∗ = 0. Neither (1.10) nor (1.16) are needed. It suffices to rely
on (3.9). Still, the passage through (1.10) and (1.16), which is prescribed by physicists, is
meaningful. First, it is a way to deduce the final constitutive relation (3.9). Secondly, it is
more adapted in view of the potential formulation (in Section 4). Now, one important key
in continuity with Lemma 6 is to show that the restriction of (L c

2 )−1 to Dr (for well-chosen
indices r) still gives rise to a gain of two derivatives. In other words, we have to justify the
subscript −1 in K c

−1.

Proposition 14 (A property of ellipticity when going from ∇ × B∗ to ∇ × B/ρ through
the constitutive relation (3.9)). The action of (L c

2 )−1 is associated with a matrix valued
operator whose all coefficients are pseudo-differential operators. Its restriction to solenoidal
vector fields is elliptic of order less or equal to −2. More precisely, for r ∈ [s − 2, s], the
action (L c

2 )−1 : Dr → Hr+2 is well-defined and continuous.

In comparison with Lemma 6, the variations of the function ρ induce modifications:

- d1. First, unlike (L i
2)−1, the image of (L c

2 )−1 on Dr is not Dr+2. Indeed, since ρ is not
constant, the action of (L c

2 )−1 implies a deformation out of the set of solenoidal
vector fields. This is restored as indicated in (3.9) after multiplication by ρ. The
transition from ∇ × B∗ to ∇ × B through (3.9) is not diagonal; it is not so simple.
In particular, the identity

(3.10) ∇ × B = ρ(x) (L̃ c
2 )−1(∇ × B∗) , L̃

c
2 :=

(
ρ(x) − ∆

)
Id3×3 ,

which could appear as the correct extrapolation of (1.18) is false.
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- d2. Secondly, there are restrictions on r which are absent (on s) at the level of (2.4).
on the one hand, the upper bound r ≤ s comes from the limited regularity of ρ. On
the other hand, the lower bound s − 2 ≤ r is issued from the rules of composition
in Sobolev spaces (in view of a para-differential calculus). We can further illustrate
these two conditions by looking at the elliptic equation

(
ρ(x) − ∆

)
u = f where

u ∈ Hs−1 and f ∈ Hr with r ∈ [s − 2, s]. Then, knowing that s > 7/2, from
Theorem 1.2.A in [36], we obtain that u ∈ Hr+2.

Proof. The rest of Subsection 3.1 is devoted to the proof of Proposition 14. To overcome
the difficulty d1, we must keep track of derivative losses concerning ρ. To solve d2, we
follow a procedure in three steps:

- In Paragraph 3.1.1, we explain our method of unitary conjugation, and we introduce
preliminary tools like the Weyl quantization.

- In Paragraph 3.1.2, we show by Weyl calculus that L c
2 is (almost) unitary equivalent

to a block diagonal action. In fact, the principal symbol of L c
2 has two distinct

eigenvalues: ρ(x) and ρ(x) + |ξ|2 which are respectively of multiplicity one and
two. The unitary reduction reveals a 2 × 2 elliptic block of order 2, corresponding
to the second eigenvalue and involving (after inversion) a gain of two derivatives.
The difficulty is to show that this gain remains effective on Dr, while it could
be destroyed by the variations of ρ. The presence of a non constant function ρ
produces nonzero commutators and by this way non diagonal terms. In this line,
note again that the relation (3.10) is not verified.

- In Paragraph 3.1.3, to remedy this, we construct an approximate parametrix, and
we check that its properties allow to conclude.

�

3.1.1. Preparatory work. We denote by OPHsSm the set of pseudo-differential operators
of order less or equal to m with symbols in Hs (e.g., see [28, 36]), and simply Op(m) an
element of OPHrSm (for some unspecified r = s − 1 or r = s). In view of (3.8), the action
of L c

2 is (at least) elliptic of order 0. Thus, to evaluate its precise order, it suffices to
consider what happens for large frequencies, that is for ξ with |ξ| ≫ 1. The action of L c

2

is achieved through a matrix valued differential operator, which is non diagonal. In line
with (2.5) and (2.6), a first attempt to obtain a block diagonal form is to look at

O
−1
0 L

c
2 O0 = D

c + E , E := O
−1
0

[
ρ(x) Id, O0

]
,

where D c and E = E ∗ are given by

D
c :=




ρ(x) 0 0
0 ρ(x) − ∆ 0
0 0 ρ(x) − ∆


 , E =




E11 E12 E13

E ∗
12 E22 E23

E ∗
13 E ∗

23 E33


 .

It is clear that D c ∈ OPHsS2. Thus, in the absence of E , Proposition 14 would be a direct
consequence of Theorem 1.2.A in [36]. There remains to explain how to absorb the above
remainder E .
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Denoting by O0ij = O0ij(Dx) the elements of the matrix valued pseudo-differential operator
O0 (which are all of order 0), we find that (e.g., see Corollary 4.1 in [5])

(E )ij = O
−1
0

([
ρ(x), O0ij

])
ij

= O
−1
0

(
Op
(
i {O0ij(ξ), ρ(x)}

))
ij

+ Op(−2) ,

where we have introduced the Poisson bracket, which is given in the phase space (x, ξ) by

{f, g} :=
3∑

i=1

∂ξi
f ∂xi

g −
3∑

i=1

∂xi
f ∂ξi

g .

We see on this formula that E ∈ OPHs−1S−1. The above reduction is not yet sufficient in
order to conclude (due to the presence of non zero coefficients E1⋆). To (partially) further
absorb E , the idea is to find a unitary operator V such that

(3.11) V
∗ (D c + E ) V = D

c + Er + Op(−4) , Er :=




E11 0 0
0 E22 E23

0 E ∗
23 E33


 = E

∗
r .

To this end, we seek V in the form V = eiA where A is a self-adjoint pseudo-differential
operator with real valued symbol A. When doing this, to facilitate calculations, it is more
appropriate to work with the Weyl quantization (with symbol A) given by

A u(x) ≡ OpW (A)u(x) :=
1

(2π)3

ˆ

R3

ˆ

R3

ei(x−y)·ξ A
(x + y

2
, ξ
)

u(y) dy dξ , u ∈ D(R3) .

We recall that any operator A having a real symbol A is self-adjoint, so that eiA is a
unitary pseudo-differential operator satisfying

eiA =
+∞∑

k=0

ik

k!
A

k = Id + i A + · · · , (eiA )∗ = e−iA .

When A is of negative order (m < 0), the above sum implements terms A k which are of
decreasing orders k m. For instance, the above remainder (marked by · · · ) is in Op(2 m).

3.1.2. Unitary reduction. Assume that A = (Aij)ij is a self-adjoint operator of negative
order −3. Then, we deal with

V ∗ (D c + E ) V =
(
Id − iA + Op(−6)

)
(D c + E )

(
Id + iA + Op(−6)

)

= D c + E + i [D c, A ] + i [E , A ] + A (D c + E ) A + Op(−4)

= D c + E + i [D c, A ] + Op(−4) .

Thus, to recover (3.11), we have to consider the homological equation

i [D c, A ] =




0 −E12 −E13

−E ∗
12 0 0

−E ∗
13 0 0


+ Op(−4) ,
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where the E1j with j ∈ {2, 3} are given and A is the unknown. We impose Aij = 0 for
(i, j) not equal to (1, 2) or (1, 3). Then, we have to solve

i
[
ρ(x), A1j

]
+ i A1j ∆ = −E1j + Op(−4) .

Assuming that A is in Op(−3), the commutator [ρ, A1j ] is in Op(−4), and this reduces to

A1j = i E1j ∆−1 + Op(−6) .

We just take A1j := i E1j ∆−1. With this choice, as required initially, the operator A is
indeed in OPHs−1S−3. Moreover, by construction, we have access to (3.11).

Retain that A is of small order for two reasons. First, E is obtained by commuting O0 with
the diagonal matrix ρ(x) Id with a corresponding gain of one derivative, so that E ≡ E−1.
Secondly, the difference |ξ|2 between the two eigenvalues ρ(x) and ρ(x) + |ξ|2 is of order
two. After division, this yields a supplementary gain of two derivatives.

Note also that the above process does not allow to go further in the diagonalization process,
in order to get rid of E23. Indeed, the eigenvalue ρ(x) + |ξ|2 is of multiplicity 2. As a
consequence, we cannot exploit any gap between the (same two) eigenvalues related to the
bottom 2 × 2 block.

3.1.3. The approximate parametrix. Consider the content of D c + Er where the orders are
clearly separated:

• Top 1 × 1 block. The scalar pseudo-differential operator ρ(x) + E11 is self-adjoint.
Moreover, it is elliptic of order 0 since its principal symbol is the function ρ(x),
which satisfies (3.6). Thus, it can be inverted, and its inverse is a self-adjoint
pseudo-differential operator of order 0.

• Bottom 2 × 2 block. This is

(D c + Er)Bot
2×2 :=

(
ρ(x) − ∆

)
Id2×2 + E

Bot
2×2 , E

Bot
2×2 :=

(
E22 E23

E ∗
23 E33

)
,

where by construction E Bot
2×2 ∈ OPHs−1S−1 acts continously on Hr. The above

operator is self-adjoint. Once ρ(x) satisfies (3.6), it is extracted from an operator
which is elliptic of order 0. As such, it is an elliptic operator of order 0. For large
frequencies, it is (in view of its principal symbol |ξ|2) elliptic of order 2. Consider
the elliptic equation

(D c + Er)Bot
2×2 u = f ∈ Hr , s − 2 ≤ r ≤ s ,

or alternatively (
ρ(x) − ∆

)
u = f − E

Bot
2×2 u ∈ Hr .

By applying Theorem 1.2.A in [36], we recover that u ∈ Hr+2 as required. In
conclusion, the operator (D c + Er)Bot

2×2 is elliptic of order 2 on the whole phase
space. It can therefore be inverted, and its inverse is a self-adjoint matrix valued
pseudo-differential operator of order −2.



EXTENDED MAGNETOHYDRODYNAMICS 21

By construction, we have

(L c
2 )−1 = O0 V (D c + Er − R)−1

V
∗
O

−1
0 , R ∈ OPHs−1S−4 .

On the other hand, for large frequencies, we can write

(D c + Er − R)−1 = (D c + Er)−1 +
+∞∑

k=1

(
(D c + Er)−1

R
)k

(D c + Er)−1

= (D c + Er)−1 + Op(−4) ,

and consequently

(L c
2 )−1 = O0 V

(
D

c + Er
)−1

V
∗
O

−1
0 + Op(−4) .

But on the other hand V = Id + Op(−3). Thus, the non diagonal terms induced by the
actions of V and V ∗ can be incorporated in a remainder. More precisely

(L c
2 )−1 = O0

( (
ρ(x) + E11

)−1
0

0 (D c + Er)−1
22

)
O

−1
0 + Op(−3) .

Now, let v ∈ Dr. Thus, we have O
−1
0 v = t(0, v2, v3) with vj ∈ Hr, so that

(L c
2 )−1 v = O0




0
(
(D c + Er)Bot

2×2

)−1
(

v2

v3

)

+ Op(−3)




0
v2

v3


 = Op(−2)




0
v2

v3


 ,

which leads to the expected conclusion.

3.2. Transformation of the compressible equations. We start by recalling what
Lemma 3 becomes in the compressible case.

Lemma 15. [A decreasing enegy] Let U(ρ) be the internal energy function of the system.
It must satisfy U ′(ρ) = ρ−2 p(ρ) ≥ 0, and it can be adjusted such that U(0) = 0 so that
U(ρ) ≥ 0. In particular, for a polytropic equation of state, we find U(ρ) = cργ−1/(γ − 1)
where c is a positive constant and γ > 1 is the heat capacity ratio. Retain that

(3.12) E c(t) :=
1

2

ˆ

R3

(
ρ |v|2 + 2 ρ U(ρ) + B · B∗

)
(t, ·) dx ≤ E c(0) ,

where
ˆ

R3

B · B∗(t, ·) dx =

ˆ

R3

(
|B|2 +

|∇ × B|2
ρ

)
(t, ·) dx .

Proof. It is well known, see especially [22] but also [3, 25], that XMHD (with ν = 0) has a
Hamiltonian structure conserving the energy E c. The inequality inside (3.12) comes from
the dissipative effects which are induced by the (fluid) bulk viscosity. Note that there are
also (when ν = 0) three independent Casimirs, see (52), (53) and (54) in [1]. �

Since p′ > 0, instead of working with ρ, we can alternatively deal with

q := g(ρ) :=

ˆ ρ

ρ̄

√
p′(s)

s
ds , g′(ρ) =

√
p′(ρ)

ρ
> 0 , a(q) := g−1(q) g′ ◦ g−1(q) .
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Expressed in terms of t(q, v, B∗), the system (1.9) becomes symmetric with respect to the
two first lines below, that is especially with respect to (q, v). We consider

(3.13)





∂tq + (v · ∇)q + a(q) ∇ · v = 0 ,

∂tv + (v · ∇)v + a(q) ∇q + B∗ × K
c

−1 B∗ +
1

2
∇|K c

−1 B∗|2 = ν ∇(∇ · v) ,

∂tB
∗ + ∇ ×

(
B∗ × (v − d K

c
−1 B∗)

)
+ ∇ ×

(
(∇ × v) × K

c
−1 B∗) = 0 .

In (3.13), in comparison with (1.9), care has been taken to replace everywhere ∇ × B
as prescribed by (3.9). In (3.13), the expression K c

−1 B∗ undergoes no more than one
derivative. In view of Proposition 14, this means that the corresponding contributions can
be seen as acting on B∗ like zero order operators (and even of order −1).

The equation on B∗ contains an inertial contribution at the end of the last line of (3.13),
which is of order 2 with respect to v. The idea of Section 2 is to reduce this order to 1 by
introducing certain derivatives of v, namely those contained in the vorticity w. Remarkably,
the extra derivatives of B∗ thus generated (when looking at the equation on w) are exactly
balanced inside symmetric structures. In the compressible case, derivatives of q (or ρ)
appear during this procedure. Moreover, all derivatives of v are required, including the
divergence part ∇ · v. Accordingly, we have to introduce the new unknown

U c
v := (q, ∇q, ∇ · v, w, B∗) ∈ R × R

3 × R × R
3 × R

3 , w := ∇ × v .

From (3.13), we can deduce that

(3.14)





∂tq + v · ∇q + a(q) ∇ · v = 0 ,

∂t(∇q) + (v · ∇)∇q + a(q) ∇(∇ · v) = S
cq̇
v0 U c

v ,

∂t(∇ · v) + (v · ∇)(∇ · v) + a(q) ∆q − ν ∆(∇ · v) = S
cv̇
v1 U c

v ,

∂tw + v · ∇w +
(
K c

−1 B∗ · ∇
)
B∗ = S cw

v0 U c
v ,

∂tB
∗ +

((
v − d K

c
−1 B∗) · ∇

)
B∗ + (K c

−1 B∗ · ∇)w = S
cB∗

v0 U c
v .

In (3.14), the velocity v must be deduced from (w, ∇ · v) through the div-curl system (6.4),

see Subsection 6.2. On the other hand, the operator S c
v = t(0, S cq̇

v0 , S cv̇
v0 , S cw

v0 , S cB∗

v0 ) put
in source term is outlined below

(3.15)

S
cq̇
v0 U c

v := −∇q Dv − a′(q) (∇ · v) ∇q ,

S
cv̇
v1 U c

v := −
3∑

i=1

(∂iv · ∇)vi − a′(q) |∇q|2 − ∇ · (S cv
v0 U c

v) ,

S
cw
v0 U c

v := (B∗ · ∇)(K c
−1 B∗) + (∇ · B∗

0) K
c

−1 B∗

− ∇ · (K c
−1 B∗) B∗ + (w · ∇)v − w (∇ · v) ,

S
cB∗

v0 U c
v := −

(
∇ · v − d (∇ · K

c
−1 B∗)

)
B∗ + (∇ · B∗

0)
(
v − d K

c
−1 B∗)

+ (B∗ · ∇)
(
v − d K

c
−1 B∗)− ∇ · (K c

−1 B∗) w + (w · ∇)(K c
−1 B∗) ,
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where S cv̇
v1 is indeed of order 1 since it is defined through S cv

v0 which is given by

S
cv
v0 U c

v := B∗ × K
c

−1 B∗ +
1

2
∇|K c

−1 B∗|2 .

In comparison with S i
v0 U i

v, we have many added new contributions. Some of them come
from the fact that K c

−1 B∗ and B∗ are no more solenoidal vector fields. Observe that we
have exploited Lemma 3.1 to replace ∇ · B∗ everywhere by ∇ · B∗

0 (this is essential to avoid
artificial losses of derivatives coming from ∇·B∗). On the other hand, we have incorporated
the vortex stretching induced by the term ∇ · v (which is no more zero) as well as other
contributions related to ∇ · v.

3.3. Proof of Theorem 2. We start by showing Theorem 2 under the more restrictive
regularity assumption s > 7/2. We refer to Section 4 for the optimal result. From (1.21),
we know that ρ0 ∈ Hs, and by construction we have q0 = g(ρ̄ + ρ0) with g(ρ̄) = 0. Then,
by the rule of composition in Hs, we recover that q0 ∈ Hs. In particular, at time t = 0,
with s̃ := s − 1 > 5/2, we can assert that

(3.16) U c
v(0, ·) = U c

v0 = (q0, ∇q0, ∇ · v0, w0, B∗
0) ∈ Hs̃ , w0 := ∇ × v0 .

Any smooth solution to (1.9)-(1.10)-(1.11) leads to a solution to (3.14)-(3.16), and con-
versely. We study below the time evolution of the L2-norm of U c

v (assuming for the moment
that U c

v is bounded in the large Hs̃-norm).

Lemma 16. [L2-energy estimate for the vorticity formulation in the compressible case] Let
T > 0. Assume that the function U c

v ∈ C([0, T ]; Hs̃) is a solution to (3.14) with initial data
as in (3.16). Then, we can find a constant C depending only on the C([0, T ]; Hs̃)-norm of
U c
v such that

(3.17) ‖ U c
v(t, ·) ‖L2≤‖ U c

v0 ‖L2 eC t+C t/ν , ∀ t ∈ [0, T ] .

Proof. Multiply (3.14) by tU c
v, and then integrate with respect to x. After integrations by

parts, we find

(3.18)

1

2

d

dt

( ˆ

R3

|U c
v(t, ·)|2 dx

)
+ ν

ˆ

R3

|∇(∇ · v)|2 dx

=

ˆ

R3

(
∇q · S

cq̇
v0 U c

v + (∇ · v) S
cv̇
v1 U c

v + w · S
cw
v0 U c

v + B∗ · S
cB∗

v0 U c
v

)
dx

+

ˆ

R3

(h0 + h1 + h2 + h3 + h4) dx ,
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where the S c⋆
v⋄ are the source terms of (3.15), whereas the h⋆ come from the quasilinear

parts. We find that
ˆ

R3

h0 dx := −
ˆ

q a(q) (∇ · v) dx ,

ˆ

R3

h1 dx := −
ˆ

U c
v ·
(
(v · ∇)U c

v

)
dx =

1

2

ˆ

(∇ · v) |U c
v|2 dx ,

ˆ

R3

h2 dx := −
ˆ

R3

a(q)
(
∇q · ∇(∇ · v) + (∇ · v) ∆q

)
dx =

ˆ

R3

a′(q) (∇ · v) |∇q|2 dx ,

ˆ

R3

h3 dx :=

ˆ

R3

(
∇ · (K c

−1 B∗)
)

(w · B∗) dx ,

ˆ

R3

h4 dx := −d

2

ˆ

R3

(
∇ · (K c

−1 B∗)
)

|B∗|2 dx .

We consider each term separately. Knowing that s̃ > 5/2, we use repeatedly the Sobolev
embedding theorem Hs̃ →֒ L∞. We also exploit Proposition 14 with r = s − 2 to deduce
from ∇ × B∗ ∈ Hs̃−1 ≡ Hs−2 that K c

−1 B∗ = (L c
2 )−1 ∇ × B∗ ∈ Hs. In other words

(3.19) ‖ K
c

−1 B∗ ‖Hs̃.‖ B∗ ‖Hs̃−1 , ‖ ∇K
c

−1 B∗ ‖Hs̃.‖ B∗ ‖Hs̃ .

On the other hand, by assumption, we know that

‖ U c
v ‖L∞([0,T ]×R3) + ‖ ∇U c

v ‖L∞([0,T ]×R3). M :=‖ U c
v ‖C([0,T ];Hs̃)< +∞ .

First, from Lemma 24, we have
∣∣∣∣
ˆ

R3

∇q · S
cq̇
v0 U c

v dx

∣∣∣∣ ≤
(
‖ ∇q ‖L∞ + ‖ ∇a(q) ‖L∞

)
‖ U c

v ‖2
L2 . M ‖ U c

v ‖2
L2 .

We now turn to the equation on ∇ · v, where the source term S cv̇
v1 U c

v does include a loss
of one derivative. The idea is to compensate this after integration by parts by the bulk
(fluid) viscosity. With the help of Lemma 24, this gives rise to

∣∣∣∣
ˆ

R3

(∇ · v) S
cv̇
v1 U c

v dx

∣∣∣∣ ≤
3∑

i=1

ˆ

R3

|∇ · v| |∂iv| |∇vi| dx +

ˆ

R3

|∇ · v| |a′(q)| |∇q|2 dx

+

ˆ

R3

|∇(∇ · v)| |S cv
v0 U c

v| dx

≤ C
(
‖ U c

v ‖L∞

)
‖ U c

v ‖2
L2

+ c ν

ˆ

R3

|∇(∇ · v)|2 dx +
C

ν

ˆ

R3

|S cv
v0 U c

v|2 dx ,

where the constant c ∈ R
∗
+ can be chosen as small as wished. Observe that

ˆ

R3

|S cv
v0 U c

v|2 dx ≤‖ S
cv
v0 U c

v ‖L∞

ˆ

R3

|S cv
v0 U c

v| dx ,

From (3.19), we have

‖ S
cv
v0 U c

v ‖L∞ .‖ K
c

−1 B∗ ‖L∞

(
‖ B∗ ‖L∞ + ‖ ∇K

c
−1 B∗ ‖L∞

)

.‖ K
c

−1 B∗ ‖Hs̃

(
‖ B∗ ‖Hs̃ + ‖ ∇K

c
−1 B∗ ‖Hs̃

)
.‖ B∗ ‖2

Hs̃. M2 .
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On the other hand
ˆ

R3

|S cv
v0 U c

v| dx ≤‖ K
c

−1 B∗ ‖L2

(
‖ B∗ ‖L2 + ‖ ∇K

c
−1 B∗ ‖L2

)
.‖ U c

v ‖2
L2 .

Thus, we can retain that
∣∣∣∣
ˆ

R3

(∇ · v) S
cv̇
v1 U c

v dx

∣∣∣∣ ≤ C M
(
1 +

M

ν

)
‖ U c

v ‖2
L2 + c ν

ˆ

R3

|∇(∇ · v)|2 dx .

Thanks to Lemma 11 and (3.19), the two contributions S cw
v0 U c

v and S cB∗

v0 U c
v are both of

order 0 in terms of U c
v. Be careful, in the two definitions of S cw

v0 U c
v and S cB∗

v0 U c
v some

derivatives act on K c
−1 and therefore on ρ (since the operator K c

−1 involves coefficients
depending on ρ). But these one order derivatives of ρ are included in U c

v (through the
derivatives of q), and therefore this corresponds indeed to zero order contributions.

As described above, we can obtain
∣∣∣∣
ˆ

R3

w · S
cw
v0 U c

v dx

∣∣∣∣ . M ‖ U c
v ‖2

L2 ,

∣∣∣∣
ˆ

R3

B∗ · S
cB∗

v0 U c
v dx

∣∣∣∣ . M ‖ U c
v ‖2

L2 .

The same sort of arguments applies to handle the h⋆. We find that
∣∣∣∣
ˆ

R3

hj dx

∣∣∣∣ . M ‖ U c
v ‖2

L2 , ∀ j ∈ {0, · · · , 4} .

By selecting c small enough, we can absorb the term implying the L2-norm of ∇(∇ · v).
Note that the presence of a bulk (fluid) viscosity is crucial here to compensate for losses
related to ∇(∇ · v). At the end, there remains

d

dt

(ˆ

R3

|U c
v(t, ·)|2 dx

)
≤ C M

(
1 +

M

ν

) ˆ

R3

|U c
v(t, ·)|2 dx .

It suffices to implement Grönwall’s inequality to recover the inequality (3.17) for some
convenient constant C. �

Starting from there, the construction of Hs̃-solutions to (3.14) can be achieved through
the general strategy [5, 27] already explained at the end of Section 2. Note that the
lifespan T does depend on the bulk viscosity ν. It shrinks to 0 when ν goes to 0+. Then,
from the Hs̃-solution to (3.14), we can recover solutions to (1.9) which are such that
(q, v, B∗) ∈ Hs × Hs × Hs−1 with s > 7/2. Starting from there and from (3.9), we get that
∇ × B ∈ Hs, while ∇ · B = ∇ · B∗

0 ∈ Hs. It follows that B ∈ Hs+1 as indicated. This
concludes the proof of Theorem 2 at least when s > 7/2. The case s > 5/2 is investigated
in the next section.

4. The potential formulations

The aim of this section is to develop an alternative to the vorticity formulations. The
basic idea is to integrate B∗ instead of looking at derivatives of (q, v). From PB∗, or just
from B∗ when ∇ · B∗ = 0, we can extract a magnetic potential A∗ which is defined by

(4.1) ∇ × A∗ = PB∗ , ∇ · A∗ = 0 .
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From now on, we imply ρ, v and A∗ as new unknowns, with the following motivations:

- A simplified presentation. Like in (1.9), the (compressible) potential formulation
involves 7 unknowns, namely the components of ρ, v and A∗. Contrary to (3.14),
there is no need of introducing four supplementary unknowns.

- A better regularity result. Up to now, we have worked with s > 7/2. As stated
in Theorems 1 and 2, we would like to improve the threshold up to s > 5/2. To
this end, we will avoid the use of Proposition 14 which is costly in terms of the
regularity of ρ.

- Additional insights. This change of point of view offers complementary perspectives.
For instance, in the compressible case, it allows to better understand why a bulk
(fluid) viscosity is required for stability.

The potential formulations are therefore more simple in appearance and more efficient
in some respects. However, there are important subtleties when performing L2-energy
estimates, explaining why this approach has been postponed until now. On the other
hand, the vorticity formulations are necessary and instructive to understand how higher
order energy estimates can be performed at the level of the potential formulations.

From (3.2) and (4.1), we deduce that ∂tB
∗ = ∇ × ∂tA

∗. It follows that the curl operator
can be put in factor of the last equation of (1.9), where it can be cancelled (modulo a
gradient). This idea applies quite directly in the incompressible context of Subsection 4.1.
It must be carefully implemented in the compressible framework of Subsection 4.2.

4.1. The incompressible situation. The condition ∇ · B∗ = 0 and the constant density
make things easier. In Paragraph 4.1.1, we derive the incompressible potential equations.
In Paragraph 4.1.2, we perform L2-energy estimates on linearized equations. In Paragraph
4.1.3, we conclude the proof of Theorem 1.

4.1.1. The incompressible potential equations. The unknown is U i
p := (v, A∗). We consider

the system

(4.2)

{
∂tv + (v · ∇)v − (A∗ − A) × (∇ × A∗) + ∇p = 0 ,

∂tA
∗ −

(
v − d (A∗ − A)

)
× (∇ × A∗) − (A∗ − A) × (∇ × v) + ∇e = 0 ,

where both v and A∗ are solenoidal vector fields

(4.3) ∇ · v = 0 , ∇ · A∗ = 0 .

while A can be obtained from A∗ through

(4.4) A = (Id − ∆)−1A∗ , ∇ · A = 0 ,

The introduction of the Lagrange multipliers (scalar functions) p and e is needed above to
ensure the propagation of the constraints ∇ · v = 0 and ∇ · A∗ = 0.

Lemma 17. [Link between the incompressible potential and vorticity formulations] Let
U i
p = (v, A∗) be some Hs-solution on [0, T ] to (4.2)-(4.4)-(4.3) with s > 5/2. Define

(4.5) B∗ := ∇ × A∗ , B := ∇ × A .

Then, (v, B∗, B) is a solution on [0, T ] to (1.16)-(1.17)-(1.18), which is as in (1.20).
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Proof. By construction, we have (1.16). On the other hand, by applying the curl operator
to (4.4), we get (1.18). Since ∇ · A = 0, the relation (4.4) is the same as

A∗ − A = −∆A = ∇ × (∇ × A) = ∇ × B .

It follows that

−(A∗ − A) × (∇ × A∗) = B∗ × (∇ × B) .

Exploiting the two above relations and applying the curl operator ∇× to the second line
of (4.2), the term ∇e disappears and we have directly access to (1.17). �

At the initial time t = 0, we impose

(4.6) U i
p(0, ·) = U i

p0 = (v0, A∗
0) ∈ Ds(R3;R3)2 , s > 5/2 .

4.1.2. L2-energy estimates. The conserved quantity E i of Lemma 3, see the definition (2.1),
can be reformulated according to

(4.7) E i :=
1

2

ˆ

R3

(
|v|2 + |∇ × (Id − ∆)−1A∗|2 + |∆ (Id − ∆)−1A∗|2

)
dx < +∞ .

This already furnishes some (high frequency) L2-bound concerning U i
p. But this is not

enough. To construct solutions by a fixed point argument, we also need to consider the
stability issue. To this end, we have to look at the linearized equations coming from (4.2),
dealing with U̇ i

p = (v̇, Ȧ∗). When doing this, the term which for instance is at top right of
(4.2) leads to

−(A∗ − A) × (∇ × Ȧ∗) + (∇ × A∗) ×
(
Ȧ∗ − (Id − ∆)−1Ȧ∗) .

Given a Lipschitz field A∗, the right hand side is such that

‖ (∇ × A∗) ×
(
Ȧ∗ − (Id − ∆)−1Ȧ∗) ‖L2.‖ U̇ i

p ‖L2 .

Such contributions clearly cannot undermine the local L2-stability. Thus, to simplify the
presentation, they can be ignored. We can focus on

(4.8)

{
∂tv̇ + (v · ∇)v̇ + ∇ṗ − (A∗ − A) × (∇ × Ȧ∗) = 0 ,

∂tȦ
∗ −

(
v − d (A∗ − A)

)
× (∇ × Ȧ∗) − (A∗ − A) × (∇ × v̇) + ∇ė = 0 ,

together with

(4.9) ∇ · v̇ = 0 , ∇ · Ȧ∗ = 0 .

At the initial time t = 0, we impose

(4.10) U̇ i
p(0, ·) = U̇ i

p0 = (v̇0, Ȧ∗
0) ∈ D0(R3;R3)2 .

Lemma 18. [L2-energy estimates for the linearized incompressible potential equations] Let
T > 0. Assume that U i

p = (v, A∗) is such that U i
p ∈ C([0, T ]; Ds) for some s > 5/2. Then,

the Cauchy problem (4.8)-(4.9) with initial data (4.10) has a solution on [0, T ]. Moreover,
we can find a constant C depending only on the C([0, T ]; Hs)-norm of U i

p such that

(4.11) ‖ U̇ i
p(t, ·) ‖L2≤‖ U̇ i

p0 ‖L2 eC t , ∀ t ∈ [0, T ] .
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Any Hs-solution to the initial value problem (4.2)-(4.4)-(4.3)-(4.6) leads to a solution to
(4.8)-(4.9) with initial data U̇ i

p0 = U i
p0. As a consequence, the proof of Lemma 18 gives

another access to some L2-bound, namely

‖ U i
p(t, ·) ‖L2≤‖ U i

p0 ‖L2 eC t , ∀ t ∈ [0, T ] .

Proof. To gain a better grasp of the arguments, we have made a clear distinction between
two kinds of quantities:

- On the one hand, there are those which play the role of coefficients and which are
managed through the assumption

(4.12) ‖ U i
p ‖L∞([0,T ]×R3) + ‖ ∇U i

p ‖L∞([0,T ]×R3). M :=‖ U i
p ‖C([0,T ];Hs)< +∞ .

- On the other hand, there are those which are handled as unknowns and which are
market by a dot, like U̇ i

p = (v̇, Ȧ∗).

We now exploit the formalism of Remark 12. We denote by TC with C = A∗ − A or C = v
the operator defined at the level of (3.3). We find that T ∗

C Ȧ∗ = −C × (∇ × Ȧ∗). Thus,
the system (4.8) can be rewritten according to

(4.13)

{
∂tv̇ + (v · ∇)v̇ + ∇ṗ + T

∗
A∗−AȦ∗ = 0 ,

∂tȦ
∗ + T

∗
v Ȧ∗ − d T

∗
A∗−AȦ∗ + T

∗
A∗−Av̇ + ∇ė = 0 .

As already noted, the operator TC is not skew-adjoint and, of course, neither is T ∗
C . But

(Remark 12), knowing that the contribution ∇ · B∗ is given (or can be forgotten), the
action of TC (viewed as T̃C) on B∗ becomes skew-adjoint. This argument was crucial in
Sections 2 and 3. None of that applies to the action of T ∗

C on Ȧ∗ (because the analogue of

∇ · B∗ = 0 in the context of T ∗
C Ȧ∗ is not ∇ · Ȧ∗ = 0). In other words, (4.13) is not well-

posed, while its dual version is, in the sense that it becomes symmetric under the condition
(4.9). To put this principle into practice, we multiply the first and second equation of
(4.13) respectively by v̇ and Ȧ∗; we integrate with respect to the variable x; and then we
force the emergence of the operator TC (instead of T ∗

C ) by passing to the adjoint. Since

v ∈ Ds, the contribution related to v · ∇ disappears. Since ∇ · Ȧ∗ = 0, the term involving
∇ė is eliminated. Denoting by 〈·, ·〉 the scalar product in L2, this furnishes

1

2

d

dt

(ˆ

R3

|U̇ i
p(t, ·)|2 dx

)
= − 〈TA∗−Av̇, Ȧ∗〉 − 〈TvȦ∗, Ȧ∗〉 + 〈TA∗−AȦ∗, d Ȧ∗ − v̇〉 .

Observe the changeover from T ∗
C to TC . From there, the decomposition (3.5) becomes

pertinent. In the actual incompressible situation, using (6.2), this yields

1

2

d

dt

(ˆ

R3

|U̇ i
p(t, ·)|2 dx

)
=

1

2

ˆ

R3

((
(A∗ − A) · ∇

)(
Ȧ∗ · (2 v̇ − d Ȧ∗)

)
+ (v · ∇)|Ȧ∗|2

)
dx

−〈(v̇ · ∇)(A∗ − A), Ȧ∗〉 − 〈(Ȧ∗ · ∇)v, Ȧ∗〉
+〈(Ȧ∗ · ∇)(A∗ − A), d Ȧ∗ − v̇〉 .

In the right hand side, since both A∗ −A and v are solenoidal vector fields, after integration
by parts, the first line just disappears. Exploiting (4.12) to control the two last lines, we
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find that
d

dt

(ˆ

R3

|U̇ i
p(t, ·)|2 dx

)
.

ˆ

R3

|U̇ i
p(t, ·)|2 dx .

By Grönwall’s inequality, we recover (4.11). �

4.1.3. End of the proof of Theorem 1. The construction of Hs-solutions to (4.2) follows the
(general standard) lines mentioned before. It will not be detailed. But, we would like to
add just a few words about how higher order estimates can be obtained. In the context of
(4.2), there are two ways to proceed:

- The incompressible vorticity formulation is in fact similar to a derived version of
the incompressible potential formulation. It follows that the preceding L2-estimates
for (2.11)-(2.12) correspond to one order estimates for (4.2)-(4.4). In other words,
the work of Subsection 2.4 can be seen as the first stage to check that higher
order estimates (namely H1-estimates) are available for the incompressible potential
formulation.

- Looking at the linearized equations (4.13) with adequate source terms amounts to
the same thing as studying the equations satisfied by the derivatives of U i

p. Thus,
the proof of Lemma 9 already provides with convincing points of reference towards
Hs-estimates.

4.2. The compressible framework. The general lines are as in Subsection 4.1 but the
variations of ρ oblige to adapt a number of aspects. The first step (in Paragraph 4.2.1)
is to correctly interpret (1.10) in terms of the potentials A∗ and A. The second stage (in
Paragraph 4.2.2) is to propose potential equations that are compatible with (1.9). Then (in
Paragraph 4.2.3), we explain how to obtain L2-energy estimates on linearized equations.

4.2.1. The potential constitutive relation. Keeping (4.1) and assuming that PB = ∇ × A,
the constitutive relation (1.10) is the same as

PB∗ − PB − ∇ ×
(∇ × B

ρ(x)

)
= ∇ ×

(
A∗ − A − ∇ × B

ρ(x)

)
= 0 .

This suggests to impose

(4.14) A∗ − A − ∇ × B

ρ(x)
= 0 .

Exploiting (3.7) with again (4.5), this is equivalent to

(4.15) A = A∗ − (L c
2 )−1 ∇ × (∇ × A∗) = (L c

2 )−1(ρ A∗) .

By this way, A is deduced from A∗ through a pseudo-differential operator which is of order
zero (or less). In what follows, we do not need Proposition 14. Instead, we are satisfied
with Lemma 13 leading to

(4.16) ‖ A ‖L2.‖ A∗ ‖L2 .

One of the difficulties is to show that the choice (4.15) is appropriate.
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4.2.2. The compressible potential equations. Let p : R → R be any smooth function (of ρ).
Fix some initial data (ρ0, v0, B∗

0) as in (1.21). From B∗
0 , extract the vector field A∗

0 which
is such that

∇ × A∗
0 = P B∗

0 , ∇ · A∗
0 = 0 , A∗

0 ∈ Hs .

The unknown is U c
p := (ρ, v, A∗). Consider the system

(4.17)





∂tρ + (v · ∇)ρ + ρ ∇ · v = 0 ,

∂tv + (v · ∇)v +
∇p

ρ
− (A∗ − A) × (∇ × A∗)

+ ∇
(
|A∗ − A|2/2

)
= ν ∇(∇ · v) + (A∗ − A) × QB∗

0 ,

∂tA
∗ −

(
v − d (A∗ − A)

)
× (∇ × A∗) − (A∗ − A) × (∇ × v) + ∇e

=
(
v − d (A∗ − A)

)
× QB∗

0 ,

together with

(4.18) ∇ · A∗ = 0 ,

where A is deduced from A∗ through (4.15). At the initial time t = 0, we impose

(4.19) U c
p(0, ·) = U c

p0 = (ρ0, v0, A∗
0) ∈ Hs(R3;R) × Hs(R3;R3)2 , s > 5/2 .

Lemma 19. [Link between the compressible potential and vorticity formulations] Let U c
p

be some Hs-solution on [0, T ] to (4.15)-(4.17) with initial data as in (4.19). Define

(4.20) B∗ := QB∗
0 + ∇ × A∗ , B := QB∗

0 + ∇ × A .

Then, (ρ, v, B∗, B) is a solution on [0, T ] to (1.9)-(1.10), which is associated with the initial
data (ρ0, v0, B∗

0), and which is as in (1.22).

Note that the solution to (4.17) is no more subjected to ∇ · v = 0, but we have still
∇ · A∗ = 0. The part QA is not involved at the level of (4.20), though it is specified when
solving (4.15). In view of (4.14), in general, we do not have ∇ · A = 0.

Proof. By construction, we have B∗(0, ·) = B∗
0 , and therefore (ρ, v, B∗)(0, ·) = (ρ0, v0, B∗

0)
as required. On the other hand, it is clear that (ρ, v, B∗) is as indicated in (1.22). Let us
consider B. Since ρ A∗ ∈ Hs, from (4.15), we get that A ∈ Hs+2. Then, from (4.20), we
can deduce that ∇ × B ∈ Hs, while by assumption ∇ · B = ∇ · B∗

0 ∈ Hs. Thus, we find
that B ∈ Hs+1 as claimed at the level of (1.22).

From (4.20), we find that B∗ − B = ∇ × A∗ − ∇ × A. Then, by applying the curl operator
to (4.14), we obtain (1.10).

The equation on ρ is unchanged. In view of (4.14) and (4.20), the equation on v inside
(4.17) is just a rephrasing of the equation on v inherited from (1.9). This also applies to
the last equation of (4.17) after applying the curl operator to it. �

The equations inside (4.17) bear some similarity to symmetric hyperbolic-parabolic systems
which can be put in a normal form in the sense of Kawashima-Shizuta [20]. To see why,
we have to check that the conditions enumerated in Section 3 of [20] do apply (at least
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formally). To match with the notations of [20], define vI := t(ρ, Pv, PA∗) and vII := Qv.
This repartition gives rise to

(4.21)

{
∂tvI + AI(vI , vII , Dx)vI = ḡI(vI , vII , DxvII) ,
∂tvII = ν ∇(∇ · vII) + ḡII(vI , vII , DxvI , DxvII) ,

where ḡI = ḡ1
I (vI , vII , DxvII) + ḡ2

I (vI , vII) and

AI :=

(
v · ∇ 0 0

0 P (v · ∇) P P T
∗

A∗−A P

0 P T
∗

A∗−A P P T
∗

v−d (A∗−A) P

)
, ḡ1

I :=

(
−ρ ∇ · vII

− (v · ∇) · vII

0

)
.

Recall that, given a smooth vector field C, the operator TC is defined as in (3.3) with
adjoint T ∗

C = −C × (∇× ). Consider the action of P T ∗
C P where the presence of P

eliminates the non symmetric one order terms (Remark 12). As a consequence, P T ∗
C P

is (modulo zero order terms) a skew-adjoint operator with principal symbol i (C · ξ) P (ξ).
As required, AI is skew-adjoint, the parabolic part on vII is non-negative definite, while ḡI

depends only on DxvII . This is where the role of the bulk fluid viscosity can be understood.
It is to compensate the losses of derivatives in the first equation. This idea can serve as
a guide for obtaining the well-posedness. There are however some specific issues among
which the presence of the pseudo-differential action (4.15) to recover the coefficient A from
A∗. For the sake of completeness, we give a direct proof in the next paragraph.

4.2.3. L2-energy estimates. The energy E c of (3.12) is a decreasing quantity. Assuming
that ρ remains positive (recall that the internal energy U is positive as soon as ρ > 0), this
provides with a priori estimates on v, ρ and ∇ × B. Now, from (4.14) and (4.15), we can
deduce that

(4.22) ρ−1 ∇ × B = (L c
2 )−1 ∇ × (∇ × A∗) .

Then, by combining Proposition 14 and Lemma 15, we obtain as in the incompressible case
some (high-frequency) L2-bounds on v and A∗. But again, this is not sufficient. We would
like to have extra controls on ρ (other than those furnished by the integral of ρ U) and
especially stability estimates. For these reasons, we look at the linearized equations which
are associated with (4.17). We think in terms of the unknowns (q, v, A∗), and therefore in
terms of U̇ c

p := (q̇, v̇, Ȧ∗). When doing this, this time, the term which is at top right of the
second line of (4.17) leads to

− (A∗ − A) × (∇ × Ȧ∗) + (∇ × A∗) × Ȧ∗ − (∇ × A∗) × (L̇ c
2 )−1 (ρ A∗)

− (∇ × A∗) × (L c
2 )−1 (ρ̇ A∗ + ρ Ȧ∗) ,

where the dot on L is needed to keep track of the dependence of (L c
2 )−1 on ρ. Given a

Lipschitz field U c
p, the three terms appearing in the right hand side are clearly bounded by

the L2-norm of U̇ c
p, and they are therefore compatible with the local L2-stability. To sim-

plify the presentation, they are not mentioned. Modulo source terms (which are ignored),
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we can focus on

(4.23)





∂tq̇ + v · ∇q̇ + a(q) ∇ · v̇ = 0 ,

∂tv̇ + (v · ∇)v̇ + a(q) ∇q̇ − (A∗ − A) × (∇ × Ȧ∗)

+ ∇
(
(A∗ − A) · (Ȧ∗ − Ȧ)

)
= ν ∇(∇ · v̇) ,

∂tȦ
∗ −

(
v − d (A∗ − A)

)
× (∇ × Ȧ∗) − (A∗ − A) × (∇ × v̇) + ∇ė = 0 .

At the initial time t = 0, we impose

(4.24) U̇ c
p(0, ·) = U̇ c

p0 = (q̇0, v̇0, Ȧ∗
0) ∈ L2(R3;R) × L2(R3;R3)2 .

Lemma 20. [L2-energy estimates for the linearized incompressible potential equations] Let
T > 0. Assume that U c

p = (ρ, v, A∗) is such that U c
p ∈ C([0, T ]; Hs) for some s > 5/2. Then,

the Cauchy problem built with (4.15)-(4.23) and with initial data (4.24) has a solution on
[0, T ]. Moreover, we can find a constant C depending only on the C([0, T ]; Hs)-norm of U c

p

such that

(4.25) ‖ U̇ c
p(t, ·) ‖L2≤‖ U̇ c

p0 ‖L2 eC t , ∀ t ∈ [0, T ] .

Any Hs-solution to the initial value problem (4.15)-(4.17)-(4.19) leads to a solution to
(4.23)-(4.24) with initial data U̇ c

p0 = U c
p0. As a consequence, the proof of Lemma 20 gives

another access to some L2-bound, namely

‖ U c
p(t, ·) ‖L2≤‖ U c

p0 ‖L2 eC t , ∀ t ∈ [0, T ] .

Proof. We multiply the first, second and third equation of (4.23) respectively by q̇, v̇ and
Ȧ∗; we integrate with respect to the variable x; and then we force everywhere the emergence
of TC by passing to the adjoint. This furnishes

1

2

d

dt

(ˆ

R3

|U̇ c
p(t, ·)|2 dx

)
+ ν

ˆ

R3

|(∇ · v̇)(t, ·)|2 dx ≤ C

ˆ

R3

|U̇ c
p(t, ·)|2 dx

− 〈TA∗−Av̇, Ȧ∗〉 − 〈TvȦ∗, Ȧ∗〉 + 〈TA∗−AȦ∗, d Ȧ∗ − v̇〉 .

Knowing (4.18), the situation is exactly as in the incompressible case, except that the
divergence of v̇ is no more zero. The only new term which could be problematic is issued
from the first contribution in the second line. It is unavoidable in our procedure. However,
it is such that

|〈(∇ · v̇) (A∗ − A), Ȧ∗〉| ≤ ν

2
‖ ∇ · v̇ ‖2

L2 +
C

ν
‖ U̇ c

p ‖2
L2 ,

This is where the bulk (fluid) viscosity is indispensable. It serves to absorb the above loss
of derivatives related to ∇ · v̇. By Grönwall’s inequality, we recover (4.25). �

The comments in Paragraph 4.1.3 are still appropriate. Indeed, the compressible vorticity
formulation is a derived version of the compressible potential formulation. As such, the
work of Subsection 2.4 can serve to confirm that H1-estimates for the compressible potential
formulation are available. This remark concludes the proof of Theorem 2.
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5. Inertial wave phenomena

To better grasp the role of both di and de, in this section, we work with the spacetime
variables of origin, those of (1.7). For 0 ≤ de . di ≪ 1 and frequencies |ξ| ≪ d−1

i , XMHD
like MHD involves principally Alvén and magnetosonic waves. The focus here is on what
happens at higher frequencies, when |ξ| ∼ d−1

i or |ξ| ∼ d−1
e , while usual MHD waves may

be relegated to the back burner. The emphasis is on the emergence and propagation of
inertial waves. To simplify, we address this issue in the incompressible context, with

(5.1)

{
∂tv + (v · ∇)v + ∇p + B∗ × (∇ × B) = 0 ,

∂tB
∗ + ∇ ×

(
B∗ × (v − di ∇ × B)

)
+ d2

e ∇ ×
(
(∇ × v) × (∇ × B)

)
= 0 ,

together with (1.16) and

(5.2) B = (Id − d2
e ∆)−1B∗ .

Our discussion is guided by the selection of different wave configurations, aimed at revealing
various facets of the analysis. Each time, we follow the same guidelines. First, we exhibit
particular solutions to (1.16)-(5.1)-(5.2). Secondly, we derive the corresponding linearized
equations (this is an opportunity to come back and complete some aspects of the preceding
analysis). Then, we study the inertial dispersion relations thus generated.

This strategy is implemented in different situations which become somewhat more and
more sophisticated. We consider successively: constant solutions (Subsection 5.1), Beltrami
fields (Subsection 5.2), configurations with null points (Subsection 5.3), a two dimensional
framework (Subsection 5.4) and special moving solutions (Subsection 5.5).

5.1. Constant solutions. Of course, constant vector fields like (v̄, B̄
∗
) ∈ R

3 ×R
3 give rise

to solutions. The associated linearized equations are readily identifiable

(5.3)

{
∂tv̇ + (v̄ · ∇)v̇ + ∇ṗ + B̄

∗ × (∇ × Ḃ) = 0 , ∇ · v̇ = 0 ,

∂tḂ
∗ + (v̄ · ∇)Ḃ∗ − (B̄

∗ · ∇)(v̇ − di ∇ × Ḃ) = 0 , ∇ · Ḃ∗ = 0 ,

together with

(5.4) Ḃ = (Id − d2
e ∆)−1Ḃ∗.

The linear system (5.3) is not symmetric (and not directly symmetrizable), confirming that
the unknowns v̇ and Ḃ∗ are not suitable. Following Subsection 2.3, we can introduce the
weighted vorticity ẇ := de ∇ × v̇ to get

(5.5)

{
∂tẇ + (v̄ · ∇)ẇ = d−1

e (B̄
∗ · de ∇)

(
de ∇ × (Id − d2

e ∆)−1Ḃ∗) ,

∂tḂ
∗ + (v̄ · ∇)Ḃ∗ = d−1

e (B̄
∗ · de ∇)

(
v̇ − d de ∇ × (Id − d2

e ∆)−1Ḃ∗) .

The derivatives of v̇ (weighted by de) can be deduced from ẇ as indicated in Lemma 23.
Observe that the operators which are in factor of d−1

e in the right hand side are uniformly
(when de → 0) bounded in L2. Thus:
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- For B̄
∗

= O(de) or if the regime is weakly nonlinear as in (1.13), the source terms
are uniformly bounded on any finite time interval. This is the framework of the
present paper.

- For B̄
∗

= O(1), the L2-norm of (ẇ, Ḃ∗) may increase at a rate of d−1
e . This depends

on the structure (antisymmetric or not) of the source term. As already mentioned,
the corresponding effects are connected to singularity formation [7, 19] or magnetic
reconnection [13, 15]. These difficulties are not addressed here.

In other words, at very high frequencies |ξ| & d−1
e , due to the ellipticity induced by the

constitutive relation, all standard hyperbolic contributions (managing usually Alfvén and

magnetosonic waves) act in the right hand side as zero order terms. If B̄
∗

= O(de), they

remain under control. But, for B̄
∗

= O(1), they could result (when de → 0) in a very rapid
amplification of the L2-norm.

The linear system (5.5) is well-posed in L2. However, its hyperbolic structure (the left hand
side) is completely reduced, without any influence of de or di. We just find two decoupled
transport equations at the velocity v̄. The constant case is a point of entry that does not
allow to catch rich phenomena. Still, it is illustrative of the role of source terms in the
inertial regime.

5.2. Beltrami fields. Select some angular wave vector k ∈ R
3 whose angular wavenumber

k := |k| is an integer (k ∈ N), as well as some vector Zk ∈ R
3 which is such that k ·Zk = 0.

With the help of k and Zk, we can construct the oscillatory wave

Zk(x) := Zk cos (k · x) + k−1 (Zk × k) sin (k · x) .

This furnishes an eigenfunction of the curl operator with eigenvalue k, which is called a
Beltrami field. From

∇ × Zk = k Zk , ∇ · Zk = 0 , 2 (Zk · ∇)Zk = ∇|Zk|2 , ∆Zk = −k2 Zk ,

we can deduce that (v, B∗) = (Zk, Zk) is a stationary solution to (1.16)-(5.1)-(5.2) with
pressure p = −|Zk|2/2 and B = (1 + d2

e k2)−1 Zk. After some calculations, always with the
weighted vorticity ẇ := de ∇ × v̇, we find that

(5.6)

{
∂tẇ + (Zk · ∇)ẇ + de k (Zk · ∇)Ḃ∗ = Ṡ

iw
v0 (ẇ, Ḃ∗) ,

∂tḂ
∗ + (1 − di k) (Zk · ∇)Ḃ∗ + de k (Zk · ∇)ẇ = Ṡ

iB∗

v0 (ẇ, Ḃ∗) .

The operators Ṡ i⋆
v0 are (as suggested by the notation) of order zero. They depend on de

and di, and they show properties similar to those identified in Subsection 5.1. For di = 0,
the two quantities ẇ ± Ḃ∗ satisfy two transport equations (coupled by source terms).
These inertial waves travel along the same characteristics, those generated by Zk, but with
different speeds of propagation (due to the factor 1 ± de k in front of Zk · ∇).

5.3. Null point configurations. The locations where the magnetic field vanishes are
called null points. Prototypes can (locally) take the form

(5.7) Bf∗
α := t(y, α x, 0) , Bs∗

α := t(x, α y, −(α + 1) z
)

, α ∈ R .
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The expression (v, B∗) with (v, B∗) = (0, Bf∗
α ) or (v, B∗) = (0, Bs∗

α ) is a stationary solution
satisfying B = B∗.

• The case of Bf∗
α . First compute

∇ × Bf∗
α =

(
0
0

α − 1

)
, Bf∗

α × (∇ × Bf∗
α ) = (α − 1)

(
α x

−y

0

)
=

α − 1

2
∇(α x2 − y2) .

It follows that

(5.8)

{
∂tẇ + de (α − 1) ∂zḂ∗ = Ṡ

iw
v0 (ẇ, Ḃ∗) ,

∂tḂ
∗ − di (α − 1) ∂zḂ∗ + de (α − 1) ∂zẇ = Ṡ

iB∗

v0 (ẇ, Ḃ∗) .

The inertial waves move (modulo possibly large source terms) in the vertical direction

(the one of the stationary current density) at the speeds di ± (d2
i + 4 d2

e)1/2 (α − 1)/2. In
other words, two dimensional null points lend themselves to a transport of energy in the
direction orthogonal to the (horizontal) magnetic surfaces. This effect disappears when
the perturbation remains in the horizontal plane or in the particular case α = 1 (when the
separatrix angle is π/2).

• The case Bs∗
α . This situation is even simpler since ∂t(ẇ, Ḃ∗) = Ṡ i

v0 (ẇ, Ḃ∗).

Large amplitude magnetic fields like in (5.7) furnish usually templates in the perspective
of reconnection models [34]. The problem is to describe what happens near the origin after
perturbation. This would require (this is not done here) to measure the impact of the
source term Ṡ i

v which is presumably of size d−1
e .

5.4. The two dimensional case. We can also seek solutions which do not depend on z
and which involve the following form (where B and B∗ are both orthogonal to v)

(5.9) v =

(
v1(t, x, y)
v2(t, x, y)

0

)
, B =

(
0
0

b(t, x, y)

)
, B∗ =

(
0
0

b∗(t, x, y)

)
.

Note that there exist two dimensional solutions of (5.1) which are more general than (5.9),
by including the flux and stream functions (see [15]). With (5.9), the equations composing
(2.11) reduce to the following 2 × 2 nonlinear system

(5.10)

{
∂tw + v1 ∂xw + v2 ∂yw + de (∂yb ∂xb∗ − ∂xb ∂yb∗) = 0 ,

∂tb
∗ + (v1 − di ∂yb) ∂xb∗ + (v2 + di ∂xb) ∂yb∗ + de (∂yb ∂xw − ∂xb ∂yw) = 0 ,

together with

(5.11) ∂xv1 + ∂yv2 = 0 , b = (1 − d2
e ∆x,y)−1 b∗ .

For de = 0, we find that b = b∗, and the system (5.10) reduces to two transport equations

(5.12)

{
∂tw + v1 ∂xw + v2 ∂yw = 0 ,

∂tb
∗ + v1 ∂xb∗ + v2 ∂yb∗ = 0 .

The Hall effects (coming from di) just disappear (this is quite specific to this configuration).
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From now on, consider that de > 0. Then, the link between b and b∗ is simplified mak-
ing apparent the gain of two derivatives, and the role of ∂xb and ∂yb as coefficients.
Moreover, we get simplifications since the source terms are eliminated. Fix five constants
(v̄1, v̄2, α, β, γ) ∈ R

5 such that −v̄1γ + v̄2β = 0. The expressions

(5.13) v̄ = (v̄1, v̄2) , (w, b
∗
) := (0, α − γ x + β y) , b = b

∗
,

give rise to solutions to (5.10) such that ∇ × B̄
∗

= t(β, γ, 0) is constant. The linearized
equations of (5.10) along these solutions are given by

(5.14)





∂tẇ + v̄1 ∂xẇ + v̄2 ∂yẇ + de (β ∂xḃ∗ + γ ∂y ḃ∗) − de (β ∂xḃ + γ ∂y ḃ) = 0 ,

∂tḃ
∗ + (v̄1 − di β) ∂xḃ∗ + (v̄2 − di γ) ∂y ḃ∗ + de (β ∂xẇ + γ ∂yẇ)

+ di (β ∂xḃ + γ ∂y ḃ) = 0 ,

where ḃ = (1 − d2
e ∆x,y)−1 ḃ∗. In the quasilinear symmetric presentation (5.14), the two

contributions β ∂xḃ∗ + γ ∂y ḃ∗ and β ∂xẇ + γ ∂yẇ establish a balance, while ∂xḃ and ∂y ḃ are
viewed as source terms (of order zero). Given some angular wave vector k = (k1, k2) ∈ R

2

with angular wave number k := |k| ∈ R+ and given τ ∈ C, we can seek plane wave solutions
of the form

(5.15) ẇ = ẇk ei k1 x+i k2 y+i τ t, ḃ∗ = ḃ∗
k ei k1 x+i k2 y+i τ t .

Remark 21. [Approximate vs complete dispersion relation] Neglecting the influence inside
(5.14) of the zero order terms, we find the following two approximate dispersion relations

(5.16) τ̃±(k) + v̄ · k +
1

2
κ± (β k1 + γ k2) = 0 , κ± :=

1

2

(
di ±

√
d2

i + 4 d2
e

)
,

which are inherited from the symmetric form. As can be expected, the functions τ̃± are
homogeneous of degree 1 with respect to k.

Now, observe that

β ∂xḃ∗ + γ ∂y ḃ∗ − β ∂xḃ − γ ∂y ḃ = − d2
e ∆x,y (1 − d2

e ∆x,y)−1 (β ∂xḃ∗ + γ ∂y ḃ∗) .

Thus, after substitution of (5.15) inside (5.14), we get the condition det
(
τ Id2×2+A(k)

)
= 0

where the matrix A(k) is defined by

A(k) := v̄ · k Id2×2 + (β k1 + γ k2)

(
0 +de g(k)
de −di g(k)

)
, g(k) :=

d2
e k2

1 + d2
e k2

.

We find two distinct real eigenvalues giving rise to the two complete dispersion relations

(5.17) τ±(k) + v̄ · k +
1

2
(β k1 + γ k2)

[
di g(k) ±

√
d2

i g(k)2 + 4 d2
e g(k)

]
= 0 .

This means that the addition of the zero order terms does not destroy the hyperbolic
properties. The 2 × 2 system (5.14) is hyperbolic, with Fourier multipliers as coefficients:

- For k orthogonal to ∇ × B̄
∗
, we just find τ̃±(k) = τ±(k) = −v̄ · k.
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- For de > 0, we must incorporate supplementary corrections on both τ̃± and τ±

that characterize the propagation of inertial waves. Moreover, at the level of τ±,
we observe dispersive effects encoded in the (non constant) behavior of g. On the
other hand, for k ≫ d−1

e , we get g(k) ∼ 1. As a consequence, the asymptotic
description of τ±(k) gives way to τ̃±(k).

Remark 22. [On the determination of the complete dispersion relations] Keep in mind
that extra dispersive effects may be induced by the the source terms which have been skipped
in this subsection. This is here illustrated by the difference between τ̃± and τ±. More
generally, the eigenvalues λ± of (2.19) only provide information on the (maximal possible)
homogeneous behavior (of order 1) inherited by the speeds of propagation (for conveniently
polarized waves).

5.5. Moving solutions. Consider that di = 1 and de ≪ 1. Let B0 be a fixed constant
magnetic field. In [3, 2], given k ∈ R

3, the authors seek plane wave solutions having the
following form (where, on condition that B0 = 0, B and v are parallel)

(5.18) B = B0 + µ±
k

v±
k

ei k·x+i µ±

k
(B0·k) t, v = v±

k
ei k·x+i µ±

k
(B0·k) t, v±

k
∈ R

3.

By adjusting the value of µ±
k

adequately, they show that such solutions do exist. Observe

that B = B0 + µ±
k

v, so that (∇ × B) × (∇ × v) = 0. This means that the choice (5.18) has
the effect of killing some nonlinearities and in fact, remarkably, all nonlinearities.

The choice (5.18) is to some extent the opposite of (5.9). This polarization eliminates the
terms which are emphasized at the level of (2.11) or (5.10), those with de in factor. The
dynamics induced by (5.18) have nothing to do with inertial waves. Rather, they are tied
to some extension of Alfvén waves.

For k = k ez with ez = t(0, 0, 1) and where k = |k| ∈ R stands again for the angular
wavenumber, we get a special type of waves with associated dispersion relation

(5.19) ω±
k

= −µ±
k

(B0 · k) =
−k

1 + d2
e k2


−k

2
±
√

k2

4
+ (1 + d2

e k2)


 (B0 · ez) ,

which clearly exhibits dispersive properties. In Section 3.2 of [2], some comments are given
about (5.19), which corresponds to a generalization of the dispersion relation for shear
Alfvén waves in ideal MHD. Since the ω±

k
remain bounded, the role of electron inertia in

this case is to impose a lower and upper bound on the time frequencies attainable. In
contrast, in the Hall framework, we get ω−

k
= k2 (B0 · ez) which rapidly diverges as the

spatial wavenumber k tends to infinity. This means that the electron inertia has the effect
on µ−

k
to cure singular behaviors at high wave numbers in Hall MHD.

6. Appendix

In Subsection 6.1, we list some useful identities implying ∇×. In Subsection 6.2, we recall
elliptic L2-estimates concerning the div-curl system. These estimates have been exploited
to control the derivatives of v in terms of ∇ × v and ∇ · v.
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6.1. Identities involving the curl operator. Retain that

(6.1) ∇ × (∇ × v) = ∇(∇ · v) − ∆v ,

We need to know that

(6.2) ∇ × (F × G) =
(
(∇ · G) + G · ∇

)
F −

(
(∇ · F ) + F · ∇

)
G .

Recall also that

(6.3)

∇ × (F · ∇G) = (F · ∇)∇ × G − ((∇ × G) · ∇)F

+(∇ × G)(∇ · F ) +
3∑

i=1

∇Fi × ∇Gi .

6.2. Elliptic estimates for the div-curl system. Consider in R
3 the system

(6.4)

{ ∇ × v = w ,
∇ · v = g ,

where w and g are given data in L2, whereas v is the unknown. From (6.1 ), it is easy to
infer that

3∑

i,j

ˆ

R3

|∂ivj|2 dx =

ˆ

R3

(
|∇ · v|2 + |∇ × v|2

)
dx =

ˆ

R3

(
|w|2 + g2) dx .

The derivatives of v in L2 are therefore controlled by the L2-norms of w and g. Using the
Poincaré–Sobolev inequality (i.e. ‖v‖L2(R3) ≤ C‖∇v‖L2(R3)) we also obtain the control of

the L2-norm of v; hence its H1-norm. Below, we formalize this well-known fact [37]. For
the sake of completeness, we also give a more explicit proof of it.

6.2.1. Link between the vorticity and the derivatives of a divergence free velocity. We start
by manipulating solenoidal vector fields, belonging to Ds. The link between w and v is
then achieved through the Biot-Savart law.

(6.5) v = ∇ × (−∆)−1 w .

Lemma 23. [Continuity properties when passing from ∇ × v to ∂iv] Given w ∈ Ds, there
exists a unique solenoidal vector field v such that w = ∇ × v in the distributional sense.
Moreover, for all i ∈ {1, 2, 3}, the linear operator Mi

i : Ds → Ds which sends w to ∂iv
(with v as above) may be defined as a bounded matrix Fourier multiplier. It is therefore
continuous for all s ∈ R.

Proof. Fix any w ∈ Ds. By Poincaré lemma, we can find some v such that w = ∇ × v in
the distributional sense. If we impose moreover ∇ · v = 0, on the Fourier side, we have to
deal with the explicit relation v̂ = Fv = i |ξ|−2 Fw × ξ, which furnishes

∂̂iv = M i
i(ξ) Fw , M i

i(ξ) := − ξi

|ξ|2




0 ξ3 −ξ2

−ξ3 0 ξ1

ξ2 −ξ1 0


 .

It is clear that the matrix-valued function M i
i is bounded on R

3 \ {0}. �
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6.2.2. Link between (w, g) and the derivatives of v. The compressible version of Lemma 23
is the following.

Lemma 24. [Continuity properties when passing from the couple (∇ × v, ∇ · v) to ∂iv] Let
g ∈ Hs(R3;R) and w ∈ Ds. There exists a unique v such that (∇ × v, ∇ · v) = (g, w) in the
distributional sense. Moreover, for all i ∈ {1, 2, 3}, the linear operator Mc

i : Hs ×Hs → Hs

which sends (g, w) to ∂iv (with v as above) may be defined as a bounded matrix Fourier
multiplier. It is therefore continuous.

Proof. By construction, we have

Mc
i (g, w) = F−1

(
− ξi

|ξ|2 (ĝ ξ − ξ × ŵ)

)
,

which is sufficient to conclude. �
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