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A B S T R A C T

Kresling tube metamaterials are well known to exhibit a chirality-dependent exotic mechanical feature: a
shortening or lengthening in the direction of the tube’s axis produces a relative rotation of the two polygonal
bases of the tube. This property can be easily grasped by fabricating a single-storey Kresling tube using
cardboard. What has not been stressed much, if not even recognized, in the literature is the fact that such
a mechanical feature is not depending only on the (chiral) geometrical pattern and unaffected by the in-
plane/bending stiffness of facets and the creases’ resistance to folding. Assuming to neglect the bending stiffness
of facets, in the present contribution we prove, through some numerical simulations based on a discrete model
taking into account inertial terms, that only when the in-plane-to-folding stiffness ratio is large the Kresling
tube exhibits the aforementioned exotic feature as described in the literature. We also prove that a low in-
plane-to-folding stiffness ratio reveals: (i) an unconventional buckling mode, both for axial shortening and
lengthening, which resembles the mechanism of a camera diaphragm; (ii) a kind of auxetic behavior, i.e. a
stenosis in a shortening test.

1. Introduction

The development of new materials is undoubtedly one of the most
important challenges of this century, as the materials that are currently
employed in engineering applications will soon be no more able to
meet the most demanding needs coming from the industrial world. It
is thus a necessity to develop new materials with improved properties,
including mechanical ones, that can be otherwise regarded as outliers
of Ashby diagrams. In this regard, it is relevant to note that, since
recent achievements in production engineering have allowed for the
precise control of the engineered micro-structure – i.e. how matter is
arranged at a given sub-length-scale – of materials at the length scale of
micrometer and nanometer, the way has been opened to the realization

with sophisticated architectures, typically arranged in a periodic pat-
tern (Kadic et al., 2019). It is therefore clear that, in the field of
metamaterials, it is unavoidable to deal with, at least, two length scales,
nothing hindering the fact that many more length scales, arranged into
a hierarchy, could play a significant role in the mechanical behavior
at large of a metamaterial. The need for distinguishing between these
intervening length scales has brought to the utilization of the prefixes
macro and micro. These prefixes, usually, do not refer to specific length
scales. The prefix macro is indeed usually employed to identify the
length scale at which the relevant, i.e. those due to its architecture,
metamaterial properties are observed, normally that of the whole meta-
material specimen, whereas the prefix micro is employed to identify
the length scale of the unit cells making up the metamaterial micro-
of newly (scientifically) designed materials, also called metamaterials. structure, which is determined during the design phase and is limited

Such materials are designed so as to achieve exotic and/or extreme per-
formances in terms of, among the others, acoustic and/or mechanical
behaviors at length scales intervening in engineering applications.

The very nature of mechanical metamaterials consists in achieving
mechanical properties that, at least qualitatively, do not depend on
the constituent materials, but are arising from unit cells designed

by the manufacturing process.
Many unit cell architectures have been investigated in the last

twenty years, although mainly theoretically. As mentioned above, only
recently the most promising architectures have been also experimen-
tally tested. Macro-scale properties of interest in metamaterials
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include negative Poisson’s ratio – i.e. so-called auxetic behavior1 –
a low shear modulus, strong ultralight properties, large deformation
regime, extreme damage tolerance, existence of solitary and/or shock
waves, mechanical phase transition, axial-transverse-rotation coupling,
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periodic repetition in a two-dimensional array of a foldable unit cell,
the geometrical problem of finding a transformation which is able to
map a flat sheet into a folded one with desired shape being a crucial
one in this field. The most common origami patterns the mechanical
acoustic/fracture cloaking, frequency band gaps, negative Poynting
effect – possibly including its reversal – and many others, foldabil-
ity/deployability or zero energy modes. Auxetic metamaterials, the
adjective auxetic, originating from the Greek adjective auxetikos, in-
clude those metamaterials that, unlike most common materials, are
characterized by the fact that, when subjected to a mono-axial tensile
load, experience a size increase in the direction perpendicular to the
loading one. Semi-auxetic materials are a special kind of auxetic mate-
rials, as they show such a transversal size increase only when subjected
to loading in some directions, not all of them. The synthesis problem in
metamaterials science basically reads as: given a desired (mechanical)
behavior at large specified, as an instance, through some governing
equations or material parameters, to find the micro-structure, if any,
that realizes such a behavior. In a celebrated paper of theirs (Milton
and Cherkaev, 1995), in 1995 Milton and Cherkaev were among the
first who tried to give a relatively general answer to such a prob-
lem, proposing a rationale to produce metamaterials whose elastic
properties are characterized by a desired elasticity tensor in the frame-
work of Cauchy mechanics. In particular, they proposed penta-mode
metamaterials, being characterized by the fact that five eigenvalues of
the Voigt matrix representation of the elasticity tensor are very small
with respect to the sixth one. Such a property can be equivalently
stated by saying that the gradient of the placement field has a unit
determinant, i.e. Jacobian. In Cauchy’s theory of elasticity in small
deformations, this implies a very large bulk modulus compared to the
shear modulus and, consequently, Poisson’s ratio is for these materials
close to 𝜈 = 0.5. It is thus possible to conclude that penta-mode
metamaterials exhibit negligible shear effects, a typical feature of ideal
incompressible fluids. In recent times, new classes of architectures,
based on the deployable/foldable mechanisms, have gained attention in
the realm of mechanical metamaterials, namely origami metamaterials,
due to their complex mechanisms giving rise to extraordinarily exotic
mechanical behaviors, and pantographic metamaterials, due to their
unique deformation energy, which, at the leading order, follows a
second-gradient energy pattern. A report on technological and scientific
advancements in the field of metamaterials with pantographic motif
is presented in Barchiesi et al. (2019), dell’Isola et al. (2019). While
the initial goal in the realization of the first pantographic prototypes
was the materialization of a lattice materials with predominant second
gradient type behavior, many more recent investigations have found
that these materials could have several applications.

Origami metamaterials take inspiration from the ancient Japanese
art of folding sheets of paper for producing three-dimensional objects
with a desired shape. In the 80s, Miura did put forward a proposal
to create materials based on foldable unit cells, which was based on
typical origami techniques (Miura, 1985). The main applications of
such materials were at that time concerning solar panel packaging for
space missions. As for the majority of metamaterials, the fine control
in the fabrication allowed for by recent manufacturing techniques
has made feasible their realization, that had been considered techno-
logically infeasible for more than twenty years. As of today, several
different structures have been proposed in the literature based on the

1 We stress that, actually, the stenosis in axial shortening occurs because
he out-of-plane and in-plane symmetries have been broken in the discrete
ormulation of a cylinder that has been already compressed so as to obtain
he Kresling pattern. In other words the volume is reduced in Kresling units in
xial shortening due to the already twisted geometry – which promotes folding
and the low in-plane affine deformation stiffness, in the perspective of the
inimum energy principle. The term auxetic has to be intended as an effective
roperty since the base material is indeed not auxetic and the Kresling tube is
ot a solid material but rather a microstructured tube.
metamaterials literature is concerned with are based on the Miura and
egg-box cells.

Here we shall be instead concerned with the so-called Kresling
pattern. Introduced by Kresling in 1994 (Kresling, 1994), the homony-
mous (Kresling) pattern has been widely studied for its possible use
in relevant real-world applications. Kresling pattern indeed confers
extremely peculiar and interesting mechanical properties, the main
one being the fact that Kresling tubes – henceforth also referred to
as k-tubes – exhibit a strong coupling between axial displacement and
twisting due to the chirality in three-dimensions of such a pattern (Hunt
and Ario, 2005). Concerning possible applications of origami meta-
materials based on the Kresling pattern, to start with, it is worth to
mention that, very recently, studies (Forte et al., 2023) have proved
that harnessing the chirality of Kresling tubes, and the consequent
coupling between axial elongation/shortening and twisting, allows for
realizing mechanical pixels. Other applications are related to mobility
of robots in fluids, Ze et al. (2022), to the actual use of Kresling
tubes for realizing robotic arms (Kaufmann et al., 2021; Kim and
Cha, 2020), inflatable/collapsible structures (Chong et al., 2017) and
biomedical applications (Kuribayashi et al., 2006). Finally, they are
used as switches (Masana et al., 2020), the realization of force re-
ducers (Yasuda et al., 2019), the realization of stiffeners (Al-Mansoori
et al., 2020), besides being interesting for their (mechanical) phase
transformation (Liu et al., 2021) and haptic (Chang et al., 2020)
capabilities. Less specifically, applications can be found in the field
of deployable structures, see Mis (2008), Miura (1985) and Vincent
(2000) for applications concerning space missions and Georgakopolous
et al. (2015) for application to antennas. It is also worth to mention
the interesting capability possessed by the so-called one-stage Kres-
ling tube, explored in Turco et al. (2023a) – basically a single-storey
Kresling tube – to experience buckling while exhibiting a ‘‘closure’’
in a diaphragm-like way, which could be exploited in some technical
applications. This capability, which depends on geometry and mechan-
ical parameters, deserves in our opinion to be explored by means of a
parametric analysis, also in the light of recent research in bistability of
some origami metamaterials (Kamrava et al., 2017) and the sequential
instability concept (Wheatcroft et al., 2023), that could lead to either
the development of more complex exotic tunable buckling behaviors or
the discovery of new properties of Kresling tubes. To this end, it would
also be interesting to explore the mechanical behavior of a one-stage
Kresling tube under various load conditions such forces which produce
a shearing, bending and twisting.

Most likely, due to its microstructure, as the other origami meta-
materials that have been studied from the continuum mechanics view-
point, a two-dimensional continuum representation of Kresling tube
metamaterials requires the use of generalized shell theory, while a one-
dimensional continuum representation requires to resort to a Cosserat
rod/beam. The evidences brought by investigations based on discrete
simulations are useful to build and validate such generalized models.
The last years have seen a renewed interest in generalized continua
theories in the academic milieu. Such theories, that include second gra-
dient ones, were introduced at the beginning of the twentieth century
by the Cosserat brothers (Cosserat and Cosserat, 1896) and significantly
developed in the early 1960s by Toupin (1964), Green et al. (1965),
and Mindlin (1965), among the others. For a historical account of
such theories, at least concerning the twentieth century, the reader is
referred to the book by Maugin (2013). Clearly, said renewed interest
is only for a small part due to the theoretical interest that generalized
continua still have, because of some aspects that have yet to be eluci-
dated completely. The main reason for such a renewed interest is the
applications that generalized continua have in the field of mechanical
metamaterials, in that they are capable of describing, as an instance,
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size effects, the existence of zero-energy modes, and effects due to
non-local interactions, which cannot be taken into account for one
reason or the other in classical first gradient, i.e. Cauchy, mechanics.
In the last years generalized continua have been either employed or

the elementary kinetic and strain energy contributions, recalling what
has been introduced more thoroughly in Turco et al. (2023b), which
was developed purposely for origami-based metamaterials and gives
details about the employed numerical solution method. It is worth
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derived as mechanical models of microstructured media (dell’Isola
et al., 2015, 2016; Alibert et al., 2003; Abdoul-Anziz and Seppecher,
2018). The identification, validation and formulation of generalized
media has stimulated developments in several fields like discrete (Turco
et al., 2016a,c,b; Turco and Rizzi, 2016; Turco et al., 2017, 2018)
and semi-discrete (Andreaus et al., 2018) modeling making use of
extensional and flexural elements (Steigmann and Faulkner, 1993;
Cazzani et al., 2016a,b; Spagnuolo and Andreaus, 2018) along with its
numerics, generalized shell theories (Altenbach and Eremeyev, 2009,
2013), mathematical foundations of second gradient continua (Ere-
meyev and Aifantis, 2017), and two-dimensional and three-dimensional
finite elements with higher regularity (Abali et al., 2015; Niiranen
et al., 2016; Khakalo and Niiranen, 2017; Balobanov et al., 2019). We
remark that our main goal is to present phenomenological evidence by
making use of a discrete model that could be used to formulate and
validate a continuum model of Kresling metamaterial tubes. It is for
this reason that we have tried our best to give a continuum perspective
in view of a future homogenization. It is however to be mentioned that
the model employed in our investigation is intrinsically discrete and
has not been derived from a continuous one by discretization, except
for the deformation energy associated to the in-plane affine motions
of the facets, which has been derived consistently with a plane-stress
continuous solid formulation. We also stress that the continuum model
that we aim to get after homogenization is not a cylindrical tube before
torsional buckling that, as correctly stated by the reviewer, contrarily to
the discrete Kresling tube that has finite symmetry, has infinite symme-
try. Indeed, the continuum model we refer to in the paper already has
in its reference configuration a Kresling microstructure – encoded, as
an instance, in its enriched kinematics and non-classical strain energy
– that is that given by the buckling of a classical cylindrical tube.

Actually, the stenosis in axial shortening occurs because the out-
of-plane and in-plane symmetries have been broken in the discrete
formulation of a cylinder that has been already compressed so as to
obtain the Kresling pattern. In other words, the volume is reduced in
Kresling units in axial shortening due to the already twisted geometry
– which promotes folding – and the low in-plane affine deformation
stiffness, in the perspective of the minimum energy principle.

In order to try elucidating some issues mentioned in this introduc-
tion, aiming to shed light on what should be the kinematics of the target
continuum model for Kresling origami metamaterials and what should
be its properties at micro-scale to get desired macroscopic behaviors in
terms of unconventional buckling behavior, in this paper we discuss
a discrete model for Kresling tube metamaterials, Section 2, and a
strategy to reconstruct its dynamical response, Section 3. Successively,
in Section 4, we discuss some numerical simulations obtained using an
in-house code based on the model and the numerical strategy discussed
in the previous sections. Simulation results corroborate the claims made
in the abstract and anticipate some concluding remarks, presented
more extensively in Section 5, which lay the groundwork for future
challenges.

2. Discrete element model of Kresling tubes

In this section we are going to present the model that has been
employed in the present work to describe the mechanical behavior
of the Kresling tube metamaterial. The model is a space-discrete one,
it is namely a finite dimensional Lagrangian system. Accordingly, the
model is completely characterized by the definition of the elementary
contributions to the total kinetic and strain energies associated to
each elastic element in the structure. Indeed, by assembling all such
elementary contributions, one can write the action functional for the
whole system. Hence, in this section, we will limit ourselves to describe
to remark that an approach resembling the one developed in Turco
et al. (2023b) had been previously proposed in the work (Liu and
Paulino, 2017), but it was dealing only with static tests and was not
worked out for origami-based metamaterials. Such an approach had
been indeed originally developed, having as departure point traditional
structural mechanics approaches, for pantographic structures (Turco
et al., 2016a) and granular materials (Turco, 2018b; Turco et al., 2019).
In this contribution we neglect the bending of facets. Indeed, since
in the approach adopted in the present contribution two-dimensional
bending elements consists of, at least, two adjacent triangles, the fact
that facets in the Kresling pattern are triangles, along with the fact
that no ‘‘fictitious triangles’’ are considered here in the framework of
an ‘‘enhanced’’ description to further subdivide the facets, implies that
bending of facets is not taken into account. It is worth remarking in this
regard that a kind of ‘‘enhanced’’ description has been employed for
the discrete modeling of beams in the context of pantographic fabrics,
see Turco et al. (2018).

By referring to Fig. 1, which sketches a one-stage Kresling tube both
in 3D view (a) and the corresponding folding pattern (b), we distin-
guish, besides nodes numbered using red color, facets, i.e. triangles
onstituting the origami, and panels, i.e. pair of facets sharing a side.
ach one of the two origami components, facet and panel, is perfectly
dentified by the related nodes.

Let us refer again to the 𝑒th facet constituting the Kresling origami
etamaterial. The vertices of the mid-plane of the 𝑒th facet, regarded

s a prismatic body, will be denoted using the symbols 𝑖, 𝑗, and 𝑘. Such
ymbols stand for the node numbers associated to each vertex and take
alues in the discrete set of positive integers [1;𝑁𝑛], where the quantity
𝑛 represents the total number of nodes. The coordinates of the vertices

, 𝑗, and 𝑘 in the reference (undeformed) configuration, expressed in a
lobal reference coordinate system, are collected in the vectors 𝐗𝑖, 𝐗𝑗 ,
nd 𝐗𝑘, respectively, see Fig. 2. We assume as Lagrangian parameters
o describe the motion the nodal displacements, therefore, the current
osition of the 𝑖th node, 𝐱𝑖 can be written as 𝐱𝑖 = 𝐗𝑖 + 𝐮𝑖 being 𝐮𝑖 the
isplacement vector of the 𝑖th node.

.1. Definition of the kinetic energy

We focus on the 𝑒th facet constituting the origami. The associated
lementary contribution of the kinetic energy reads as

𝑒 =
1
2 ∫𝑉𝑒

𝜌 �̇� ⋅ �̇� d𝑉 , (1)

where the quantities 𝜌, 𝑉𝑒, and �̇� respectively stand for the spatial mass
density, the three-dimensional domain the triangle is associated to –
i.e. the extruded triangle – and the velocity of the elementary volume
d𝑉 . Considering a uniform mass density and thickness along facets, the
use of a linear interpolation law for approximating the velocity in the
prism gives for the elementary contribution of the 𝑒th facet

𝑒 ≈
1
2 ∫𝐴𝑒

𝜌 𝑠 (𝐁𝑒�̇�𝑒) ⋅ (𝐁𝑒�̇�𝑒) d𝐴 = 1
2
𝜌 𝑠 �̇�𝑒 ⋅

(

∫𝐴𝑒

𝐁𝑇
𝑒 𝐁𝑒d𝐴

)

�̇�𝑒 , (2)

here 𝐴𝑒 stands for the basis of the triangular prism and 𝑠 is the
hickness of the extruded triangle. The shape function matrix 𝐁𝑒, along
ith the nodal velocity vector �̇�𝑒, provides all what is needed to retrieve

he approximation of the velocity vector in each point of the triangle,
.e. �̇� = 𝐁𝑒�̇�𝑒. The shape function matrix 𝐁𝑒 can be defined for any
riangle by referring to a specific triangle (referred to in the sequel
s the reference triangle) by virtue of the one-to-one correspondence
etween two any triangles. This is what we do in Eq. (4). The nodal
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Fig. 1. One-stage Kresling tube: 3D view (a) and folding pattern (b).

Fig. 2. Reference (white color) and current (light gray color) configurations for the affine deformation of a triangle.
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velocity vector is obtained by collecting the velocities of the 𝑖th, 𝑗th
and 𝑘th nodes

�̇� =
⎡

⎢

�̇�𝑖
�̇�

⎤

⎥ . (3)

I
g

with the squares of the current and the reference length of the 𝑘-side
being denoted with 𝓁2

𝑘 = d𝐱𝑘 ⋅ d𝐱𝑘 and 𝐿2
𝑘 = d𝐗𝑘 ⋅ d𝐗𝑘, respectively.

The positions of nodes 𝑖 and 𝑗 in the current configuration are given,
respectively, by the formulas 𝐱𝑖 = 𝐗𝑖 + 𝐮𝑖 and 𝐱𝑗 = 𝐗𝑗 + 𝐮𝑗 . These two

t
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𝓁

𝓁

w

𝑒
⎢

⎣

𝑗
�̇�𝑘

⎥

⎦

We now define the elementary contribution 𝐌𝑒 of the considered 𝑒th
prism to the mass matrix. As done before, we assume that the spatial
mass density 𝜌 is uniform. To get the sought elementary contribution it
is now needed to evaluate the integral of 𝐁𝑇

𝑒 𝐁𝑒 over the triangular basis
of the prism. Since the evaluation of such an integral is easy when the
integration domain coincides with the reference triangle whose vertices
are the points with coordinates (0, 0), (1, 0) and (0, 1), we choose such a
triangle as the reference triangle mentioned above. The shape function
matrix �̂� for the reference triangle can be written as

�̂� =
⎡

⎢

⎢

⎣

(1 − 𝜉 − 𝜂) 0 0 𝜉 0 0 𝜂 0 0
0 (1 − 𝜉 − 𝜂) 0 0 𝜉 0 0 𝜂 0
0 0 (1 − 𝜉 − 𝜂) 0 0 𝜉 0 0 𝜂

⎤

⎥

⎥

⎦

,

(4)

where 0 ≤ 𝜉 ≤ 1, 0 ≤ 𝜂 ≤ 1 and 𝜉 + 𝜂 ≤ 1.
The above representation of the shape function matrix allows to

write

∫𝐴𝑒

𝐁𝑇
𝑒 𝐁𝑒d𝐴 = 2𝐴𝑒 ∫𝐴

�̂�𝑇 �̂�d𝐴 , (5)

with 𝐴 denoting the considered reference triangle and, at the same
time, with an abuse of notation, also its area. Straightforward compu-
tations allow to write the element mass matrix for the 𝑒th triangle as

𝐌𝑒 =
𝜌 𝑠𝐴𝑒
12

⎡

⎢

⎢

⎣

2 𝐈3 𝐈3 𝐈3
𝐈3 2 𝐈3 𝐈3
𝐈3 𝐈3 2 𝐈3

⎤

⎥

⎥

⎦

, (6)

where the symbol 𝐈3 denotes the 3 × 3 identity matrix.

2.2. Definition of the in-plane deformation energy

At this point, we make the assumption that each facet, regarded as
a prism, deforms affinely and in plane strain conditions, which means
that strain is null along the thickness of the prism and uniform along
each its triangular sections. Aimed at defining the strain energy of the
generic facet, we make use of an idea which was originally introduced
by Argyris et al. in the work (Argyris et al., 1997). Essentially, it relies
on the observation that the deformation state of a triangular plate
affinely deforming in its own plane can be retrieved by placing strain
gauges at its sides, i.e. a strain gauges rosette2 could be utilized.

This idea, together with the fact that the elastic energy of an
isotropic, materially linear and geometrically nonlinear plate in plane
strain conditions, undergoing an affine deformation, can be written as a
quadratic form involving only squares of the strain (i.e., changes of the
sides’ length), allows us to represent mechanically each facet through
an equivalent determinate truss whose elements are the sides of the
facets mid-plane.

To explain this work concretely, let us focus on what will be
henceforth called the 𝑘-side, namely the side which lies in front of node
𝑘 of the facet’s mid-plane. The vectors d𝐗𝑘 = 𝐗𝑗 −𝐗𝑖 and d𝐱𝑘 = 𝐱𝑗 − 𝐱𝑖,
respectively, give the direction and length of the 𝑘-side. We define
the Green’s strain measure 𝑔𝑘 of the 𝑘-side as given by the following
expression

𝑔𝑘 =
𝓁2
𝑘 − 𝐿2

𝑘

2𝐿2
𝑘

, (7)

2 A strain gauge rosette is a device able to detect the strain state in a point.
n particular, it measures the strain along three fixed directions, therefore, it
ives the strain tensor univocally.
last expressions constitute an indirect definition of nodal displacements,
which have been adopted as the generalized coordinated of the finite
dimensional Lagrangian system.

The stretching energy associated to the 𝑘-side is defined according
to the following expression

𝑆𝑘 = 1
2
𝑌 𝐴𝑘𝐿𝑘𝑔

2
𝑘 , (8)

where 𝑌 is the Young’s modulus of the material the facet’s mid-plane
and 𝐴𝑘 is the cross-sectional area of a fictitious rod placed along the
𝑘-side.

According to the fact that we represent mechanically each facet
through an equivalent determinate truss whose elements are the sides
of the facet’s mid-plane, the sum of the stretching energies associated
to each side of the considered triangle

𝑆𝑒 = 𝑆𝑖 + 𝑆𝑗 + 𝑆𝑘 (9)

equals the total strain energy stored in the 𝑒th prism and the areas of
the fictitious rods placed along the sides of the facet’s mid-plane 𝐴𝑖, 𝐴𝑗 ,
and 𝐴𝑘 can be indeed identified by equating the strain energy of the
considered prism with the total stretching energy. The main ingredient
of the identification between the facet and its equivalent truss is the
link between the Green’s strain measure associated to a considered
facet’s mid-plane side, say the 𝑖-side, and the (uniform, since we are in
plane strain conditions and taken into account only affine deformations
of the facet) Green–Saint-Venant strain tensor in three dimensions 𝐆
associated to the 𝑒th facet

𝓁2
𝑖 − 𝐿2

𝑖 = 2d𝐗𝑖 ⋅𝐆d𝐗𝑖 . (10)

If we employ a three-dimensional local orthonormal reference sys-
em originating in the centroid of the facet’s mid-plane and possessing
wo axes on such a mid-plane, the last relationship recasts as
2
𝑖 − 𝐿2

𝑖 = 2d𝐗𝑖 ⋅𝐆 d𝐗𝑖 , (11)

where vectors and tensors in such a local reference system are denoted
using a superimposed bar. It is straightforward to note that, since we
are considering plane strain conditions and only affine deformations
of the facets, only the strain components 𝐺11, 𝐺22, and 𝐺12 = 𝐺21,
associated to the two orthonormal axes lying in the facet’s mid-plane,
are non-vanishing. Therefore, in order to get the components of the
Green–Saint-Venant strain tensor associated to the 𝑒th facet in the local
reference system, we want to solve the system of algebraic equations

𝓁2
𝑖 − 𝐿2

𝑖 = 2d𝐗𝑖 ⋅𝐆 d𝐗𝑖 ,

𝓁2
𝑗 − 𝐿2

𝑗 = 2d𝐗𝑗 ⋅𝐆 d𝐗𝑗 ,
2
𝑘 − 𝐿2

𝑘 = 2d𝐗𝑘 ⋅𝐆 d𝐗𝑘 .

(12)

Essentially, the system above allows to retrieve the components 𝐺11,
𝐺22, and 𝐺12 = 𝐺21 from the knowledge of the 𝑖-, 𝑗-, and 𝑘-side
stretches. It is straightforward to see that the components of the Green–
Saint-Venant strain tensor can be found as a linear combination of the
stretches of the equivalent truss system. As mentioned above, we can
identify the values of the cross-sectional areas of the fictitious rods
making up the determinate truss system associated to the considered
facet, and hence their stiffness 𝑎, by equating the total stretching energy
associated to the sides of the considered facet’s mid-plane, given by
Eq. (9), and the energy associated to its in-plane deformation, that can
be written as

𝐸𝑒 =
1
2
𝑠𝐴𝑒𝐠 ⋅ 𝐂𝐠 , (13)

here the vector 𝐠 = [𝐺11 𝐺22 2𝐺12]𝑇 has been defined and where
the quantities 𝐴𝑒 and 𝑠 stand for the area and the thickness of the
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considered triangle, respectively.3 The matrix 𝐂 represents in Voigt
notation – in the local basis consisting of the two axes lying on the
facet’s mid-plane – the elasticity tensor associated to the material of the
facet, which is assumed to obey Hooke’s law. Such a matrix, assuming

t
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𝑝
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𝐝

𝐝

𝐝

the material to be homogeneous and isotropic, and be the same for all
the facets, for plane strain conditions reads as

𝐂 = 𝑌
(1 + 𝜈)(1 − 2𝜈)

⎡

⎢

⎢

⎢

⎣

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0 1 − 2𝜈
2

⎤

⎥

⎥

⎥

⎦

, (14)

where 𝜈 is the Poisson’s ratio of the material and 𝑌 is, as defined above,
the Young’s modulus.

2.3. Folding energy

As briefly mentioned previously, bending of facets is here neglected.
The only out-of-plane deformation energy consists of the strain energy
associated to folding about a crease. We choose to approximate such
an energy following a strategy outlined by Hencky in his celebrated
doctoral thesis, see Hencky (1921). The original scope of Hencky
was to estimate the buckling load of an Euler’s beam. In the last
decade, Hencky’s idea has been exploited in several papers directed
towards the modeling of pantographic structures (Turco et al., 2016a),
beams (Turco, 2018a; Turco et al., 2022; Baroudi et al., 2019), and
granular materials (Turco, 2018b; Turco et al., 2019; Turco, 2022).

Exploiting Hencky’s idea means, in the present context, to deal with
the folding of the origami metamaterial about a crease by connecting
two adjacent facets – here called altogether a panel – through cylindri-
cal hinges in such a way that only relative rotation around the crease
is allowed and in placing a torsional spring, following Hooke’s law,
in-between the facets, so as to introduce an elastic resistance to such
a relative rotation. The outcome of this approximation procedure is a
lumped-parameter model.

The deformed configuration of a panel of an origami metamaterials
is shown in Fig. 3, where 𝑚 and 𝑛 stand for the numbers associated
o the facets of the panel. The vertices of the generic panel, i.e. the
odes of the constituting facets’ mid-planes, have a label, namely 𝑖,
, 𝑘, and ℎ, which take (different) integer values from 1 to the total
umber of nodes 𝑁𝑛. Each node in a panel places in the (undeformed)
eference and current configurations and its position in these two
onfigurations is denoted by 𝐗 and 𝐱, respectively, and labeled with
he index associated to the node, namely 𝑖, 𝑗, 𝑘, or ℎ for the generic
anel. For the generic panel, we now define three orthonormal vectors,
ay {𝐝1,𝐝2,𝐝3}𝑚, associated to the current configuration of the 𝑚th
acet and three orthonormal vectors, say {𝐝1,𝐝2,𝐝3}𝑛, associated to the
urrent configuration of the 𝑛th facet, see Fig. 3. Referring to the 𝑚th
acet – analogous considerations hold for the 𝑛th facet – the vector
aving 2 as subscript is parallel to the 1-side of the facet, that with
ubscript 3 is orthogonal to the plane containing the considered triangle
nd, finally, that with subscript 1 is such that 𝐝1𝑚 = 𝐝2𝑚×𝐝3𝑚. We denote
ith the symbol 𝛿 the dihedral angle between the planes containing the
djacent facets’ mid-planes. Considering the reference configuration, an
nalogue definition can be made for both the two sets of orthonormal
ectors associated to the facets of a panel and for the dihedral angle
etween two adjacent facets. In such a case, we use capital letters to
ndicate the orthonormal vectors, i.e. {𝐃1,𝐃2,𝐃3}𝑚 for the 𝑚th facet
nd {𝐃1,𝐃2,𝐃3}𝑛 for the 𝑛th facet. The dihedral angle in the reference
onfiguration is denoted with 𝛿0.

3 The surface of the 𝑒th facet’s mid-plane can be computed via Heron’s
ormula, employing only the lengths of the facet’s mid-plane sides. By indi-
ating with 𝐿𝑖, 𝐿𝑗 and 𝐿𝑘 the lengths of the sides that are opposite to the

facet’s mid-plane vertices 𝑖, 𝑗 and 𝑘, respectively, the facet’s mid-plane surface
can be recovered using the expression 𝐴𝑒 =

√

𝑝(𝑝 − 𝐿𝑖)(𝑝 − 𝐿𝑗 )(𝑝 − 𝐿𝑘), where

= 1
2
(𝐿𝑖 + 𝐿𝑗 + 𝐿𝑘) is the semiperimeter.
Fig. 3. Deformed configuration of a panel: nodes (𝑖, 𝑗, 𝑘 and ℎ), facets (𝑚 and 𝑛) and
anel along with the unit vectors (𝐝3𝑚, 𝐝3𝑛) to compute the dihedral angle 𝛿.

To sum up, the three orthonormal vectors associated to the current
onfiguration of the 𝑚th and 𝑛th facets can be computed by means of
he following formulas

̄1𝑚 =
𝐱𝑗 − 𝐱𝑖

‖𝐱𝑗 − 𝐱𝑖‖
,

2𝑚 =
𝐱𝑘 − 𝐱𝑗

‖𝐱𝑘 − 𝐱𝑗‖
,

3𝑚 =
𝐝2𝑚 × �̄�1𝑚

‖𝐝2𝑚 × �̄�1𝑚‖
,

𝐝1𝑚 = 𝐝2𝑚 × 𝐝3𝑚 ,

�̄�1𝑛 =
𝐱ℎ − 𝐱𝑘

‖𝐱ℎ − 𝐱𝑘‖
,

𝐝2𝑛 = 𝐝2𝑚 ,

𝐝3𝑛 = �̄�1𝑛 × 𝐝2𝑛 ,
𝐝1𝑛 = 𝐝2𝑛 × 𝐝3𝑛 .

(15)

We shall now focus on the relative rotation of the two adjacent
facets forming a panel with the aim of measuring folding of the origami
metamaterial around creases. While the aforementioned relative ro-
tation is clearly a suitable ingredient for building such a measure,
it still needs to be worked out. Before attempting at getting a real
quantity from such a relative rotation, we note that the local bases
{𝐝1𝑚,𝐝2𝑚,𝐝3𝑚} and {𝐝1𝑛,𝐝2𝑛,𝐝3𝑛} are constructed making use of a (pos-
sibly stretched) side of the deformed 𝑚th and 𝑛th facet’s mid-plane, re-
spectively. Therefore, the transformation that leads from {𝐝1𝑚,𝐝2𝑚,𝐝3𝑚}
to {𝐝1𝑛,𝐝2𝑛,𝐝3𝑛}, while being a rotation, is not occurring around the
side shared by the mid-planes of the facets 𝑚 and 𝑛, which is what
we are interested in. In other words, such a transformation is obtained
as the composition of a rotation around the crease of the panel and a
spurious rotation induced by the in-plane affine deformation of the 𝑚th
and 𝑛th facets’ mid-planes. In order to filter out such a spurious rotation
we exploit the right polar decomposition of the tensor 𝐅 associated to
the deformation in a three-dimensional space of the 𝑚th and 𝑛th facets.

It is easy to see that the deformation gradient tensor 𝐅𝑚 for the 𝑚th
facet fulfills the following relationships (analogous relationships hold
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for 𝐅𝑛.)

𝐅𝑚(𝐗𝑗 − 𝐗𝑖) = 𝐱𝑗 − 𝐱𝑖
𝐅𝑚(𝐗𝑘 − 𝐗𝑗 ) = 𝐱𝑘 − 𝐱𝑗 (16)

a
e

t

t
c
n
d
√

w
v
m
o
u
w
r
r
𝑛

𝛥
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(2022) in the context of a discrete model for brick masonry structures,
aimed at taking into account the contact between two adjacent facets,
reads as

𝑙2 ∗

r

3
o

e
w
E
t
d
a
2
p
a
s
t
v
c
p

b

𝐅𝑚𝐃3𝑚 = 𝐝3𝑚 .

The previous relationships constitute a system of nine linearly indepen-
dent algebraic equations in the nine independent components of 𝐅𝑚. We
note that, as long as the 𝑚th triangle does not collapse into a point, such

system admits a unique solution, which can be computed through
lementary algebraic manipulations.

We recall that the right polar decomposition formula, that we intend
o apply to the deformation gradient tensors associated to the 𝑚th and
𝑛th triangles, reads as

𝐅 = 𝐑𝐔 , (17)

where 𝐑 is a proper orthogonal tensor representing the rotational part
of 𝐅 and 𝐔 is a positive definite symmetric tensor representing the
stretch part of 𝐅. It is well known that, since

𝐅𝑇𝐅 = 𝐔𝑇𝐑𝑇𝐑𝐔 = 𝐔𝑇𝐔 = 𝐔2 , (18)

he second order tensor 𝐔2 is positive definite and symmetric. Be-
ause of these properties, it is meaningful to consider its square root,
amely 𝐔 =

√

𝐅𝑇𝐅, that can be computed by means of its spectral
ecomposition, i.e.

𝐅𝑇𝐅 = 𝐕
√

Λ𝐕𝑇 , (19)

here the quantity 𝐕 is the orthogonal matrix that collects the eigen-
ectors of the symmetric tensor 𝐅𝑇𝐅 and the quantity Λ is the diagonal
atrix whose elements are the eigenvalues of 𝐅𝑇𝐅 arranged in the same

rder as that of the corresponding eigenvectors in the matrix 𝐕. Making
se of the right polar decomposition formula (17), when 𝐔 is known
e can compute the rotation matrix 𝐑 as 𝐑 = 𝐅𝐔−1. Let be 𝐑𝑚 and 𝐑𝑛

otational parts of the deformation gradients of the 𝑚th and 𝑛th facet,
espectively. Then, the finite relative rotation tensor 𝛥𝐑 of the 𝑚th and
th facets, occurring around the crease, can be defined as

𝐑 = 𝐑𝑇
𝑚𝐑𝑛 . (20)

The Rodrigues’ formula can be used to express in a more insightful
ay a rotation tensor 𝐑

= cos𝜑𝐈 + (1 − cos𝜑)𝐞⊗ 𝐞 + sin𝜑𝐄 , (21)

eing 𝐞 the rotation axis, 𝜑 the rotation’s signed amplitude, and 𝐄 the
ensor whose axial vector is 𝐞, namely the tensor such that 𝐄𝐯 = 𝐞 × 𝐯
or any vector 𝐯. Using Eq. (21), we can prove that

cos𝜑 = tr(𝐑) − 1 , 2 sin𝜑 𝐞 = 𝐑× , (22)

here tr(⋅) stands for the trace of a matrix and 𝐑× is the axial vector
f the skew symmetric part of 𝐑. Defining the rotation axis as

= 2 tan
(𝜑
2

)

𝐞 , (23)

e can rewrite the Rodrigues’ formula as

= 1
4 + 𝜗2

(

(4 − 𝜗2) 𝐈 + 2𝜗𝜗𝜗 ⊗𝜗𝜗𝜗 + 4𝐄𝜗𝜗𝜗
)

, (24)

being 𝜗2 = 𝜗𝜗𝜗 ⋅𝜗𝜗𝜗 the norm of the chosen rotation axis and 𝐄𝜗𝜗𝜗𝐯 = 𝜗𝜗𝜗×𝐯 the
tensor whose axial vector is the chosen rotation axis. Note that, since
the finite relative rotation tensor 𝛥𝐑 is orthogonal, by using (22) and
the half-angle trigonometric formula, we can write the relative finite
rotation vector as

𝛥𝜗𝜗𝜗 =
2(𝛥𝐑)×

1 + tr(𝛥𝐑) . (25)

At this point, all is set to finally define the folding strain energy for
he 𝑝th panel. Such an energy, taking inspiration from the impenetra-
ility constraint introduced in Tran et al. (2021), Tran and Barchiesi
𝐸𝑙 = 𝑙1 + 𝛿 − 𝛿𝑙
, 𝛿𝑙 < 𝛿 < 𝛿𝑙 ,

𝐸𝑞 =
1
2
𝑏‖𝐗𝑘 − 𝐗𝑗‖(𝛿 − 𝛿0)2 , 𝛿∗𝑙 < 𝛿 < 𝛿∗𝑟 ,

𝐸𝑟 = 𝑟1 +
𝑟2

𝛿𝑟 − 𝛿
, 𝛿∗𝑟 < 𝛿 < 𝛿𝑟 ,

(26)

where the quantity 𝑏 is a stiffness per unit length, the quantity 𝛿 is the
approximated expression of the dihedral angle,

𝛿 = 2 arctan
‖𝛥𝜗𝜗𝜗‖
2

, (27)

and 𝛿𝑙 and 𝛿𝑟 are the values of the dihedral angle corresponding to the
left and the right potential walls, respectively. In our case, we have
𝛿𝑙 = 0 and 𝛿𝑟 = 2𝜋. The parameters 𝑙1, 𝑙2, 𝛿∗𝑙 , 𝑟1, 𝑟2, and 𝛿∗𝑟 need to
be evaluated so as to fulfill the continuity of the strain energy function
along with that of its first and second derivatives. Indeed, we remark
that, in our strategy to reconstruct the dynamical equilibrium path, we
necessitate both of the strain energy’s first derivative, i.e. the structural
response, and of the strain energy’s second derivative, i.e. the tangent
stiffness matrix. The sought parameters read as

𝛿∗𝑙 = 2
3

(

𝛿0 +
𝛿𝑙
2

)

,

𝑙2 = −𝑏‖𝐗𝑘 − 𝐗𝑗‖(𝛿∗𝑙 − 𝛿0)(𝛿𝑙 − 𝛿∗𝑙 )
2 ,

𝑙1 =
1
2
𝑏‖𝐗𝑘 − 𝐗𝑗‖(𝛿∗𝑙 − 𝛿0)2 −

𝑙2
𝛿𝑙 − 𝛿∗𝑙

,

𝛿∗𝑟 = 2
3

(

𝛿0 +
𝛿𝑟
2

)

,

𝑟2 = 𝑏‖𝐗𝑘 − 𝐗𝑗‖(𝛿∗𝑟 − 𝛿0)(𝛿𝑟 − 𝛿∗𝑟 )
2 ,

𝑟1 =
1
2
𝑏‖𝐗𝑘 − 𝐗𝑗‖(𝛿∗𝑟 − 𝛿0)2 −

𝑟2
𝛿𝑟 − 𝛿∗𝑟

.

(28)

Fig. 4 shows the plots the strain energy defined by (26) against the
quantity 𝛿 for 𝛿0 = 𝜋∕2 (on the left), 𝛿0 = 𝜋 (in the middle) and 𝛿0 =
3𝜋∕2 (on the right). Remark that the quantity 𝛿 in the formulas above
is not the dihedral angle, but it is rather an equivalent approximated
quantity. Indeed, we have 𝛿 = ‖𝜗𝜗𝜗‖ = 2 tan

𝜑
2

. However, this quantity
tends to the dihedral angle when this last is small. In each of the plots
in Fig. 4 the left and right sub-interval inverse proportionality laws
in (26), along with the vertical lines corresponding to 𝛿∗𝑙 and 𝛿∗𝑙 , are
eported in dark yellow and dark orange colors, respectively.

. Stepwise analysis strategy for getting time-evolution response
f Kresling tubes

While in Section 2 we have described the adopted modeling strat-
gy, we now address the numerical strategy needed to reconstruct the
hole equilibrium path of the discrete system under consideration.
ven if in this paper we are interested in analyzing one-stage Kresling
ubes, that described below is a general strategy adaptable to any
iscrete, or discretized, mechanical system. It is essentially based on
n original work of Casciaro (1975) and the successive paper (Turco,
021), where the whole procedure is reviewed and more detailed ex-
lanation of the used formulas is provided along with some comments
imed at shedding light on some unaddressed issues. However, the
trategy proposed here differs from the original work of Casciaro for
wo reasons: (i) it uses as primary variables displacements instead of
elocities, see Turco et al. (2023a); (ii) it is adapted for mechani-
al problems where the external world acts onto the system only by
rescribing evolution laws for the displacement of a set of nodes.4

4 It is an empirical observation that for systems with high-frequency vi-
rations the accuracy of velocities computed on the basis of interpolated
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At first, we specify that the presented time-integration scheme is
based on the subdivision of the time horizon of the simulation in 𝑁
time steps of equal length 𝛥𝑡.5 Assuming as known the initial conditions,
i.e. the initial displacement and velocity vectors 𝐮0 = 𝐮(𝑡 = 0) and

�̇�0 = �̇�(𝑡 = 0), respectively, we want to compute, sequentially, the
solution at times 𝑡𝑗+1 = 𝑡𝑗 + 𝛥𝑡 (𝑗 = 0, 1,… , 𝑁). Clearly, the basic brick
to build a sequential solution process consists of being able to solve the
following problem: assuming as known the solution for 𝑡𝑗 , i.e. we know
the vectors 𝐮𝑗 = 𝐮(𝑡𝑗 ) and �̇�𝑗 = �̇�(𝑡𝑗 ), how do we compute the solution
𝐮𝑗+1 and �̇�𝑗+1?

To start answering to the last question, we note that Casciaro’s
scheme is based on the discrete form of the momentum-impulse re-
lationship which, using already defined symbols, can be written as

𝐌(�̇�𝑗+1 − �̇�𝑗 ) +
((1

2
− 𝛼

)

(𝐬𝑗 − 𝐟𝑗 ) +
( 1
2
+ 𝛼

)

(𝐬𝑗+1 − 𝐟𝑗+1)
)

𝛥𝑡 = 𝟎 , (29)

where the first term can be interpreted as a finite-difference approxi-
mation of the momentum rate, while the second term is the average
net impulse. This last term is obtained by means of two dimensionless
weighting factors depending upon the parameter 𝛼, which will be
defined and suitably chosen below.Since for each time step we are
considering as unknowns the vectors 𝐮𝑗+1 and �̇�𝑗+1, an additional set of
equations is necessary to equate the number of independent equations
and that of the unknowns. This set is found by choosing as interpolation
law for the displacement vector a quadratic rule

𝐮𝑗+1 = 𝐮𝑗 +
((1

2
− 𝛽

)

�̇�𝑗 +
( 1
2
+ 𝛽

)

�̇�𝑗+1
)

𝛥𝑡 . (30)

We note that the parameters used to express the interpolation rule
above are the displacement and the velocity vectors at the beginning of
the time step and the velocity vector at the end of the time step. In other
words, the quadratic rule, besides the displacement at the beginning of
the time step, makes use of velocities, namely the time derivative of the
displacement, at the beginning and at the end of the time step. Readers
who usually work with B-splines (Aristodemo, 1985; Greco and Cuomo,
2013) and NURBS (Non Uniform Rational Basis Splines) (Cazzani et al.,
2016a) should be familiar with this idea. It has to be remarked that,
as for the discrete form of the momentum-impulse relationship above,
also in this case a dimensionless parameter, called 𝛽, is used, which
is characteristic of the Casciaro’s integration scheme and weights the
velocity at the beginning and that at the end of the time step.

To sum up, Casciaro’s scheme makes use of the momentum-impulse
relationship and a quadratic B-spline interpolation for the displace-
ments. Two dimensionless parameters 𝛼 and 𝛽 are introduced in the
integration scheme that, when finely tuned, optimize the performances
of the scheme. Following Casciaro’s idea, these two dimensionless
parameters have to be tuned according to the estimate of the first, 𝑇1,
and of the last, 𝑇𝑁 , natural periods of the Lagrangian system under
consideration and the selected time-step length 𝛥𝑡 that, usually, must be
in turn chosen on the basis of the problem to tackle (usually the loading
law and the first natural period). Hence, an eigenvalue analysis, limited
to the first and the last natural periods computed in the reference
configuration, has to be performed. This preliminary analysis involves
the mass matrix 𝐌 and the stiffness matrix 𝐊 computed in the reference
configuration, i.e. 𝐊(𝐮 = 𝟎).

The rule proposed in Casciaro’s work (Casciaro, 1975) for choosing
in an optimal way the two dimensionless weighting parameters 𝛼 and
𝛽 is based on the analysis of a one-degree-of-freedom system in linear
regime. The main idea is to adapt the dimensionless weighting parame-
ters to the chosen time-step length, which generally is suggested by the

displacements is less than that achieved when interpolating directly the
velocities, thus the introduced modification allows to get an algorithm that
is significantly more stable.

5 This hypothesis is not essential and can be easily removed if necessary.
Fig. 4. Folding strain energy 𝐸 for 𝛿0 = 𝜋∕2 (a), 𝛿0 = 𝜋 (b), and 𝛿0 = 3𝜋∕2 (c): quadratic
law in blue color, left inverse law in dark yellow and right inverse law in dark orange.
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Since the velocity variables collected in the vector �̇�𝑗+1 can be
eliminated, by using Eqs. (30), from the system formed by Eq. (29) and
(30), it is found that Eqs. (30)–(29), together with the Taylor expansion
(33), are the strictly necessary tools to apply a Newton-like algorithm
Fig. 5. Optimal parameters 𝛼 and 𝛽 vs. dimensionless time-step length 2𝛥𝑡∕𝑇𝑛 (vertical
reen lines indicate 𝑇𝑛, on the left, and 𝑇1, on the right).

problem: (i) natural periods generally well represent the system under
consideration; (ii) loading is usually described as a linear piece-wise
function of time, therefore the time-step interval has to be chosen in or-
der to well-represent the loading process; (iii) the available computing
resources are always limited, hence too small time-step intervals are
impracticable; (iv) accuracy of modern computers is nowadays large
but not infinite and, as a consequence, problems as numerical drift or
instability deriving from round-off errors have to be expected.

Following Casciaro, optimal values of the dimensionless parameters
𝛼 and 𝛽 can be found according to the following formulas

𝛽 = −𝛼 =

√

−1
4
+ 1

𝛾2
−

1 +
√

1 + tan2 𝛾
2 tan2 𝛾

, 0 < 𝛾 < 𝜋
2
,

= −𝛼 =

√

−1
4
+ 1

𝛾2
−

1 −
√

1 + tan2 𝛾
2 tan2 𝛾

, 𝜋
2
< 𝛾 < 𝜋 ,

(31)

having introduced the dimensionless parameter 𝛾 = 2𝜋𝛥𝑡∕𝑇𝑛. We
bserve that Eq. (31), when 𝛥𝑡 → 0, gives 𝛽 = −𝛼 = 1∕

√

6. Differently,
hen 𝛥𝑡 → 𝑇𝑛∕2, the expression 𝛽 = −𝛼 = 1∕𝜋 is obtained.

In the case 𝛥𝑡 > 𝑇𝑛∕2, optimal values of the dimensionless parame-
ers have the expression

= −
𝑇𝑛

2𝜋𝛥𝑡
+ 𝑐3

1 + 2𝑐3
, 𝛽 =

𝑇𝑛
2𝜋𝛥𝑡

+ 𝑐3

1 + 2𝑐3
, 𝑐 =

2𝛥𝑡 − 𝑇𝑛
𝑇1 − 𝑇𝑛

. (32)

Formulas (32) contain both a hyperbola branch – which links the
optimal values of 𝛼 and 𝛽 at the end of the interval 𝛥𝑡 < 𝑇𝑛∕2 – and the
ratio between two cubic polynomials, which tends – when 𝛥𝑡 → ∞ –
to the value 1∕2. As a consequence, the corresponding values of 𝛼 and
𝛽 are capable to reproduce a quasi-static solution. Formulas (31) and
(32) are synthesized in the plot reported in Fig. 5. Finally, we bring to
the attention of the reader that, when a nonlinear problems have to be
tackled, small values of the time-step length have to be used anyway.

Having sketched the time integration scheme that we intend to use,
we shall outline the solution strategy to tackle the nonlinear problem
to be solved. Roughly speaking, we have, using Casciaro’s scheme, a
way to solve a sequence of initial problems. Still, for each such initial
problem, we have to solve a nonlinear problem. The key tool of the
solution strategy for the nonlinear problem is the first order Taylor
expansion of the structural reaction 𝐬𝑗+1 = 𝐬(𝐮𝑗+1), which can be written
as

𝐬𝑗+1 ≈ 𝐬𝑗 +𝐊𝑗 (𝐮𝑗+1 − 𝐮𝑗 ) , (33)

where 𝐊𝑗 is the stiffness matrix computed at the beginning of the
considered time interval:

𝐊𝑗 =
d𝐬
d𝐮

|

|

|

|𝐮𝑗
. (34)
for the considered problem. From the formula expressing the reminder
computed at the 𝑖th iteration

𝐫𝑖 = 𝐌(�̇�𝑗+1,𝑖 − �̇�𝑗 )+
((1

2
− 𝛼

)

(𝐬𝑗 − 𝐟𝑗 ) +
( 1
2
+ 𝛼

)

(𝐬𝑗+1,𝑖 − 𝐟𝑗+1)
)

𝛥𝑡 , (35)

the solution estimate is updated, following a Newton-like strategy,
through the recurrent formula

𝐮𝑗+1,𝑖+1 = 𝐮𝑗+1,𝑖 −𝐇−1
𝑗 𝐫𝑗 , (36)

where we employ the iteration matrix 𝐇𝑗 that is defined as

𝐇𝑗 = ∇𝐫|𝑗 =
1

1
2
+ 𝛽

𝐌 +
( 1
2
+ 𝛼

)

𝐊𝑗,𝑖 . (37)

The equation above makes opportune noting that, by considering
inertial forces, we can avoid the well-known multi-bifurcation problem
occurring in the static analysis of Kresling-tube metamaterials sub-
jected to axial compression forces, and hence find a numerically stable
equilibrium solution for large deformations.

The algorithm sketched in the foregoing is more adapt for address-
ing the solution of problems involving origami metamaterials, modeled
as explained in the previous sections, compared to the original scheme
proposed by Casciaro. A slight modification of Casciaro’s scheme, using
as primary variable the displacement vector instead of the velocity
one, does not change significantly the properties of the scheme but, in
practice, it allows to get an algorithm that is significantly more stable.

Before reporting the numerical simulations obtained by using the
algorithm described above, it is worth remarking that, even for dy-
namic problems that are more complex than those addressed in this
contribution, the use of the Newton method does not suffer the limi-
tations that it usually experiences for static problems. Indeed, as it is
well documented in the literature, when static problems are tackled,
Newton’s method is not able to manage limit points, i.e. configurations
that make singular the stiffness matrix 𝐊. This is because such a method
uses as iteration matrix the tangent stiffness matrix. As a consequence,
its use for the static analysis of systems exhibiting limit points is not
advisable. Conversely, when dynamic analyses are considered, since
the iteration matrix also includes an additive contribution containing
the mass matrix (which is always different from zero), see (37), then
making use of the Newton scheme is always possible.

Finally, before to show and discuss the results of a selected num-
ber of numerical simulations, we precise that the model presented
in Section 2 and the numerical strategy depicted in Section 3 were
implemented in a Matlab code developed in-house.

4. Numerical simulations

In this section we present and discuss some numerical simulations
with the objective of exploring the mechanical behavior of one-stage
Kresling tubes. In particular, we discuss two cases: the shortening and
the lengthening of a one-stage Kresling tube, having a fixed geometry,
when varying the ratio between the stiffness 𝑎 – of each element
of the equivalent determinate truss system that models the in-plane
deformation behavior of facets constituting the origami tube – and the
stiffness 𝑏 of the torsional springs modeling the folding rigidity of two
facets sharing a side. All the numerical data provided in this section are
expressed in the MKS system of units.

Specifically, we consider the one-stage Kresling tube reported in
Fig. 1, which is based on two regular octagons, i.e. the bottom and
top bases of the tube are regular octagons. The geometrical parameters
characterizing the one-stage Kresling tube are the side length 𝑐, the
height ℎ and the gap 𝑑, see Fig. 1(b). For the numerical simulation
described below, we assume 𝑐 = 3.8268, ℎ = 15 and 𝑑 = 3.8268.6

6 The chosen geometry has an angle 𝛽 approximately equal to 71.6◦.
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Fig. 6. Shortening (on the left) and lengthening (on the right) of the one-stage Kresling tube for 𝑎∕𝑏 = 1000: time evolution of the displacement of the 9th node (a)–(b), rotation
f the tube’s top base vs. assigned vertical displacement (c)–(d) and time evolution of energies – kinetic, stretching and folding – (e)–(f).

In what follows, we report the results of two shortening and two
engthening tests performed by varying the ratio 𝑎∕𝑏. Specifically, for
ach shortening/lengthening test we consider two case studies: in the

second case study the stiffness ratio is equal to 𝑎∕𝑏 = 0.1. The stiffness
ratio is changed by varying the value of the stiffness 𝑎 only, while the
stiffness 𝑏 is always assumed to be equal to 𝑏 = 106. We note that the
10

irst case study the stiffness ratio is equal to 𝑎∕𝑏 = 1000, while in the first case describes a Kresling tube with a stretching stiffness that is
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Fig. 7. Stroboscopic shoots for the shortening test of the one-stage Kresling tube for 𝑎∕𝑏 = 1000: side (on the left), top (on the middle) and 3D (on the right) views for 𝑡∕𝑡𝑜 = 0
(first row), 𝑡∕𝑡𝑜 = 0.25 (2nd row), 𝑡∕𝑡𝑜 = 0.5 (3rd row), 𝑡∕𝑡𝑜 = 0.75 (4th row) and 𝑡∕𝑡𝑜 = 1 (5th row).

very large with respect to the folding stiffness. Therefore, such a case
well represents the usual origami’s made up of folded paper sheets. The
second ratio that has been considered can be instead associated with an

displacement time law that has been chosen is linear, starting from zero
and having constant (loading) rate �̄�. Finally, we assume 𝜌 = 100 and
𝑠 = 0.1 for the mass density and the thickness of the facets constituting
11

origami metamaterial realized either by reinforcing the creases and/or the Kresling tube, respectively.

by employing an extremely deformable material for facets, possibly
a metamaterial by itself. This features are not unamenable to today’s
additive manufacturing techniques. Having fixed the geometry and
using the data described above, we shall introduce the conditions on
nodes. The nodes at the bottom base of the tube have been completely
fixed, i.e. no displacement is allowed. Differently, the nodes at the top
base of the tube are free to move in the plane identified by the bases
of the tube, while their displacement along the tube’s axis follows an
assigned displacement time law that is the same for all the nodes. The
4.1. Shortening and lengthening tests for 𝑎∕𝑏 = 1000

We here consider shortening and lengthening tests for the case
study characterized by 𝑎∕𝑏 = 1000. Preliminarily, we perform a modal
analysis in correspondence of the reference configuration to compute
the first 𝑇1 and the last 𝑇𝑛 natural periods, as needed to calibrate the
parameters utilized by the employed Casciaro’s integration scheme. For
the considered case, we have 𝑇1 = 0.0325 and 𝑇𝑛 = 0.00221. Selecting as
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Fig. 8. Stroboscopic shoots for the lengthening test of the one-stage Kresling tube for 𝑎∕𝑏 = 1000: side (on the left), top (on the middle) and 3D (on the right) views for 𝑡∕𝑡𝑜 = 0
(first row), 𝑡∕𝑡𝑜 = 0.25 (2nd row), 𝑡∕𝑡𝑜 = 0.5 (3rd row), 𝑡∕𝑡𝑜 = 0.75 (4th row) and 𝑡∕𝑡𝑜 = 1 (5th row).

loading rate �̄� = 1 and considering as time-step length of the integration
scheme 𝛥𝑡 = 0.001, we perform a stepwise analysis for a time horizon
𝑡𝑜 = 1.8.

one-stage Kresling tube, see Figs. 6(a)–(d); the plots reporting
𝜗(𝑤), see Figs. 6(c)–(d), show a switch-like behavior character-
ized by rotation of the top base with high rate at the beginning
12

Fig. 6, along with Figs. 7 and 8, give a synoptic view over the results and low rate in the second part of the test;

of the performed numerical analysis.7 These figures suggest that:

(1) in both considered cases the assigned (vertical) displacement
time law induces a rotation of the nodes at the top base of the

7 In the supplementary materials we have also included the videoclips
K8x1shorteningaonb1000 and K8x1lengtheningaonb1000 of the
deformation of the tube subjected to, respectively, shortening and lengthening
for 𝑎∕𝑏 = 1000.
(2) looking at the plots of the energies, see Fig. 6(e)–(f), we observe
a sharp jump of the strain energy associated to the folding,
deriving from the introduction of an energy barrier avoiding the
contact of adjacent facets, for the shortening test; furthermore,
we observe that the stretching energy is higher than the folding
energy, while the kinetic energy is practically negligible;

(3) the mechanical behavior observed in the numerical simulation
aligns with that observed while playing with a one-stage Kresling
tube made of paper board, see Figs. 7 and 8.
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Fig. 9. Shortening (on the left) and lengthening (on the right) of the one-stage Kresling tube for 𝑎∕𝑏 = 0.1: time evolution of the displacement of the 9th node (a), rotation of the
ube’s top base vs. assigned vertical displacement (b) and time evolution of energies – kinetic, stretching and folding – (c).

.2. Shortening and lengthening tests for 𝑎∕𝑏 = 0.1

We are here concerned with the second case study, namely short-

as before, we perform preliminarily a modal analysis in the reference
configuration to compute the first 𝑇1 and the last 𝑇𝑛 natural periods
needed to calibrate the parameters employed by the modified Casciaro’s
13

ning and lengthening tests of the Kresling tube metamaterial with integration scheme. For this case, we have 𝑇1 = 2.87 and 𝑇𝑛 = 0.0236.

tiffness ratio 𝑎∕𝑏 = 0.1. We apply the same nodal conditions and,
 Considering a loading velocity �̄� = 1, and considering again as time-
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Fig. 10. Stroboscopic shoots for the shortening test of the one-stage Kresling tube for 𝑎∕𝑏 = 0.1: side (on the left), top (on the middle) and 3D (on the right) views for 𝑡∕𝑡𝑜 = 0
(first row), 𝑡∕𝑡𝑜 = 0.25 (2nd row), 𝑡∕𝑡𝑜 = 0.5 (3rd row), 𝑡∕𝑡𝑜 = 0.75 (4th row) and 𝑡∕𝑡𝑜 = 1 (5th row).

step length of the integration scheme 𝛥𝑡 = 0.001, we perform stepwise
analyses having time horizons equal to 𝑡𝑜 = 4.3 and 𝑡𝑜 = 3.46 for the
shortening and lengthening test, respectively.

of the top base with high rate at the beginning and low rate in
the second part of the tests, see Figs. 9(c)–(d);

(2) beside the rotation of the nodes at the top base of the one-
14

Also for this case study, the presented figures, namely Figs. 9–11 stage Kresling tube, the buckling of the tube is characterized by
provide a synoptic overview of the results of the performed numerical
experiments. From the presented plots – and also from the video-
clips K8x1shorteningaonb01 and K8x1lengtheningaonb01
included in the supplementary materials – we deduce that:

(1) the assigned (vertical) displacement law induces a rotation of
the nodes at the top base of the one-stage Kresling tube, see
Figs. 9(a)–(d); the plots of 𝜗(𝑤) show also in this case the
occurrence of a switch-like behavior characterized by rotation
shrinking of the top base, see Figs. 10 and 11;
(3) stretching energy is higher than folding energy, see Fig. 9(e)–(f);

the shrinking of the top base also produces a sharp increment of
the kinetic energy, see again Fig. 9(e)–(f);

It is at first worth to be remarked that both study cases, i.e. both
analyzed stiffness ratios 𝑎∕𝑏, are characterized by strong nonlinearities,
as large deformations and energy barriers are considered. Therefore,
even the study case corresponding to a classical paperboard origami has
exhibited behaviors that were not observed in previous studies, like the
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Fig. 11. Stroboscopic shoots for the lengthening test of the one-stage Kresling tube for 𝑎∕𝑏 = 0.1: side (on the left), top (on the middle) and 3D (on the right) views for 𝑡∕𝑡𝑜 = 0
(first row), 𝑡∕𝑡𝑜 = 0.25 (2nd row), 𝑡∕𝑡𝑜 = 0.5 (3rd row), 𝑡∕𝑡𝑜 = 0.75 (4th row) and 𝑡∕𝑡𝑜 = 1 (5th row).

buckling in (axial) extension. Additionally, when a low stiffness ratio
𝑎∕𝑏 is considered, buckling occurs both in extension and compression
and the main features of buckling seem to be unaffected by the loading

5. Concluding remarks and future challenges

In this contribution we have presented the results of some nu-
15

direction, namely we have, besides its rotation, shrinking of the top merical simulations concerning one-stage Kresling tube metamaterials

base of the Kresling tube and an axial shortening of the tube for both
the shortening and lengthening test. The aforementioned shrinking is
due to the fact that a set of alternate facets are almost reaching a
zero surface area. This is justified by the low relative cost, in terms
of strain energy, of in-plane deformation of facets compared to folding
of the origami around creases. The achievement of the exotic features
conferred by a low stiffness ratio 𝑎∕𝑏, as that studied here, are in our
opinion definitely worth the search for viable physical realizations of
such a novel Kresling origami tube metamaterial.
subjected to shortening or lengthening in the tube axis direction. We
proved that, for a fixed geometry, modifying the ratio between the
stiffness parameter ruling the in-plane behavior and that ruling the
folding one we obtain an unconventional dynamic buckling mode,
triggered by a shortening, which produces a stenosis of the tube.
Furthermore, we proved that such a stenosis is also produced if we
consider a lengthening of the tube. This unexpected buckling behav-
ior adds up to the several exotic buckling phenomena triggered by
lengthening, see Eremeyev and Turco (2020), Zaccaria et al. (2011).
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The numerical simulations described in the foregoing pave the way for
studying a metamaterial which integrates the unconventional buckling
of one-stage Kresling tubes.

Future developments and challenges include an in-depth study on

Francesco dell’Isola: Writing – review & editing, Writing – origi-
nal draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Data curation, Conceptualization. Margherita
possible real-world applications of the k-tube metamaterial, the op-
timization of the ratio 𝑎∕𝑏, see Desmorat et al. (2020), between in-
plane and folding stiffnesses, the physical realization of k-tubes by
means of 3D printing and the subsequent mechanical testing, the de-
velopment of one/two-dimensional simplified continuum models, via
homogenization processes, incorporating the coupling between short-
ening/lengthening and the consequent cross-sectional rotation (around
the tube axis) and, possibly, stenosis. These phenomena should be
taken into account in one-dimensional modeling through additional
kinematic parameters. Kresling tube metamaterials constituted by sev-
eral stages – i.e. storeys – and, possibly, proportionally many facets in
a single stage, deserve to be explored from the mechanical point of
view through the tools employed in the present work, since it is the
expected that, when the ratio 𝑎∕𝑏 is large, their behavior is caught by
the so-called sine–Gordon equation, which possesses a solitary wave
solution.

Regarding the physical realization of k-tubes by means of 3D print-
ing, it would be interesting to attempt at designing extremely compliant
microstructured facets, exploiting, as an instance, the pantographic
motif. Facets might have a bi-pantographic (Barchiesi et al., 2020)
microstructure. Furthermore, experimental campaigns could be focused
on the assessment of different 3D-printing processes and raw materials
in the manufacturing of k-tubes, in that they affect the mechanical
and morphological properties of printed samples (De Angelo et al.,
2019). To this end, the use of Digital Image Correlation (DIC) and
Digital Volume Correlation (DVC) is envisaged, as they now consti-
tute a consolidated tool to analyze kinematic details in experiments
performed on metamaterials, a task that cannot be easily achieved by
means of more classical measurement techniques like strain gauges or
extensometers (Valmalle et al., 2023; Auger et al., 2020; Valmalle et al.,
2022).

Finally, for the time being, we have assumed perfect adhesion
among the facets. This could be not the case in presence of weak(ening)
interfaces/sliding mechanisms among facets due to damage or on-
purpose design. From the modeling point of view, points belonging to
different facets and occupying the same position in space in the initial
configuration would be allowed some relative kinematics. In the case
of sliding mechanisms among adjacent facets, it would be required to
use some internal kinematic constraint enforced through penalization,
a proper non-constrained reduced kinematics, or Lagrange multipliers.
In the case of elastic elements opposing to relative movements among
adjacent facets, an energy term would be required. From the continuum
point of view, the utilization of a mixture theory employing several
displacement fields, see Placidi and Hutter (2006), would probably be
required. In that case, some directional displacement derivatives would
be constrained or penalized in the strain energy, respectively. Future
attempts at considering these situations should be based on existing
contributions (Spagnuolo et al., 2017).
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