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Estimating physical properties of quantum
states from measurements is one of the most
fundamental tasks in quantum science. In this
work, we identify conditions on states under
which it is possible to infer the expectation
values of all quasi-local observables of a state
from a number of copies that scale polylog-
arithmically with the system’s size and poly-
nomially on the locality of the target observ-
ables. We show that this constitutes a prov-
able exponential improvement in the number
of copies over state-of-the-art tomography pro-
tocols. We achieve our results by combining
the maximum entropy method with tools from
the emerging fields of classical shadows and
quantum optimal transport. The latter allows
us to fine-tune the error made in estimating
the expectation value of an observable in terms
of how local it is and how well we approximate
the expectation value of a fixed set of few-body
observables. We conjecture that our condition
holds for all states exhibiting some form of de-
cay of correlations and establish it for several
subsets thereof. These include widely studied
classes of states such as one-dimensional ther-
mal and high-temperature Gibbs states of local
commuting Hamiltonians on arbitrary hyper-
graphs or outputs of shallow circuits. More-
over, we show improvements of the maximum
entropy method beyond the sample complex-
ity that are of independent interest. These in-
clude identifying regimes in which it is possi-
ble to perform the postprocessing efficiently as
well as novel bounds on the condition number
of covariance matrices of many-body states.

1 Introduction

The subject of quantum tomography has as its goal
devising methods for efficiently obtaining a classical
description of a quantum system from access to ex-
perimental data. However, all tomographic meth-
ods for general quantum states inevitably require re-
sources that scale exponentially in the size of the sys-
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tem [33, 55], be it in terms of the number of samples
required or the post-processing needed to perform the
task.

Fortunately, most of the physically relevant quan-
tum systems can be described in terms of a (quasi)-
local structure. These range from that of a local inter-
action Hamiltonian corresponding to a finite tempera-
ture Gibbs state to that of a shallow quantum circuit.
Hence, locality is a physically motivated requirement
that brings the number of parameters describing the
system to a tractable number. Effective tomographic
procedures should be able to incorporate this informa-
tion. And, indeed, starting from physically motivated
assumptions, many protocols in the literature achieve
a good recovery guarantee in trace distance from a
number of copies that scales polynomially with sys-
tem size [5, 10, 23, 29, 64, 67].

Furthermore, in many cases, one is interested in
learning only physical properties of the state on which
tomography is being performed. These are mostly
encoded into the expectation values of quasi-local ob-
servables that often only depend on reduced density
matrices of subregions of the system. By Helstrom’s
theorem, obtaining a good recovery guarantee in trace
distance is equivalent to demanding that the expecta-
tion value of all bounded observables are close for the
two states, a much larger class of observables than
quasi-local ones.

It is, in turn, desirable to design tomographic pro-
cedures that can take advantage of the fact that we
wish to only approximate quasi-local observables, in-
stead of demanding a recovery in trace distance. And
some methods in the literature take advantage of that.
For instance, the overlapping tomography or classical
shadows methods of [22, 24, 40, 43] allow for approx-
imately learning all k-local reduced density matrices
of an n-qubit state with failure probability § using
O(e*klog(nd—1)e=?) copies without imposing any as-
sumptions on the underlying state. This constitutes
an exponential improvement in the system size com-
pared to the previously mentioned many-body setting
at the expense of an undesirable exponential depen-
dency in the locality of the observables.

In light of the previous discussion, it is natural to
ask the guiding question of our work: is it possible to
devise a tomography protocol that has a sample com-
plexity that is logarithmic in system size and polyno-
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mial in the locality of the observables we wish to esti-
mate?

At first, this might sound like a tall order: as we
show in Section G by importing results of [27], even
if we start from the assumption that the underlying
state we wish to learn is a high-temperature product
state with n qubits, the number of samples required
to obtain an estimate that is e close in trace distance
from the target state scales like Q(ne=2). Thus, to
obtain a sample complexity that is logarithmic in sys-
tem size we cannot quantify closeness in trace distance
and need to resort to more physically motivated dis-
tinguishability measures. Moreover, we show in Sec-
tion G that even for product states the classical shad-
ows protocol will fail to produce a good estimate for k-
local observables if the number of samples is not expo-
nential in k. We conclude that protocols like shadow
tomography on their own cannot achieve our goal of a
sample complexity that is polynomial in the locality
of the underlying observables and needs to be com-
bined with other estimation methods in a nontrivial
way.

Despite these challenges, we provide an affirmative
answer for the guiding question above for a large class
of physically motivated states. We achieve this by
combining two insights. First, we observe that re-
cently introduced Wasserstein distances [21, 26, 31,
45, 56, 59] are better suited than the trace distance
to estimate by how much the expectation values of
physically motivated observables can differ on two
states. We introduce these distances and motivate
this claim below. But in summary, the Wasserstein
distance quantifies how well we can distinguish states
through observables whose expectation value does not
change much when we apply a unitary acting only on
a few qubits. By focusing on the Wasserstein dis-
tance instead of the trace distance we can bypass the
Q(ne=2) lower bound we mentioned previously. Intu-
itively, this means that exponentially fewer samples
are required to estimate all such local expectation val-
ues than arbitrary, global ones.

The second insight is to combine techniques from
quantum optimal transport with the well-established
maximum entropy method [42] and the classical shad-
ows protocols in a novel way. In particular, we
will demonstrate that so-called transportation cost
inequalities [21, 26, 31, 45, 56, 59| allow us to con-
trol how well we approximate the expectation value
of k-local observables by how well we approximate
certain observables that only act on a constant num-
ber of qubits. Thus, we only use the shadows proto-
col to estimate the expectation of many observables
that are highly local, the regime in which classical
shadows excel, and bypass the exponential scaling
of only using shadows for such an estimation task.
This way we obtain a provable exponential improve-
ment over known methods of many-body tomogra-
phy [5, 10, 23, 29, 64, 67] that focus on the trace dis-

tance and recent shadow tomography or overlapping
tomography techniques [22, 24, 40, 43], as summarized
in Table 1.

Examples for which we obtain exponential improve-
ments include thermal states of 1D systems and high-
temperature thermal states of commuting Hamiltoni-
ans on arbitrary hypergraphs and outputs of shallow
circuits. Furthermore, based on results by [34, 49], we
conjecture that our results should hold for any high-
temperature Gibbs state, even. More ambitiously,
we conjecture that our results can be extended to
states exhibiting exponential decay of correlations.
This would allow us to extend our findings to classes
of states that are not known to be tractable classi-
cally, such as ground states of gapped Hamiltonians
in higher dimensional lattices [39].

The main ingredient to obtain our improvements
are so-called transportation cost (TC) inequali-
ties [61]. They allow us to bound the difference of
expectation values of Lipschitz observables, a concept
we will review shortly, on two states by their rela-
tive entropy. Such inequalities constitute a powerful
tool from the theory of optimal transport [65] and
are traditionally used to prove sharp concentration in-
equalities [58, Chapter 3]. Moreover, they have been
recently extended to quantum states [26, 56, 59]. By
combining such inequalities with the maximum en-
tropy principle, we are able to easily control the rela-
tive entropy between the states and, thus, the differ-
ence of expectation values of Lipschitz observables.

Our revisit of the maximum entropy principle is fur-
ther motivated by recent breakthroughs in Hamilto-
nian learning [5, 34|, shadow tomography [40], the un-
derstanding of correlations and computational com-
plexity of quantum Gibbs states [35, 46, 49, 51, 52]
and quantum functional inequalities [18, 26] that shed
new light on this seasoned technique.

Before we summarize our contributions in more de-
tail, we first define and revise the main concepts re-
quired for our results, namely Lipschitz observables,
transportation cost inequalities and the maximum en-
tropy principle.

1.1 Lipschitz observables

In the classical setting, given a metric d on a sample
space S, the regularity of a function f : S — R can be
quantified by its Lipschitz constant [58, Chapter 3]

[fllLip = sup [f(z) — f(y)l/d(z,y). (1)
z,ye€S

For instance, if we consider functions on the n-
dimensional hypercube {—1,1}" endowed with the
Hamming distance, the Lipschitz constant quantifies
by how much a function can change per flipped spin.
It should then be clear that physical quantities like av-
erage magnetization have a small Lipschitz constant.
Some recent works [56, 59] extended this notion to
the noncommutative setting and we will focus on the
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Structure Assumptions on State

Assumptions on Observable Samples

Many-body tomography Many-body none poly(n,e=1) [5]
Classical Shadows none k-local poly(e* log(n), e~ 1) [40]
This work Many-body+transportation k-local poly(k,log(n),e 1)

Table 1: Summary of underlying assumptions and sample complexity of other approaches to perform tomography on quantum

many-body states.

approach of [56] in the main text. This is justified by
the fact that it is more intuitive and technically sim-
pler. For the approach followed in [56], the Lipschitz
constant of an observable on n qudits is defined as ?

[Olluipo
— = Imax max
\/ﬁ 1<i<n p,0€Dyn
tri[p]=tr;[o]

tr[O(p—0)], (2)

where Dy~ denotes the set of n-qudit states. That
is, ||O||Lip,0 quantifies the amount by which the ex-
pectation value of O changes for states that are equal
when tracing out one site. It is clear that ||O]|Lip, <
24/n]|O||s always holds by Hélder’s inequality, but
it can be the case that ||O||Lip,0 < v/n[|Ol/. For
instance, consider for some k > 0 the n-qubit observ-
able

O=n"1> oz, (3)
i=1

where for each site j, Z; denotes the Pauli observable
Z acting on site 5 and we take addition modulo n. It
is not difficult to see that ||O|Lip 0 = 2kn~ =, while
|O0]lcc = 1. We refer to the discussion in Fig. 1 for
another example.

Moreover, one can show that shallow local cir-
cuits or short-time local dynamics satisfying a Lieb-
Robinson bound cannot substantially increase the
Lipschitz constant of an observable when evolved in
the Heisenberg picture. That is, if we have that @
is the quantum channel that describes some local dy-
namics at time/depth ¢ in the Heisenberg picture and
it satisfies a Lieb-Robinson bound, then we have:

197 (0)Lip,0 = Oe" |O]|Lip,00) -

where v denotes the Lieb-Robinson velocity. This re-
sult is discussed in more detail in Section B.1 of the
supplemental material. Thus, averages over local ob-
servables and short-time evolutions thereof all belong
to the class of observables that have a small Lips-
chitz constant when compared to generic observables.
These facts justify our claim that quasi-local observ-
ables are Lipschitz.

Once we are given a Lipschitz constant on observ-
ables or a set of quasi-local observables, we can define
a Wasserstein-1 distance on states by duality [56, 59].

Ithe definition of [56] has a different normalization and does
not have the y/n term. This normalization will be convenient
to treat the constants of [59] and [56] on an equal footing.

The latter quantifies how well we can distinguish two
states by their action on regular or local observables
and is given by

Wilp,o):=  swp  [0(p—0).  (4)

O:|[O]lLip,0<1

The definition (4) is in direct analogy with the vari-
ational definition of the trace distance, given by:

wlOp-o). ()

lp=olj = sup
O:[0]l e <1

Note, however, that the two quantities have differ-
ent scalings. To illustrate this point, let us consider
the observable in Eq. (3). If we measure the distance
in trace distance, then we need that ||p — ol < €
to ensure that o approximates the expectation of
value of p up to e on O. On the other hand, as
10]|Lip,0 < 2kn~=, the bound Wy (p, o) < % is suf-
ficient to guarantee the same approximation. This
difference in scaling is at the heart of our results, as
we will see now.

1.2 Transportation cost inequalities

The paragraphs before motivated the idea that ob-
servables with a small Lipschitz constant capture
quasilocal observables, and thus, that controlling the
Wasserstein distance between two states gives rise to
a more physically motivated distance measure than
the trace distance. However, it is a priori not clear
how to effectively control the Wasserstein distance be-
tween states, as it does not admit a closed formula in
terms of eigenvalues like the trace distance.

In this work, we will achieve this by relating
Wasserstein distances to the relative entropy between
two states, D(pl||o) := tr[p (log(p) — log(0))], for o of
full-rank. This can be achieved through the notion of
a transportation cost inequality: an n-qudit state o is
said to satisfy a transportation cost inequality with
parameter a > 0 if the Wasserstein distance of o to
any other state p can be controlled by their relative
entropy, i.e.

D(pllo)
Wi(p,o) < Ton (6)
holds for all states p € Dgn.

Such inequalities are particularly powerful when-
ever the constant o does not depend on the system
size n or does so at most inverse polylogarithmically,
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and can be thought of as a strengthening of Pinsker’s
inequality.

Transportation cost inequalities are closely related
to the notion of Gaussian concentration [12, 56, 59|,
i.e. that Lipschitz functions strongly concentrate
around their mean. Establishing analogs of such con-
centration inequalities for quantum many-body sys-
tems has been a fruitful line of research in the last
years and they are related to fundamental questions
in statistical physics, see e.g. [3, 15, 49, 50, 62]. Al-
though we are certain that inequalities like Eq. (6)
also shed new light on this matter, here we will focus
on their application to learning a classical description
of a state through maximum entropy methods. We re-
fer to Table 2 for a summary of classes of states known
to satisfy it, as discussed in more detail below. Unfor-
tunately, for some important classes, the inequalities
are only known for the more technically involved vari-
ations of the Wasserstein distance, and we refer the
reader to the supplemental material, Section B.2 for
precise definitions.

Recent works have established transportation cost
inequalities with « either constant or logarithmic in
system size for several classes of Gibbs states of com-
muting Hamiltonians [18, 26, 56]. In summary, they
are known to hold for local Hamiltonians on arbitrary
hypergraphs at high enough temperatures or in 1D. In
this work we enlarge the class of examples by showing
them for outputs of short-depth circuits in Sec. C.1.
Note that Eq. (6) is trivial for pure states, as then the
relative entropy between that state and any other is
always +o0o. Thus, we first find an appropriate full-
rank approximation of the pure state for which the
inequality holds, as we will discuss below.

1.3 Maximum-entropy methods

Let us now show how transportation cost inequali-
ties can be combined with maximum entropy meth-
ods. Such methods start from the assumption that
we are given a set of self-adjoint, linearly indepen-
dent Hermitian observables over an n-qudit system,
Ei,...,E, € M., with ||Ej|lec < 1, a maximal in-

verse temperature S > 0 and the promise that the
state we wish to learn can be expressed as:

€xXp <5 % /\iEi>

1=

Z(A

—

N

where A € R™ with sup norm ||\l <1 and

Z(\) =tr [exp <—ﬁ zm: )\iEi>
i=1

the partition function. Denoting by e(\) the vector
with components e;(A) = tr [E; 0(A\)], the crux of the
maximum entropy method is that X is the unique op-

timizer of
min - log(Z(u)) + 8 piei(N), (8)
llullew <1 i=1

which gives us a convex variational principle to learn
the state given e(X). We refer to Sec. A for a discus-
sion of the maximum entropy principle and its prop-
erties.

Typical examples of observables E; are e.g. all
2—local Pauli observables corresponding to edges of
a given graph. This models the situation in which we
are guaranteed that the state is a thermal state of a
Hamiltonian with a known locality structure. More
generally, for most of the examples discussed here the
FE; are given as follows: we start from a hypergraph
G = (V, E) and assume that there is a maximum ra-
dius r9 € N such that, for any hyperedge A € FE,
there exists a vertex v € V such that the ball B(v, )
centered at v and of radius rg includes A. The FE; are
then given by a basis of the traceless matrices on each
hyperedge A. This definition captures the notion of a
local Hamiltonian w.r.t. the hypergraph.

Our framework also encompasses pure states after
making an appropriate approximation. For instance,
in this article we will also consider the outputs of shal-
low quantum circuits and believe our framework ex-
tends to unique ground states of gapped Hamiltoni-
ans, which are pure. Indeed, although it might not be
a-priori clear, we will show below how the outputs of
constant depth constant circuits are contained in the
class of ground states of gapped, commuting Hamil-
tonians. And these are well-approximated by Gibbs
states at finite temperature. Although this connection
between Gibbs states of commuting Hamiltonians and
outputs of shallow circuits might not be obvious at
first, it makes some intuitive sense that the outputs
of a shallow circuit are characterized by the reduced
density matrix of the lightcone of each qubit. And
the same holds for Gibbs states: one of their defining
properties is that they are uniquely determined by the
marginals. And this is the property that links these
two classes of states.

Let us specify further what it means to learn the
output of a shallow circuit. Suppose that |¢)) =
U 0)®™ is the output of an unknown shallow circuit
of depth L with respect to a known interaction graph
(V, E) on n vertices. That is,

U=1J & the,

Le[L] e€&,

where each & C FE is a subset of non-intersecting
edges. Thus, in this setting the locality of the circuit
is known, but the underlying unitary is not. As we
then show in Theorem C.1, the state |¢) is €2 close
in Wasserstein distance to the Gibbs state o corre-
sponding to the Hamiltonian with local terms U Z;U*
at the inverse temperature 3 = log(¢~!). By a sim-
ple light-cone argument we can bound the support of
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each UZU', since we know the underlying structure
of the circuit. We then show in Thm. C.1 that it is
indeed possible to efficiently learn the outputs of such
circuits as long as the support of each time-evolved
Z; is at most logarithmic in system size.

We see from Eq. (8) that the expectation values of
the E; completely characterize the state o(\). But
it is possible to obtain a more quantitative version
of this statement through the following identity, also
observed in [5]:

D(a()llo(A) + D(e(Mlo(w))
= =B = ple(N) —e(w)- (9)

In addition to showing that if e(A\) = e(u) then
o(p) = o(N), Eq. (9) implies that by controlling how
well the local expectations values of one state ap-
proximate another, we can also easily control their
relative entropies. In particular, if m = O(n) and
lle(rr) — e(A)]le, = O(en) for some € > 0, we obtain
from an application of Holder’s inequality that:

D(a(p)lle(N) < D(a(wllo(A) + De(A)llo(w))
= O(fen). (10)

We refer to Section A for more details. Thus, if we
can find a state that approximates the expectation
value of each E; up to €, we are guaranteed to have
a O(Pe) relative entropy density. This observation is
vital to ensure that the maximum entropy principle
still yields a good estimate of the state even under
some statistical noise in the vector of expectation val-
ues e(A). Indeed, the variational principle of Eq. (8)
would allow us to recover the state exactly if we had
access to the exact values of e(\). However, it turns
out that solving Eq. (8) with some estimate é(\) such
that [|é(A)—e(N)|le., < estill yields a Gibbs state o (u)
satisfying Eq. (10). The maximum entropy problem is
a strictly convex optimization problem. Thus, it can
be solved efficiently with access to the gradient of the
target function. The gradient turns out to be propor-
tional to e(\) — e(u), where p is the current guess for
the optimum. Although we will discuss the details of
solving the problem later in Sec. A, in a nutshell, the
maximum entropy problem can be solved efficiently if
it is possible to efficiently compute expectation values
of the observables E; on the family of Gibbs states
under consideration.

1.4 Combining TC with the maximum entropy
principle

Suppose now that we have that each of the E; acts
on at most [y qudits. Then, by using e.g. the method
of classical shadows, we can estimate the expectation
values of all F; up to e with failure probability at most
§ > 0 with O(4'oe=2log(md—1)) samples. From our
discussion above, we see that this is enough to obtain
a state o(u) satisfying Eq. (10). Further assuming

that we have a TC with some constant o > 0 for o(\)
we conclude that:

[tr[O(e(A) = o ()] < [OllLipWi(o(A), o(p))

< 10lluip w

= O(V/Ben||Olluip)-

Finally, recall that for sums of k local operators on
a 2D lattice like in Fig. 1, where we have k = L2,
the Lipschitz constant satisfies ||O||Li, = O(v/n) and
we require a precision of O(en/k) to obtain a relative
error of e. Putting all these elements together, we
conclude that by setting ¢ = 3&2/(k?) for some € > 0
we arrive at

[tr[O(a(N) = o(w)]] = OEk™"n), (11)

which constitutes a relative error for the expectation
value. In particular, we see that the sample complex-
ity required to obtain this error was

O k*p% e log(m)). (12)
We then obtain:

Theorem 1.1 (Learning Gibbs states). Let o(A) be a
Gibbs state as defined in Eq. (7) and such that each E;
acts on at most ly qudits. Moreover, suppose that o(\)
satisfies a TC inequality with « depending at most
inverse logarithmically with system size. Then with
probability of success 1 — 6 we can obtain a state o(u)
such that for all observables O € Mgn

tr[O(a(A) = o ()]l < O(ev/n [OflLip)  (13)

from O(4% 32 poly(e~!,log(md—1))) samples of o(N\).
Moreover, if it is possible to compute the expectation
values of the E; on o(t) for ||7|le., < 1, then the
postprocessing can also be in polynomial time.

We once again stress that the recovery guarantee
in Eq. (13) suffices to give good relative approxi-
mations for the expectation value of quasilocal ob-
servables. Furthermore, if we did not resort to the
Wasserstein distance but rather the trace distance,
as in known results for the tomography of many-body
states [5, 10, 23, 53, 67], the sample complexity would
be exponentially worse, as we prove in Sec. G. More
precisely, any algorithm that estimates Gibbs states
on a lattice at inverse temperatures § = Q(n_%) up
to trace distance e requires Q(ne~2) samples. Thus,
even for states whose inverse temperature goes to 0
as the system size increases, a focus on the trace dis-
tance instead of the Wasserstein distance implies an
exponentially worse sample complexity.

Theorem 1.1 also provides an exponential improve-
ment over shadow techniques in the locality of the ob-
servables, as we argue in Sec. G. However, unlike our
methods, shadow techniques do not need to make any
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Structure Samples Postprocessing
Lightcone Iy circuit | e~ #2120 exp(3n)
Commuting Gibbs 9

for ,8 < /Bc € poly(n)

1D commuting min{e 2P =1} | poly(n)

Table 2: Performance of the algorithm under various assumptions of the underlying state to obtain a state that is e1/n close
in Wasserstein distance. All the estimates are up to polylog(n) factors. We refer to Sec. B.3 for proofs of the TC used and C
for how to combine them with maximum entropy methods. In Section D we explain how to obtain the sample complexity by
combining Thm. A.1 with strong convexity bounds. For the postprocessing we refer to section E. The case of shallow circuits
is discussed in more detail in Sec. C.1. By lightcone [y we mean the size of the largest lightcone of each qubit in the circuit.

assumptions on the underlying states. Thus, we see
that Theorem 1.1 opens up the possibility of highly
efficient characterization of quantum states and prov-
ably exponentially better sample complexities when
compared with recovery in trace distance.

We also remark that it is possible to improve the
scaling in accuracy in Eq. (12) from ¢ to the ex-
pected €2, To do that, it is important to bound the
condition number of the Hessian of the log-partition
function, as we explain in the methods.

0

9 ¢ 9 9 ®
9o 0 00 © —
o0 e 0 0@
‘o o oo @
> o 0 00O
oo o o o o
9 0 9 9 ®
> o o 0o 0o
oo o o0 o
T —— T ——
> 9 0 0 0o
oo o 0 0o

Figure 1: example of observable O = ZZ O; for 2D lattice
system of size n. Each O; is supported on a L x L square
(L = 3in the figure). We have ||O||Lip = O(y/n) and ||O|| =
n/L?*. Thus our methods require poly(L,log(n),e ") sam-
ples to estimate the expectation value of all such observ-
ables. Shadow-like methods require poly(eCLz,log(n),e_l)
samples, an exponentially worse dependency in L. Even for
moderate values of L, say I = 5, this can lead to 107 factor
savings sample complexity and gives an exponential speedup
for L = poly(log(n)). Other many-body methods have a
poly(L,me*l) [5, 10, 23, 53, 67] scaling, which in turn is
exponentially worse in the system size.

1.5 Numerical results

We will now compare the performance of our method
to the classical shadow protocol [40] to estimate the
average of a local observable on a Gibbs state. To
ensure that we can still generate samples for a high
number of qubits, we will consider the following family

of commuting Gibbs states in 1-D:

H(QA) = (14)
n/2—1
= Y S (Xo X1 + A XoX1YaY3) S,
k=0

where S is the shift operator, A € By__(0,1) and we
assumed n is even. We will then estimate the expec-
tation value of the observable:

n/2—1
0= ) S*XoX1V2YsXuX5YsYz5%%.  (15)
k=0

The results for one particular choice of Gibbs state
in this class are shown in Fig. 2. It shows that even
for observables of moderate locality like the one in
Eq. (15), shadows are outperformed by maximum en-
tropy methods by orders of magnitude. Also note
that the quality of our estimates decays like ~ 1/4/s,
where s is the number of samples, showing how the
quality of the recovery is essentially independent of
the system’s size.

We also remark that for obtaining these results, we
obtained the expectation values of the X;X;;1 terms
by measuring in the X basis on each qubit and of the
X XYY terms by measuring in a sequence of X XYY
bases followed by the same basis shifted by 2.

2 Conclusion

In this article we have demonstrated that ideas from
quantum optimal transport yield provable exponen-
tial improvements in the sample complexity required
to learn a quantum state when compared to state-
of-the-art methods. More precisely, we showcased
how the interplay between maximum entropy meth-
ods and the Wasserstein distance, which is mediated
by a transportation cost inequality, allows for fine-
tuning the complexity of observables whose expecta-
tion value we wish to estimate and the number of
samples required for that. Through our techniques,
we essentially settled most questions related to how
efficiently it is possible to learn a commuting Gibbs
state and significantly advanced our understanding of
general Gibbs states. With the impressive growth in
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Comparison of Max Entropy and Shadow Estimator
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Figure 2: Performance on a Gibbs state from the family of Eq. (14) and the 8-local observable in Eq. (15). We have set the
number of qubits to 100, 8 = 1.1 and the A; uniformly at random between 0.5 and 0.9. The z-axis denotes the logarithm of
the number of samples in base 10 and the y the error in absolute value to the true value. We ran each protocol 300 times
on the same Gibbs state to see how the estimate varied. We see that even with 10* samples the shadows method still has
errors of the order 10° in the 75 percentile, whereas the maximum entropy already yields good estimates when the number of
samples is of order 10?, showcasing that maximum entropy methods outperform classical shadows by orders of magnitudes for

observables of moderate locality like those in Eq. (15).

the size of quantum devices available in the lab over
the last years, we believe that the polylogarithmic
in system size sample complexities obtained here will
come in handy to calibrate and characterize systems
containing thousands or millions of qubits.

We believe that the framework and philosophy we
began to develop here will find applications in other
areas of quantum information theory. Indeed, al-
though a bound in trace distance is the golden stan-
dard and one of the most widely accepted and used
measures of distance between quantum states in quan-
tum information and computation, we argued that in
many physically relevant settings, demanding a trace
distance bound might be too strong. More impor-
tantly, replacing the trace distance by a Wasserstein
distance bound can lead to exponential complexity
gains, as in this article. Thus, we believe that this
approach is likely to lead to substantial gains and im-
provements also in other areas like quantum machine
learning, process tomography or in quantum many-
body problems.

Some of the outstanding open questions raised by
this article are establishing that a suitable notion of
exponential decay of correlations in general implies a
transportation cost inequality and showing that TC
holds for a larger class of systems. We believe that
our framework should also extend to ground states of
gapped Hamiltonians in 1D, however, such a state-
ment would still require us to refine our bounds.
The results presented here also make us conjecture
that any high-temperature Gibbs state satisfies a TC
inequality, even for long-range interactions, which
would make our techniques applicable to essentially

all physically relevant models at high temperatures.

That being said, to the best of our knowledge, all
states that are known to satisfy a TCI can also be sim-
ulated efficiently classically. However, there is a-priori
no reason to believe that a TCI necessarily implies
that the underlying states can be simulated classically
and we believe that this is more of a reflection of the
fact that the study of TCI is still incipient. Further-
more, although we explained how to do the tomog-
raphy of the Gbibs state with the maximum entropy
principle, other Hamiltonian learning procedures also
apply, as all we need is to upper-bound the relative en-
tropy through Eq. (9). Thus, breakthroughs in Hamil-
tonian learning would then also apply to the setting
in this paper. In particular, through efficient Hamil-
tonian learning methods, it might be possible to use
the results derived here to verify if a quantum device
correctly implemented a shallow circuit.

Moreover, it would also be interesting to investi-
gate other applications of Gaussian concentration in
many-body physics [3, 15, 49, 50, 62] from the angle
of transportation cost inequalities.

3  Methods

3.1 Summary of the maximum entropy proce-
dure and contributions

Now that we have discussed how our results yield bet-
ter sample complexities for some classes of states, we
discuss the maximum entropy algorithm in more de-
tail and comment on how our results equip it with
better performance guarantees.
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As the maximum entropy principle in Eq. (20) cor-
responds to solving a convex optimization problem,
it should come as no surprise that promises on the
strong convexity of the underlying functions being
optimized can be leveraged to give improved perfor-
mance guarantees [14]. For the specific case of the
maximum entropy principle, strong convexity guar-
antees translate to bounds of the form

LI <V?log(Z(p) <UI (16)

for constants L,U > 0 and all 4 € By_(0,1). We
refer to Sec. A of the supplemental material for a
thorough discussion. We note that in [5] the authors
show such results in a more general setting, although
with U, L polynomial in n, which is not sufficient for
our purposes. For us it will be important to ensure
that the condition number of the log-partition func-
tion is at most polylogarithmic in system size (i.e.
L™'U = 0(1)).

If we define the function f : u +— log(Z(u)) +

B i piei(A), then Vf = B(e(A) — e(n)). It then
i=1

follows from standard properties of strongly convex
functions that:

A= pllee = L7 Blle(N) — e()lle,

That is, whenever the expectation values are close,
the underlying parameters must be close as well. In
this case, we have from |e(A\) — e(u)|le, = O(ev/m)
that:

— B — ple(A) —e(w)) (17)
< BIN = pllealle() = e(w) e, = O(LT" e*m).

As we will see in the proposition below, L~! =
O(e?B372) for commuting Hamiltonians, which gives
a quadratic improvement in € in Eq. (17) and yields
the expected €2 scaling for the sample complexity in
terms of the accuracy.

Proposition 3.1 (Strengthened strong convexity
constant for commuting Hamiltonians). For each p €
B, (0,1), let o(u) be a Gibbs state at inverse tem-
perature [ corresponding to the commuting Hamilto-
nian H(u) = Zj w; E; on the hypergraph G = (V, E),
where tr [E;E;| = 0 for all i,j and each local opera-
tor Ej; is traceless on its support. Then for 3 such
that the states o(u) satisfy exponential decay of cor-
relations, the Hessian of the log-partition function is
bounded by

Q(B%e™P)I < V? log Z(u) < O(B)I. (18)
for some constant ¢ > 0.

After the completion of the first version of this
work, in [34, Corollary 4.4] Tang et al proved strong
convexity bounds for high-temperature, (not necessar-
ily geometrically) local Hamiltonians. More precisely,

for 3 = O(k™8), where k is the maximal number of
qudits each term acts on, they show that L= < 2872,
Although the result in Eq. (18) has the advantage of
giving an estimate at any temperature, we see that
also for noncommuting Gibbs states strong convexity
holds at high enough temperatures.

The flowchart in Figure 3 gives the general scheme
behind the maximum entropy method. Besides the
exponential improvements in sample complexity laid
out in Table 2, we also provide structural improve-
ments which we elaborate on while also explaining
the general scheme:

Input: The input consists of m linearly independent
operators F; of operator norm 1, some upper bound
B > 0, precision parameter ¢ > 0 and step size 7.
Moreover, we are given the promise that the state
of interest satisfies (7). Although we will be mostly
concerned with the case in which the observables are
local, we show the convergence of the algorithm in
general in Sec. A. The step size should be picked as
n = O(U!) with U satisfying (16), as explained in
Sec. A.1.

Require: We assume that we have access to copies
of o(\) and that we can perform measurements to es-
timate the expectation values of the observables F;
up to precision € > 0. For most of the examples con-
sidered here, this will mostly require implementing
simple, few-qudit measurements.

Output: The output is in the form of a vector of
parameters p of a Gibbs state o(u) as in Eq. (7). Note
that unlike [5], our goal is not to estimate the vector
of parameters A, but rather obtain an approximation
of the state satisfying o(\) ~ o(u). Here we will
focus on quantifying the output’s quality in relative
entropy. More precisely, the output of the algorithm
is guaranteed to satisty D(a(u)||o(X)) = O(en).

Step 1: In this step, we estimate the expectation
values of each observable E; on the state o(\) up to
an error €. The resources to be optimized here are
the number of samples of o(\) we require and the
complexity to implement the measurements. Using
shadow tomography or Pauli grouping methods [13,
22, 40] we can do so requiring O(47e~2 polylog(m))
samples and Pauli or 1—qubit measurements, where
ro 18 maximum number of qubits the E; act on. This
is discussed in more detail in Sec. C.

Step 2: The maximum entropy problem in Eq. (8)
can be solved with gradient descent, as it corresponds
to a strictly convex optimization problem [14]. At this
step we simply initialize the algorithm to start at the
maximally mixed state.
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Step 3: It turns out that the gradient of the maxi-
mal entropy problem target function at u; is propor-
tional to e(p:) —e(A). Thus, to implement an iteration
of gradient descent, it is necessary to compute e(j;),
as we assumed we obtained an approximation of e(\)
in Step 1. Moreover, it is imperative to ensure that
the algorithm also converges with access to approxi-
mations to e(u) and e(X). This is because most al-
gorithms to compute e(u:) only provide approximate
values [35, 37, 46, 51] . In addition, they usually have
a poor scaling in the accuracy [51], making it neces-
sary to show that the process converges with rough
approximations to e(u;) and e(\). Here we show that
it is indeed possible to perform this step with only ap-
proximate computations of expectation values. This
allows us to identify classes of states for which the
postprocessing can be done efficiently. These results
are discussed in more detail in Sec. A.2.

Convergence loop: Now that we have seen how to
compute one iteration of gradient descent, the next
natural question is how many iterations are required
to reach the stopping criterium. As this is a strongly
convex problem, the convergence speed depends on
the eigenvalues of the Hessian of the function being
optimized [14, Section 9.1.2]. For max-entropy, this
corresponds to bounding the eigenvalues of a gener-
alized covariance matrix. In [5] the authors already
showed such bounds for local Hamiltonians implying
the convergence of the algorithm in a number of steps
depending polynomially in m and logarithmically on
the tolerance € for a fixed 5. Here we improve their
bound in several directions. First, we show that the
algorithm converges after a polynomial in m number
of iterations for arbitrary F;, albeit with a polynomial
dependence on the error, as discussed in Sec. A.2. We
then specialize to certain classes of states to obtain
various improvements. For high-temperature, com-
muting Hamiltonians we provide a complete picture
and show that the condition number of the Hessian is
constant in Prop. 3.1. This implies that gradient de-
scent converges in a number of iterations that scales
logarithmically in system size and error.

Stopping condition and recovery guarantees:
the stopping condition,

le(d) = e(ue)lle, < ev/m,

can be immediately converted to a relative entropy
bound between the target state and the current iter-
ate by the identity (9). This justifies its choice as a
stopping criterion.

Since we already discussed the sample complexity
of the maximum entropy method, let us now discuss
some of its computational aspects. There are two
quantities that govern the complexity of the algo-
rithm: how many iterations we need to perform until
we converge and how expensive each iteration is.

As the maximum entropy problem is strongly con-
vex, one can show that O(UL~!log(ne 1)) iterations
suffice to converge. Here again U, L are bounds on
the Hessian as in Eq. (16). Nevertheless, we also
show how to bypass requiring such bounds in Sec. A.1
and obtain that the maximum entropy algorithm con-
verges after O(me~2) iterations without any locality
assumptions on the F; or strong convexity guarantees.
That is, the number of iterations is at most polyno-
mial in m.

Let us now discuss the cost of implementing each
iteration of the algorithm on a classical computer.
This boils down to estimating e(u;) for the current
iterate, which can be achieved in various ways. In
the worst case, it is possible to just compute the ma-
trix exponential and the expectation values directly,
which yields a complexity of O(d*"*m). However, for
many of the classes considered here it is possible to do
this computation in polynomial time. For instance,
in [51] the authors show that for high-temperature
Gibbs states it is possible to approximate the parti-
tion function efficiently. Thus, for the case of high-
temperature Gibbs states, not necessarily commuting
ones, we can do the postprocessing efficiently. It is
also worth mentioning tensor network techniques to
estimate e(u:). As we only require computing the
expectation value of local observables, recent works
show that it is possible to find tensor network states
of constant bond dimension that approximate all ex-
pectation values of a given locality well [2, 25, 41].
From such a representation it is then possible to com-
pute e(u;) efficiently in the 1D case by contracting
the underlying tensor network. Unfortunately, how-
ever, in higher dimensions the contraction still takes
exponential time. Table 2 provides a summary of the
complexity of the postprocessing for various classes.

It is also worth considering the complexity of the
postprocessing with access to a quantum computer,
especially for commuting Hamiltonians. As all high-
temperature Gibbs states satisfy exponential decay
of correlations, the results of [17] imply that high-
temperature Gibbs states can be prepared with a cir-
cuit of depth logarithmic in system size. Thus, by
using the same method we used to estimate e(\) we
can also estimate e(u;) by using the copies provided
by the quantum computer. The complexity of the
postprocessing for shadows is linear in system size.
Thus, with access to a quantum computer we can
perform the post-processing for each iteration in time
O(me=2). As in this case we showed that the number
of iterations is O(1), we conclude that we can per-
form the postprocessing in time O(me=2). That is, for
this class of systems our results give an arguably com-
plete picture regarding the postprocessing, as it can
be performed in a time comparable to writing down
the vector of parameters, up to polylogarithmic fac-
tors. Furthermore, given that the underlying Gibbs
states are known to satisfy TC and Prop. 3.1 gives es-
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Figure 3: Flowchart for general maximum entropy algorithms.

sentially optimal bounds on the covariance matrices,
we believe that the present work essentially settles the
question of how efficiently we can learn such Hamil-
tonians and corresponding Gibbs states. We discuss
this in more detail in Sec. F.

Finally, an example of our bounds is illustrated in
Fig. 4, where we show that the number of samples re-
quired to estimate a local observable to relative pre-
cision is essentially system-size independent.

Scaling of error in estimating Lipschitz observable

® Pinsker Py
® Actual value
0.5
L
_ 0.0
e
ui 4
o
& —0.54
o
-1.04 &
_15 | \‘/‘\*
10! 102 103 104

System size

Figure 4: Error in estimating a Lipschitz observable after per-
forming the maximum entropy reconstruction method. The
underlying state is a classical 1D-Gibbs state with randomly
chosen nearest-neighbor interactions and inverse temperature
B = 1. We estimated all the Z; 7,1 expectation values from
the original state based from 10 samples of the original state.
We then computed the upper bound on the trace distance
predicted by Eq. (9) and Pinsker’s inequality and compared
it to the actual of discrepancy for a Lipschitz observable on
the reconstructed and actual state. The Lipschitz observable
was chosen as ZZ n"YUZ;Z;i12UT, where we picked U as a
depth 3 quantum circuit. We observe that the error incurred
is essentially independent of system size, and we get good
predictions even when the number of samples is smaller than
it.
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Supplemental Material

This is the supplemental material to "Learning many-body states from very few copies". We will start in
Sec. A with a review of the basic properties of the maximum entropy principle to learn quantum states. This
is followed by a discussion of Lipschitz constants, Wasserstein distances and transportation cost inequalities in
Sec. B. After that, in Sec. C we more explicitly discuss the interplay between the maximum entropy method and
transportation cost inequalities. We then briefly discuss scenarios in which the postprocessing required for the
maximum entropy method can be performed efficiently in Sec. E. In Sec. F we discuss a class of examples where
we show that all technical results required to obtain the strongest guarantees of our work hold, that is, Gibbs
states of commuting Hamiltonians at high enough temperature and 1D commuting Hamiltonians. Finally, in
Sec. G we discuss lower bounds on the sample complexity of both shadow protocols and many-body algorithms
that focus on a recovery in trace distance.

We start by setting some basic notations. Throughout this article, we denote by M the algebra of k x k
matrices on CF, whereas M3 denotes the subspace of self-adjoint matrices. The set of quantum states over
C* is denoted by Dj. Typically, k will be taken as d* for n qudit systems. The trace on My, is denoted by
tr. Given two quantum states p, o, we denote by S(p) = — tr [plog(p)] the von Neumann entropy of p, and by
D (p||o) the relative entropy between p and o, i.e. D(p|lo) = tr[p (log(p) —log(c))] whenever the support of p
is contained in that of o and +oco otherwise. The trace distance is denoted by ||p — o||s := tr[|p — o|] and the
operator norm of an observable by ||O| . Scalar products are denoted by (-|-). Moreover, we denote the £,
norm of vectors by || - [|¢,, and for 2 € R™ and r € R, By, (z,r) denotes the ball of radius r in £, norm around
2. The identity matrix is denoted by I. The adjoint of an operator A is denoted by A and that of a channel
® with respect to the trace inner product by ®*. For a hypergraph G = (V, E) we will denote the distance
between subsets of vertices induced by the hypergraph by dist.

A Maximum entropy principle for quantum Gibbs states

One of the main aspects of this work concerns the effectiveness of the maximum entropy method for the
tomography of quantum Gibbs states in various settings and regimes. Thus, we start by recalling some basic
properties of the maximum entropy method. Our starting assumption is that the target state is well-described
by a quantum Gibbs state with respect to a known set of operators and that we are given an upper bound on
the inverse temperature:

Definition A.1 (Gibbs state with respect to observables). Given a set of observables € = {E;}1"q,
Ei,...,Ey, € M3 being linearly independent with ||E;l|cc < 1, we call a state o € Dgn a Gibbs state at
inverse temperature 3 > 0 if there exists a vector A € R™ with |A||e, <1 such that:

o = exp (—ﬁ Z /\iEi> /Z(N), where Z(A) =tr [exp (—5 Z /\iEi>

denotes the partition function. In what follows, we will denote o by o(X) and Y, \iE; = H(X), where the
dependence of a(\) on B is implicitly assumed.

(19)

We are mostly interested in the regime where m < d”. Then the above condition can be interpreted as
imposing that the matrix log(o) is sparse with respect to a known basis £. A canonical example for such states
are Gibbs states of local Hamiltonians on a lattice, for which m = O(n) and the observables F; are taken as
tensor products of Pauli matrices acting on neighboring sites. But we could also consider a basis consisting of
quasi-local operators or some subspace of Pauli strings.

Next, we review some basic facts about quantum Gibbs states. One of their main properties is that they
satisfy a well-known maximum entropy principle [42]. This allows us to simultaneously show that the expectation
values of the observables £ completely characterize the state o(\) and further provides us with a variational
principle to learn a description from which we can infer an approximation of other expectation values. Let us
start with the standard formulation of the maximum entropy principle:

Proposition A.1 (Maximum entropy principle). Let o(\) € Dgn be a quantum Gibbs state (19) with respect
to the basis € at inverse temperature 8 and introduce e;(\) := tr[o(N)E;] fori =1,...,m. Then o(\) is the
unique optimizer of the maximum entropy problem:

imize S 20
maximize 5(p) (20)

subject to  tr[E;p] = e;(\) foralli=1,...,m.
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Moreover, o(\) optimizes:

i, log(2(u)) + 8 Z; piei(A) - (21)
Illew <1 i=

Proof. The proof is quite standard, but we include it for completeness. Note that for any state p # o that is a
feasible point of Eq. (20) we have that:

S(a(A) = S(p) = D(pllo(N) + tr[(p — (X)) log(a(A))]
= D(p|lc(\) — B Z Xitr [Ei (p— ()]
= D(plle(A)) >0,

where we have used the fact that tr[E; (p — o(A))] = 0 for all feasible points and that the relative entropy
between two different states is strictly positive. This shows that o()) is the unique solution of (20). Eq. (21)
is nothing but the dual program of Eq. (20). O

Eq. (20) above gives a variational principle to find a quantum Gibbs state corresponding to certain expectation
values. As it is well-known, one can use gradient descent to solve the problem in Eq. (21), as it is a strongly
convex problem. Various recent works have discussed learning of Gibbs states [5, 48, 60] and it is certainly
not a new idea to do so through maximum entropy methods. Nevertheless, we will discuss how to perform
the postprocessing in more detail, as some recent results allow us to give this algorithm stronger performance
guarantees. Finally, it should be said that although we draw inspiration from [5], our main goal will be to learn
a set of parameters ;1 € R™ such that the Gibbs states o(u) and o () are approximately the same on sufficiently
regular observables while optimizing the sample complexity. This is in contrast to the goal of [5], which was
to learn the vector of parameters A. Learning A\ corresponds to a stronger requirement, in the sense that if
the vectors of parameters are close, then the underlying states are also close, as made precise in the following
Prop. A.2.

One of the facts that we are going to often exploit is that it is possible to efficiently estimate the relative
entropy between two Gibbs states o()\) and o(u) given the parameters A, p and the expectation values of
observables in £. This also yields an efficiently computable bound on the trace distance. Indeed, as observed
in [5], we have that:

Proposition A.2. Let o(u),0(X) € Dgn be Gibbs states with respect to a set of observables € at inverse
temperature 8. Denote e(\) = (tr[o(A)E;]); € R™. Then

lo (1) = sWII7- < D(a(w)llo (V) + D(eNlo(m) = =B (X = ule(N) — e(w)). (22)

Proof. The equality in Eq. (22) follows from a simple manipulation. Indeed:

D(a(w)llo(\) + D(e(N]o(w) = BY (A — ) tr[[o(p) — oV Ei] -
i=1
The bound on the trace distance then follows by applying Pinkser’s inequality. O

The statement of Proposition A.2 allows us to obtain quantitative estimates on how well a given Gibbs state
approximates another one in terms of the expectation values of known observables. In particular, a simple
application of Holder’s inequality shows that if two Gibbs states are such that |tr [E;[o(p) — o(N)]]| < €, then
the sum of their relative entropies is at most

BIA = ple(A) —e(u)| < BlIX = plley, me < 2me g, (23)

where the outer bound arises from our assumption that |[Alle.., ||xlle., < 1. Moreover, it is straightforward
to relate the difference of the target function in Eq. (21) evaluated at two vectors to the difference of relative
entropies between the target state and their corresponding Gibbs states:

Lemma A.1. Let o()\) € Dgn be a Gibbs state with respect to a set of observables £ at inverse temperature
B >0 and define, for any p € R™,

m

F(p) ==1og(Z(n) + B> ei(N) i - (24)

i=1
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Then for any other two vectors pu, & € R™ with ||ulle, ||€lles, < 1:
f(w) = f(&) = D(e(N)llo(n) — D(a(A)[|lo(£)).

Proof. The proof follows from straightforward manipulations. O

Thus, we see that a decrease of the target function f when solving the max entropy problem is directly
connected to the decrease of the relative entropy between the target state and the current iterate. We will later
use this to show the convergence of gradient descent for solving the max entropy problem with arbitrary £.
However, before that we discuss how the convergence of the state o(u) to o()\) is related to the convergence of
the parameters p to A.

A.1 Strong convexity and convergence guarantees

The maximum entropy problem (20) being a convex problem, it should come as no surprise that properties of
the Hessian of the function being optimized are vital to understanding its complexity and stability. For the
maximum entropy problem, the Hessian at a point is given by a generalized covariance matrix corresponding to
the underlying Gibbs state. As the results of [5] showcase, the eigenvalues of such covariance matrices govern
both the stability of Eq. (21) with respect to u and the convergence of gradient descent to solve it. To see why,
we recall some basic notions of optimization of convex functions and refer to [14] for an overview.

Definition A.2 (Strong convexity). Let C C R™ be a convex set. A twice differentiable function f: C — R
is called strongly convex with parameters U, L > 0 if we have for all x € C' that:

Ul >V?f(x) > LI
The optimization of strongly convex functions is well-understood. Indeed, we have:

Proposition A.3. Let C C R™ be a convex set and f : C' — R be strongly convex with parameters L,U as in
the definition above. Then, for all € > 0, the optimal value o := mingecc f(x) is achieved up to error € by the
gradient descent algorithm initiated at x° € C with step size U1 after at most S steps for

S < %log (W) . (25)

Moreover, the gradient norm satisfies |V f(z*)||7, < 0 after at most Sy steps with

U 2L(f(2°) — )
<=1 — .
Sv =7 Og( 5
Finally, we have for all p, A € C that:
e = Mlex < L7HVF (1) = VW) e - (26)
Proof. These are all standard results that can be found e.g. in [14, Section 9]. O

To see the relevance of these results for the maximum entropy problem, we recall the following Lemma:

Lemma A.2. Let C = By__(0,1) CR™, let a(\) € Dgn be a Gibbs state with respect to a set of operators € at
inverse temperature 3 and define f : C — R as in Eq. (24). Then:

(Vf(,u))z = Btr[(c(N) — o(u))E;] )
and
2
(V27 ), = %tr {E;, @ (B Yo ()] — B ei(u)e; (1), (28)
with
+oo
(I)H(M)(Ei) = / V,B(t)efiH(”)tEieiH(#)tdt

where v(t) is a probability density function whose Fourier transform is given by:

vg(w) = 2tan;£52“) .
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Proof. The quantum belief propagation theorem [36] states that:

0 —BH(A ﬂ —BH (A
87)\1'6 B ():_5{6 B ()7‘I)H(>\)(Ei)}-

The claim then follows from a simple computation. [

Thus, we see that in order to compute the gradient of the target function f for the maximum entropy problem,
we simply need to compute the expectation values of observables £ on the current state and on the target state.
Moreover, the Hessian is given by a generalized covariance matrix of the quantum Gibbs state. That this should
indeed be interpreted as a covariance matrix is most easily seen by considering commuting Hamiltonians. Then
indeed we have:

(V2 (1)), = B [tr [0 () Bi 5] — ea(p)e; ()] -
For any Gibbs state it holds that:

Proposition A.4. Forallp € By_(0,1) C R™, inverse temperature § > 0 and set of operators € of cardinality
m, we have:

V2f(u) <28°mI.

Proof. Note that
‘tr [Eia(u)eiH(“)tEjeiiH(“)t]‘ <1,

by Hoélder’s inequality, the submultiplicativity and unitary invariance of the operator norm and the fact that
| Eillso < 1. Similarly, we have that |e; ()|, |e;(x)] < 1. Thus, by Lemma A.2, | (V2f(u))l,j | <282, As V2f(n)

is an m x m matrix, it follows from Gershgorin’s circle theorem that V2 f(u) < 28°ml. O

The proof above also showcases how exponential decay of correlations can be used to sharpen estimates on
the maximal eigenvalue of V2f, since in that case (V2 f (u))ij will have exponentially decaying entries. We
discuss this in more detail when we focus on many-body states, for which we also consider the more challenging
question of lower bounds.

A.2 Convergence with approximate gradient computation and expectation values

Proposition A.3 already establishes the convergence of gradient descent whenever we can compute the gradient
exactly and have a bound on L. Moreover, we see from Lemma A.2 that, in order to compute the gradient
of the function f above, it suffices to estimate local expectation values. Moreover, it is a standard result that
gradient descent is strictly decreasing for strictly convex problems [14].

However, in many settings it is only possible or desirable to compute the expectation values of quantum Gibbs
states approximately. Moreover, the expectation values of the target state are only known up to statistical
fluctuations. It is then not too difficult to see that gradient descent still offers the convergence guarantees if we
only approximately compute the gradient. We state the exact convergence guarantees and precision requirement
for completeness.

Theorem A.1 (Computational complexity and convergence guarantees). Let o(\) € Dgn be a quantum Gibbs
state at inverse temperature 3 with respect to a set of operators £ and Cg be the computational cost of computing

e’ (1) satisfying
€' (1) = e(m)lle, < 0,
for pe By (0,1) and 6, > 0. Moreover, assume that we are given an estimate e’'(\) of e(\) satisfying
le(d) = €' (Mloe <€ (29)

and that the partition function is strongly convex with parameters U, L. Then gradient descent starting at pn =0

with step size 3= and input data €' (\) converges to a state o(p.) satisfying:

cU
lo() = ()7 < D(eNlo (1)) + Do (us)llo(A))
= O(BS, min{y/m, BL'6,} + Bemin{1, L~ Be}m).
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(@] (min {UCgﬁQn log(d)5;2, % log(nel)}>

time.

We will prove this theorem at the end of this section, as before we will need some auxiliary statements. But
the reader familiar with basic concepts from convex optimization should feel comfortable to skip them.

Proposition A.5 (Convergence of gradient descent with constant relative precision). Let o(\) € Dgn be a
quantum Gibbs state at inverse temperature B with respect to a set of operators £, and for a Gibbs state o(u)
let z(p) € R™ be a vector such that

[2(1) = Ble(A) — e())lle, < %II@(M) —e(Mlley, (30)
for some ¢ > 10. Then we have that:

~982[le(m) — eI,
10c¢U ’

D(o(Vlo(pn— Z2)) = D(e(N)l|o (1)) <

where U is a uniform bound on the operator norm of the Hessian of the function [ defined in Eq. (24).

Proof. From a Taylor expansion and strong convexity we have for any two points u, £ that:

1(&) < J) + (T FWIE — ) + 5 1€ — sl
Note that V f(u) = B (e(A) — e(n)) by Eq. (27). Setting £ = p— 2 = p+ -5 (=Vf(u) + V(1) — z) we obtain:
flu= )
< 100 = IV, + (VF@IVIG) ~ ) + 5

< 100 = IV, + IV TGl IV F() = e +

| = Vf(k) + V() — 2|3,

o35 (Vs + 197 (0) = 2,)?

where in the last step we used the Cauchy-Schwarz inequality. By our assumption in Eq. (30) for z = z(u) we
have:

£ = IV, + IV FG IV I8 — 2l + g (VS + IV 5 () = 2l
4 —1)2
< 7)Ao IV + BT g s
- 1 1 (1 (40
=10 - 5 (1= 5o EEE L) iwsw

and it can be readily checked that ﬁ + % < % for ¢ > 10. To conclude the proof, note that by Lemma
Al

D(eWlo( = Z7)) = DeWllo(w)) = Flu— 5)) - F(u).
and insert [ V£ ()2, = B2le(u) — e(VII3,. O

Thus, we see that we make constant progress for the gradient descent algorithm if we only compute the deriva-
tive up to constant relative precision. We show now how to pick our stopping criterium based on approximate
computations of the gradient which ensure convergence in polynomial time.

Proposition A.6. Let o0(\) € Dyn be a quantum Gibbs state at inverse temperature 3 with respect to a set of
operators €. Suppose that at each time step t of gradient descent we compute an estimate €' (u:) of e(us) that
satisfies

lle"(pe) = e(ue)llee, < O
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and set the stopping criterion to be:
lle(A) = €' (p)lle, < (4e+ 1)y

for some constant ¢ > 10. Then gradient descent starting at p = 0 with update rule pyy1 = py — w

will converge to a state o(u.) satisfying:

lo(A) = ()l < D(@(N)lo (1)) + D(o(ps)lo(N)) < 2(de +1)B8,1/m
after at most O(UB~*nlog(d)s,*) iterations.

Proof. First, we show that the relative precision bound required for Proposition A.5 holds under these assump-
tions. By our choice of the stopping criterium, at each time step we have the property that, while we did not
stop,

le(N) — e(ue)lle, = lle(n) — €' (ne) + €' (1e) — e(N) e,
> [le"(re) — eN)llex — lle(ue) — € (ue)lle
> (4de+1)6, — 9,
= 4cdy,

by the reverse triangle inequality. As we assumed we have that |l€/(u:) — e(ue)lle, < 0,, it follows that
(4e)7He(N) — e(ue)lle, > II(e"(1e) — e(N)) — (e(ue) — e(N))|le,- Multiplying the inequality by 3, we see that
the conditions of Proposition A.5 are satisfied for z(u) := B(e(\) — €’(ut)). Let us now show the convergence.
By our choice of initial point, we have that:

D(a(N)[o(0)) < nlog(d).

Now, suppose that we did not stop before T iterations. It follows from a telescopic sum argument and Propo-
sition A.5 that:

96%(4c +1)%67

D(eWllo(r)) < nlog(d) - T=— o~

since ||€’(ut) — e(N)|| > (4¢+1)d, at all iterations because we did not halt. As the relative entropy is positive,
it follows that T = O(B_QUc_lnlog(d)6;2) before the stopping criterium is met. The recovery guarantee
whenever the stopping criterium is met follows from Proposition A.2; the Cauchy-Schwarz inequality and the
equivalence of norms ||[A — ulle, < vVm|A — plle. < 2¢/m. O

Since we proved in Proposition A.4 that U = O(B?m), it follows that the number of iterations is O(nm).
Thus, we see that having a lower bound on the Hessian is not necessary to ensure convergence, but it can speed
it up exponentially:

Proposition A.7 (Exponential convergence of gradient descent with approximate gradients). In the same
setting as Proposition A.5 we have:

r(o- 2 - s = (1- ) 0 - 1) (32)

In particular, gradient descent with approximate gradient computations starting at pg = 0 converges after
O (Y log(ne™')) iterations to p such that f(p) — f(A) <e.

Proof. For any strongly convex function f and points p, £ € C' we have that:

1(&) = J) + (T FWI(E — ) + 2l — €17,

As explained in [14, Chapter 9], the R.H.S. of the equation above is a convex quadratic function of & for p fixed.
One can then easily show that its minimum is achieved at £ = g — 1V f(x). From this we obtain:

Bl — eI,
2L ’

Fn) = FO) = = IV )R, =
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where the last identity follows from Eq. (27). By subtracting f(A) from both sides of the inequality (31) in
Proposition A.5 and rearranging the terms we have that:

£ (=20 = 0 < 1 = gy - P

10cU
< F0) = ) — oo (F ()~ FN)

_ (1 _ 11082) (70 = FO)

This yields the claim in Eq. (32). To obtain the second claim, note that applying Eq. (32) iteratively yields

z2(pr—1)
cU )

k
(1) - 500 = (1= 008} (70) = JO).

By our choice of initial point and Lemma A.1 we have that f(0) — f(A) = O(n), which yields the claim solving

for k and noting that —log (1 — 11080%) = Q(%) O

cU

that after k iterations we have that, for pup = pug—1 —

Remark A.1 (Comparison to mirror descent). It is also worth noting that the convergence guarantees of Propo-
sition A.6 and update rules of gradient descent are very similar to the ones of mirror descent with the von
Neumann entropy as potential, another algorithm used for learning of quantum states [1, 16, 30, 68]. In this
context, mirror descent would use a similar update rule. However, instead of computing the whole gradient,
i.e. all expectation values of the basis, for one iteration, mirror descent just requires us to find one ¢ such that
le;(A) — e;(1)] > 0 and updates the Hamiltonian in the direction 4. This implies that the algorithm can be run
online while we still estimate some other e;, but we will not analyze this variation more in detail here.

Finally, we assumed so far that we knew the expectation values of the target state, e()), exactly. However, it
follows straightforwardly from Proposition A.6 that knowing each expectation value up to an error € is sufficient
to ensure that the additional error due to statistical fluctuations is at most em. More precisely, if we have that
lle(A) — ¢/ (A)|loo < € for some € > 0, then any Gibbs state o(p.) satisfying [Je(p«) — €/ (A)]l¢, < § satisfies:

D(e(Mllo (i) + Do (pe) o (X)) < 286v/m + 2Bem
by Proposition A.2 and a Cauchy-Schwarz inequality. With these statements at hand we are finally ready to
prove Thm. A.1.

Proof of Thm. A.1. We will show in Propositions A.6, A.7 that under the conditions outlined above, the max-
imum entropy problem will converge to a p, that satisfies:
le"(A) = e(pa)lle, < (e + 1)dy.

Without making any assumptions on L we can then bound

D(o(M)llo(p«)) + Do (p)[[o(X) = BIA = pele(A) — e(p))]
< B = pale(N) — e(a))] + [(A = pale’(A) — e(p)))
< (4¢+ 1)é,/m + 2Bem

by Hoélder inequality and our assumptions on €’(\). Let us now discuss how strong convexity can improve these
estimates. First note that by strong convexity and Cauchy-Schwarz we have:

D(o(Mllo(px)) + D(o(p)lo(X) = BIA = pale(A) — e(p))]
< Blle(A) — e(p)lles A = palle
< LB le(N) — e(u)IZ,
<LT'B (Il — e(m)les + e — € (V)lex)?
which yields the claim. O

In short, we see that we can perform the recovery by simply computing the gradient approximately. In
particular, as already hinted at in [5], this implies that recent methods developed to approximately compute
the partition function of high-temperature quantum Gibbs states can be used to perform the postprocessing in
polynomial time [35, 46, 49, 51]. This and other methods to compute the gradient are discussed in more detail
in Sec. E. Furthermore, it should be noted that usually L = Q(572) in the high temperature regime, making
the bound independent of 3 for such states. We refer to Sec. D for a summary of the cases for which bounds
on L are known.
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B Lipschitz constants and transportation cost inequalities

In this section, we identify conditions under which it is possible to estimate all expectation values of k-local
observables up to an error € by measuring O(poly(k,log(n),e~1)) copies of it, where n is the system size, which
constitutes an exponential improvement in some regimes. To obtain this result, we combine the maximum
entropy method introduced in Section A with techniques from quantum optimal transport. In order to formalize
and prove the result claimed, we resort to transportation cost inequalities and the notion of Lipschitz constants
of observables, which we now introduce.

B.1 Lipschitz constants and Wasserstein metrics

Transportation cost inequalities, introduced by Talagrand in the seminal paper [61], constitute one of the
strongest tools available to show concentration of measure inequalities. In the quantum setting, their study was
initiated in [19, 20, 56, 59]. Here we are going to show how they can also be used in the context of quantum
tomography. On a high level, a transportation cost inequality for a state o quantifies by how much the relative
entropy with respect to another state p is a good proxy to estimate to what extent the expectation values of
sufficiently regular observables differ on the states. As maximum entropy methods allow for a straightforward
control of the convergence of the learning in relative entropy (cf. Section A), they can be combined to derive
strong recovery guarantees. But first we need to define what we mean by a regular observable.

We start by a short discussion of Lipschitz constants and the Wasserstein-1 distance. To obtain an intuitive
grasp of these concepts, one way is to first recall the variational formulation of the trace distance of two quantum
states o, p:

lo=olle-= sup  tr[P(p—o)].
P=P1,|[P|lo<1

Seeing probability distributions as diagonal quantum states, we recover the variational formulation of the total
variation distance by noting that we may restrict to diagonal operators P. Thus, the total variation distance
quantifies by how much the expectation values of arbitrary bounded functions can differ under the two distribu-
tions. However, in many situations we are not interested in expectation values of arbitrary bounded observables,
but rather observables that are sufficiently regular. E.g., most observables of physical interest are (quasi)-local.
Thus, it is natural to look for distance measures between quantum states that capture the notion that two states
do not differ by much when restricting to expectation values of sufficiently regular observables. These concerns
are particularly relevant in the context of tomography protocols, as they should be designed to efficiently obtain
a state that reflects the expectation values of extensive observables of the system. As we will see, one of the ways
of ensuring that the sample complexity of the tomography algorithm reflects the regularity of the observables
we wish to recover is through demanding a good recovery in the Wasserstein distance of order 1 [56, 59].

In the classical setting [58, Chapter 3], one way to define a Wasserstein-1 distance between two probability
distributions is by replacing the optimization over all bounded diagonal observables by that over those that

are sufficiently regular: given a metric d on a sample space €2, we define the Lipschitz constant of a function
f:92 — R to be:

[f (=) — f(y)]
[/ llLip == sup -
b z,y€N d(xa y)
Denoting the Wasserstein-1 distance by Wy, it is given for two probability measures p, g on € by

Wip,q):= sup [Ep(f) —Eq(f)]. (33)
Fillflip<1

That is, this metric quantifies by how much the expectation values of sufficiently regular functions can vary
under p and ¢, in clear analogy to the variational formulation of the trace distance. We refer to [58, 65] for
other interpretations and formulations of this metric.

B.1.1 Quantum Hamming Wasserstein distance

It is not immediately clear how to generalize these concepts to noncommutative spaces. There are by now
several definitions of transport metrics for quantum states [26, 45, 56, 59]. As already noted in the main text,
de Palma et al. defined the Lipschitz constant of an observable O € Mg~ as [56]:

10]|Lip,0 = \/ﬁlrgggn Jmmax - tr[O(p—o)] (34)
tr: p]=tri 0]
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That is, the Lipschitz constant quantifies the amount by which the expectation value of an observable can change
when evaluated on two states that only differ on one site. This is in analogy with the Lipschitz constants induced
by the Hamming distance on the hypercube, so we denote it with [J. Note that in our definition we added the
v/n factor, which will turn out to be convenient later. Armed with this definition, we can immediately obtain
an analogous definition of the Wasserstein distance in Eq. (33) for two states p, o:

Win(p,o):= s tr[0(p—0)] . (35)
O0=01,||0||pip,0<1

The authors of [56] also put forth the following equivalent expression for the norm:
min {37 [ XDy :p—o=3" XO, XD e M52 tr;[XD] =0}
2y/n ’

It follows from an application of Holder’s inequality combined with the variational formulation in Eq. (34)
that ||O||lLip0 < 2¢/1]|O]|e. However, it can be the case that ||Ofrip < v/ |O| s, which are exactly those
observables that should be thought of as regular. This is because this signals that changing the state locally
leads to significantly smaller changes to the expectation value of the observable than global ones. Two examples
of this behavior are given by the observables:

Olzzn:zic, and ngzn:Zi,
i=1 i=1

where Z;c acts as identity on i and Z; else, ie. Z1c =11 ® Zo ® Z3® -+ ® Zyp,. Clearly, [|O1]|co = [|O2]lcc = 1.
On the other hand, by considering the states p = [0)(0|®" and ¢ = |1)(1]| ® |0)(0|®" !, we see that |O1||Lip.0 >

V1 (2n—2) whereas ||Oz||1ip,0 = 2v/n. More generally, it is not difficult to see that if O = 3~ O; with [|O;|oc < 1
i=1

WI,D(pa U) =

(36)

and we denote by supp(O;) the qudits on which O; acts nontrivially, then:

. < ) ;
[OllLip.o < 2%@;@2 |supp(O;) N{j}-

That is, the maximal number of intersections of the support of O; on one qubit. From these examples we see
that for local observables, the ratio of the operator norm and Lipschitz constant reflects the locality of the
observable.

B.1.2 Quantum differential Wasserstein distance

The Wasserstein distance W; o generalizes the classical Orstein distance, that is the Wasserstein distance
corresponding to the Hamming distance on bit strings. Another definition of a Lipschitz constant and its
attached Wasserstein distance was put forth in [59], where the construction is based on a differential structure
that bears more resemblance to that of the Lipschitz constant of a differentiable function on a continuous sample
space, e.g. a smooth manifold [58]. Let us now define the notion of a noncommutative differential structure
(see [21]):

Definition B.1 (Differential structure). A set of operators Ly € Mgn and constants w, € R defines a differ-
ential structure { Ly, wk }rex for a full rank state o € Dgn if

1 {Lp}rex = {Lz}kelc;
2 {Li}rex consists of eigenvectors of the modular operator A, (X) = o Xo = with

AO—(Lk) =e “r L. (37)

3 ILkfloe < 1.

Such a differential structure can be used to provide the set of matrices with a Lipschitz constant that is
tailored to o, see e.g. [21, 59] for more on this. In order to distinguish that constant from the one defined
in (34), we will refer to it as the differential Lipschitz constant and denote it by || X||Lip,v. It is given by:

1/2
[ XLip,v == (Z(@‘“’“/Q+e“"‘/2)||[Lk,XHI§o> : (38)

kex
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The quantity [Lx, X] should be interpreted as a partial derivative and is sometimes denoted by 0y X for that
reason. Then, the gradient of a matrix A, denoted by VA with a slight abuse of notations, refers to the vector
of operator-valued coordinates (VA), = 9;A. For ease of notation, we will denote the differential structure by
the couple (V, ). The notion of a differential structure is also intimately connected to that of the generator of
a quantum dynamical semigroup converging to o [21], and properties of that semigroup immediately translate
to properties of the metric. This is because the differential structure can be used to define an operator that
behaves in an analogous way to the Laplacian on a smooth manifold, which in turn induces the heat semigroup.
We refer to [21, 59] for more details.

To illustrate the differential structure version of the Lipschitz constant, it is instructive to think of the
maximally mixed state. In this case, one possible choice would consist of picking the Ly to be all 1—local Pauli
strings and w; = 0. Then the Lipschitz constant turns out to be given by:

1/2
[ X[|Lip,v = (Z | Pu X Py, — Xlio> : (39)

ke

where P are all 1—local Pauli matrices. Thus, we see that this measures how much the operator changes if we
act locally with a Pauli unitary on it. If we think of an operator as a function and conjugating with a Pauli
as moving in a direction, the formula above indeed looks like a derivative. In fact, it is possible to make this
connection rigorous, see [21].

As before, the definition in Eq. (38) yields a metric on states by duality:

Wiv(po)i= s [Te(X(p— o).
X=XT, [ X||Lip,v <1

It immediately follows from the definitions that for any observable X:
[tr [X(p — o) < | X[[Lip,v Wi,w(p,0) . (40)

Although this geometric interpretation opens up other interesting mathematical connections for this definition,
the differential Wasserstein distance has the downside of being state dependent. It however induces a stronger
topology than the quantum Hamming Wasserstein distance in some situations (see [26, Proposition 5])). In
particular, the results of [26, Proposition 5]) imply that for commutative Gibbs states a TC inequality for W1 v
implies the corresponding statement for Wi .

B.2 Local evolution of Lipschitz observables

As already discussed in Subsections B.1.1 and B.1.2 when we defined ||.||rip,v and |[|.||Lip,0, Lipschitz constants
can be easily controlled by making assumptions on the locality of the operators. Indeed, if we apply a local
circuit to a local observable, it is straightforward to control the growth of the Lipschitz constant in terms of the
growth of the support of the observable under the circuit. More precisely, in [56, Proposition 13| the authors
show such a statement for discrete time evolutions with exact lightcones: if we denote by |L| the size of the
largest lightcone of one qubit under a channel ®, then for any observable O € Dgn, ||2*(O)||Lip,0 < 2|L|[|O||Lip,0-
Here we will extend such arguments to the evolution under local Hamiltonians or Lindbladians. By resorting to
Lieb-Robinson bounds, we show that the Lipschitz constants ||.||Lip,v and ||.||Lip,0 of initially local observables
evolving according to a quasi-local dynamics increase at most with the effective lightcone of the evolution. Thus,
short-time dynamics and shallow-depth quantum channels can only mildly increase the Lipschitz constant. This
further justifies the intuition that observables with small Lipschitz constant reflect physical observables.
Lieb-Robinson (LR) bounds in essence assert that the time evolution of local observables under (quasi)-local
short-time dynamics have an effective lightcone. There are various formulations of Lieb-Robinson bounds.
Reviewing those in detail is beyond the scope of this work and we refer to [9, 38, 47, 57| and references therein
for more details. For studying the behaviour of ||.||rip,v under local evolutions, the most natural formulation
is the commutator version: the generator £ of a quasi-local dynamics t — ®; = et* on n qudits arranged
on a graph G = (V, E), with graph distance dist, is said to satisfy a LR bound with LR velocity v if for any
observable O 4 supported on a region A and any other observable B supported on a region B, we have:

1[®7(04), Ollloc < c (e —1) g(dist(A, B)) [0l |05l , (LR1)

for g : N — R a function such that lim,_, . g(z) = 0. We then have:
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Proposition B.1 (Growth of differential Lipschitz constant for local evolutions). Let (V,0) be a differential
structure on Mgn and let O = > O; be an observable with ||O;]lcc < 1. Let A; denote the support of each O;

and Bj that of each L;. Moreover, let t — ®; be an evolution satisfying Eq. (LR1) and set o(i, j)(t) = 2 if
A;NB; # @ and c (e’ — 1) g(dist(A;, By)) else. Then:

2
12} (O)IEip.w < D (€7 +e7) (Z o,»,j(t)> :
ke i

Proof. The proof follows almost by definition. We have:

197 (O)Ep.7 = D (47 +e™)[[[24(0), Ly] %

JjeTJ

By a triangle inequality we have that:

127 (0), Lilll%, < (Z I[® ||oo>2

For any term in the sum we have ||[®;(0;), L;]||s < 2 by the submultiplicativity of the operator norm, a triangle
inequality and || L;|lcc < 1. In case O; and L; do not overlap, the stronger bound in Eq. (LR1) holds. O

To illustrate this bound more concretely, let us take O = Y1 | Z;, L; acting on [j, j + k] for j =1,...,n—k,
and g(dist(i,5)) = e =il  for some constant u. Le. we have a 1D differential structure and a local time
evolution on a 1D lattice. Then for any j:

o et — 1)e #
S 00,0 = k4 (¢ — ze-w e 3 e | gy D

i=j+k+1

Thus,

vt _ —u
19 (0) |Lipw < Vi — & (k N <11>) _

— e H
We see that for constant times the Lipschitz constant is still of order /nk.

Let us now derive a similar, yet somehow stronger, version of Prop. B.1 for ||.||rip,0. In some situations,

bounds like (LR1) can be further exploited in order to prove the quasi-locality of Markovian quantum dynamics

D)

[9]: for any region C' C D C V, there exists a local Markovian evolution ¢ — @g that acts non-trivially only

on region D, and such that for any observable O¢ supported on region C,
* D)\« v
(@7 — (@7))(0c) | < ¢ (€ = 1) h(d(C, V\D)) [|0¢ || . (LR2)
for some other function h : N — Ry such that lim, ,o h(z) = 0 and constant ¢’ > 0. In other words, at small

times, the channels ®; can be well-approximated by local Markovian dynamics when acting on local observables.
Let us now estimate the growth of Lipschitz constants for the definition of [56] given a Lieb-Robinson bound:

Proposition B.2. Assume that ®; satisfies the bound (LR2). Then, for any two quantum states p,o € Dgn
and any ordering {1,...,n} of the graph:

Wia(®@i(p), ®i(0)) < (8+2¢ (¢ = 1) D h(d({i-++n}, {11))) Win(p, o). (41)
Moreover, for any observable H € Mgn,

5 ()llipo < (84 2¢ (¢ Zh b A1) ) 1 H i (42)
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Proof. From [56], the Wasserstein distance W; g arises from a norm ||.|w,, i.e. Win(p,0) = |lp — ollw,.
Moreover, the norm ||.|lw, is uniquely determined by its unit ball B,,, which in turn is the convex hull of the
set of the differences between couples of neighboring quantum states:

Ny = U N N ={p—0:p o€ Dy, tri(p) =try(c)}.
i€V

Now by convexity, the contraction coefficient for this norm is equal to

1@ellwy w, = max ([@0(X)[lw, = X € MG, | X]lw, < 1) = max [ 8:(X)]lw, ,

where MZ?;O denotes the set of self-adjoint, traceless observables. Let then X € N,,. By the expression (36),
and choosing without loss of generality an ordering of the vertices such that tr;(X) = 0, we have

1 n
|@mqu35;§]

I
— ® tI‘lu.Z‘ O(I)t(X) H

I
F R try...-1 Oq)t(X) - dz

1

- %\

© 5
M: N

H/du ) 110 (X) — U (X)U])|

IN

/ dp(U;) ||[Ui, try..im1 0@ (X)]|11

@,
Il
—

NE

IN

1=
- 5
M=

[ tr1...i-1 0@ (X)[]1

s
Il
-

| try...;—1 o(Py — ‘bgi_kmn))(X)Hl (43)
1

.
Il

where p denotes the Haar measure on one qudit, and where (1) follows from the fact that try(X) = 0, with

@gi_k"'") = @g{i_k"" ™} defined as in Eq. (LR2) with & < ¢ — 1. Next, by the variational formulation of the
trace distance and Eq. (LR2), we have for ¢ > 3 that

i—k-e " i—k--om)%
rsimro(@ = @O = max [t [X(@F - ) (0]

* (i—k---m)*
< (I) (I) O;..n X
S jo.max I( )(Oiecn) ||| X (1

¢ (e — 1) h(dist({i ---n}, {1--i — k — 1})) | X]Ix

IA

2 o (e 1) h(dist({i-m} {1 i~k — 1) Vit | X

where (2) follows from [56, Proposition 6]. By picking k = ¢ — 2 and inserting this estimate into Eq. (43) for
¢ > 3 and the trivial estimate || try...,—1 o(®; — @ﬁl‘k"'"))(X)Hl < 2| Xy for i = 1,2 we obtain Eq. (41). Eq.
(42) follows by duality. O

B.3 Transportation cost inequalities

Although interesting on their own, the relevance of the Lipschitz constants introduced above becomes clearer
in our context when we also have a transportation cost inequality [32, 58]. A quantum state o satisfies a
transportation cost inequality with constant a > 0 if for any other state p it holds that:

Wi(p, ) < \/ 5= Dlollo). (44

where Wi € {Wi 0, Wi,v, Wioc}. In what follows, we simply write ||.||rip and W to denote either of the
Lipschitz constants, and their corresponding Wasserstein metrics, defined above. This inequality should be
thought of as a stronger version of Pinsker’s inequality that is tailored to a state o and the underlying Wasserstein
distance.

One of the well-established techniques to establish a transportation cost inequality for W; v is by exploiting
the fact that it is implied by a functional inequality called the modified logarithmic Sobolev inequality. It is
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beyond the scope of this paper to explain this connection and we refer to e.g. [59] and references therein for
a discussion on these topics. But for our purposes it is important to note that in [18] the authors and Capel
show modified logarithmic Sobolev inequalities for several classes of Gibbs states. More recently, one of the
authors and De Palma derived such transportation cost inequalities for W3 7 in [26]. In Theorem B.1 below we
summarize the regimes for which transportation cost inequalities are known to hold:

Theorem B.1 (transportation cost for commuting Hamiltonians [8, 18, 26]). Let Ey,...,E, C Mg be a set
of k-local linearly independent commuting operators with ||E;|lcc < 1. Then o(\) satisfies a transportation cost
inequality with constant o > 0 for all A € By (0,1) in the following cases:

(i) The E; are classical or nearest neighbour (i.e. k = 2) on a regular lattice and the inverse temperature 8 < (3
where B. only depends on k and the dimension of the lattice, for both Wi v, W1 o and o = Q(1) [18].

(ii) The operators E; are local with respect to a hypergraph G = (V, E) and the inverse temperature satisfies
B < Be, where B, only depends on k and properties of the interaction hypergraph for W1 o and o = (1) [26,
Theorem 3, Proposition 4].

(iii) The E; are one-dimensional and 3 > 0, for both Wi v and Wy g and a = Q(log(n) ™) [8].
Moreover, the underlying differential structure (V,0) consists of Ly acting on at most O(k) qudits.

Theorem B.1 establishes that transportation cost inequalities are satisfied for most classes of commuting
Hamiltonians known to have exponential decay of correlations.

Remark B.1. In [26, Proposition 5], the authors show that W; g < ¢(k) Wy v holds up to some constant c(k)
depending on the locality of the differential structure. This implies that a transportation cost inequality for
W1 v implies one for Wj o up to ¢(k). Thus, although the authors of [8, 18] only obtain the result for Wi v, we
can use it to translate it to W; . We conclude that for commuting Hamiltonians TC are available for essentially
all classes of local Hamiltonians for which they are expected to hold.

C Combining the maximum entropy method with transportation cost inequalities

With these tools at hand, we are now ready to show that by resorting to transportation cost inequalities it is
possible to obtain exponential improvements in the sample complexity required to learn a Gibbs state. First, let
us briefly review shadow tomography or Pauli regrouping techniques [22, 24, 40, 43]. Although these methods
all work under slightly different assumptions and performance guarantees, they have in common that they allow
us to learn the expectation value of M k-local observables Oy, ...,0Op € Man such that ||O;|lcc < 1 up to an
error € and failure probability at most 1 — & by measuring O(e®*) log(M§~")e=2) copies of the state.

For instance, for the shadow methods of [40], we obtain a O(4* log(M&~1)e~2) scaling by measuring in 1-qubit
random bases. The estimate is then obtained by an appropriate median-of-means procedure for the expectation
value of each output string. The computation for obtaining the expectation value of E; through this method
then entails evaluating the expectation value of the observables on O(4* log(M§~1)e~2) product states. For k-
local observables E;, evaluating the expectation value of E; on a product state takes time O(e* log(M§~1)e~2)
for some ¢ > 0. Thus, we see that for £k = O(log(n)) also the postprocessing can be done efficiently.

The application of such results to maximum entropy methods is then clear: given E,..., E,, assumed to be
at most k-local, with probability at least 1 — § we can obtain an estimate e’(\) of e(\) satisfying:

le'(A) — e(N)]le, < m7e (45)

using O(4* log(md—1)e2) copies of o(\). We then finally obtain our main theorem, Theorem 1.1, restated here
for the sake of clarity:

Theorem C.1 (Fast learning of Gibbs states). Let o(\) € Dan be an n-qubit Gibbs state at inverse temperature
B with respect to a set of k-local operators & = {E;}™, that satisfies a transportation cost inequality with
constant . Moreover, assume that v log(Z(u)) is L,U strongly convex in By (0,1). Then

0] <4ka162610g(m51) min { mp sz

Ln’ an2e
samples of o(\) are sufficient to obtain a state o(u) that satisfies:
1
[ tr[O(a(A) — a(w)]| < en?[|Ol|Lip (46)

for all Lipschitz observables O with probability at least 1 — 6.
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Proof. Using the aforementioned methods of [40] we can obtain an estimate €’()\) satisfying the guarantee of
Eq. (29) with probability at least 1 —§. We will now resort to the results of Thm. A.1 to obtain guarantees on
the output of the maximum entropy algorithm. Now we solve the maximum entropy problem with e’(\) and
set the stopping criterion for the output p. as

le’(N) = e(p)llex < (4e+ 1) ev/m.
for ¢ > 10. Then it follows from Thm. A.1 that:
D(o(s)lo(N) < D(o(p)llo(N) + D(e(N)]|o(u.)) = O (Bmin{BL™"e*m, em}) . (47)

This can then be combined with transportation cost inequalities. Indeed, we have:

Do (), a(N)

[tr[O(a(A) = o ()] | < [OllLipWi(o(p+), 0(A) < O]lLip e,

Inserting our bound on the relative entropy in Eq. (47) we obtain:
[r0(0(A) ~ o ()] | = O (10lluspv/Fmin{ (aL)~e/Brm, VemaT})
We conclude by suitably rescaling e. O

The theorem above yields exponential improvements in the sample complexity to learn the expecta-
tion value of certain observables for classes of states that satisfy a transportation cost inequality with
a = Qlog(n)~1). As discussed in Sec. B.2, extensive observables that can be written as a sum of [-local
observables have a Lipschitz constant that satisfies ||O||Li, = O(ly/n). Shadow-like methods would require
O(e®W log(mé~1) e=2) samples to learn such observables up to a relative error of ne. Our methods, however,
require O(eC® poly(l,e~1)log(md~1)), which yields exponential speedups in the regime I = poly(log(n)). Of
course it should also be mentioned that classical shadows do not require any assumptions on the underlying
state.

Furthermore, considering the exponential dependency of the sample complexity in the locality for shadow-like
methods, we believe that our methods yield practically significant savings already in the regime in which we wish
to obtain expectation values of observables with relatively small support. For instance, for high-temperature
Gibbs state of nearest neighbor Hamiltonians and observables supported on 15 qubits, shadows require a factor
of ~ 107 more samples than solving the maximum entropy problem for obtaining the same precision.

On the other hand, previous guarantees on learning quantum many-body states [10, 23, 53, 67| required
a polynomial in system size precision to obtain a nontrivial approximation, which implies a polynomial-time
complexity. Thus, our recovery guarantees are also exponentially better compared to standard many-body
tomography results.

C.1 Results for shallow circuits

Let us be more explicit on how to leverage our results to also cover the outputs of short-depth circuits. To this
end, let G = (V, E) be a graph that models the interactions of a unitary circuit and suppose we implement L
layers of an unknown unitary circuit consisting of 1 and 2-qubit unitaries laid out according to G. That is, we
have an unknown shallow circuit U/ of depth L with respect to G. More precisely,

U= 1] & t.. (48)

Le[L] ec&

where each £ C E are a subset of the edges such that any e, ¢’ € £ do not share a vertex. Our goal is to show
how to approximately learn the state

W) =U[0)*".

The overall idea consists in finding a Gibbs state approximating |1)) in Wasserstein distance. We will then find
a differential structure for (approximations) of shallow circuits and then showing that the (approximation of
the) output satisfies a TC inequality with respect to it. Thus, it suffices to control the relative entropy with
this approximation to ensure a good approximation in Wasserstein distance.
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Let us find the appropriate approximation. First, note that for 8. = log(e™!) and Hy = — Zf Z; where Z;
denotes the Pauli matrix Z = [0){(0| — |1)(1| acting on site i, we have that:

—BeHo BeHo

D(u|0><0|®"uTHutf[e_WuT) — D(loy(of*" ﬁ)
6662
_ nD(|O><O|‘ W)

= —npf (0/Z]0) + nlogtr [e’?]
nlog (1 + e 7<)

ne 28«

en. (49)

IN

Thus, if the states U ﬁifzjﬁ;]uf satisfy a transportation cost inequality with some constant «, this would

allow us to conclude that
—pBecHo
onyyt 1 ) <e /2
Wi (U|0><0 Uu ’utr[e—ﬂeHO]u ) <e 90"

—BeHg

Moreover, defining Hy = — > ; UZ;UT, we see that U =f e~ Peflu

[e—ﬁeHo] r[e—ﬁeHO]
we can bound the support of U Z;i{t. Thus, we only need to find a suitable transportation cost inequality to see
that this approximation fits into our framework.

Ut = : . As we know the geometry of I,

Let us now find a suitable differential structure for the state %
oBe
ePete—Be*

For simplicity, denote by 7, =

pl0){0] + (1 — p)[1)(1] and note that - e~fe 70 Moreover, let

r[e*BeHo] = TZ%TL with De =

a; =191 @10) (1] @ 1#" "1

1
be the anihilation operator acting on qubit 4. Defining L; o = (p(1 —p))* a; and L; ; = LZO, we get a differential
structure for 7'1?” with {L; g, wir} fori =1,...,n, k = 0,1, wjp = % and w;; = 1=P " That this is indeed
a differential structure follows from a simple computation. One can readily check that the induced Lipschitz

constant is given by:
- P 1—p
10w =3 (/T2 + /=2 ) (O, LiallP + 0. L)
P p p
=> 0, a|* + 1[0, al]||>.
=1

Thus, we see that the Lipschitz constant takes a particularly simple form for this differential structure. Moreover,
it is not difficult to see that {UL; U t w; k} provides a differential structure for the state Z/IT];@’"L{ t. Indeed, it is
easily checked that this new differential structure still gives eigenvectors of the modular operator. Importantly,
the result of [11, Theorem 19| establish that the state TTj@" satisfies a transportation cost inequality with constant
%. Putting all these elements together we have:

Theorem C.1 (transportation cost for shallow circuits). Let U be an unknown depth L quantum circuit on n
qubits defined on a graph G = (V, E) and |¢) = U |0Y®™. Define for ¢ > 0 Hy = =Y, UZUt and o(U,€) =
il ] with B = log(e™1). Then for any state p and all observables O we have:

W
[ [0(0)] — )] < [Ollw (v + VDollo @A )
with

101w = D MO Uald |P + ][0, Uaft|?, ai =T ®0) (1@ 1"

=1
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Proof. We have:
[ tr [O(1) (| = p)] | < [tr [O([¢) (¥ — o @))] | + | tr [O(a(U) — p)] |-

The claim then follows from the discussion above, as o (i) satisfies a transportation cost inequality with constant

1 0

Of course the result above has the downside that the Lipschitz constant depends on the unknown circuit
U. However, as we can estimate the locality of each term Ua;UT, it is also possible to estimate the Lipschitz
constant by controlling the overlap of the observable O with each Ua;U*.

The result of Thm. C.1 and the discussion preceding it also give us a method of efficiently learning the outputs
of shallow circuits, as illustrated by the following proposition:

Proposition C.1 (Learning the outputs of shallow circuits). Let U be an unknown n-qubit quantum circuit
with known locality structure as in Eq. (48) and |1) = U [0)*". Moreover, define ly as

lo = Uzut.
0= max supp [UZU'|

For some € > 0 we have that

O(e 2430 Jog* (naloe 1) log(4lons—1)) (50)
samples of |1) suffice to learn a Gibbs state o(u) that satisfies
Wiv ()], o(p) < Ven (51)
with probability of success at least 1 — 8. Along similar lines we have that
O(e 2430 n2 log* (ndloe 1) log(4'ons~1)) (52)

samples suffice to learn a state o(\) such that

)W = o(Mlex < Ve

Proof. Let & be a basis of Pauli operators for matrices on the support of U Z;if. By our assumption on Iy, we
know that for each i we have that |€;| < 4l0. For simplicity we will assume that there are no Pauli words that
are contained in two distinct & and we will enumerate all different Pauli words as {E; ;} for 1 < i < n and
1 < j < 4b indicating the elements of the different &;. Thus, there is a A € R™ with m < ndlo and ||\, <1
such that

o(U,e€) x exp —ﬂez Z Xij B g
i=1 B, €&

Let € > 0 be given. It follows from Eq. (49) and Pinsker’s inequality that picking e = n%@. is sufficient to ensure
that

1) @l = o @, 3l < 5 (53)
Measuring
O(4& 2 log(4lons 1)) (54)

copies of |¢) is sufficient to obtain estimates of tr [|1)(¥)|E; ;] up to an é/4 error. By Eq. (53) and a triangle
inequality they are also /2 away from tr [o(U, -5)E; ;]

Thus, running the maximum entropy principle with these estimates and the basis of operators given by U}, &;
will yield us an estimate o(u) that satisfies:

z ny . ny .,
£)) < — < on.
D(o(pu)|leU, £)) < log (46) ém < log (4€) éd'on
To obtain the estimate in Wasserstein distance in Eq. (50), we can pick € = O(e/(4% log?(ndloe~1))), as in this

case

log (nlog®(ndloe1)e™?)
€

n < en.
log?(n4loe—1)

n n
log (= ) &m < log (1= ) e4on =
og |z ) &m <log| =) e n <
The claim then follows from the results of Thm. C.1 and substituing € into Eq. (54).
For the statement on the sample complexity for the trace distance, we may pick & = O(e/(n4" log?(n4loe1))),
which yields the statement after applying Pinsker’s inequality. O
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This shows that shallow circuits can be learned efficiently as long as Iy = O(log(n)). However, it is not imme-
diately obvious how to also estimate the expectation values of the Gibbs states required to run the maximum
entropy algorithm. Thus, at least with the methods presented here, the postprocessing takes exponential time
in the number of qubits.

Ground states of gapped systems: in light of our results for shallow circuits, it is natural to ask to what
extent our framework can be extended to ground states of gapped Hamiltonians, specially in 1D. Thus, let
us briefly comment on the technical barriers on the way of such statements. First, notice that the statement
of Thm C.1 required inverse temperatures scaling logarithmically in system size for the approximation of the
ground state. Most known TC inequalities have an exponential scaling with the inverse temperature and, thus,
TC at this inverse temperature the savings compared to Pinsker are not quadratic, hindering a straightforward
extension to gapped systems. There are some nontrivial examples of ground states satisfying a TC inequality
with the constant depending inverse linearly with the temperature, like graph states [63]. But, as they can also
be prepared from a constant depth quantum circuit almost by definition, they fall into the assumptions of the
previous statement.

However, the results of [25] assert that k-local density matrices of ground states of gapped Hamiltonians in
1D can be approximated by constant depth circuits, giving evidence that our framework should also extend to
such states. And to get there, a technical obstacle has to be overcome in the proof of Thm. C.1. Essentially we
need to show that local reduced density matrices of the ground state are already well-approximated at inverse
temperature log(e~1). With such a statement we could show that we can still approximate the expectation
values of E; at inverse temperature log(e~!) from samples from the ground state [1)).

D Summary of known strong convexity constants

As we see in the statement of Thm. A.1 and C.1, having a bound on the strong convexity constant L~! can
give a quadratic improvement in the sample complexity in terms of the error €. Here we will briefly summarize
for which cases estimates on L are known in the literature for the classes of states we considered here.

General many-body quantum: first, we should mention the results of [5]. There the authors show bounds
on L~! for arbitrary many-body Hamiltonians and temperatures that scales linearly in m. Thus, although
certainly nontrivial, these bounds do not improve the sample complexity for the regimes we are interested in
this work, namely that of logarithmic sample complexity in system size. To obtain improvements in this regime,
L~ needs to be at most polylogarithmic in system size.

In the case of high-temperature Gibbs states, the recent work of [34] shows that this is indeed the case. Le.,
in their Corollary 4.4 they show that for 8 = O(k~8), where k is the locality of the Hamiltonian, we indeed have
L=1 = O(B72). Tt should also be noted that their results do not hold only for geometrically local Hamiltonians,
but rather any Hamiltonian such that each term acts on at most k& qudits. This implies that for the high
temperature regime, for which we also have the TC inequality in Thm. B.1, the improved sample complexity
yielded by our methods holds. Note, however, that there is a slight mismatch between the inverse temperature
range for which the two results hold: for the strong convexity we need 3 = O(k~%), whereas for TC 8 = O(k~1)
suffices.

Commuting Hamiltonians: as we will prove later in Prop. F.1, in the case of commuting Hamiltonians we
have that L=' = O(e#372). Thus, for any constant inverse temperature 3 > 0 we have an improved sample
complexity. However, in order to analyse ground states in 1D, our current proof techniques still require an
inverse temperature scaling logarithmically in system size, so for such states we do not obtain improvements
through strong convexity. We plan to address this gap in future work.

Besides the cases mentioned above, we also considered the case of local circuits in this work. For those there
are no nontrivial estimates on L available to the best of our knowledge.

E Regimes of efficient postprocessing

The only question we have still to answer is how to perform the postprocessing efficiently, namely how the
parameter Cg¢ appearing in Theorem C.1 scales and how we obtain the bounds in Table 2.

There have been many recent breakthroughs on approximating quantum Gibbs states efficiently on classical
computers [35, 46, 49, 51, 52]. The gradient descent method only requires us to estimate the gradient of the
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partition function for a Gibbs state at each iteration. Thus, any algorithm that can approximate the log-partition
function Z(u) efficiently or approximate e(A) suffices for our purposes.

For Gibbs states on a lattice, the methods of [51] yield that we can perform such approximations on a
classical computer in time polynomial in n for temperatures 3 < 8. = 1/(k8¢3), where k is the locality of the
Hamiltonian, and € inverse polynomial in system size. Thus, we conclude that for this temperature range, which
coincides with the range for which the results of Thm. B.1 hold, C¢ is polynomial in system size and we can
also obtain efficient classical postprocessing.

For the case of Gibbs states of 1D systems, to the best of our knowledge, the best results available are those
of [52]. They show how to efficiently obtain efficient tensor network approximations for 1D Gibbs states for
B = o(log(n)). As such tensor networks can be contracted efficiently as well, this gives an efficient classical
algorithm to compute local expectation values of such states, which suffices for our purposes. Thus, the results
of [51, 52| ensure that for the systems considered in Thm. B.1 we can also perform the postprocessing efficiently
on a classical computer.

It is also interesting to consider what happens if we have access to a quantum computer to estimate the
gradient. We will discuss the implications of this in the next section for the case of commuting Hamiltonians.

Finally, for local quantum circuits we are not aware at this stage of any method that could yield a better
postprocessing complexity than computing the partition function explicitly. This would yield a postprocessing
that is exponential in the system size, as it requires diagonalizing an exponentially large matrix.

F A complete picture: commuting Gibbs states

In this section, we discuss two classes of states for which the strongest version of our theorems holds, namely
that of commuting 1D Gibbs states, and the one of high-temperature commuting Gibbs states on arbitrary
hypergraphs. We already discussed that they satisfy transportation cost inequalities in Thm. B.1. Thus, the
last missing ingredient to obtain an optimal performance is to show that the partition function is indeed strongly
convex. More precisely, we will now establish that, for these classes of states, both the upper and lower bounds
on the Hessian of the log partition function are order 1. In addition to that, with access to a quantum computer,
it is possible to perform the post-processing in time O(m). As writing down the vector A takes Q(m) time,
we conclude that the postprocessing can be performed in a time comparable to writing down a solution to the
problem. Thus, our procedure is essentially optimal.

Also in the setting of commuting Gibbs states, it is worth noting that after the completion of this work, we
became aware of [4], which gives another method to learn the Gibbs state and its Hamiltonian that neither
involves the maximum entropy method nor requires strong convexity guarantees. Their algorithm works by
learning local reduced density matrices and showing that the parameters A of the Hamiltonian of a commuting
Gibbs state can be efficiently estimated from that. In principle, obtaining a bound on A also suffices for our
purposes and we could alternatively use their methods to bypass having to solve the maximum entropy problem
for such states. In particular, this means that the postprocessing with their methods could be performed even
for temperatures at which the partition function cannot be estimated efficiently but we still have access to
samples from the state. However, as we ultimately are interested in the regime in which TC inequalities hold,
which corresponds to the high-temperature regime, we do not further comment on their results.

In this section, we consider a hypergraph G = (V, E) and assume that there is a maximum radius rp € N
such that, for any hyperedge A € E, there exists a vertex v € V such that the ball B(v,rg) centered at v and of
radius 7 includes A. In what follows, we also denote by S(v,r) the sphere of radius r centered at vertex v € V,
and define for all r € N:

B(r) := max |B(v, )|, S(r) = max |S(v,r)].
Next, we consider a Gibbs state o(\) on Hy := &), ¢y Ho, where dim(H,) = d for all v € V. More precisely,
o(X) := e PER) /Z()\), where with a slight abuse of notations

HN) =Y NEi=Y Y aaka,. (55)
i=1 ACE a,c[d?]lAl
with ||Ejl|e = 1 for alli € {1,---,m}, [E;, Ej] =0 for all i,j € {1,--- ,m}, and where the sets {1,--- ,m} and
{@a}acp,a,ciaz)a are in bijection. Note that B(rg) bounds the maximal locality of the Hamiltonian.
We also denote by o 4(\) the Gibbs state corresponding to the restriction of H onto the region A, i.e.
e—BHa(X)

O'A()\) = m s where HA()\) = Z )\1E»L .

i| supp(E;)NA#0
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Note that, in general, o 4(\) # trac(o(N)).

F.1 Upper bound on Hessian for commuting Gibbs states with decay of correlations

In this section, we prove tightened strong convexity constants for the log partition function in the case when
the Gibbs state arises from a local commuting Hamiltonian at high-temperature. In fact, the upper constant
found in Proposition A.4 can be tightened into a system size-independent one under the condition of exponential
decay of the correlations in the Gibbs state. Several notions of exponential decay of correlations exist in the
literature [18]. Here, we will say that a Gibbs state o has correlation length £ if for all observables O4,0p
supported on non-overlapping regions A and B respectively, we have that:

|tr[0 04 ® O] —tr [0 O4]tr [0 0g]| < ¢||0allso |OB||sce™8 sHAB)

for some constant ¢ > 0. In the classical setting, this condition is known to hold at any inverse temperature
for 1D systems, and below a critical inverse temperature . that depends on the locality of the Hamiltonian
when D > 2 [28]. The same bound also holds in the quantum case for 1D systems [6], or above a critical
temperature on regular lattices when D > 2 [35, 46]. Using these bounds, we obtain the following improvement
of Proposition A.4 which shows that for this class of states U = O(1).

Lemma F.1 (Strengthened upper strong convexity at high-temperature and for 1D systems). For each u €
By (0,1), let o(p) be a Gibbs state at inverse temperature < . corresponding to the Hamiltonian defined on
the hypergraph G = (V, E) in (55). Then

V2 log(Z(p)) < (052 B(ro) B(2ro) d*200) Y e—ffS(r)) I,

where £ is the correlation length of the state. Moreover, this result holds for all 3 > 0 in 1D.

Proof. Let us first use the assumption of commutativity to simplify the expression for the Hessian. We find for
all aq € [d?]4], oy € [d?)1Pl, A,B € E,

(V2 108(Z () )ana, = B2 0 [0(1) (Bay = 0 [0(1) Bars) (B, — 0 [o(s0) Eu, )] (56)

The rest follows similarly to Proposition A.4 from Gershgorin’s circle theorem together with the decay of
correlations arising at 8 < S.: for all a4,

> [V 10szw)), ., | <es? 3 eemen),

afpFaa alpFaa

where we also used that the basis operators {E;} have operator norm 1. The claim then follows by bounding
the number of basis operators whose support is at a distance r of A for each r € N: the latter is bounded by
the product of (i) the number of vertices in A; (ii) the number of vertices at a distance r of a given vertex;
(iii) the number of hyperedges containing a given vertex; and (iv) the number of basis operators corresponding
to a given hyperedge. A simple estimate of each of these quantities gives the bound B(ro) S(r) B(2rq) d?5(0).
Therefore:

< ¢ 32 B(ro) B(2r¢) d*B(r) Z e 5 S(r).

apFaa r=1

> (T osz(0),,,

O

Note that for D-regular graphs and 7o = O(1) we have B(ro) B(2ro) d?2(™) = O(1) and S(r) = O(rP~1),
giving a scaling of V2 log(Z(u)) = O(8%¢P).

F.2 Lower bound on Hessian for commuting Gibbs states

Whenever the Gibbs state is assumed to be commuting, the lower strong convexity constant L can also be made
independent of m, by a direct generalization of the classical argument as found in [66][Lemma 7| or [54] (see
also [5]).
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Before we state and prove our result, let us introduce a few useful concepts: given a full-rank quantum state
o, we denote the weighted 2-norm of an observable Y as

1/2
IY]l2,0 :=tr UO‘%Y 0%‘2} .
and refer to the corresponding non-commutative weighted Lo space with inner product (X,Y), :=

tr {O'%XTO'%Y} as La(0). The Petz recovery map corresponding to a subregion A C V with respect to o(p) is
defined as

Rao(uy(X) = tra(o(w) 2 tra(o(u)?Xo(u)'/?) tralo(u) /2,

We will also need the notion of a conditional expectation E4 with respect to the state o(u) into the region
A C A (see [7, 44] for more details). For instance, one can choose E 4 := lim,, R o) where R 4 o(,,) is the
Petz recovery map of o(u). In other words, the map E 4 is a completely positive, unital map that projects onto
the algebra N4 of fixed points of R 4 ,(,). This algebra is known to be expressed as the commutant 7]

Na = {o(w)"*"BHa)o(pn) " t € RY .

Moreover, the maps E4 commute with the modular operator A,(,)(.) = o(u)(.)o(p)~*, and for any
Xa,Za € Ny and all Y € B(Hy), BEa[XaYZa] = XaEA[Y]Za. The commutativity condition for H(u)
implies frustration freeness of the family of conditional expectations {E4}acp: for any X € La(o(u)),
IEA(ON3.5¢,0 + 1Gd=Ea) O3 5 = 1X17 0

The next technical lemma is essential in the derivation of our strong convexity lower bound. With a slight
abuse of notations, we use the simplified notations o, () := o1 (), Hp(\) := Hy;3(A) and so on.

Lemma F.2. Let H = Zj wj Ej be a local commuting Hamiltonian on the hypergraph G = (V, E) defined in
(55), each local operator E; is further assumed to be traceless. The following holds for any xz € V:

R o H:c —t T Hm I oL
¢(z,B) ;= max IR0 () (Ha) — t (02 (1) Ha] 1|20, (1) <1.
HEB, (0,1) | Hy — tr [0 (1) He) 12,0 (1)

Proof. We first prove that X = R, , () (X) is equivalent to || Ry o, (u)(X) 2,0, (x) = I X |26, (x). One direction
trivially holds. For the opposite direction, assume that X # R, o, (u)(X). This means that X =Y + Z, with
Y, Z two operators that are orthogonal in Ly(0, (1)), with Ry 5, (4,)(Y) =Y and Z # 0. Now, since R, », () 18
self-adjoint and unital, it strictly contracts elements in the orthogonal of its fixed points and we have

1R ) B3 s ) = Y 13,0, (1) + IRty (2)

< HyHg,az(u) + ||Z| %,oz(u)

2
2,00 (1)

= HXHg,a'JC(u) ’

which contradicts the condition of equality of the norms. Now, since the map R, ,,(,) is unital, it suffices to
prove that R, o, (u)(Hz) # Ha, or equivalently E,(H,) # H,, in order to conclude. Let us assume instead that
equality holds. This means that, for all observables A, supported on site x, and all t € R:

[He, U(U)itAmU(U)iit} = U(Nyt[Hza Am]g(ﬂ)iit =0 = H, = % @ try(Hy) -

However, this contradicts the fact that H, is traceless on site . Therefore R, o, (u)(Hz) # H, and the proof
follows. O

We are ready to prove our strong convexity lower bound.

Proposition F.1 (Strengthened lower strong convexity constant for commuting Hamiltonians). For each u €
B, (0,1), let o(p) be a Gibbs state at inverse temperature (8 corresponding to the commuting Hamiltonian
H(p) =32; wj Ej on the hypergraph G = (V, E) defined in (55), where tr [E;E;] = 0 for all i # j and each local
operator E; is traceless on its support. Then the Hessian of the log-partition function is lower bounded by

VZ log Z(M) > ﬂQ e—B(B(2r0)+2B(4r0))d—B(Zm) (1 _ C(ﬁ)Q)],

where ¢(f) := max,cy c(v, 3).
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Proof. We first use the assumption of commutativity in order to simplify the expression for the Hessian. As in
(56), we find

(V* log(Z(w))ij = B2 tr [o(u) (Bi — tr[o(p) Bi]) (B — tro(u) E;])] -

Therefore, for any linear combination H = H(A) = 3_; A; Ej; of the basis vectors, we have

Z Aidj (V2 1og(Z(w)))ij = B2 Vary( (H)

ij

with Varg ) (X) := || X —tr [o(u)X] |3 o(u)- 1t is thus sufficient to lower-bound the latter. For this, we choose a
subregion A C V such that any basis element E; has support intersecting a unique vertex in A. We lower-bound
the variance by

1 = te [0 () H] T34y > 1(id = EA)(H = tr [0 () H] D36 = | H = EalH][3 5) - (57)

where the first inequality follows by the Lo(o(p)) contractivity of id — E4. Now, the weighted norm can be
further simplified into a sum of local weighted norms as follows: first, for any two F;, IJ; whose supports intersect
with a different vertex of A, we have

(EAlE, BalE D)oo = tr [o(0) 2B A[Eilo (1) /2B A ]
= tr [o(1) A/} o EAlEEALE]|
= trlo(u)Ea [Ei]EA [E]] (58)
where in the third line we used the commutation of the modular operator Ay, (X) := o(u)Xo ()~ with E4
together with the commutativity of o(x) and F;. Now, denoting supp(£;) N A = {z} and supp(E;) N A = {y},

we show that

In order to prove these two identities, we simply need to prove for instance that E,[E;] belongs to the image
algebra Ay of E4 since Na C N, by definition. Hence, it is enough to show that E,[F;] commutes with
operators of the form o (u)* X 40 ()~ for any ¢t € R and any X4 € B(H.4). This claim follows from

E.[Eilo(1)" Xao(u) ™ ) o ()" Ee[Eilo (1) Xao (1) ™"
1) "By lo ()" Eio (1)) X a0 (1) ™"

o(p)

o(p)"E o
o (1) Ey[Ei] X a0 (1) ™"
o(p) )
o(p) [E

/JZtXAE[ ] ( —it
HZtXAO-( ) ’LtE

il

where the fourth line follows from the fact that the support of E.[F;] does not intersect A\{i}, together with
the fact that E,[F;] is locally proportional to I on site z, by definition of N,. Therefore, using (59) into (58),
we get

(Ea[Ei), Ea[Ej])o () = tr[o(pn)Es[E]E, [E)]]
= tr[o(u)E.Ey B Ej]]
= tr[o(u) EiEj]
= (Ei, Ej)o(n) ;

where in the second line we used that E,[E;] is a fixed point of E,, and then that Ej is a fixed point of E,, by
the support conditions of E; and E;. Therefore, the variance on the right-hand side of (57) can be simplified as

IH-EalH3o0 =2 D2 X E-EIED],

€A  j| supp(E;)dz

= Z ||Hz _EI[HI]H;J(M)

z€A
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where we recall that H, =3 supp(E;)3@
decompose the Hamiltonian H(u) as

Aj E;. Now, for any « € V, we denote 20 := {A € E|z € A} and

supp(K, (p)) Nad = 0

H(p) = Hy(u) + KO(u) + KX(), where : 60
(1) (1) (1) (1) {Supp( K1) 120 % (60)

Clearly,

—BK, (1)
2B Kl & T
o) 2 ox(p)e troor [ PREW] | (61)
Now,

| Hz — Em[Hz]”%,a(u) =tr [U(N)(Hz - Ew[H:rDQ]

—BK (1)
> e 281K Wl ty o () ——_(H,
= ) o [e=PEEG] (

— 28 IE Wl |, — Eo[Ho I3 o, ()

= IR e (|| H, — tr [y (1) Ho 1113 5 () = 1B [Ho] = tr {00 () Ha) 113 5 )

> e 2PN (| H, — tr o0 (W) Ha) T30, ) = | Rao [Hal = tr [0 () HLI T3 . ()
> (1= e(8)?) e 2P WSl || H, — oy () Ha) 13, )

- Ew [Hw])Q

The first and second identities above follow once again from the commutativity of the Hamiltonian similarly to
(58), where for the second one we also use the disjointness of £ and supp(K 1 (uz)). The first inequality follows
from (61). The third identity is a consequence of the fact that E, is a projection with respect to Lo(o(1)).
The second inequality follows from ||Ry o) [X]ll2,0(u) > [Ez[X]|l2,0¢u) for all X (see Proposition 10 in [44]).
The last inequality is a consequence of Lemma F.2. Finally, we further bound the weighted Ly norm on the
last line of the above inequality in terms of the Schatten 2 norm to get

Var, () (H) > (1 - (8)?) Hg‘r} e 2PNl Amin (02 (1)) Z [ Hy — tr[o2(1) Ha] |13 (62)
T€EA
>(1- 0(6)2) Hg‘r} 672ﬁ“K2(H)Hw Amin (02 (1)) Z )\f , (63)

where Apin(0z (1)) denotes the minimum eigenvalue of o, (). The result follows from the simple estimates
IE2 (1)l < B(4ro) and Amin (04 (1)) = e”#BEro)d=BEro),
O

F.3 Summary for 1D or high-temperature commuting

Now we genuinely have all the elements in place to essentially give the last word on estimating Lipschitz
observables for Gibbs states of nearest neighbor 1D or high-temperature commuting Gibbs states.

Theorem F.1. For each pn € By (0,1), let o(p) be a Gibbs state at inverse temperature 3 corresponding to the
commuting Hamiltonian H(u) = Z;nzl w; E; on the hypergraph G = (V, E) defined in (55), where tr [E;E;] =0
for all i # j, each local operator E; is traceless on its support and acts on a constant number of qubits and
m = O(n). Moreover, assume that o(\) satisfies the conditions of Thm. B.1. Then O(log(n)e=2) samples of
a(X) suffice to obtain a p € By (0,1) satisfying

tr[O(e(A) — o(w))] = O(ev/n|OllLip,v)-

with probability at least 1 — p. Moreover, we can find p in O(poly(n, 6*1))~time on a classical computer. With
access to a quantum_computer, the postprocessing can be performed in O(ne=2) time by only implementing
quantum circuits of O(1) depth.

Proof. To obtain the claim on the sample complexity, note that for such systems L = (1) by Prop. F.1 and
they satisfy a transportation cost inequality by Thm. B.1. Moreover, we can learn the expectation of all E; up
to an error € and failure probability § with O(log(nd~!)e=2) samples using shadows, as they all have constant
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support. The claimed sample complexity then follows from Thm. C.1. The classical postprocessing result follows
from [51]. The postprocessing with a quantum computer follows from the results of [44], [18] combined with the
fact that L=1U = O(1) by also invoking Lemma F.1. Indeed, [18, 44] asserts that we can approximately prepare
any o(u) on a quantum computer with a circuit of depth O(1). Moreover, once again resorting to shadows
we can estimate e(u) with O(e~2) samples. We conclude that we can run each iteration of gradient descent in
O(ne~?) time. As L™'U = O(1), Thm. A.1 asserts that we converge after O(1) iterations, which yields the
claim O

The theorem above nicely showcases how the joint use of transportation cost inequalities and strong convexity
bounds to improve maximum entropy methods come together. Moreover, with access to a quantum computer,
up to polylogarithmic overhead in system size factors, the computational complexity of learning the Gibbs state
is comparable to reading out the results of measurements on the system. Together with the polylog sample
complexity bounds that we obtain, this justifies our claiming that the result above almost gives the last word
on learning such states.

G Comparison of sample complexity of previous methods

Our work arguably introduces two technical innovations to the literature of learning and tomography of quantum
states that underly our exponential speedups in sample complexity. The first is the observation that most
observables of physical interest have a small Lipschitz constant, and, thus, it might be more motivated to look
for good approximations in Wasserstein distance instead of trace distance. The second is that for states that
satisfy a TC inequality, it suffices to obtain an estimate of the state that has a small relative entropy density
with the target state to recover Lipschitz observables. And that finding such an estimate can be achieved from
a few samples through a combination of maximum entropy and classical shadow methods.

We will now argue that these two innovations are indeed crucial to ensure our exponential speedups. First,
we will show that the shadow protocol will yield bad estimates for the expectation value of local observables
with high probability even for product states if the number of samples is not exponential in the locality of the
underlying observables. This shows that exploiting the locality of the underlying states is crucial to obtaining
a polynomial sample complexity in the locality of the observables. After that, we will show in Subsec. G.2 that
Q(y/ne~?) samples are necessary for any algorithm that can recover any Gibbs state on a regular lattice at
constant temperature up to trace distance e. This will follow from the results of [27] and showcase the need to
focus on the Wasserstein distance instead of the trace distance.

G.1 Lower bounds for sample complexity of classical shadows

One of the main advantages of our results compared with the classical shadows method of [40] is that whenever a
TC inequality is available, we can learn all k—local observables with a number of samples that grows polynomially
in k, whereas classical shadows require a number of samples that grows exponentially in k. However, the classical
shadows framework does not assume any structure for the underlying state. Thus, it is natural to ask if this
undesired exponential scaling of the shadows framework is due to this broader applicability.

In this section, we will demonstrate that this is not the case even for one of the simplest imaginable classes
of states, namely tensor products of Pauli eigenstates. We will show that if the number of samples is not
exponential in the locality of the desired observables, there will always be a k-local observable whose estimate
will be wrong with constant probability.

But before we show that, let us briefly recall how the shadow method works. To recover local observables on
n qubits, the methods of [40] proceed as follows. First, we sample a random unitary U = ®?:_01 U;, where each
U; is an independent rotation into a Pauli basis. Then we proceed to measure the state of interest p in the basis
defined by U, obtaining a n-bit classical string bgb; ... b,_1. The shadow corresponding to this measurement p
is then defined to be given by

p= ®;L=1(3Uz”bi><bi|Ui —1I).

We then repeat this procedure SM times for S, M € N, obtaining shadows {psm }1<m<m,1<s<s. We then set
our estimate of the expectation value of an observable O to be given by

S S S
O({ps.m}) = median {sl > 0 [pem=10], 87 tr[pem=20],..., 571> tr [ﬁs,m_MO]} . (64)
s=1 s=1

s=1
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That is, we partition the set of shadow samples into M subgroups, take the average on each of them and then take
their median. The authors of [40] then proceed to show in Theorem 1 that if we take SM = O(4* log(N§~1)e2),
then with probability at least 1 — 0 the expectation value any given N k-local observables of bounded operator
norm will deviate by at most ¢ from the estimate given in Eq. (64). We will now show that this exponential
scaling in k is unavoidable if we want to obtain nontrivial estimates with high probability. More precisely:

Proposition G.1. Let p = Q% |¢i)(¢i| be an unknown n qubit state where each |¢;) is given by a Pauli
eigenstate. For k > logs(n)log(n), if SM < n then there is an observable O of the form

O=n"1>"0;
i=1
where each O; is k-local and such that:
w[0p] =1, O({ps,m}) =0 (65)

with probability at least 1 — e 1.

Proof. We will let O; = ®;i’f P;, where we take addition modulo n and let P; be the Pauli matrix such that
P; |¢;) = 1, where we assume w.l.o.g. that each Pauli eigenstate corresponds to a +1 eigenstate. It is then clear
that tr [Op] = 1.

Let us now analyse the performance of shadows. Note that as the random unitaries used to obtain each
sample are random Pauli bases, we have that tr [O;ps ] = 3" if the unitary U™ corresponds to the identity on
qubits 2,2+ 1,...,7+ k and 0 otherwise. This is because then the string we measure will be rotated to a Pauli
basis different from that of P; on at least one of the qubits in that interval. Thus, as we pick the Pauli bases
uniformly at random and there are three different possibilities for each one of them, we see that the probability
that a shadow is different from 0 on a given O; is 37%. By a union bound, the probability that a shadow is
different than 0 on any of the n O; is at most n37*. As the different shadows are independent, the probability
that all of the SM shadows return 0 is at least (1 — n37%)9M. As we picked k > logs(n)log(n) and SM < n,
we have:

6_1

(1 _ n3—k)SM > (1 _ n—l)n > 7
for n large enough. Thus, as all shadows will have expectation value 0, the median and means procedure will
clearly also output 0, which concludes the proof. O

Despite the fact the proof above used quite rough estimates and simple observables and states, it still gives
some intuition as to why classical shadows require an exponential number of samples in the locality. We see
that the probability that the shadows "look in the right direction" is exponentially small in the locality of
the observables, in the sense that the overlap between the state and a random Pauli eigenstate is likely to be
exponentially small. And whenever it does look in a direction in which the underlying state has a significant
overlap with that basis it has to compensate that direction exponentially. Thus, if the number of samples is not
exponential in the locality, it is unlikely that we will measure in a direction that has significant overlap with
our state or there will be significant fluctuations due to the exponential rewarding of the "good" directions.

However, by combining shadows with a locality structure and the maximum entropy principle, as we do in this
work, we can bypass the need to measure in random directions for observables with a large locality, bypassing
this exponential scaling.

We also note that the authors of [40] already proved the optimality of their protocol by only considering
product states in Section 8 of their supplemental material. The main difference between their proof and ours is
that we focus on a Lipschitz observable, whereas they focus on observables that only depend on k qubits.

G.2 Lower bounds for recovery in trace distance

In the main text, we claimed that one of the reasons why we obtain an exponential speedup compared to usual
many-body methods is that we focus on a good recovery in the Wasserstein distance instead of trace distance.
Moreover, by combining the maximum entropy method with a TC inequality we are able to obtain good recovery
guarantees from a constant relative entropy density. That is, as long as two Gibbs states o()\), o(u) satisfy

D(a(N)lo(n)) < en, (66)

for some € > 0 we already obtain some nontrivial guarantees.
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In this section, we will argue that focusing on the Wasserstein recovery instead of trace distance is essential
to obtain nontrivial recovery guarantees from a number of samples scaling logarithmically with the system size.
To achieve this, we will resort to results of [27, Theorem 1.3]:

Proposition G.2. [Lower bound of sample complexity in trace distance] Let G = (V| E) be a graph on n vertices
and m edges and for X € RY™, ||A|lo.. <1 let H(\) be defined as

15

i~g 1=1

where the Hf] correspond to some ordering of the nonidentity Pauli strings acting on sites i,j. Then for any
B=Q(m™2), let 5(\) be the estimate of o(\) outputted by an algorithm with access to s samples from a state

o()). Then:
5 900 = 6l =9 (min {1, \/R }) , @

Proof. This statement immediately follows from [27, Theorem 1.3], which shows the analogous statement when
restricted to classical Ising models. As our class of Hamiltonians includes those as a subset, any algorithm that
could provide an estimate for this more general class also can find one for the classical instances. Moreover,
in the proof of [27, Theorem 1.3] the inverse temperature is absorbed into the coefficients of the Hamiltonian,
which are assumed to have 2-norm bounded by a constant independent of the system’s size. This is easily seen
to be satisfied by our conditions since 8 = Q(m™2). O

The statement above implies in particular that any algorithm that finds an estimate that is € close in trace
distance for all 2-local Gibbs state on a lattice and constant inverse temperature requires Q(ne~2) samples. In
contrast, we see that it is possible to obtain an estimate that is O(ey/n) close in Wasserstein distance from
O(e 2log(n)) samples of the Gibbs states, which is sufficient to already give nontrivial recovery guarantees for
Lipschitz observables. Thus, we see from Prop. G.2 that resorting to the Wasserstein distance is essential to
obtain recovery guarantees in the regime where the number of samples is logarithmic in the system’s size.

Furthermore, it is interesting to note that the proof of [27] is based on a set of Gibbs states of the form:

8> si;ZiZ;, (68)

in~J

with § = @(m’%) and s; ; € {£1}. Their proof then proceeds by finding a large subset of Gibbs states of the
form in Eq. (68) which have a trace distance and relative entropy of constant order. The lower bound on the
sample complexity then follows from standard information-theoretic arguments. We believe that this class of
examples in the proof further illustrates why the trace distance is not necessarily the adequate distance measure
when estimating the error on extensive observables. Indeed, for extensive, local observables the class of Gibbs
states from the Hamiltonians in Eq. (68) behaves like the maximally mixed state, as each local term converges
to 0 as the system size increases.
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