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LOCAL-GLOBAL PRINCIPLE FOR OVER SEMIGLOBAL FIELDS

PHILIPPE GILLE AND RAMAN PARIMALA

Abstract. We compare different local-global principles for torsors under a reduc-
tive group G defined over a semiglobal field F . In particular if the F–group G is
a retract rational F–variety, we prove that the local global principle holds for the
completions with respect to divisorial valuations of F .
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1. Introduction

The theme is the arithmetic theory of torsors over a semiglobal field. It had
been initiated by Hartmann, Harbater and Krashen [H-H-K] and developped further
[C-T-O-H-H-K-P-S2, C-T-P-S, H-H-K2, P-S, R-S].

Let T be a complete discrete valuation ring with fraction field K and residue field
k.Let p ≥ 1 be the characteristic exponent of k. Let X be a smooth, projective,
geometrically integral curve over K. Let F = K(X) be the function field of X and
let t be an uniformizing parameter of T . Let X be a normal model of F , i.e. a normal
connected projective T -curve with function field F . We denote by Y the closed fiber
of X and fix a separable closure Fs of F .

Given an affine algebraic F–group G, we can study the local-global principle for
G-torsors with respect to the infinite set of overfields FP that arise from completions
at the points P of Y . This gives rise to the Tate-Shafarevich set

XX(F,G) = ker
(
H1(F,G) →

∏

P∈Y

H1(FP , G)
)
;

it is denoted simply by XX(F,G) in [H-H-K2]. Using Lipman’s resolution of singu-
larities permits to consider the inductive limit

Xpatch(F,G) = lim−→
X

XX(F,G)
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taken on the models (or equivalently on the regular models). On the other hand,
we consider the completions associated to the set ΩF,div of divisorial valuations on F
arising of various regular projective models over T of the curve X. It gives rise to the

Xdiv(F,G) = ker
(
H1(F,G) →

∏

v∈ΩF,div

H1(Fv, G)
)
;

In view of [H-H-K2, prop. 8.2], we have the following inclusion

Xpatch(F,G) ⊆ Xdiv(F,G).

The main result of the paper is to show (under some condition on p with respect to

G), that the two Tate-Shafarevich sets coincide (Thm. 3.4). If furthermore G is a F -
rational variety (or even retract rational F–variety), we have that Xpatch(F,G) = 1
according to Harbater-Krashen-Hartmann [H-H-K2, Thm. 9.1] (see [K, Thm. 2.2.4]
for the extension to the retract rational case) so that Xdiv(F,G) = 1 in this case. It
means that if G is a retract rational F–variety that the local-global principle principle
holds for G-torsors with respect to divisorial valuations on F .

This was known for certain classical groups [R-S, P-S]. As in [G-P], the proof uses
the technique of loop torsors which requires to deal with group schemes defined over
T . To do so, for a given Chevalley group G0 over Z, we explain in the first section
why the G0 ⋊Aut(G0)-torsors permit to classify couples (E,G) where G is a form of
G0 and E a G-torsor.

Acknowledgements.

2. Pairs of a group scheme together with a torsor

The following is a complement to the “sorites" of [G1]. We work in the setting
of fppf sheaves on a base scheme S. We consider the groupoid P whose objects are
pairs (E,G) where G is a fppf S–sheaf in groups and E a G–torsor; the morphisms
between two pairs (E1, G1) and (E2, G2) are pairs of isomorphisms f = (f ′, f ′′) where
f ′′ : G1

∼

−→ G2 is an S–isomorphism of S-sheaves in groups and f ′ : E1
∼

−→ E2 an
S-isomorphism of sheaves such that the following diagram commutes

E1 ×S G1

f ′
×f ′′

��

// E1

f ′

��

E2 ×S G2
// E2.

Note that it induces an isomorphism f∗ : E1G1
∼

−→ E2G2 between the associated
twisted group sheaves.
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Lemma 2.1. Let G be an S–sheaf in groups and let E be a G–torsor over S. We
denote by EG the twisted S–sheaf of G by E by inner automorphisms.

(1) We have a natural exact sequence of fppf S–sheaves in groups

1 → EG → AutP
(
E,G

)
→ Aut(G) → 1

which is locally split for the flat topology.

(2) If E = G the sequence above splits and the S–functor AutP
(
G,G

)
is isomorphic

to G⋊ Aut(G).

Proof. We prove the two assertions in the same time. The projection AutP
(
E,G

)
→

Aut(G) is a homomorphism of S–sheaves in groups. On the other hand we have a
monomorphism EG = AutG(E) → AutP

(
E,G

)
, f ′′ 7→ (f ′′, id). The fact that the

sequence is exact at the middle term is the fact [Gd, cor. 2.3.8].
We consider now the case E = G. In this case the sequence above splits by

f ′′ 7→ (f ′′, f ′′) hence an isomorphism G⋊Aut(G)
∼

−→ Aut
(
G,G

)
. Coming back to the

general case it implies that the projection AutP
(
E,G

)
→ Aut(G) is an epimorphism

of S–sheaves. �

Given a fppf S–sheaf in groups G, we can apply [G1, lemme 2.6.3] to express the
cohomology

(2.1) H1(S,G⋊Aut(G))
∼

−→
⊔

[G′]∈H1(S,Aut(G))

H1(S,G′)/Aut(G′)(S).

by using the fact that H1(S,Aut(G)) classifies the S–forms of G. The action on
Aut(G′)(S) on H1(S,G′) is the natural one so that the map H1(S,G′) → H1(S,G′)/Aut(G′)(S)
has trivial kernel so that the composite H1(S,G′) → H1(S,G ⋊ Aut(G)) has trivial
kernel. This map is nothing but the composition

H1(S,G′) → H1(S,G′
⋊ Aut(G′))

Torsion bijection
−−−−−−−−−−−−−→

∼

H1(S,G⋊ Aut(G))

where the torsion bijection is with respect to the Aut(G)–torsor Isom(G,G′). Sum-
marizing the decomposition (2.1) shows that H1(S,G⋊ Aut(G)) encodes the classes
of torsors for all twisted forms of G. The map int : G → Aut(G) extends to

u : G⋊Aut(G) // Aut(G)⋊c Aut(G)
∼

// Aut(G)× Aut(G),

(g, f) 7→ (int(g), f)

(f1, f2) 7→ (f1f2, f2)
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where c stands for the conjugacy action. In terms of objects classified by the respective
torsors, u∗ applies a pair (E ′, G′) to (E

′

G′, G′)

3. Patching techniques

We recall the setting. Let T be a complete (excellent) discrete valuation ring with
fraction field K, residue field k and uniformizing parameter t. Let F be a one-variable
function field over K and let X be a normal model of F , i.e. a normal connected
projective T -curve with function field F . We denote by Y the closed fiber of X and
fix a separable closure Fs of F .

For each point P ∈ Y , let RP be the local ring of X at P ; its completion R̂P is a
domain with fraction field denoted by FP .

For each subset U of Y that is contained in an irreducible component of Y and
does not meet the other components, we define RU =

⋂
P∈U

RP ⊂ F . We denote by

R̂U the t–adic completion of RU . The rings RU and R̂U are excellent normal domains

and we denote by FU the fraction field of R̂U [H-H-K3, Remark 3.2.(b)].

Each height one prime p in R̂P that contains t defines a branch of Y at P lying

on some irreducible component of Y . The t-adic completion R̂p of the local ring Rp

of R̂P at p is a complete DVR whose fraction field is denoted by Fp. The field Fp

contains also FU if U is an irreducible open subset of Y such that P ∈ U \ U . We
have then a diagram of fields

Fp

FP

>>⑥⑥⑥⑥⑥⑥⑥⑥

FU .

``❇❇❇❇❇❇❇❇

Setting 3.1. Let P be a non-empty finite set of closed points of Y that contains all
the closed points at which distinct irreducible components meet. Let U be the set of
connected components of Y \ P and let B be the set of branches of Y at points of
P. This yields a finite inverse system of field FP , FU , Fp (for P ∈ P; U ∈ U , p ∈ B)
where FP , FU ⊂ Fp if p is a branch of Y at P lying in the closure of U .

Proposition 3.2. Let 1 → G → G̃ → J → 1 be an exact sequence of smooth T–
group schemes where G is reductive and J is twisted constant. Let E1 (resp. E2) be

a G̃-torsor over F admitting a reduction to a finite étale T–subgroup of S1 (resp. S2)

of G̃ with prime to p order.
Assume that E1,Fv

∼= E2,Fv
for any divisorial discrete valuation v on F . Then there

exists a regular model Q of F as above together with Y,P, etc. such that E1,FP
∼= E2,FP

for all P ∈ P and E1,FU
∼= E2,FU

for all connected components U of Y \ P.

Proof. We consider the F -scheme Z = Isom
G̃
(E1, E2). Our assumption is that

Z(Fv) 6= ∅ for all divisorial discrete valuations v on F .



LOCAL-GLOBAL PRINCIPLE 5

Let Vi be an Si,F–torsor such that Vi ∧
Si,F G̃ ∼= Ei for i = 1, 2. According to [G-P,

lemma 5.1] there exists a regular proper model X of X and a strict normal crossing
divisor D containing the irreducible components of Y such that Vi extends to a X\D–
torsor Vi under Si. We are given a closed point P ∈ Y . If y is of codimension one,
by hypothesis, Z(Fy) is not empty. We therefore look at a closed point P ∈ Y . We

pick a height one prime p in R̂P that contains t. It defines a branch of Y at P lying
on some irreducible component Y1 of Y .

We consider the local ring A = RP of X at P and denote by AD its localization at
D. Since Si,T is finite étale of degree prime to p, H1(AD, Si) consists in loop torsors
as defined in [G2, §2.3, lemma 2.3.(2)], i.e. those arising from cocycles related to tame

Galois covers of AD. It follows that the AD–torsors V1, V2 under G̃ are loop (ibid,
lemma 5.3.(3)).

Let FP,v be the completion of the field FP for the valuation associated to the blow-up
of Spec(A) at its closed point. Our assumption states in particular that Z(FP,v) 6= ∅.
According to [G3, Thm. 4.5], the map

H1
loop(AD, G̃) → H1(FP,v, G̃)

is injective. It follows that Isom
G̃AD

(
V1,V2

)
(AD) 6= ∅. A fortiori Z(FP ) 6= ∅. �

Proposition 3.3. Let G be a reductive F–algebraic group and let G0 be the under-
lying Chevalley reductive Z–group scheme. Let E be a G–torsor and assume that
the Aut(G0)-torsor Isom(G0, G) admits a reduction to a finite étale T–subgroup of
Aut(G0) of prime to p order and that the G0⋊Aut(G0)-torsors (G,G) (resp. (E,G))
admits a reduction to a finite étale T–subgroup of G0 ⋊Aut(G0) of prime to p order.
Then the two following assertions are equivalent:

(i) There exists a regular proper model X of X with special fiber Y = Xk such that
for every point y ∈ Y , then E(Fy) 6= ∅.

(ii) For each divisorial discrete valuation v on F , we have E(Fv) 6= ∅.

Proof. The implication (i) =⇒ (ii) is a general fact, see [H-H-K-P, Thm. 3.4]. We
prove then (ii) =⇒ (i) assuming that E(Fv) 6= ∅ for each discrete divisorial valuation
v on F .

We shall apply Proposition 3.2 to the G0⋊Aut(G0)–torsors E1 = IsomP

(
(G0, G0), (G,G)

)

and E2 = IsomP

(
(G0, G0), (E,G)

)
. By means of the splitting of AutP(G0, G0) →

Aut(G0), we observe that E1 admits a reduction to a finite étale T–subgroup of
G0 ⋊ Aut(G0) of prime to p order.

Assume that E1,Fv
∼= E2,Fv

for any divisorial discrete valuation v on F . Proposition
3.2 provides a regular model Q of F as above together with Y,P, etc. such that
E1,FP

∼= E2,FP
for all P ∈ P and E1,FU

∼= E2,FU
for all connected components U of

Y \ P. It follows that for every point y ∈ Y , then E(Fy) 6= ∅. �
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Theorem 3.4. Let G be a reductive F–algebraic group and let G0 be the underlying
Chevalley reductive Z–group scheme. Assume that p does not divide the order of the
Weyl group W0 of G0 and that G becomes an inner form of G0 after a Galois prime
to p extension of F .

(1) We have Xpatch(F,G) = Xdiv(F,G);

(2) If G is a retract rational F–variety, then Xdiv(F,G) = 1.

Proof. (1) We know that Xpatch(F,G) ⊂ Xdiv(F,G). To establish the converse
inclusion, we are given a G–torsor E such that E(Fv) 6= ∅ for each divisorial discrete
valuation v. We need to check the conditions for applying Proposition 3.3. We
start with the isomorphism class [G] ∈ H1(F,Aut(G0)) by using the sequence 1 →
G0,ad → Aut(G0) → Out(G0) → 1 where Out(G0) is a constant Z–group scheme.
Since H1(F,Out(G0)) = Homct

(
Gal(Fs/F ),Out(G0)(Z)

)
/ ∼, the image of [G] is

represented by a continous homomorphism u : Gal(Fs/F ) → Out(G0)(Z) whose
kernel defines a Galois extension F ′/F which is the minimal subextension of Fs making
G an inner form. Our assumption implies that Gal(F ′/F ) is of prime to p degree and
so that Γ = u(Gal(Fs/F )) is a finite subgroup of Out(G0)(Z) of order prime to p.
We denote by AutΓ(G0) = Aut(G0) ×Out(G0) Γ; by construction [G] arises from a
cohomology class γ ∈ H1(F,AutΓ(G0)). According to [C-G-R, Thm. 1.2] applied
to the ring Z, there exists a finite Z–subgroup S of AutΓ(G0) such that the map
H1(F, S) → H1(F,AutΓ(G0)) is onto. Further by the same statement, we can take
S ⊂ AutΓ(G0, T0) where T0 is a maximal split Z-torus of G0 fitting in an exact
sequence 1 → n(T0) → S → AutΓ(G0, T0))/T0 → 1 where n divides the square
of the order of the finite group AutΓ(G0, T0)/T0. We have a sequence 1 → W0 →
AutΓ(G0, T0))/T0 → Γ → 1 so that AutΓ(G0, T0))/T0 is finite constant of prime to
p order. It implies that n(T0) is a finite diagonalisable Z–group scheme whose base
change to T is étale. Altogether ST is a finite étale T -subgroup of AutΓ(G0)T of prime
to p order such that γ admits a reduction to ST . A fortiori, [G] ∈ H1(F,Aut(G0))
admits a reduction to ST .

The same method works as well for the class [(E,G)] ∈ H1(F,G0 × Aut(G0)) by
using the exact sequence 1 → G0 ⋊Z G0,ad → G0 ⋊Z Aut(G0) → Out(G0) → 1 and
provides a finite étale T–subgroup of S ′ of (G0⋊Z Aut(G0))T of prime to p-order such
that the G0 ⋊Z Aut(G0)-torsor over Spec(F ) arises from a S ′–torsor.

Proposition 3.3, (ii) =⇒ (i), applies and shows that there exists a regular proper
model X of X with special fiber Y = Xk such that for every point y ∈ Y , then
E(Fy) 6= ∅. In other words [E] belongs in XX(F,G) and a fortiori to Xpatch(F,G).

(2) If G is a retract rational F–variety, we have that Xpatch(F,G) = 1 [H-H-K2, Thm.
9.1] (see [K, Thm. 2.2.4] for the extension to the retract rational case). The first part
of the statement enables us to conclude that Xdiv(F,G) = 1 in this case. �
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Remarks 3.5. (a) If G is a torus, the condition is that the minimal splitting extension
of T is of prime to p degree. Note that for norm one tori, the main theorem had been
established by Sumit Chandra Mishra [M, Thm. 5.1].

(b) The assumptions are not p are not sharp. For example, if G is semisimple of type
G2, the statement excludes the primes 2 and 3 but excluding 2 is enough. The point
is that we can deal with the subgroup µ2 × µ2 × Z/2Z ⊂ S in the proof.

Corollary 3.6. Let G be a semisimple quasi-split F–group which is quasi-split by a
Galois prime to p field extension. Assume that p does not divide the order of W0. In
each case

(i) G is split;

(ii) G is simply connected or adjoint;

we have Xdiv(F,G) = 1.

Proof. Such a F–group is a rational K–variety so the result follows from Theorem
3.4. �

This applies as well to many other groups in view of the rationality results of
Chernousov-Platonov [C-P] and others. This is the case for example for an isotropic
k–group of type F4.

4. Other Tate-Schafarevich sets

Given an affine algebraic F–group G, we can also study the local-global principle
for G-torsors with respect to the following set of completions of F :

(1) Completions associated to the set ΩF of of all non-trivial T -valuations on F
(i.e., those whose valuation ring contains T ).

(2) Completions associated to the set Ω1
F of all non-trivial rank one T -valuations

on F .

(3) Completions associated to the set Ω1
F,dvr of all non-trivial rank one discrete

T -valuations on F .

We have ΩF,div ⊂ Ω1
F,dvr ⊂ Ω1

F,dvr ⊂ ΩF . This leads to three Tate-Shafarevich sets

as for example X
1
dvr(F,G) = ker

(
H1(F,G) →

∏
v∈Ωdvr

H1(Fv, G)
)

which is denoted

simply by X
1(F,G) in the references [C-T-P-S, H-H-K2]. We have the following

inclusions

X
1
ΩF

(F,G) ⊂ X
1
Ω1

F
(F,G) ⊂ X

1
patch(F,G) ⊂ X

1
dvr(F,G) ⊂ X

1
div(F,G).

According to [H-H-K-P, Thm. 3.4], we have X1
ΩF

(F,G) = X
1
Ω1

F

(F,G) = X
1
patch(F,G).

The fact that X1
ΩF

(F,G) = X
1
Ω1

F

(F,G) = X
1
dvr(F,G) is known in two situations re-

quiring the residue field k to be algebraically closed [H-H-K2, Thm. 8.10, cases (i)
and (iii)].
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Coming back to the present paper, the of Theorem 3.4 has then the following
consequence.

Corollary 4.1. under the assumptions of Theorem 3.4, we have then

X
1
ΩF

(F,G) = X
1
Ω1

F
(F,G) = X

1
patch(F,G) = X

1
dvr(F,G) = X

1
div(F,G)

and those sets are trivial when G is a retract F -rational variety.

The constant case. This the case when we deal with a reductive T–group scheme G.
In this case, in view of [H-H-K2, Thm. 8.10, case (ii)] (see also of [C-T-O-H-H-K-P-S2,
Thm. 3.2]), there is no need of any condition on the characteristic exponent p of
the residue field k for having X

1
patch(F,G) = X

1
dvr(F,G). Inspection of the proof

shows that only divisorial valuations of F are involved so that X
1
patch(F,G) =

X
1
div(F,G). This applies in particular when GF is a retract rational F–variety; since

X
1
patch(F,G) = 1, we have that X

1
div(F,G) = 1 in characteristic free. The interest

of our result is then mostly for the non-constant case.
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