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ABSTRACT
Three electric quadrupole transitions in the second overtone band of D2 are newly measured by comb-referenced cavity ring down spec-
troscopy around 1.18 μm. These extremely weak transitions (line intensities smaller than 10−29 cm/molecule) are the first to be detected in the
(3–0) band of D2. The spectra of the O(3), O(2), and Q(2) lines near 8321, 8446, and 8607 cm−1, respectively, are recorded at room tempera-
ture for pressure values ranging between 100 and 600 Torr. Accurate transition frequencies and line intensities of the three D2 transitions are
determined from a line fitting procedure using beyond-Voigt profiles, including strong Dicke narrowing. Considering statistical fit errors and
possible biases due to the interference with water lines (which are six orders of magnitude stronger than the studied D2 lines), total uncertain-
ties on the frequencies extrapolated at zero pressure are estimated below 14 MHz (∼4.7 × 10−4 cm−1). The derived experimental frequencies
and intensities are compared to ab initio values. An overall agreement is achieved, confirming the positional accuracy of the most advanced
theoretical calculations.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0196903

I. INTRODUCTION

The present contribution contributes to the recent efforts of
several groups to implement state-of-the-art metrological tech-
niques to determine with very high accuracy the transition fre-
quencies of the hydrogen molecule (H2) and its deuterated iso-
topologues (HD, D2). Being the simplest neutral molecular system,
molecular hydrogen allows for sophisticated ab initio calculations,
including relativistic and quantum electrodynamic (QED) correc-
tions, leading to accuracy on the calculated transition frequencies1–5

approaching that of the most advanced experimental setups. In
this constructive interplay, the D2 species is not the most favor-
able isotopologue for an experimental determination of transition
frequencies at high accuracy. Indeed, the D2 absorption spectrum
consists of very weak electric quadrupole (E2) vibrational bands,
which are significantly weaker than in H2. Hydrogen deuteride
(HD) is generally preferred for metrological measurements because
it shows stronger absorption bands than H2. This is due to the small
charge asymmetry existing in HD, leading to the appearance of a
small electric dipole moment. Despite remaining weak, this result-
ing electric dipole in HD allows E1 transitions which are much
stronger than the E2 transitions. Accuracies better than 100 kHz

(i.e., about one thousandth of the room temperature Doppler
width) have been recently achieved by several groups for E1
transitions in the first overtone band of HD,6–15 where measure-
ments in the saturation regime are feasible. Overall accuracies
on HD transition frequencies achieved in saturation regime6,8–10,14

are similar to those achieved by state-of-the-art measurements
in the Doppler regime,12,13 in particular at low temperatures.15

Up until very recently, H2 transition frequencies referenced to
an absolute frequency standard were practically missing. In the
past year, several studies have been dedicated to H2: the Q1
(1–0) transition frequency was determined with an uncertainty
of 310 kHz using stimulated Raman scattering metrology;16 the
Q1–Q4, S0, and S1 transitions of the (2–0) band were reported
with uncertainties between a few tens of kHz and 3 MHz by
comb referenced cavity ring-down spectroscopy (CR-CRDS) in
the Doppler regime;17 and the S0 transition of the (2–0) band
was determined with an accuracy of 8 kHz in the satura-
tion regime using the NICE-OHMS technique under cryogenic
conditions.18

Figure 1 presents an overview of the calculated D2 spectrum,19

where the transitions corresponding to the most accurate frequency
measurements have been highlighted. The measurements referenced
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FIG. 1. Overview of the calculated spectrum of D2.19 The literature measurements
referenced to an absolute frequency standard from Maddaloni et al. (2010),20 Mon-
delain et al. (2016),21 Mondelain et al. (2020),24 and Zaborowski et al. (2020)23 are
plotted with large dots (yellow dots correspond to the present study). Small blue
and red dots correspond to the measurements of Ref. 25 [Martínez et al. (2019)]
and Ref. 19 [Kassi et al. (2012)] in the (0–0) and (2–0) bands, respectively.

to an absolute frequency standard are plotted with large dots and
include the following: (i) CR-CRDS measurements of the frequen-
cies of the S0 and S1 transitions of the (1–0) fundamental band near
3 μm, reported with a 6 MHz accuracy using a DFG source refer-
enced to a Cs-clock primary standard via an optical frequency comb
synthesizer;20 (ii) the S2 (2–0) transition frequency near 6204 cm−1

(1.61 μm) measured in our laboratory and Torun with sub-MHz
accuracy using CR-CRDS21 and frequency-stabilized CRDS in the
frequency agile, rapid scanning spectroscopy (FARS) mode,22,23

respectively; (iii) the CR-CRDS frequencies of the (2–0) Q1–Q4 and
S0 transitions with total uncertainties on the frequencies extrap-
olated at zero pressure estimated between 0.30 and 1.83 MHz.24

Let us mention that the Q2, Q1, and S0–S8 transitions (small red
dots in Fig. 1) were measured in 2012 using standard CRDS,19 but
due to the absence of an absolute reference standard to calibrate
the frequency axis, the transition frequencies were reported with an
accuracy limited to 30 MHz; (iv) finally, we have highlighted in Fig. 1
the S0–S2 (0–0) rotational transitions (small blue dots) measured by
Raman spectroscopy with ±14 MHz accuracy limited by the used
wavemeters.25

The particular weakness of the (3–0) transitions under study
(line intensity smaller than 10−29 cm/molecule) is a major limita-
tion achieving a high accuracy on the transition frequency. The
determination of the transition frequencies requires correcting the
pressure-induced line shift in order to extrapolate the line cen-
ter at the zero pressure limit. Obviously, this extrapolation is
more accurate when spectra with good signal-to-noise ratios can
be recorded at low pressure [e.g., a few Torr in the case of the
Q1, S0, and S1 (2–0) lines of Ref. 17]. In the present case, mini-
mum pressure values of 100 Torr had to be used, which impacts
the final transition frequency accuracy. It is worth remembering
that Dicke narrowing and speed-dependent effects are exception-
ally pronounced in the case of H2, HD, and D2 transitions, and

FIG. 2. Calculated spectrum of the (3–0) band of D2
19 superimposed on the spec-

trum of water vapor.26 The line intensities are for the pure species at 296 K. The
assignment of the three D2 lines under study is indicated.

beyond-Voigt profiles are required to reproduce the measured line
profiles, even for spectra having a limited signal-to-noise ratio. Here,
we will use the Nelkin–Ghatak profile in the forthcoming analysis.

An additional important contribution to the error budget of
the transition frequencies of the three (3–0) transitions measured
in this work is related to the interference with water lines. As illus-
trated in Fig. 2, in the considered region, absorption transitions of
water vapor are six orders of magnitude stronger than the targeted
D2 transitions. The use of a flow of D2 helped to decrease the water
vapor absorption, but even with a concentration limited to a few tens
of ppm, the superposition with the interfering water lines remained
important (see below).

II. EXPERIMENTAL SETUP AND SPECTRA
RECORDINGS

The room temperature absorption spectrum of pure D2
(Aldrich, chemical purity of 99.999% with atomic deuterium iso-
topic abundance of 99.96%) was recorded in the flow regime by
high sensitivity frequency comb referenced cavity ring-down spec-
troscop.21 The CR-CRDS method and setup used for the recordings
have been described in detail in Refs. 24, 27, and 28. The accurate
frequency values associated “on the fly” with each ring-down event
allow not only an absolute calibration of the frequency axis but also
a reduction of the noise amplitude, in particular on the sharp slopes
of the line profiles.29,30

The recording procedure is similar to that adopted to mea-
sure H2 transitions in the (2–0) band.17 An external cavity diode
laser (ECDL) is used as a light source. The ECDL (Toptica fiber-
connected DL Pro, 1200 nm) was tuned to record small spectral
intervals around the O3, O2, and Q2 transitions near 8321, 8446,
and 8607 cm−1, respectively. The ring-down time τ0 for the evac-
uated cavity varied from about 220 to 350 μs, depending on the
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wavenumber. For each frequency point, about 50–120 ring-downs
were averaged, leading to a minimum detectable absorption coef-
ficient between 3 × 10−12 and 8 × 10−12 cm−1 for a single scan.
As in Refs. 24, 28, and 29, the frequency calibration of the spectra
relied on a self-referenced frequency comb (Model FC 1500-250 WG
from Menlo Systems). The frequency corresponding to each ring-
down event was determined from (i) the frequency measurement of
the beat note between a fraction of the ECDL light and a tooth of
the frequency comb and (ii) the tooth number deduced from the
frequency value provided by a commercial Fizeau type wavemeter
(HighFinesse WSU7-IR, 5 MHz resolution, 20 MHz accuracy over
10 h). For each frequency step, the average central emission fre-
quency of the ECDL was actively stabilized using a software-based
proportional-integral loop with a 100 Hz band-pass acting on the
laser current.

As mentioned above, in order to minimize the concentration
of water vapor desorbing from the CRDS cell or the injection tubes,
the spectra were recorded in the flow regime. Nonetheless, strong
water lines were apparent in the spectra, and allowing us to esti-
mate the water concentration in the cell to typically be a few tens of
ppm. A continuous gas flow of a few sccm was set by slowly pump-
ing the cell through a manual needle valve connecting the cell to a
turbo pump group. The gas pressure in the CRDS cell was continu-
ously monitored by a capacitance gauge (MKS Baratron, 1000 mbar
full range) and actively regulated by injecting the D2 sample into the
cell through an electro-valve controlled by a computer based propor-
tional/integral loop. For the O2 line, the recordings were performed
at pressure values of 100, 200, 400, and 600 Torr, while a single pres-
sure value of 200 Torr was used for the O3 and Q2 transitions. The
spectra in the O2 region are superimposed in Fig. 3. The self-induced
pressure shift of the line center and the narrowing of the profile at

FIG. 3. Comparison of the spectra in the region of the (3–0) O2 D2 line recorded at
different pressures (100, 200, 400, and 600 Torr). Note the narrowing of the D2 line
profile at higher pressure, while water lines show a strong pressure broadening.
The insert shows the pressure variation of the D2 line profile, in particular the
pressure shift compared to the zero-pressure position (dashed vertical line). The
lower panel shows the residuals from the fits.

higher pressure are observed. The strong nearby line of water vapor
near 8446.9 cm−1 has an intensity of about 3.7 × 10−24 cm/molecule,
i.e., six orders of magnitude larger than the O2 line intensity. The
contrast between the broadening of the water lines with pressure
and the narrowing of the D2 line is striking. From the relative area
of water lines compared to the D2 line, one can conclude that the
relative amount of water vapor clearly varies with pressure. The tem-
perature was measured with a temperature sensor (TSIC 501, 0.1 K
accuracy) and varied between 294.7 and 295.4 K, according to the
recordings.

III. DATA ANALYSIS AND UNCERTAINTY BUDGET
As mentioned earlier, the standard Voigt profile is not suf-

ficient to adequately model the recorded line profiles due to the
prevalence of narrowing effects, requiring the use of more sophis-
ticated line shapes. The Nelkin–Ghatak profile (NGP) accounting
for the Dicke effect was found sufficient to account for the recorded
line profiles. The fitting program MATS31 developed at NIST was
used to fit the following parameters of the NGP profile to the
spectra: line center, line intensity (extrapolated at 296 K using the
lower state energy provided in the HITRAN database26), broaden-
ing coefficient (γ0), and the velocity-changing collision parameter
(νVC) in the hard-collision model. The baseline of each spectrum
(typically 1 cm−1 wide) was adjusted as a linear function of the
wavenumber. During the fitting process, it appeared that the preva-
lence of narrowing effects and the correlation between the γ0 and
νVC parameters22 made it difficult to obtain reliable values of the
broadening coefficient, in particular for the low pressure recordings
(100 and 200 Torr). We thus chose to fix the broadening coef-
ficient of all the lines to the value obtained from the fit of the
O2 line profile at 600 Torr. The adopted 5.0 × 10−3 cm−1 atm−1

default value is consistent with the 4–8 × 10−3 cm−1 atm−1 range of
the γ0 values obtained for the S0, Q1–Q4 lines of the (2–0) band.24

All spectra are affected by interference from strong water lines
due to outgassing (see Figs. 2 and 4). In the analysis, for the strongest
water lines, the NGP profile was used, and the corresponding γ0
and νVC parameters were floated while positions and intensities were
fixed to parameters from the HITRAN database.26 Weaker water
lines were simulated as Voigt profiles using HITRAN parameters.
The water mole fraction was fit during the analysis and found to
vary between ∼10 and 100 ppm, well beyond the sub-ppm amount
stated in the gas sample. Note that, due to exchanges between D2 and
water vapor, water vapor is strongly enriched in deuterium, and the
relative concentration of HDO, which was also floated, exceeds its
natural value by typically a factor of 30.

The derived line parameters are listed in Table I.
We have included in Fig. 3 the (meas. - calc.) residuals from

the fits of the O2 line. In the region of the D2 line, the spectra are
reproduced at the noise level (typically about 5 × 10−12 cm−1). The
residuals corresponding to all three lines at 200 Torr are presented
in Fig. 4. The individual contributions of the water interfering lines
can be assessed from this figure, where the individual line profiles are
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FIG. 4. Spectra of the (3–0) O3, O2, and Q2 D2 lines recorded at 200 Torr. The upper panels present the experimental spectra and the best fit obtained with NGP profiles for
the D2 line and the interfering water lines (H2

16O: blue profiles, H2
18O: cyan, H2

17O: purple, and HDO: magenta). An interfering line of NH3 is also visible in the middle panel
around 8446.3 cm−1 (green profile). The D2 lines are highlighted with filled-in red profiles. The corresponding residuals are presented on the lower panels.

TABLE I. Parameters of the (3–0) O3, O2, and Q2 transitions of D2 obtained at different pressures using a NGP profile.

Transition P (Torr)
Positiona

(cm−1)
S (296 K)a,b

(10−30 cm/molecule)
νVC

a,c

(10−3 cm−1 atm−1)

O3 200 8321.840 18(16) 1.034(18) 23.4(25)

O2 100 8446.534 13(15) 4.019(22) 17.5(27)
200 8446.533 35(11) 3.912(50) 21.0(16)
400 8446.532 14(8) 3.889(38) 22.5(8)
600 8446.530 95(4) 3.847(24) 23.2(4)

Q2 200 8606.939 56(6) 8.843(78) 18.2(11)
aThe uncertainties are given within parentheses in the unit of the last quoted digit and include the (1σ) statistical values provided

by the fit and potential biases related to the spectrum baseline and water interfering lines (see the text).
bThe intensity values are given for a reference temperature of 296 K.
cThe pressure broadening coefficient (γ0) of all the lines was fixed to a default value of 5.0 × 10−3 cm−1 atm−1 (see the text).

displayed (red and blue profiles for D2 and H2
16O, respectively, with

magenta for HDO). The O2 line appears to be the most affected.
The error bars given in Table I include the statistical uncer-

tainty of the fits and the error bars related to the spectrum
baseline and to the interfering lines. To evaluate these last two,
we investigated the influence of a change of ±1% in the water
vapor concentrations; this variation corresponds to a mismatch
of the concentration clearly visible in the residuals. Similarly,
we estimated the impact of the baseline by varying the spectral
range over which the fit was performed. The resulting combined
error bars are in the position range between 4 × 10−5 and 1.6
× 10−4 cm−1 (1.2 and 4.8 MHz, respectively). For the high-pressure
recordings of the O2 line, the uncertainty related to the interfer-
ing lines is maximum: for the line positions, it is comparable to
the fit uncertainty, while it is the main error source for the line
intensities.

IV. COMPARISON WITH AB INITIO CALCULATIONS

For comparison to ab initio positions, the measured line posi-
tions have to be extrapolated to zero-pressure. The significance of
the self-pressure shift is illustrated in the insert included in Fig. 3. A
linear regression of the O2 line positions as a function of pressure
yields the zero-pressure position and the self-pressure shift (Fig. 5).
In the case of the H2 lines, it was observed that the pressure shift (δ0)
becomes non-linear with pressure as the pressure increases above
200 Torr.17,32,33 We observe a very similar behavior, with the pres-
sure shift at low pressure being slightly larger than at high pressure
(see Fig. 2 of Ref. 33 and Fig. 4 of Ref. 17 for comparison). The zero-
pressure O2 position obtained from the 100 and 200 Torr positions is
8446.534 91(38) cm−1, with the error bar being the maximum value
calculated from the experimental uncertainties given in Table I.
Including the measurements at 400 and 600 Torr leads to a decrease
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FIG. 5. Linear regressions of the line position of the O2 line as a function of
pressure to extract the zero-pressure position. The plotted blue and red lines cor-
respond to the linear regressions obtained with the 100 and 200 Torr positions and
with the whole set of measured positions between 100 and 600 Torr, respectively.

in the zero-pressure position by 2.3 × 10−4 cm−1 (or 6.8 MHz) and a
24% variation of the pressure induced shift (−4.8 × 10−3 cm−1 atm−1

instead of −5.9 × 10−3 cm−1 atm−1). For the O3 and Q2 transitions,
the zero pressure position was obtained by adopting the low pres-
sure δ0 value of the O2 line. This choice is supported by the limited
rotational dependence of the δ0 values obtained for the S0, Q1–Q4
lines of the (2–0) band (from −2.99 × 10−3 to −2.53 × 10−3 cm−1

atm−1).24

A reliable evaluation of the uncertainties in the resulting zero
pressure positions is difficult. According to the O2 data at disposal, a
value of 12 MHz (4 × 10−4 cm−1) seems to be a conservative estimate
of the error related to the position extrapolation at zero-pressure.
This value is larger than the measurement uncertainty on the O3
position at 200 Torr (1.6 × 10−4 cm−1), leading to a combined uncer-
tainty of 4.3 × 10−4 cm−1 (12.9 MHz) for this line. In the case of the
Q2 line, the uncertainty is dominated by the zero-pressure extrapo-
lation of the line center, leading to a 12 MHz estimated error bar.
In summary, the main source of uncertainty on the line position
is related to the zero-pressure extrapolation, which leads to a sim-
ilar error bar of 4 × 10−4 cm−1 or 12 MHz for the three measured
lines.

In Table II, we have gathered the positions and intensities
and their final uncertainties, obtained in this work, with the cor-
responding values predicted by theory. The table includes the
ab initio position values and uncertainties provided by the H2 Spec-
tre computer code.34 It is worth pointing out that most (3–0) D2
ab initio transition frequencies have an uncertainty (1σ) of 14 MHz
(4.7 × 10−4 cm−1) similar to our average experimental uncertainty,
but the O2 transition reaching the J = 0 upper rotational level is cal-
culated with a much higher accuracy of 0.95 MHz (3 × 10−5 cm−1).
The (exp. - calc.) position differences included in Table II range
between +3.6 and 13.0 MHz, well below the combined error bars
of the experimental and ab initio transition frequencies.

Finally, the intensity comparison between the experiment and
theory included in Table II shows agreement within about 3%, which
should be considered satisfactory considering the weakness of the
considered transitions and the interference with the water lines.

V. CONCLUSION
The first detection of electric quadrupole transitions in the sec-

ond overtone band of D2 has been achieved by comb-referenced
cavity ring down spectroscopy near 1.18 μm. With line intensities in
the 10−30–10−29 cm/molecule range, the studied transitions (O2, O3,
and Q2) are among the weakest absorption lines measured so far.
The Nelkin–Ghatak profile, accounting for strong collisional nar-
rowing effects, was used to fit the different line profiles measured
for pressure values ranging between 100 and 600 Torr. The abso-
lute frequency of the O2, O3, and Q2 transitions was obtained with a
claimed accuracy of about 12 MHz, mainly determined by the error
bar on the zero pressure extrapolation of the line centers. This uncer-
tainty value corresponds to less than 1% of the room temperature
Doppler width (1.55 GHz, FWHM) and is only twice as large as
that achieved for the three orders of magnitude stronger S0 and S1
transitions of the (1–0) fundamental band.20

Except for the O2 (3–0) transition computed with a 0.95 MHz
error bar, the (3–0) ab initio transition frequencies are provided with
an uncertainty similar to our experimental uncertainty (≈14 MHz).
A good agreement (better than 13 MHz) is obtained between the
measured and ab initio position values. Sub-MHz determinations of
transition frequencies in D2 are available only in the (2–0) band,22–24

in particular for the S2 transition, which is about 50 times stronger
than the O2 (3–0) transition (see Fig. 1). This level of accuracy

TABLE II. Center, intensity for the O3, O2, and Q2 transitions of the (3–0) band of D2 and comparison to the calculated values.

Position (cm−1) Intensity at 296 K (10−30 cm/molecule)

Exp.-calc.

Transition Experimental Ab initioa 10−5 cm−1 MHz Experimental Ab initiob Exp./calc.

O3 8321.841 73(43) 8321.841 48(47) 25 7.6 1.034(18) 1.032 1.002
O2 8446.534 91(38) 8446.534 79(3) 12 3.6 3.911(59) 3.855 1.014
Q2 8606.941 11(40) 8606.940 68(47) 43 13.0 8.843(78) 8.548 1.034

aAb initio position values provided by the H2Spectre software.2,34

bAb initio intensity values from Ref. 19.
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revealed a slight underestimation of the ab initio transition frequen-
cies in the (2–0) band, on the order of 1.6 MHz in the case of the S2
(2–0) transition, about twice the calculated error bar. Note that this
situation is very similar to that found in the (2–0) band of HD and
H2: calculated frequencies are systematically underestimated by 1.6
and 1.1 MHz, respectively (corresponding to about 1.7 times their
claimed uncertainties) compared to a series of measurements with
an accuracy of a few tens of kHz.17

As concerns the (3–0) band of D2, a significant reduction of
the experimental uncertainty should be possible for the S0 and S2
transitions near 8786 and 8978 cm−1, respectively. These transi-
tions are the strongest of the (3–0) band (see Fig. 2), which will
allow using lower pressure recordings and, thus, improve the accu-
racy on the line center at zero pressure. These future metrological
measurements, together with the present work, will provide addi-
tional validation tests of the state-of-the-art ab initio calculations of
molecular levels of hydrogen isotopologues, with a possible impact
on fundamental physics.35–37
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