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Exact controllability to eigensolutions of the heat equation via

bilinear controls on two-dimensional domains

Rémi Buffe,∗ Alessandro Duca. †

Abstract

The exact controllability of heat type equations in the presence of bilinear controls have been successfully
studied in the recent works [1, 3, 14] motivated by the numerous application to engineering, neurobiology,
chemistry, and life science. Nevertheless, the result has been only achieved for 1−dimensional domains
due to limit of the existing techniques. In this work, we develop a new strategy to ensure the so-called
exact controllability to the eigensolutions of heat-type equations via bilinear control on the 2−dimensional
domains. The result is implied by the null-controllability of a suitable linearized equation, and the main
novelty of the work is the strategy of its proof. First, the null-controllability in a finite dimensional subspace
has to be ensured via the solvability of a suitable moment problem. Explicit bounds on the control cost w.r.t.
to the dimension of the controlled space are also required. Second, the controllability can be extended to the
whole Hilbert space, thanks to the Lebeau-Robbiano-Miller method, when the control cost does not growth
too fast w.r.t to the dimension of the finite dimensional subspace. We firstly develop our techniques in the
general case when suitable hypotheses on the problem are verified. Afterwards, we apply our procedure to the
bilinear heat equation on rectangular domains, and we ensure its exact controllability to the eigensolutions.
Finally, we study the controllability issue on the square and we use perturbation theory techniques to deal
with the presence of multiple eigenvalues for the spectrum of the Dirichlet Laplacian.

Keywords: bilinear control, heat equation, biorthogonal family
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1 Introduction

The majority of the theoretical control problems studied in the literature and involving evolution equations on
bounded domains usually consider boundary or internal controls. There, the dynamics is described by a suitable
evolution equation, and it is studied in the presence of one, or more, suitable additive terms. In these models,
the controls are external elements of the system that intervene in its evolution and affect it. Nevertheless,
in many practical problems from engineering, neurobiology, chemistry and life science, the control is not an
external element but rather a modification of the principal parameter of the evolution. In these cases, it is
then more appropriate to consider evolution equations in the presence of multiplicative controls. We talk about
bilinear control when the spatial part of the multiplicative term is fixed and only the time-dependent intensity
changes.

Interesting models involving parabolic dynamics in the presence of multiplicative/bilinear controls are for
instance the nuclear chain reactions. In these phenomena, the number of particles of the diffusing material
increases by the interaction with the surrounding medium, leading to a diffusion process. An example is the
nuclear fission that occurs from the collision of neutrons with uranium nuclei, leading to the formation of new
neutrons and energy. The new neutrons interact again with the uranium, triggering the continuation of the
process. The evolution of the density of neutrons in a point can be modelled by an equation of the form

∂tψ(t)− α∆ψ(t)− f(t, x)ψ(t) = 0

where α > 0 is the diffusion coefficient. In the nuclear plant, the reaction is controlled by modifying the value
and the sign of the function f , which then represents the multiplicative control on the problem. In the case

f(t, x) = u(t)µ(x)

with µ(x) fixed and u(t) variable, the multiplicative control is actually bilinear. Notice that the multiplicative
control is very suitable to the model since, in the practical situation, the reaction chamber is isolated and the
neutrons are neither added nor removed. We refer to the book [22] for other examples of models involving
parabolic equations in the presence of multiplicative controls.
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Main result: general framework

In this work, we focus our attention on the following bilinear control problem on a Lipschitz domain Ω of R2:

(BHE)

{
∂tψ(t)−∆ψ(t) + ⟨v(t), Q⟩ψ(t) = 0, t ∈ (0, T )
ψ(0) = ψ0,

where −∆ is a Dirichlet Laplacian, Q = (Q1, ..., Qq) : Ω → Rq with q ∈ N∗ is a L2-fixed vector valued function,
v = (v1, ..., vq) ∈ L2((0, T ),Rq) is the control and then

⟨v(t), Q⟩ = v1(t)Q1(x, y) + ...+ vq(t)Qq(x, y).

Let us introduce the ordered eigenvalues
(
λk
)
k∈N∗ of the Laplace operator −∆ with domain

D(−∆) := {ψ ∈ H1
0 (Ω,R), ∆ψ ∈ L2(Ω,R)}.

In this article, we assume that the domain Ω is such that the spectrum of the Dirichlet Laplacian verifies the
following property

(1) ∃C > 0, |NΛ − CΛ| = O(
√
Λ),

where NΛ := #{k ∈ N∗ : λk ≤ Λ} with Λ > 0 is the counting function of the eigenvalues of −∆. Notice that
the identity (1) implies the existence of C1, C2 > 0 such that

(2) C1Λ− C2

√
Λ ≤ NΛ ≤ C1Λ + C2

√
Λ, ∀k ∈ N∗.

The Weyl’s asymptotic (1) is for instance verified for rectangles, smooth domains where the set of the closed
generalised geodesics has zero measure in the cotangent space [21, Corollary 29.3.4], ”Domains consisting of a
finite number of squares” [16, Theorem 12, pp. 432] or domains satisfying a ”non-blocking and non-periodicity
conditions” [30, Theorem 1.6.1]. The identity (1) also implies the Weyl’s asymptotic

(3)
λk
k

= O(1).

We denote now
(
ϕk
)
k∈N∗ some orthonormalized eigenfunctions corresponding to the eigenvalues

(
λk
)
k∈N∗ , which

form a Hilbert basis for the space L2(Ω,R). We introduced the j−th eigensolutions of −∆ as the functions

Φj(t) = e−λjtϕj , t > 0, ∀j ∈ N∗.

Assumptions I. Assume the following conditions verified for the problem (BHE).

1. The eigenvalues
(
λk
)
k∈N∗ are simple and there exists C, p0 > 0 such that

λk+1 − λk ≥ C

λp0

k

, ∀k ∈ N∗.

2. The vector valued function Q = (Q1, ..., Qq) is such that q = 2, the second component Q2 = 1, and, for
every l ∈ N∗, there exist C > 0 and p1 ≥ 3/2 such that∣∣〈ϕk, Q1ϕl

〉
L2

∣∣ ≥ C

λp1

k

, ∀k ∈ N∗.

We refer to Remark 3.1 for further comments on the choice of the parameter 3/2 in Assumptions I. We are
finally ready to ensure the first main result of the work with the following theorem. Here, we state the local
exact controllability of the (BHE) to the eigensolutions of the Dirichlet Laplacian.

Main Theorem A. Let Assumptions I be verified. For any time T > 0, there exists δ > 0 such that, for any
ψ0 ∈ L2(Ω,R) with

∥ψ0 − ϕj∥L2 < δ,

there exists v1 ∈ L2((0, T ),R) such that ψ(T ;ψ0, v), the solution of (BHE) with control v = (v1, 0), verifies

ψ(T ;ψ0, v) = Φj(T ).

Proof. We refer to Section 3.2 for the proof of Main Theorem A.
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Main Theorem A ensures the existence of neighbourhoods of ϕj in L2(Ω,R) which can be exactly controlled
to the target Φj(T ). The first main consequences of the theorem is the following corollary.

Corollary 1.1. Let Assumptions I be verified. For any time T > 0, there exists δ > 0 such that, for any
α, β ∈ R∗ with the same sign and for any initial state ψ0 ∈ L2(Ω,R) with

∥ψ0 − αϕj∥L2 < |α|δ,

there exists v1 ∈ L2((0, T ),R) and v2 ∈ R such that ψ(T ;ψ0, v), the solution of (BHE) with control v = (v1, v2),
verifies

ψ(T ;ψ0, v) = βϕj .

Proof. We refer to Section 3.2 for the proof of Corollary 1.1.

Corollary 1.5 shows that, when we add a constant control, not only do we have some more freedom on the
initial data w.r.t. Main Theorem A, but also on the target of the controlled dynamics. A simple application is
the case of α = 1 and β > 0, which extends Main Theorem A since we can target any βϕj instead of Φj(T ).

Main result: the rectangle case

Let us now discus the specific case of Ω = (0, a) × (0, b), the rectangle with sides a, b > 0. In this framework,
the ordered eigenvalues

(
λk
)
k∈N∗ are defined by two sequences of numbers (lk)k∈N∗ , (mk)k∈N∗ ⊂ N∗ such that

λk =
( l2k
a2

+
m2

k

b2

)
π2.(4)

Some corresponding eigenfunctions
(
ϕk
)
k∈N∗ are

ϕk = 2 sin
( lk
a
πx
)
sin
(mk

b
πy
)
.

A suitable choice of a and b allows ensuring the exact controllability of Main Theorem A and Corollary 1.1
under simpler hypotheses than Assumptions I which are the following.

Assumptions II. Assume the following conditions verified for the problem (BHE).

1. The sides of the rectangle a, b > 0 are such that a2/b2 is an algebraic irrational number.

2. The vector valued function Q = (Q1, ..., Qq) is such that q = 2, the second component Q2 = 1, and

Q1(x, y) = Q1
1(x)Q

2
1(y).

In addition, for every l ∈ N∗, there exist C > 0 and p1, p2 ≥ 5/2 such that∣∣∣〈 sin(k
a
πx
)
, Q1

1 sin
( l
a
πx
)〉

L2(0,a)

∣∣ ≥ C

kp1
, ∀k ∈ N∗,

∣∣∣〈 sin(k
b
πy
)
, Q2

1 sin
( l
b
πy
)〉

L2(0,b)

∣∣ ≥ C

kp2
, ∀k ∈ N∗.

Remark 1.2. Let us consider the specific case of the equation (BHE) on the rectangle Ω = (0, 1) ×
(
0, 3

√
2
)
.

Assumptions II are verified when we choose for instance the control potential Q:

Q =
(x2y2

2
, 1
)
.

We refer to Remark 3.7 in Section 3.3 for further details on this explicit example. Notice that the same result
also is valid with different other polynomial potentials Q as explained in the mentioned remark.

We are ready to state the exact controllability to the eigensolutions of (BHE) in this new framework.

Main Theorem B. Let Assumptions II be verified. For any time T > 0, there exists δ > 0 such that, for any
ψ0 ∈ L2(Ω,R) with

∥ψ0 − ϕj∥L2 < δ,

there exists v1 ∈ L2((0, T ),R) such that ψ(T ;ψ0, v), the solution of (BHE) with control v = (v1, 0) verifies

ψ(T ;ψ0, v) = Φj(T ).
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Proof. We refer to Section 3.3 for the proof of Main Theorem B.

As Corollary 1.1 was a direct consequence of Main Theorem A, we can deduce the following corollary from
Main Theorem B.

Corollary 1.3. Let Assumptions II be verified. For any time T > 0, there exists δ > 0 such that, for any
α, β ∈ R∗ with the same sign and for any initial state ψ0 ∈ L2(Ω,R) with

∥ψ0 − αϕj∥L2 < |α|δ,

there exists v1 ∈ L2((0, T ),R) and v2 ∈ R such that ψ(T ;ψ0, v), the solution of (BHE) with control v = (v1, v2),
verifies

ψ(T ;ψ0, v) = βϕj .

Proof. We refer to Section 3.3 for the proof of Corollary 1.3.

Main result: the square case via perturbation theory

Let us now discus the specific case of Ω = (0, 1)× (0, 1). We would like to prove the local exact controllability
for the equation (BHE) in some neighbourhoods of the eigenfunctions of the Laplacian. However, the spectrum
of −∆ on the square presents multiple eigenvalues, introducing a natural ambiguity in the choice of the corre-
sponding eigenfunctions. To avoid such a problem, we consider the operator −∆ + ⟨v(t), Q⟩ with q = 4 and
v(t) = (v1(t), ..., v4(t)) such that v1(t) = u ∈ R. We write

−∆+ ⟨v(t), Q⟩ = (−∆+ uQ1) +

4∑
l=2

vl(t)Ql.

We consider u ∈ R sufficiently small so that uQ1 plays the role of perturbation of the Dirichlet Laplacian and
the spectrum of −∆+ uQ1 is simple.

• We respectively denote the eigenvalues of −∆+uQ1 and a Hilbert basis of L2(Ω) made by eigenfunctions:

(λul,m)l,m∈N∗ and (ϕul,m)l,m∈N∗ .

• We introduced the (l,m)−th eigensolutions of −∆+ uQ1 which are defined as

Φu
l,m(t) = e−λu

l,mtϕul,m, t > 0, ∀j ∈ N∗.

Let (A,D(A)) be the one-dimensional Dirichlet Laplacian, such that A = −∂2x and D(A) = H2 ∩H1
0 ((0, 1),R).

We now introduce a set of assumptions which replace Assumptions I in this new framework.

Assumptions III. Assume the following conditions verified for the problem (BHE).

1. The vector valued function Q = (Q1, ..., Qq) is such that q = 4 and the last component Q4 = 1.

2. The potential Q1(x, y) = Q1(x) depends only on the variable x, it verifies
∫ 1

0
Q1(x)dx = 0, and〈

cos(2kπx), Q1

〉
L2(0,1)

̸=
〈
cos(2nπx), Q1

〉
L2(0,1)

, ∀k, n ∈ N∗, k ̸= n.

3. We have Q2(x, y) = Q1
2(x)Q

2
2(y) and, for every l ∈ N∗, there exist C > 0 and p1, p2 ≥ 5/2 such that∣∣〈 sin(kπx), Q1

2 sin(lπx)
〉
L2(0,1)

∣∣ ≥ C

kp1
, ∀k ∈ N∗,

∣∣〈 sin(kπy), Q2
2 sin(lπy)

〉
L2(0,1)

∣∣ ≥ C

kp2
, ∀k ∈ N∗.

4. Let p1 > 0 be the parameter such that the previous point is verified. There holds

Q1, Q
1
2 ∈

{
f ∈ Hp1−2((0, 1),R) : f ′ ∈ D(|A|

p1−4
2 ) when p1 > 4

}
.

5. The potential Q3(x, y) = Q3(x) is such that, for every l ∈ N∗, there exist C > 0 and p3 ≥ 5/2 such that∣∣⟨sin(kπx), Q3 sin(lπx)
〉
L2(0,1)

∣∣ ≥ C

kp3
, ∀k ∈ N∗.
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Remark 1.4. An example of control potential Q such that Assumptions III are verified is the following:

Q = ((3x2 − 1), x2y2, (3x2 − 1), 1).

We refer to Remark 4.1 in Section 4 for further details on this matter. Notice that the same result also is valid
with different other polynomial potentials Q as in Remark 1.2.

We ensure a local exact controllability to the (l,m)−th eigensolution of −∆ for the equation (BHE) in small
time when Assumptions III are verified.

Main Theorem C. Let Q verify Assumption III. For every l,m ∈ N∗, there exist R > 0 and a countable
subset V of R such that, for any u ∈ [−R,R] \ V , the following local exact controllability to the eigensolutions
is verified. For any time T > 0, there exists δ > 0 such that, for any ψ0 ∈ L2(Ω,R) with

∥ψ0 − ϕul,m∥L2 < δ,

there exists (v2, v3) ∈ L2((0, T ),R2) such that ψ(T ;ψ0, v), the solution of (BHE) with control v = (u, v2, v3, 0)
verifies

ψ(T ;ψ0, v) = Φ0
l,m(T ).

Proof. We refer to Section 4.4 for the proof of Main Theorem C.

Main Theorem C ensures the existence of neighbourhoods of L2(Ω,R) where an exact controllability result
for the equation (BHE) is ensured. Notice that even if the initial state has to be chosen in the neighbourhood
of the perturbed eigenfunctions ϕul,m, the target of the dynamics is an unperturbed eigensolution

Φ0
l,m(t) = e−λ0

l,mtϕ0l,m.

In the proof, we at first target Φu
l,m(t) and after we prove that we can also reach Φ0

l,m(t).

Corollary 1.5. Let Q verify Assumptions III. For every l,m ∈ N∗, there exist R > 0 and a countable subset V
of R such that, for any u ∈ [−R,R] \ V , the following local exact controllability to the eigensolutions is verified.
For any time T > 0, there exists δ > 0 such that, for any α, β ∈ R∗ with the same sign and for any initial state
ψ0 ∈ L2(Ω,R) with

∥ψ0 − αϕul,m∥L2 < |α|δ,

there exists (v2, v3, v4) ∈ L2((0, T ),R3) such that ψ(T ;ψ0, v), the solution of (BHE) with control v = (u, v2, v3, v4),
verifies

ψ(T ;ψ0, v) = βϕ0l,m.

Proof. We refer to Section 4.4 for the proof of Corollary 1.5.

Notice that Main Theorem C (resp. Corollary 1.5) ensures the controllability with 3 (resp. 4) controls,
but it is actually possible to obtain the result with only 2 of them (resp. 3). Indeed, its proof (Section 4) can
be obtained with one control less, as explained in Remark 4.10. From this perspective, an example of control
potential Q verifying Main Theorem C (resp. Corollary 1.5) is Q = ((3x2 − 1), x2y2, (3x2 − 1), 1) as explained
in Remark 1.4. However, the same result can be also obtained with the control potential

Q = ((3x2 − 1), x2y2, 0, 1).

Some reference and existing results

It is well known that there is an obstruction to the exact controllability of dynamics via multiplicative bilinear
controls as explained by Ball, Marsden, and Slemrod in [7]. Here, the authors proved that the exact controlla-
bility of bilinear evolution equations can not be ensured in the whole space where they are defined when specific
assumptions on the control are verified. The lack of controllability, not only affects the study of the bilinear
heat equation, but also the bilinear Schrödinger equation or the bilinear wave equation.

The negative result presented in [7] is the main reason why the exact controllability for bilinear evolution
equations have been addressed in literature with different types of controllability. The exact controllability of
bilinear wave or Schrödinger equations was studied, for instance, in suitable subspaces. This idea was introduced
by Beauchard and Laurent in [8, 9], who showed a hidden regularizing effect allowing to prove well-posedness
and controllability in higher-regularity spaces for which the lack of controllability from [7] does not apply.
Nevertheless, this approach can not be applied to the bilinear heat equation as (BHE).
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Consider the abstract evolution equation on a Hilbert space X

(5)

{
y′(t) +Ay(t) + u(t)By(t) = 0, t ∈ (0, T ),
y(0) = y0,

when A : D(A) ⊆ X → X is a densely defined, self-adjoint linear operator with compact resolvent, B is a
bounded linear operator and u is a bilinear control. Exact controllability results of (5) were firstly proved by
Alabau-Boussouira, Cannarsa and Urbani in [1, 3]. They considered (ϕk)k∈N∗ some normalized eigenfunctions
of A and (λk)k∈N∗ the corresponding eigenvalues. They proved the local controllability to the so-called j-th
eigensolutions

Φj(t) = e−λjtϕj .

In detail, they proved that under the gap condition

(6) ∃γ > 0, ∀k ∈ N∗, |
√
λk+1 − λj −

√
λk − λj | ≥ γ > 0

and the spreading assumption

(7) ⟨Bϕj , ϕj⟩ ≠ 0, |λk − λj |q|⟨Bϕj , ϕk⟩| ≥ b, ∀ k ̸= j,

with p, q > 0, system (5) is exactly controllable to the j-th eigensolution at any time T > 0. In other words,
they showed the possibility of steering any state sufficiently close to ϕj into Φj(T ) in a time T > 0. A
direct application of their works is the controllability of a heat equation as (BHE) in the 1-dimensional case of
Ω = (0, 1). We also refer to the works [2, 15] for similar results on the subject.

These results were later extended in [14] by the second author, together with Cannarsa and Urbani where
they studied (BHE) on network-type domains. In this framework, the spectrum of the Laplacian −∆ has
different properties w.r.t. to the interval (0, 1) since it is only possible to show the existence of N ∈ N∗ such
that

(8)
√
λk+N −

√
λk ≥ γ > 0.

For some specific structure of the network, it is also verified a weak gap condition of the form:

(9)
√
λk+1 −

√
λk ≥ ak,

with ak ≍ k−p and p ∈ N∗. In [14], the authors extended the existing techniques of solvability of moment
problems to such a framework and proved the local controllability to the eigensolutions for any time T > 0.

The central part of the local exact controllability to the eigensolutions is the solvability of a suitable moment
problem. Heuristically speaking, one has to prove: for any (xk)k∈N∗ ⊂ R in a specific space, there exists
u ∈ L2((0, T ),R) such that

xk =

∫ T

0

eλksu(s)ds, ∀k ∈ N∗.(10)

This property was widely studied in literature according to the different behavior of the eigenvalues (λk)k∈N∗ .
The solvability when the spectral gap (6) is verified has been well-known for a very long time, and it was ensured
for instance in the works [10, 18, 19]. On the other hand, the property under the validity of the weaker spectral
hypothesis (8) is more recent, and it was studied [4, 6, 11]. Here, the authors also provided some upper and
lower bounds on the norm of the biorthogonal family at any fixed time. The dependence on the time of the
upper bound was initially made explicit in the work [14] and the result was generalized in [12]. We refer to this
last work for a careful analysis of the modern results and techniques on the solvability of moment problems.

Finally, we want to mention the preprint [5] which appeared contemporary to our paper. In this work, the
authors also deal with the solvability of moment problems in higher-dimensional framework.

Our technique: local controllability to eigensolutions for two dimensional domains

Our techniques are inspired by the idea of Alabau-Boussouira, Cannarsa and Urbani in [2, 3]: the local control-
lability of (BHE) is implied by the null-controllability of suitable linearized systems and by suitable estimates
of the norm of the control. The natural approach is to linearize (BHE) w.r.t. an eigenfunction and prove the
null-controllability of the linearized evolution via the solvability of a suitable moment problem as (10). However,
the asymptotic behaviour of the eigenvalues λk is different from the 1−dimensional case. For 2−dimensional
domains, we only know the existence of a sequence (Nk)k∈N∗ ⊆ N∗ such that Nk → +∞ and

inf
k∈N∗

√
λk+Nk

−
√
λk > 0.(11)
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In this case, the solvability of the moment problem can not be directly studied via the existing techniques in
literature which usually require stronger hypotheses on the spectrum as the spectral gap (8).

The main novelty of the work is how we overcome the issue of the solvability of the moment problem
in higher dimensional domains and then prove the null-controllability. We use the Miller adaptation of the
Lebeau-Robbiano method [25, 26] to show that the null-controllability of the linearized equation in

EΛ := span{ϕk, k ∈ JΛ} with Λ > 0,

might be extended to the whole L2(Ω,R). This result holds when suitable bounds w.r.t. Λ on the control
norm are verified. The Lebeau-Robbiano-Miller method allows us to solve a suitable finite dimensional moment
problems (10) where the spectrum behaves as (8) instead of (11). This idea is inspired by the work [28] which
deals with additive control problems. We develop our technique in an abstract setting at first (Section 2) and
we apply it later to proving Main Theorem A (Section 3), Main Theorem B (Section 3) and Main Theorem C
(Section 4).

• Main Theorem A provides the exact controllability to eigensolutions under the hypothesis that the domain
Ω is such that the Weyl’s asymptotics (1) and the weak gap (9) are verified. The peculiarity of the proof
appears when we study the finite dimensional moment problem to ensure the null-controllability in EΛ.
Here, we need to study suitable bounds for the norm of the control and establish its dependency w.r.t. the
parameter Λ. It appears that from the Weyl’s asymptotics (1), two-dimensional domains provide suitable
growth w.r.t. Λ which allows applying the method exposed above. Notice that it does not seem to be the
case for higher-dimensional domains.

• Main Theorem B presents the controllability result in the case of suitable rectangles Ω = (0, a) × (0, b).
We prove that when a2/b2 is an algebraic irrational number, then (9) is guaranteed. Main Theorem B
provides an explicit example for our exact controllability result of Main Theorem A.

• Finally, Main Theorem C deals with the case where Ω = (0, 1)× (0, 1) is a square. Here, the spectrum of
the Dirichlet Laplacian presents multiple eigenvalues and (9) is obviously not fulfilled. This fact represents
an obstruction to the solvability of the moment problem and then to the controllability. To circumvent
this difficulty, we use an additional control u ∈ R∗ so that the control term uQ1 perturbs the Laplacian
−∆.

1. We choose u ∈ R∗ so that, not only the spectrum of −∆+uQ1 is simple, but also (9) is satisfied. This
idea allows us to control neighbourhoods of perturbed eigenfunctions ϕul,m to perturbed eigensolutions
Φu

l,m(T ). Notice that our result is verified for u as small as desired.

2. To prove Main Theorem C and then the reachability of unperturbed eigensolutions, we use an ad-
ditional control. The main trick here is that the perturbed eigensolutions Φu

l,m(T ) have separate
variables when Q1(x, y) = Q1(x) (Assumptions III). Then, we reduce the dynamics (BHE) starting
from the perturbed eigensolution to a one-dimensional control problem where classical techniques
applies. This fact allows us to finally steer the perturbed eigensolution Φu

l,m(T ) to the unperturbed

one Φ0
l,m(T ).

Our proofs are applied to two-dimensional cases since, in the intermediate step of the proof, the growth of
the control cost w.r.t. Λ is suitable in this framework. Higher dimensional domains are not considered here as,
in such cases, the Weyl asymptotics (1) degrades the control cost that seems to growth too much, preventing
the use of the Lebau-Robbiano-Miller method. Nevertheless, it might be possible to enhance our technique in
order to allow worse estimations on the control cost and then treat at least the three-dimensional framework of
the cube. We plan to elucidate this fact in future investigations.

Scheme of the work

The manuscript is composed as follows. In Section 2, we introduce the Lebeau-Robbiano-Miller method in an
abstract setting. In Section 3, we use the abstract techniques from Section 2 to prove Main Theorem A and
Main Theorem B. Main Theorem C is proved in Section 4 and technical results from this work are proved in
Appendix.

Main notations

Let us introduce the main notations adopted in the manuscript.

• We denote by ⟨·, ·⟩ the Euclidean scalar product in Rq and ∥ · ∥ is the corresponding norm.

7



• We consider Hs = Hs(Ω,R) for s ≥ 0 and Lp = Lp(Ω,R) for p ≥ 1 the standard Sobolev and Lebesgue
spaces of functions f : Ω → R endowed with the norms ∥ · ∥s and ∥ · ∥Lp . The space L2 is also equipped
with the scalar product

⟨f, g⟩L2 =

∫
Ω

f(x)g(x)dx.

We call H1
0 = H1

0 (Ω,R) the spaces of functions f ∈ H1 such that f(∂Ω) = 0.

• Let (a, b) ∈ R. We call Lp(a, b) = Lp((a, b),R) for p ≥ 1 and L2(a, b) is equipped with the norm ∥ · ∥L2(a,b)

corresponding to the scalar product

⟨f, g⟩L2(a,b) =

∫ b

a

f(x)g(x)dx.

We denote H1
0 (a, b) = H1

0 ((a, b),R) the space of functions f ∈ H1(a, b) such that f(a) = f(b) = 0.

• Let Cs = Cs(Ω,R) with s ∈ N ∪ {∞} be the space of s-times continuously differentiable functions
f : Ω → R.

• Consider a Banach space X. We denote by ∥ · ∥X the norm of a Banach space X and Cs([0, T ], X) the
space of s-times continuously differentiable functions f : [0, T ] → X. When X is also a Hilbert space,
⟨·, ·⟩X represents the corresponding scalar product.

Acknowledgments
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discussions on the spectral behavior of Laplacian operator, and Nabile Boussäıd and Vahagn Nersesyan for
the suggestions on the organization of the work. We also would like to thank Assia Benabdallah and Morgan
Morancey for the interesting conversations on the solvability of the moment problems in higher dimensional
frameworks.

2 Local controllability to eigensolutions in the abstract setting

Let X be a separable Hilbert space equipped by a scalar product ⟨·, ·⟩X associated to the norm ∥ · ∥X . Let
A : D(A) ⊆ X → X be a densely defined linear operator such that

• A is self-adjoint;

• there exists σ ≥ 0 such that ⟨Ax, x⟩ ≥ −σ∥x∥2X for every x ∈ D(A);

• there exists λ > −σ such that the operator (λI +A)−1 : X → X is compact.

In this framework, the spectrum of A is purely discrete and consists of a sequence of ordered positive real
numbers (λk)k∈N∗ . We denote by (ϕk)k∈N∗ the associated eigenfunctions, forming a Hilbert basis of X. The
operator −A generates a strongly continuous semigroup by e−tA. We consider the parabolic problem

(12)

{
φ′(t) +Aφ(t) + v(t)Bφ(t) = 0, t > 0,
φ(0) = φ0,

where v ∈ L2((0, T ),R) and B : X → X is a bounded linear operator. The well-posedness of the equation
(BHE) in the spirit of Proposition 3.4 is well-known, as proved in [7]: we call by φ(t;φ0, v) the solution with
initial state φ0 and control v. We introduce the j-th eigensolution of the operator A as the solution of the
problem corresponding to v = 0 and φ0 = ϕj :

Φj(t) := e−λjtϕj .

2.1 Local controllability to eigensolutions and null-controllability of the linearized
problem

The aim of this section is to show how to ensure the local exact controllability of (12) to the j-th eigensolutions
of the operator A via the null-controllability of a suitable linear problem. This idea was firstly introduced in
the abstract setting by Alabau-Boussouira, Cannarsa and Urbani in [3]. Here, we slightly improve their result
in order to cover our framework.
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Definition 2.1. Let j ∈ N∗. The problem (12) is locally exactly controllable to the j-th eigensolution of A
in time T > 0 if there exists δ > 0 such that, for any φ0 ∈ X with ∥φ0 − ϕj∥X < δ, there exists a control
v ∈ L2((0, T ),R) such that

φ(T ;φ0, u) = Φj(T ).

We introduce now the linear problem

(13)

{
ξ′(t) +Aξ(t) + v(t)Bϕj = 0, t ∈ (0, T ),

ξ(0) = ξ0 ∈ X.

We denote by ξ(·; ξ0, u) the (mild) solution of the linear problem (13) corresponding to the initial condition ξ0
and control v given by

ξ(t; ξ0, v) = e−tAξ0 +

∫ t

0

e−(t−s)Av(s)Bϕjds.

We now introduce the partial null-controllability definition we shall use in what follows.

Definition 2.2. Let E be a closed subspace of X. We say that the problem (13) is null-controllable in E
and in a time T > 0, if there exists a constant KE(T ) > 0 such that, for any ξ0 ∈ X, there exists a control
v ∈ L2((0, T ),R) such that

ΠEξ(T ; ξ0, v) = 0 and ∥v∥L2(0,T ) ≤ KE(T )∥ξ0∥X ,

where ΠE denotes the orthogonal projection on E in X. The best constant KE(T ) is called the control cost,
and it is defined as

KE(T ) := sup
∥ξ0∥X=1

inf
{
∥v∥L2(0,T ) : ΠEξ(T ; ξ0, v) = 0

}
.

When E = X, we just say that the problem (13) is null-controllable and we denote KE(T ) = K(T ).

In this framework, we shall use the following local controllability result for the bilinear control problem.

Theorem 2.3. If the problem (13) is null-controllable in any T > 0 and there exist some constants ν, T0 >
0, γ ≥ 1 such that

(14) K(τ) ≤ eν/τ
γ

, ∀ 0 < τ ≤ T0.

then, the dynamics (12) is locally controllable to the j-st eigensolution of A in any time T > 0.

The proof of the theorem is postponed to the appendix B and it directly follows from the techniques developed
in [3]. Here, the authors ensure the same statement when we consider the parameter γ = 1. However, the proof
of Theorem 2.3 does not really differ from such specific case, as explained in the appendix.

2.2 Null-controllability in filtered spaces using the moment method

Let T > 0 and Λ > 0. Recalling that we denote by

JΛ := {k ∈ N, λk ≤ Λ}, EΛ := span{ϕk, k ∈ JΛ}.

We introduce a classical result of null-controllability on finite-dimensional spaces.

Proposition 2.4. Let Λ > 0 and j ∈ N∗. Assume that the operator B satisfies the following identities:

⟨Bϕj , ϕk⟩X ̸= 0, ∀k ∈ JΛ.

If there exists (σΛ,j)j∈JΛ
⊂ L2((0, T ),R) such that∫ T

0

eλktσΛ,j(t)dt = δj,k, ∀j, k ∈ JΛ,

where δj,k denotes the Kronecker symbol, then the problem (13) is null-controllable in EΛ in any time T > 0
with control cost

KEΛ(T )
2 ≤ (#JΛ)

supk∈JΛ
||σk||2L2(0,T )

infk∈JΛ
|⟨Bϕj , ϕk⟩X |2

9



Proof. By the Duhamel formula, the problem (13) is null-controllable in EΛ and in a time T > 0, if there exists
a function vΛ ∈ L2((0, T ),R) such that, for any k ∈ JΛ, the following identities are verified:∫ T

0

etλkvΛ(t)dt = dk, ∀k ∈ JΛ,

where dk = − ⟨ξ0,ϕk⟩X
⟨Bϕj ,ϕk⟩X . It is immediate that the function vΛ exists for every T > 0 and it can be defined by

the linear combination
vΛ =

∑
k∈JΛ

dkσΛ,k.

The estimation on vΛ follows by writing

||vΛ||2L2(0,T ) ≤ (#JΛ)
∑
k∈JΛ

|dk|2||σΛ,k||2L2(0,T ) ≤ (#JΛ)
supk∈JΛ

||σΛ,k||2L2(0,T )

infk∈JΛ
|⟨Bϕj , ϕk⟩X |2

||ΠEΛξ0||2X

≤ (#JΛ)
supk∈JΛ

||σΛ,k||2L2(0,T )

infk∈JΛ
|⟨Bϕj , ϕk⟩X |2

||ξ0||2X .

We recall the following proposition from [14] that gives a construction of biorthogonal families.

Proposition 2.5. [14, Proposition 3.3] Let (νk)k∈N∗ be a sequence of ordered non-negative real numbers such
that

∑+∞
k=2 ν

−1
k . Assume that there exists M ∈ N∗, γ > 0 and an ordered sequence of decreasing positive real

numbers (ak)k∈N∗ verifying, for every k ∈ N∗,

(15)

{√
νk+M −√

νk ≥ γ,
√
νk+1 −

√
νk ≥ ak.

Then, there exists a sequence of functions (σk)k∈N∗ which is biorthogonal to the family of exponentials (eνkt)k∈N∗

in L2(0, T ): ∫ T

0

σk(t)e
νjtdt = δk,j , k, j ∈ N∗.

Moreover, the biorthogonal family (σk)k∈N∗ satisfies

||σk||2L2(0,T ) ≤ C

(
1 +

γ2

ak(ak + 2
√
ν1)

)2M

e
−2νkT+ C

Tγ2 +
C

√
νk

γ B(T, γ),

where

(16) B(T, γ) :=

{
1
T + 1

T 2γ2 , T ≤ 1
γ2

Cγ2 T > 1
γ2 .

2.3 The Lebeau-Robbiano-Miller method

In this section, we present the adaptation due to Miller [26] of the well-known Lebeau-Robbiano method to
prove the observability of the problem (13). First, we need to introduce the definition of partial observability,
which is an adaptation of [24, Proposition 7.7] to our case.

Proposition 2.6. Let E be a closed subspace of X. The null-controllability of the problem (13) in E at time
T > 0 with control cost KE(T ) is equivalent to the following observability estimate :

||e−TAΠEζ||X ≤ KE(T )||⟨Bϕj , e−tAΠEζ⟩X ||L2(0,T ), ∀ζ ∈ X.

Proof. Consider the bounded control operator, with U = R.

M : U → X
v 7→ vBϕj .

Then its adjoint is given by
M∗ : X → U

z 7→ ⟨Bϕj , z⟩X .

The proof follows by a direct application of [24, Proposition 7.7].
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We are finally ready to show how to use the Lebeau-Robbiano-Miller method to prove the null-controllability
of the problem (13) when partial observability inequalities are verified in suitable finite-dimensional subspaces
of X and the control cost satisfies specific inequalities.

Theorem 2.7. Assume that there exists C0 > 0 and α ∈ (0, 1) such that for any T ∈ (0, 1] and for any Λ > 0,
the problem (13) is null-controllable in EΛ at time T > 0 with control cost

KEΛ
(T ) ≤ C0e

C0

(
Λα+ 1

T
α

1−α

)
.

Then, there exists C1 > 0 such that for any T ∈ (0, 1), the problem (13) is null-controllable with control cost

K(T ) ≤ C1e
C1

T
α

1−α .

Proof. Let τ > 0 and 0 < T1 < T2 < 1 such that τ = T2 − T1. Let ε ∈ (0, 1) to be fixed below. We have, for
any ζ ∈ X, and any Λ > 0,

∥e−T2Aζ∥2X = ∥e−T2AΠEΛ
ζ∥2X + ∥e−T2A(I −ΠEΛ

)ζ∥2X .

From Proposition 2.6, it follows

∥e−T2Aζ∥2X ≤ KEΛ(ετ)
2∥⟨Bϕj , e−tAΠEΛζ⟩X∥2L2(T2−ετ,T2)

+ e−2Λτ∥e−T1A(I −ΠEΛ)ζ∥2X .

But, using the Cauchy-Schwarz inequality

∥⟨Bϕj , e−tAΠEΛ
ζ⟩X∥2L2(T2−ετ,T2)

≤ 2∥⟨Bϕj , e−tAζ⟩X∥2L2(T1,T2)
+ 2∥⟨Bϕj , e−tA(I −ΠEΛ

)ζ⟩X∥2L2(T2−ετ,T2)

≤ 2∥⟨Bϕj , e−tAζ⟩X∥2L2(T1,T2)
+ 2∥Bϕj∥2X∥e−tA(I −ΠEΛ

)ζ∥2L2((T2−ετ,T2),X)

≤ 2∥⟨Bϕj , e−tAζ⟩X∥2L2(T1,T2)
+ 2ετe−2Λ(1−ε)τ∥Bϕj∥2X∥e−T1A(I −ΠEΛ)ζ∥2X .

The above estimates yield the existence of C > 0 such that, for any τ > 0, 0 < T1 < T2 < 1 such that
τ = T2 − T1, ε ∈ (0, 1), Λ > 0, and any ζ ∈ X,

∥e−T2Aζ∥2X ≤ Ce
C(Λα+ 1

(ετ)
α

1−α
)

∥⟨Bϕj , e−tAζ⟩X∥2L2(T1,T2)
+
(
Ce

C(Λα+ 1

(ετ)
α

1−α
)

e−2Λ(1−ε)τ + e−2Λτ
)
∥e−T1Aζ∥2X .

Now, we choose Λ = 1

(ετ)
1

1−α
and there exists C̃ > 0 independent on ε, τ , and ζ such that

∥e−T2Aζ∥2X ≤ C̃e
C̃ 1

(ετ)
α

1−α ∥⟨Bϕj , e−tAζ⟩X∥2L2(T1,T2)
+
(
C̃e

C̃ 1

(ετ)
α

1−α e
−2

(1−ε)

ε
1

1−α τ
α

1−α + e
−2 1

ε
1

1−α τ
α

1−α

)
∥e−T1Aζ∥2X .

Let fε(τ) = C̃−1e
−C̃ 1

(ετ)
α

1−α . We fix ε ∈ (0, 1) sufficiently small so that the following approximate observability
holds : there exists C̃ > 0 such that, for any τ ∈ (0, 1) and 0 < T1 < T2 satisfying τ = T2 − T1, we have

fε(τ)∥e−T2Aζ∥2X ≤ ∥⟨Bϕj , e−tAζ⟩X∥2L2(T1,T2)
+ fε

(τ
2

)
∥e−T1Aζ∥2X .

For any T ∈ (0, 1) and k ∈ N∗, we choose T2 = T/2k and T1 = T/2k+1 with k ∈ N, and we obtain

fε(T/2
k)∥e−T/2kAζ∥2X ≤ ∥⟨Bϕj , e−tAζ⟩X∥2L2(T/2k+1,T/2k) + fε(T/2

k+1)∥e−T/2k+1Aζ∥2X .

Summing over k ∈ N yields the following observability estimate

∥e−TAζ∥2X ≤ f−1
ε (T )∥⟨Bϕj , e−tAζ⟩X∥2L2(0,T ).

Finally, it is sufficient to apply Proposition 2.6 to end the proof.

3 Controllability with simple spectrum

The aim of this section is to prove the exact controllability to eigensolutions when the spectrum of the Dirichlet
Laplacian is simple. In detail, we provide the proofs of Main Theorem A and Main Theorem B, and their
corollaries.
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Remark 3.1. Before moving on, we want to underline that the choice of p1 > 3/2 in Assumptions I is reasonable
for this problem. Indeed, when Ω is smooth, for every ψ ∈ H2(Ω,R), we know

ψϕl ∈ H2(Ω,R) ∩H1
0 (Ω,R) =

{
ψ ∈ H2 :

(
λk
〈
ϕk, ψ

〉
L2

)
k∈N∗ ∈ ℓ2

}
,

for every l ∈ N∗. This last property and the Weyl’s asymptotics (3) imply the existence of C > 0 such that∣∣〈ϕk, fϕl⟩L2 | ≤ C

λ
1+1/2
k

, ∀k ∈ N∗.

The same argument leads to the choice of the parameter 5/2 in Assumptions II and Assumptions III.

3.1 Some spectral properties and well-posedness

Let us study the spectral behaviour of the Laplacian operator on a two-dimensional Ω. Thanks to the Weyl’s
asymptotics (3), we know that the eigenvalues of −∆ are such that λk/k = O(1). This property implies the
existence of an increasing sequence (ñk)k∈N∗ ⊂ N∗ such that

inf
k∈N∗

λk+ñk
− λk > 0.(17)

Actually, we can ensure a stronger spectral result with the following proposition.

Proposition 3.2. There exists C̃ > 0 such that the sequence

nk = ⌊C̃
√
k⌋+ 1, ∀k ∈ N∗,

verifies the following spectral gap condition

λk+nk
− λk ≥

√
k, ∀k ∈ N∗.(18)

Proof. Recalling (2) and (3), there exists C > 0 such that
√
λk ≤ C

√
k and

Nλk+
√
k −Nλk

≤ C1

√
k + C2

(√
λk +

√
λk +

√
k
)
≤
(
C1 + C2

(
C +

√
C2 + 1

))√
k, ∀k ∈ N∗.

Notice that Nλk+
√
k −Nλk

is the number eigenvalues between λk and λk +
√
k. Hence, if we want to obtain a

spectral gap larger or equal to
√
k, then we can take nk = ⌊(C1 + C2(C +

√
C2 + 1))

√
k⌋+ 1 for every k ∈ N∗

to ensure the result.

We apply now Proposition 3.2 to ensure the existence of a spectral gap for the square for the eigenvalues of
the Dirichlet Laplacian.

Proposition 3.3. There exists C̃ > 0 such that the sequence

nk = ⌊C̃
√
k⌋+ 1, ∀k ∈ N∗,

verifies the following spectral gap condition

inf
k∈N∗

√
λk+nk

−
√
λk > 0.(19)

Proof. Notice that thanks to (3), there exists C > 0 such that
√
λk > C

√
k and√

λk+nk
−
√
λk =

λk+nk
− λk√

λk+nk
+
√
λk

≥ λk+nk
− λk

2C
√
k + nk

, ∀k ∈ N∗.

We consider Proposition 3.2. Thanks to the validity of (18), the result yields since√
λk+nk

−
√
λk ≥

√
k

2C
√
k + C̃

√
k
, ∀k ∈ N∗.

Before moving on with the theory leading to Main Theorem A, we provide the well-posedness result of
(BHE). It is a classical result that we rephrase in the next proposition (see for instance in [7]).

Proposition 3.4. Let T > 0, q ∈ N∗, Q = (Q1, ..., Qq) ∈ L2(Ω,Rq) and v = (v1, . . . , vq) ∈ L2((0, T ),Rq). For
any ψ0 ∈ L2(Ω,R), there exists a unique mild solution ψ ∈ C0([0, T ], L2(Ω,R)) of (BHE) such that

ψ(t;ψ0, u) = et∆ψ0 −
∫ t

0

e(t−s)∆⟨v(s), Q⟩ψ(s;ψ0, v)ds, ∀ t ∈ [0, T ].

Moreover, there exists a constant C(T ) > 0 such that supt∈[0,T ] ∥ψ(t;ψ0, v)∥L2 ≤ C(T )∥ψ0∥L2 .

12



3.2 Proof of Main Theorem A and Corollary 1.1

This section aims to prove Main Theorem A by using the theory exposed in Section 2. We prove the local
controllability of the equation (BHE) to the eigensolution of −∆ from the null-controllability of a suitable
linear problem. The null-controllability is ensured in two steps as follows.

• We first prove the null-controllability on a finite-dimensional subspace (Section 2.2) and we establish
suitable bounds for the control cost by using the estimates from Proposition 2.5.

• Second, the null-controllability is proved on the whole L2(Ω,R) thanks to the Lebau-Robbiano-Miller
method from Proposition 2.6 and Theorem 2.7 (Section 2.3).

Let us introduce the following linear problem in L2(Ω,R)

(20)

{
ξ′(t)−∆ξ(t) + v1(t)Q1ϕj = 0, t ∈ (0, T ),

ξ(0) = ξ0.

The (mild) solution of (20) is denoted

ξ(t; ξ0, v) = et∆ξ0 +

∫ t

0

e(t−s)∆v1(t)Q1ϕjds.

Let Λ > 0. In this framework, JΛ and EΛ introduced in Section 2.2 become

JΛ = {n ∈ N, λn ≤ Λ}, EΛ := span{ϕn, n ∈ JΛ}.

We want to exploit the theory exposed in Section 2.1 and for this purpose we need to prove the following result.

Proposition 3.5. Let Q verify Assumptions I and let α ∈ (1/2, 1). There exists C > 0 such that for any
T ∈ (0, 1] and for any Λ > 0, the problem (20) is null-controllable in EΛ at time T > 0 with control cost

KEΛ
(T ) ≤ CeC(Λα+ 1

T ).

Proof. Assume Λ > λ1 otherwise the statement of the theorem is empty. In our hypotheses, the operator −∆
acting on X = L2(Ω) with domain H2(Ω) ∩H1

0 (Ω) falls into the scope of Section 2. We set sΛ = ⌊C̃
√
Λ⌋ + 1

with C̃ > 0 defined in Proposition 3.3. We introduce the sequence (νk)k∈N∗ ⊂ R+ such that{
νk = λk, ∀k ∈ N∗ : λk ≤ Λ,

νk = Λexp(2k), ∀k ∈ N∗ : λk > Λ.

Notice the existence of C > 0 such that, when νk+sΛ ≤ Λ, there holds

√
νk+sΛ −

√
νk ≥ √

νk+nk
−

√
νk ≥ C > 0,

thanks to Proposition 3.3. In addition, when νk+sΛ ≥ Λ, we have

√
νk+sΛ −

√
νk ≥

√
Λexp(k + sΛ)−

√
Λexp(k + sΛ − 1) ≥

√
Λ.

The two last inequalities imply
inf

k∈N∗

√
νk+sΛ −

√
νk > 0.

Now, the definition of the sequence (νk)k∈N∗ and Assumptions I yield the existence of C, p0 > 0 such that

√
νk+1 −

√
νk ≥ C

νp0

k

, ∀k ∈ N∗.

Then, we can use from Proposition 2.5 w.r.t to the sequence (νk)k∈N∗ and show the existence of σΛ,k ∈ L2(0, T )
satisfying ∫ T

0

eλ
u
j tσΛ,k(t)dt = δj,k, j, k ∈ JΛ,

and verifying the following estimate

||σΛ,k||2L2(0,T ) ≤ C
(
νk

p0

)sΛ
exp

(
C
(
ν
1/2
k +

1

T

))
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with a suitable C > 0 independent on k ∈ N∗, Λ > 0 and T > 0. Now, we observe that

νk
p0sΛ ≤ Λp0(C̃

√
Λ+1) = ep0(C̃

√
Λ+1) log(Λ).

For any δ ∈ (0, 1/2), there exists C > 0 independent on k ∈ N∗, Λ > 0 and T > 0 such that

||σΛ,k||2L2(0,T ) ≤ C exp

(
C
(
Λ1/2+δ +

1

T

))
.(21)

It is then sufficient to apply Proposition 2.4 along with (21) to obtain the sought controllability result. The
proof is concluded since, thanks to Assumptions I, the control cost is such that there exists C1, C2 > 0 such
that

K(T ) ≤
C1 exp

(
C1(1 + Λ1/2+δ + 1

T )
)

infk∈JΛ
|⟨Bϕj , ϕk⟩L2 |

≤ C2 exp

(
C2

(
1 + Λ1/2+δ +

1

T

))
.

In the last inequality, we used #JΛ = NΛ = O(Λ) thanks to the Weyl asymptotic (1).

Corollary 3.6. Let Q verify Assumptions I and let γ > 1. There exists C > 0 such that for any T ∈ (0, 1] the
problem (20) is null-controllable at time T > 0 with control cost

K(T ) ≤ Ce
C
Tγ .

Proof. It is sufficient to combine Theorem 2.7 with Proposition 3.5 and notice that when α = 1
2 + δ, 0 < δ < 1

2 ,

then α
1−α = 1 + δ

1−2δ .

We are finally ready to prove Main Theorem A and Corollary 1.1.

Proof of Main Theorem A. The exact controllability to the eigensolutions of (BHE) ensured by Main Theorem
A is proved by directly applying Corollary 3.6 along with Theorem 2.3.

Proof of Corollary 1.1. The property follows from Main Theorem A and the linearity. Indeed, if we control
1
αψ0 to Φj(T1) in a time T1 thanks to Main Theorem A with a control v1, then

ψ(T1;ψ0, v1) = αΦj(T1).

Afterwards, since the function Q2 = 1, for any T2 > 0, it is possible to define a constant control v2 = (0, u2)
with u2 ∈ R such that log(α/β)− (T1 + T2)λj − T2u2 = 0. We consider the control

v(·) = v1(·)1[0,T1)(·) + v2(· − T1)1[T1,T1+T2](·)

and we ensure Corollary 1.5 by choosing T = T1 + T2 since

ψ(T ;ψ0, v) = ψ(T2;ψ(T1;ψ0, v1), v2) = e−T2(∆+u2)αΦj(T1) = βelog(α/β)e−(T1+T2)λj−T2u2ϕj = βϕj .

3.3 Proof of Main Theorem B and Corollary 1.3

The aim of this subsection is to prove the exact controllability to the eigensolutions in the specific case of the
rectangle, when Assumptions II are verified. We just show that Assumptions II implies Assumptions I and then,
Main Theorem B is an explicit application of Main Theorem A. Before entering into the details of the proof,
we provide an example of rectangle Ω and potential Q such that Assumption II are satisfied.

Remark 3.7. Consider the bilinear heat equation (BHE) on the rectangle Ω = (0, 1)×
(
0, 3

√
2
)
. Notice that the

number 2−
2
3 is algebraic and irrational, which implies the validity of the first point of Assumptions II. Assume

now

Q =
(x2y2

2
, 1
)
.

We have the validity of the second point of Assumptions II since, for every m ∈ N∗, we have

⟨sin(kπx), x2 sin(mπx)⟩L2(0,1) =
〈
sin
( k
2

1
3

πy
)
,
y2

2
sin
(m
2

1
3

πy
)〉

L2
(
0,2

1
3

) = 4(−1)k+mkm

(k2 −m2)2π2
= O

( 1

k3

)
.

The same type of results can be easily obtained with other polynomials. At each step, the integration by part
allows us to prove that the previous integrals always are asymptotically polynomially decreasing.
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We prove now the validity of a suitable spectral gap for the spectrum for the Dirichlet Laplacian in the
following lemma when Assumptions II are verified.

Lemma 3.8. Let us consider Ω = (0, a) × (0, b) with a2/b2 an algebraic irrational number. Then, for every
ϵ > 0, there exists Cϵ > 0 such that √

λk+1 −
√
λk ≥ Cϵ

λ
3+2ϵ

2

k

, ∀k ∈ N∗.

Proof. First, Roth’s Theorem (see [29]) implies that, when z is an algebraic irrational number, we have that,
for every ϵ > 0, there exists Cϵ > 0 small enough such that∣∣∣z − n

m

∣∣∣ ≥ C

m2+ϵ
, ∀m,n ∈ Z∗.

We recall the definition of the sequences (lk)k∈N∗ , (mk)k∈N∗ ⊂ N∗ provided in (4). Now, a2/b2 is an algebraic
irrational number and, for each ϵ > 0, there exists Cϵ > 0 such that

|λk+1 − λk| =
∣∣∣( l2k+1π

2

a2
+
m2

k+1π
2

b2

)
−
( l2kπ2

a2
+
m2

kπ
2

b2

)∣∣∣ = π2
∣∣∣ l2k+1 − l2k

a2
−
m2

k −m2
k+1

b2

∣∣∣
=
π2|m2

k −m2
k+1|

a2

∣∣∣ l2k+1 − l2k
m2

k −m2
k+1

− a2

b2

∣∣∣ ≥ π2|m2
k −m2

k+1|Cϵ

a2|m2
k −m2

k+1|2+ϵ
≥ π2

a2
Cϵ

λ1+ϵ
k+1

.

Finally, thanks to the Weyl asymptotics (3), there exists C > 0 such that λk+1 ≤ Cλk and√
λk+1 −

√
λk =

λk+1 − λk√
λk+1 +

√
λk

≥ π2

a2
Cϵ

λ
3+2ϵ

2

k+1

≥ π2

a2
Cϵ

C3+2ϵλ
3+2ϵ

2

k

, ∀k ∈ N∗.

We are now in position to discuss the proof of Main Theorem B.

Proof of Main Theorem B. Notice that thanks to Lemma 3.8, the first point of Assumptions II implies the first
point of Assumptions I. Second, we recall the Weyl asymptotics (3). Hence, we observe that from the definition
of the eigenfunctions in the rectangular framework, the second point of Assumptions II implies the second point
of Assumptions I. The proof then follows from the same approach leading to Main Theorem A.

Proof of Corollary 1.3. The result follows from Main Theorem B as in Corollary 1.1 is due to Main Theorem
A.

4 Controllability with multiple spectrum on the square

This section aims to prove Main Theorem C by using the theory exposed in Section 2. First, we recall the
validity of Proposition 3.4 and, when Assumptions III are verified, we have the following additional explicit
formula for the mild solution of (BHE)

ψ(t;ψ0, u) = e−t(−∆+uQ1)ψ0 −
4∑

l=2

∫ t

0

e−(t−s)(−∆+uQ1)vl(s)Qlψ(s;ψ0, v)ds, ∀ t ∈ [0, T ].

Remark 4.1. We notice that the control potential

Q = ((3x2 − 1), x2y2, (3x2 − 1), 1)

verifies Assumptions III. Indeed, the first point is obviously verified. After, for every distinct k, n ∈ N∗, we have

⟨cos(2kπx), (3x2 − 1)⟩L2 =
3

2π2k2
̸= 3

2π2n2
= ⟨cos(2nπx), (3x2 − 1)⟩L2 ,

which implies the validity of the second point. The third point yields with p1 = p2 = 3 since, for every k ̸= m,

⟨sin(kπx), x2 sin(mπx)⟩L2 =
4(−1)m+kmk

π2(k2 −m2)2
= O

( 1

k3

)
,

⟨sin(mπx), x2 sin(mπx)⟩L2 =
2π2m2 − 3

12π2m2
̸= 0.

The fourth condition is verified as (3x2 − 1), x2 ∈ H1(0, 1) and finally the last point follows from

⟨sin(kπx), (3x2 − 1) sin(mπx)⟩L2 = 3⟨sin(kπx), x2 sin(mπx)⟩L2 − δk,m, ∀k,m ∈ N∗.
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4.1 Spectral properties

We consider the operator −∆ + uQ1 defined on H2(Ω) ∩ H1
0 (Ω) with Ω = (0, 1) × (0, 1) when Q verifies

Assumptions III and in particular when Q1 is constant w.r.t. the second coordinate, i.e.

Q1(x, y) = Q1(x).

We assume u ∈ R being sufficiently small so that uQ1 plays the role of perturbation of the Dirichlet Laplacian.
We start by clarifying the notation adopted in the introduction.

• We recall that we respectively denote the eigenvalues of −∆+ uQ1 and a Hilbert basis of L2(Ω) made by
eigenfunctions:

(λul,m)l,m∈N∗ and (ϕul,m)k∈N∗ .

• Thanks to Assumptions III, Q1(x, y) = Q1(x) is constant w.r.t. the second coordinate and

λul,m = µu
l + µ0

m, ϕul,m(x, y) = ful (x)f
0
m(y),

where (µu
k , f

u
k )k∈N∗ are the eigenpairs of the operator Au = −∂2x + uQ1 defined in

D(Au) := H2((0, 1),R) ∩H1
0 ((0, 1),R).(22)

• Clearly, when u = 0, the operator A0 is the one-dimensional Dirichlet Laplacian and

µ0
k = k2π2, f0k (·) =

√
2 sin(kπ·),

which implies
λul,m = µu

l +m2π2, ϕul,m(x, y) = ful (x)
√
2 sin(mπy).

• We introduce the eigenpairs
(
λ0l,m, ϕ

0
l,m

)
l,m∈N∗ of the operator −∆ without ambiguity as follows

λ0l,m = l2π2 +m2π2, ϕul,m(x, y) = 2 sin(lπx) sin(mπy).

• To distinguish the ordering of the eigenvalues, we denote the ordered eigenvalues of −∆+ uQ1:

λuk

and we notice that there exists (lk)k∈N∗ , (mk)k∈N∗ ⊆ N∗ such that

λuk = λulk,mk
.

• The asymptotic Weyl’s law yields limk→+∞
λ0
k

k = O(1). Such asymptotics can also be extended to the

perturbed eigenvalues so that limk→+∞
λu
k

k = O(1) (see Proposition 4.3)

4.2 Perturbation theory

We now some spectral properties of the operator −∆ + uQ1 when u ∈ R is sufficiently small and Q1 is a
perturbation of the Dirichlet Laplacian.

Proposition 4.2. Let Q verify Assumptions III. For every u > 0, we have

µu
k = k2π2 − ruk ,(23)

where

ruk = u

∫ 1

0

〈
(f tuk )2, Q1(x)

〉
L2dt = u

∫ 1

0

cos(2kπx)Q1(x)dx+O(|u|)O
(1
k

)
.(24)

In addition, the following map is real analytic

u ∈ R 7−→ (µu
k)k∈N∗ ∈

{
(ak)k∈N∗ ⊂ R : ak = k2π2 + bk, (bk)k∈N∗ ∈ ℓ2

}
.

Finally, each map u ∈ R 7−→ fuk =
√
2 sin(kπ·) +O(|u|)O

(
1
k

)
∈ L2((0, 1),R) is analytic.
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Proof of 4.2. The result follows from [27]. Indeed, the characterization of the eigenvalues µu
k follows from [27,

Theorem 2.4 and Theorem 3.1] (and their proofs; see [27, relation (3)] for the first identity in (24)). The formula
of the corresponding eigenfunctions and the analyticity are due to [27, Theorem 2.3 & Theorem 2.4].

Proposition 4.3. Let Q verify Assumptions III. For u > 0 sufficiently small, there exist C1, C2 > 0 such that

C1µ
0
k ≤ µu

k ≤ C2µ
0
k, ∀k ∈ N∗.

Moreover, we have
min{C1, 1}λ0k ≤ λuk ≤ max{C2, 1}λ0k, ∀k ∈ N∗.

Proof. The inequalities are a direct consequence of (23) and Proposition 4.2.

Now, we show that it is possible to perturb the spectrum of the Dirichlet Laplacian in order to have simple
eigenvalues verifying the weak spectral gap introduced in the first point Assumptions I. We also recall that
thanks to Proposition 3.3, for a suitable increasing sequence composed by numbers nj = O(

√
j), we have

inf
j∈N∗

√
λ0j+nj

−
√
λ0j > 0.

We want to prove that such a property is also verified for the perturbed eigenvalues when u is sufficiently small.

Proposition 4.4. Let Q verify Assumptions III. For every ϵ > 0, there exists a countable subset V of R and
R > 0 such that, for any u ∈ [−R,R] \ V , the following properties are verified.

1. There exist C, p > 0 such that ∣∣∣√λuj+1 −
√
λuj

∣∣∣ ≥ C

jp
, j ∈ N∗.

inf
j∈N∗

∣∣∣√λuj+nj
−
√
λuj

∣∣∣ > 0.

2. We have
∥ϕuk,j − ϕ0k,j∥L2 < ϵ.

Proof. We refer to Appendix A for the proof of Proposition 4.4.

Proposition 4.5. Let Q satisfy Assumptions III and j ∈ N∗. There exist R,C > 0 such that, for any
u ∈ [−R,R], we have

|⟨fuk , Q1
2f

u
j ⟩L2 | ≥ C

kp1
, ∀k ∈ N∗.

Proof. We refer to Appendix A for the proof of Proposition 4.5.

4.3 Proof of Main Theorem C: first step

We are finally ready to use the techniques leading to Main Theorem A to prove Main Theorem C. The first step
is the local controllability of equation (BHE) to the eigensolution of −∆+ uQ1 in a time T1 which is

Φu
l,m(T1) := e−λu

l,mT1ϕul,m = e−(µu
l +m2π2)T1ful (x)

√
2 sin(mπy)

where (fui , µ
u
i ) is the i−th eigenpair of the operator Au = −∂2x+uQ1 with domain D(Au) = H2 ∩H1

0 ((0, 1),R).
The result is proved as in Main Theorem A when u is small and Assumptions III are verified. In details, the
result is ensured by proving the null-controllability of the following linear problem in L2(Ω,R)

(25)

{
ξ′(t) + (−∆+ uQ1)ξ(t) +

∑4
k=2 vk(t)Qkϕ

u
l,m = 0, t ∈ (0, T ),

ξ(0) = ξ0.

The (mild) solution of (13) is denoted

ξ(t; ξ0, v) = e−t(−∆+uQ1)ξ0 +

4∑
k=2

∫ t

0

e−(t−s)(−∆+uQ1)vk(t)Qkϕ
u
l,mds.

We remind the existence of two sequences (ln)n∈N∗ , (mn)n∈N∗ ⊂ N∗ such that each eigenvalue

λun = λuln,mn
corresponds to the eigenfunction ϕuln,mn

.

Let Λ > 0, JΛ and EΛ (introduced in Section 2.2) such that

JΛ = {n ∈ N, λun ≤ Λ}, EΛ := span{ϕuln,mn
, n ∈ JΛ}.

We want to exploit the theory exposed in Section 2.1 and for this purpose we need to prove the following result.
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Proposition 4.6. Let Q verify Assumptions III and let α > 1/2. For every l,m ∈ N∗, there exist R > 0 small
and a countable subset V of R such that for any u ∈ [−R,R] \V , there exists C > 0 such that for any T ∈ (0, 1]
and for any Λ > 0, the problem (25) is null-controllable in EΛ at time T > 0 with control cost

KEΛ(T ) ≤ CeC(Λα+ 1
T ).

Proof. The result is ensured as Proposition 3.5 by considering the validity of Proposition 4.3, Proposition 4.4
and Proposition 4.5.

Corollary 4.7. Let Q verify Assumptions III and let γ > 1. For every l,m ∈ N∗, there exist R > 0 small and
a countable subset V of R such that for any u ∈ [−R,R] \ V , there exists C > 0 such that for any T ∈ (0, 1] the
problem (25) is null-controllable at time T > 0 with control cost

K(T ) ≤ Ce
C
Tγ .

Proof. As in the proof of Corollary 3.6, we combine Theorem 2.7 with Proposition 4.6 when α = 1
2+δ, 0 < δ < 1

2 ,

and then α
1−α = 1 + δ

1−2δ .

We are finally ready to prove the local controllability of (BHE) to the eigensolutions of (−∆+ uQ1).

Proposition 4.8. Let Q verify Assumptions III. For every l,m ∈ N∗, there exist R > 0 small and a countable
subset V of R such that, for any u ∈ [−R,R] \ V , the following result is verified. For any T > 0, there exists
δ > 0 such that, for any ψ0 ∈ L2(Ω,R) with

∥ψ0 − ϕul,m∥L2 < δ,

there exists v2 ∈ L2((0, T ),R) such that ψ(T ;ψ0, v), the solution of (BHE) with control v = (u, v2, 0, 0), verifies

ψ(T ;ψ0, v) = Φu
l,m(T ).

Proof. The result is direct consequence of Propositions 2.3 and Corollary 4.7.

4.4 Proof of Main Theorem C: second step

The second step of the proof of Main Theorem C is the following. Consider the problem (BHE) with control
v = (0, 0, v3, 0) and initial state ψ0(x, y) = ψ1

0(x)ψ
2
0(y). Thanks to the separation of variables, the solution ψ of

(BHE) can be decomposed as
ψ(t, x, y) = ψ1(t, x)ψ2(t, y),

where ψ1 and ψ2 are respectively the solutions of the uncoupled equations

(26)

 ∂tψ
1(t, x)− ∂2xψ

1(t, x) + v3(t)Q3(x)ψ
1(t, x) = 0, t ∈ (0, T ), x ∈ (0, 1),

ψ1(t, 0) = ψ1(t, 1) = 0, t ∈ (0, T ),
ψ1(0) = ψ1

0 ,

(27)


∂tψ

2(t, y)− ∂2yψ
2(t, y) = 0, t ∈ (0, T ), y ∈ (0, 1),

ψ2(t, 0) = ψ2(t, 1) = 0, t ∈ (0, T ),
ψ2(0) = ψ2

0 .

Notice that (26) is just a one-dimensional heat equation in the presence of a bilinear control, while the second
is a free dynamics. Before proceeding with the proof of Main Theorem C, we need to recall the following local
controllability result for the problem (26) ensured in [3] (see [3, Section 5.1]).

Proposition 4.9 ([3]). Let Q3(x) be such that, for fixed j ∈ N∗, there exist C > 0 and p ≥ 5/2 such that∣∣⟨sin(kπx), Q3 sin(jπx)
〉
L2(0,1)

∣∣ ≥ C

kp
, ∀k ∈ N∗.

The problem (26) is locally controllable to the j-th eigensolution of the one-dimensional Dirichlet Laplacian −∂2x
in any time T > 0. In other words, there exists δ > 0 such that, for any ψ1

0 ∈ L2((0, 1),R) with

∥ψ1
0 −

√
2 sin(jπy)∥L2 < δ,

there exists a control v3 ∈ L2((0, T ),R) such that ψ1(T ;ψ1
0 , v3), the solution of (26), verifies

ψ1(T ;ψ1
0 , v3) = e−j2π2T

√
2 sin(jπy).
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We finally have all the ingredients to conclude the proof of Main Theorem C.

Proof of Main Theorem C. We prove the statement when l,m = 1 but the general case can be proved equiv-
alently. Let B be the neighbourhood of

√
2 sin(πx) ensured by Proposition 4.9 and V the countable set from

Proposition 4.8. For every t > 0, we know

µu
1

|u|→0−−−−→ π2,

e−(µu
1−π2)tfu1 (x)

|u|→0−−−−→
L2

√
2 sin(πx),

thanks to Proposition 4.2 and Proposition 4.4. Let T1 = T2 = T
2 . We consider R > 0 sufficiently small so that

Proposition 4.8 is satisfied and at the same time e−(µu
1−π2)T

2 fu1 (x) belongs to B for u ∈ [−R,R]\V . Proposition
4.8 yields the existence of δ such that, for any ψi ∈ L2(Ω,R) with

∥ψi − ϕu1,1∥L2 < δ,

there exists a control v2 ∈ L2((0, T1),R) such that, for w1 = (u, v2, 0, 0), we have

ψ(T1;ψi, w1) = Φu
1,1(T1)

Now, we observe that

Φu
1,1(T1) = e−λu

1T1fu1 (x)
√
2 sin(πy) = e−π2T1e−(µu

1−π2)T1fu1 (x)e
−π2T1

√
2 sin(πy).

The local controllability of (26) from Proposition 4.9 yields the existence of v3 ∈ L2((0, T2),R) such that

ψ1(T2; e
−(µu

1−π2)T1fu1 (x), v3) = e−π2T2
√
2 sin(πx)

and the linearity yields

ψ1(T2; e
−µu

1T1fu1 (x), v3) = e−π2T1ψ1(T2; e
−(µu

1−π2)T1fu1 (x), v3)

= e−π2T1e−π2T2
√
2 sin(πx) = e−π2(T1+T2)

√
2 sin(πx).

At the same time, ψ2(T2; e
−π2T1

√
2 sin(πy)), the solution of (27) with initial state e−π2T1

√
2 sin(πy), satisfies

ψ1(T2; e
−π2T1

√
2 sin(πy)) = e−π2T2e−π2T1

√
2 sin(πy) = e−π2(T1+T2)

√
2 sin(πy).

Hence, ψ(T2; Φ
u
1,1, w2), the solution of (BHE) with initial state Φu

1,1 = e−µu
1T1fu1 (x)

√
2 sin(πy) and control

w2 = (0, 0, v3, 0), verifies

ψ(T2; Φ
u
1,1, w2) = ψ1(T2; e

−µu
1T1fu1 (x), v3)ψ

2(T2; e
−π2T1

√
2 sin(πy)) = 2e−π2(T1+T2) sin(πx) sin(πy).

Finally, the proof is ensured with

w = w1(·)1[0,T/2] + w2(· − T/2)1[T/2,T ] =
(
u(·)1[0,T/2], v2(·)1[0,T/2], v3(· − T/2)1[T/2,T ], 0

)
,

which verifies ψ(T ;ψi, w) = ψ(T2;ψ(T1;ψi, w1), w2) = ψ(T2; Φ
u
1,1, w2) = 2e−π2T sin(πx) sin(πy).

Remark 4.10. Notice that Main Theorem C ensures the exact controllability with 3 controls, but it is actually
possible to obtain the result with only 2 of them. Indeed, its proof shows that u1 vanishes in the second part of
the dynamics, while u3 vanishes in the first one. Hence, the result can be proved with 2 controls when Q1 also
plays the role of the potential Q3, i.e. Q1 satisfies the fifth point of Assumptions III. An example of control
potential Q verifying Assumptions III is Q = ((3x2 − 1), x2y2, (3x2 − 1), 1) (see Remark 4.1), nevertheless the
same controllability can be ensured also with the potential Q = ((3x2 − 1), x2y2, 0, 1).

Proof of Corollary 1.5. The property follows from Main Theorem C exactly as Corollary 1.1 from Main Theorem
A.
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A Some perturbation theory proofs

This appendix introduces all the technical proofs of the perturbation theory results stated in Section 4.2. We
recall the operator Au = −∂2x + uQ1 defined in D(Au) := H2((0, 1),R)∩H1

0 ((0, 1),R). For every 0 ≤ s ≤ 2p−1
2 ,

we introduce the spaces D(|Au| s2 ) equipped with the norm
∥∥|Au| s2 ·

∥∥
L2(0,1)

. Notice that D(|Au| s2 ) ≡ D(|A0| s2 ),
however, we need to ensure the equivalence of the two corresponding norms.

Proposition A.1. Let Q verify Assumptions III and 0 ≤ s ≤ p1 − 2. There exist R,C1, C2 > 0 such that, for
every u ∈ [−R,R], we have

C1

∥∥∥|A0| s2 ·
∥∥∥
L2(0,1)

≤
∥∥∥|Au| s2 ·

∥∥∥
L2(0,1)

≤ C2

∥∥∥|A0| s2 ·
∥∥∥
L2(0,1)

.

Proof. We start by proving the existence of C > 0 such that
∥∥∥| − ∂2x + uQ1|

s
2 ·
∥∥∥
L2(0,1)

≤ C
∥∥∥| − ∂2x|

s
2 ·
∥∥∥
L2(0,1)

.

When s = 0, the statement is trivial. If s = 2, then∥∥∥| − ∂2x + uQ1| ·
∥∥∥
L2(0,1)

≤
∥∥∥| − ∂2x| ·

∥∥∥
L2(0,1)

+ |u| ∥Q1∥H1(0,1)

∥∥∥ · ∥∥∥
L2(0,1)

≤ C
∥∥∥| − ∂2x| ·

∥∥∥
L2(0,1)

.

In general, as soon as s ∈ 2N∗, we have the existence of C1, C2 > 0 such that∥∥∥| − ∂2x + uQ1|
s
2 ·
∥∥∥
L2(0,1)

≤ C1

(
1 + |u| s2

)(
1 + ∥Q1∥

s
2

Hs−1(0,1)

)∥∥∥| − ∂2x|
s
2 ·
∥∥∥
L2(0,1)

≤ C2

∥∥∥| − ∂2x|
s
2 ·
∥∥∥
L2(0,1)

.

Notice that in the last relation, we used the regularity hypothesis on Q1 ensured by Assumptions III. Indeed,
the fourth point of Assumptions III yields that Q1 ∈ Hs((0, 1),R) and the operator ψ ∈ D(| − ∂2x|

s
2 ) 7−→ Q1ψ ∈

D(| − ∂2x|
s
2 ) since Q′

1 ∈ D(| − ∂2x|
s−2
2 ). Classical interpolation arguments (see for instance the proof of [13,

Lemma 1]) imply the validity of the relation also for s ̸∈ 2N∗ and there exists C3 > 0 such that∥∥∥| − ∂2x + uQ1|
s
2 ·
∥∥∥
L2(0,1)

≤ C3

∥∥∥| − ∂2x|
s
2 ·
∥∥∥
L2(0,1)

.

The opposite inequality follows by using the same strategy with the decomposition−∂2x = (−∂2x+uQ1)−uQ1.

We are finally ready to provide the proof of Proposition 4.4.

Proof of Proposition 4.4. Point 1. We consider (ruk )k∈N∗ such that µu
k = k2π2 + ruk introduced by Proposition

4.2. The map

u ∈ R 7−→ rul − run = u

∫ 1

0

〈
(f tul )2 − (f tun )2, Q1(x)

〉
L2dt =

∫ u

0

〈
(f tl )

2 − (f tn)
2, Q1(x)

〉
L2dt ∈ R

is an analytic function for every l, n ∈ N∗ and its derivative is w.r.t. u is

gul,n =
〈
(ful )

2 − (fun )
2, Q1(x)

〉
L2 .

Since (f0l )
2−(f0n)

2 = sin2(lπx)−sin2(nπx) = 1
2 (cos(2nπx)− cos(2lπx)), the first point of Assumption III yields

g0l,n ̸= 0, ∀l, n ∈ N∗, l ̸= n.

Now, we notice that gul,n is also the derivative of the analytic map u ∈ R 7−→ λul −λun which is then non-constant
for every l, n ∈ N∗. Its zeros form a discrete subset Vl,n of R and V :=

⋃
l,n∈N∗ Vl,n is countable. Thus, for every

u ̸∈ V , the spectrum is simple. Thanks to (24), we know rul = O(|u|)O(1/k) and, for any u ∈ [−R,R] with
sufficiently small R, we have |rul | < π2

4 for every l ∈ N∗. This last identity and Proposition 3.2 implies that

λuj+nj
− λuj = O(

√
j), ∀j ∈ N∗.

The same approach adopted in the proof of Proposition 3.3 leads to the property

inf
j∈N∗

√
λuj+nj

−
√
λuj > 0.

Now, we refer to the theory developed in [20] where the authors show that the distance between the eigenvalues
of different self-adjoint Laplacian operators is at most polynomially decreasing when it is different from 0 (see
for instance [20, Section 4]). Such results and the simplicity of the perturbed spectrum show the existence of
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p ∈ N∗, depending only on the perturbation uQ1, such that |rul − rul+1| = O(1/lp) for every l ∈ N∗. Proposition
4.3 and (3) yield

|λul+1 − λul | = |rul+1 − rul | = O
( 1

lp

)
= O

(
1(√
λul+1

)p
)
.

The first point of the proposition follows, since
∣∣√λul+1 −

√
λul
∣∣ = O

(
λu
l+1−λu

l√
λu
l

)
.

Point 2. Notice now that ϕuj (x, y) = fuj (x)
√
2 sin(πy). The second statement follows from the analyticity of

the map u ∈ R 7−→ fuj ∈ L2((0, 1),R) ensured by Proposition 4.2.

Finally, we want to prove Proposition 4.5, but some intermediate results are required. Notice that the
following part of the appendix rephrases the theory presented in [17, Appendix B] but we develop it anyway for
the sake of completeness.

Lemma A.2. Let Q satisfy Assumptions III and Π⊥
k be the projector onto the orthogonal space of f0k . There

exists R > 0 such that, for every u ∈ [−R,R], the operator

(−∂2x + uΠ⊥
k Q1 − µu

k)Π
⊥
k

is invertible with bounded inverse from Π⊥
k D(A0) to Π⊥

k L
2((0, 1),R) for every k ∈ N∗. In addition, there exists

a family of uniformly bounded operators Ok in L(Π⊥
k L

2((0, 1),R),Π⊥
k L

2((0, 1),R))) such that

((−∂2x + u0Π
⊥
k Q1 − µu

k)Π
⊥
k )

−1 := ((−∂2x − µu
k)Π

⊥
k )

−1Ok.

The operators Ok are also uniformly bounded in L(Π⊥
k D(|A0|

p1−2
2 ),Π⊥

k D(|A0|
p1−2

2 )) with p1 defined in Assump-
tions III. Finally, there exists C > 0 such that

∥((−∂2x + u0Π
⊥
k Q1 − µu

k)Π
⊥
k )

−1∥L(Π⊥
k L2) ≤

C

k
, ∀k ∈ N∗.

Proof. Let us consider R > 0 sufficiently small so that |µu
k −µ0

k| < π2 for every k ∈ N∗ thanks to the analyticity
of the spectrum stated by Proposition 4.2. The operator −∂2x − µu

k is invertible with bounded inverse when it
acts on Π⊥

k L
2((0, 1),R) and u is sufficiently small. If R < π2/∥Q1∥L(L2), then

∥ − uΠ⊥
k Q1((−∂2x − µu

k)Π
⊥
k )

−1∥L(Π⊥
k L2) ≤ |u|∥Q1∥L(L2)

1

min
{
|µ0

k+1 − µu
k |, |µu

k − µ0
k−1|

} ≤
|u|∥Q1∥L(L2)

π2
< 1.

Then, the corresponding Neumann series converges and the linear bounded operator

Ok :=

∞∑
n=0

(
− uΠ⊥

k Q1((−∂2x − µu
k)Π

⊥
k )

−1
)n

= (Id+ uΠ⊥
k Q1((−∂2x − µu

k)Π
⊥
k )

−1)−1

is well-defined. This property implies that (−∂2x + u0Π
⊥
k Q1 − µu

k)Π
⊥
k is invertible, since

((−∂2x + u0Π
⊥
k Q1 − µu

k)Π
⊥
k )

−1 = ((−∂2x − µu
k)Π

⊥
k )

−1Ok.

Notice that the multiplication operator w.r.t. Π⊥
k Q1, not only belongs to the space

L(Π⊥
k L

2((0, 1),R),Π⊥
k L

2((0, 1),R)), but also to L(Π⊥
k D(|A0|

p1−2
2 ,Π⊥

k D(|A0|
p1−2

2 )).

This property is due to the regularity hypothesis on Q1 stated by the fourth point of Assumptions III and, then,
the family of operators (Ok)l∈N∗ is uniformly bounded in such spaces. Finally, there exists C > 0 such that

∥((−∂2x + u0Π
⊥
k Q1 − µu

k)Π
⊥
k )

−1∥L(Π⊥
k L2) ≤ ∥((−∂2x − µu

k)Π
⊥
k )

−1∥L(Π⊥
k L2)∥Ok∥L(L2)

≤
∥Ok∥L(L2)

min
{
|µ0

k+1 − µu
k |, |µu

k − µ0
k−1|

} ≤ C

k
.

Lemma A.3. Let (Bl)l∈N∗ be a family of uniformly bounded operators in L(D(|A0| s2 , D(|A0| s2 )) with s > 0.
Let j ∈ N∗. There exists C > 0 such that

|⟨f0k , Bkf
0
j ⟩L2 | ≤ C

ks
, |⟨f0k , Bjf

0
j ⟩L2 | ≤ C

ks
, ∀k ∈ N∗.
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Proof. Let us prove the result when j = 1. The general case equivalently follows. The two inequalities follow
from the existence of C > 0 such that, for every k ∈ N∗,

sup
l∈N∗

|ks⟨f0k , Blf
0
1 ⟩L2 |2 ≤ sup

l∈N∗

∑
m∈N∗

|ms⟨f0m, Blf
0
1 ⟩L2 |2 ≤ sup

l∈N∗
∥Blf

0
1 ∥2D(|A0|

s
2 )

≤ C.

The last relation implies supl∈N∗ |⟨f0k , Blf
0
1 ⟩L2 | ≤ C

ks for every k ∈ N∗ which yields the result.

For every u ∈ R, we decompose the perturbed eigenfunction of the operator Au as follows

fuk = akf
0
k + ηk

defined with Π⊥
k f

u
k = ηk and ak some normalizing constant for every k ∈ N∗.

Lemma A.4. Let Q satisfy Assumptions III. There exists R > 0 such that, for every u ∈ [−R,R], we have

ηk = −ak((−∂2x + uΠ⊥
k Q1 − µu

k)Π
⊥
k )

−1uΠ⊥
k Q1f

0
k

and there exists C > 0 such that

∥ηk∥L2 ≤ C

k
|u|.

Finally, the coefficients ak are such that supk∈N∗ |ak|
u→0−−−→ 1.

Proof. By definition, we know that µu
kf

u
k = (−∂2x + uQ1)(akf

0
k + ηk) and

akµ
u
kf

0
k + µu

kηk = −ak∂2xf0k − ∂2xηk + akuQ1f
0
k + uQ1ηk.

By projecting onto the orthogonal space of f0k , we obtain

µu
kηk = −∂2xηk + akuΠ

⊥
k Q1f

0
k + uΠ⊥

k Q1ηk.

Now, Lemma A.2 ensures that (−∂2x + uΠ⊥
k Q1 − µu

k)Π
⊥
k is invertible with bounded inverse and

(28) ηk = −uak((−∂2x + uΠ⊥
k Q1 − µu

k)Π
⊥
k )

−1Π⊥
k Q1f

0
k .

Clearly, the coefficients ak are uniformly bounded and the existence of there exists C > 0 such that

∥ηk∥L2 ≤ C

k
|u|

follows from Proposition A.2. Finally, this property ensures that supk∈N∗ |ak|
u→0−−−→ 1.

We are finally ready to prove Proposition 4.5.

Proof of Proposition 4.5. Let us prove the result when j = 1. The general case is proved equivalently. Let us
start by using the third point of Assumptions III in the following decomposition:

|⟨fuk , Q1
2f

u
1 ⟩L2 | = |⟨akf0k + ηk, Q

1
2(a1f

0
1 + η1)⟩L2 |

≥ C
aka1
kp1

−
∣∣ak⟨f0k , Q1

2η1⟩L2 + a1⟨ηk, Q1
2f

0
1 ⟩L2 + ⟨ηk, Q1

2η1⟩L2

∣∣.(29)

We want to prove ∣∣ak⟨f0k , Q1
2η1⟩L2 + a1⟨ηk, Q1

2f
0
1 ⟩L2 + ⟨ηk, Q1

2η1⟩L2

∣∣ = O
( 1

kp1

)
O(u).

To this purpose, we start by studying
⟨f0m, Q1

2ηl⟩L2

for every l ̸= m. We use Lemma A.3 and Lemma A.4 as follows

⟨f0m, Q1
2ηl⟩L2 = −⟨f0m, Q1

2al((−∂2x + uΠ⊥
l Q1 − µu

l )Π
⊥
l )

−1uΠ⊥
l Q1f

0
l ⟩L2

= −alu⟨Π⊥
l Q

1
2f

0
m, ((−∂2x − µu

l )Π
⊥
l )

−1OlΠ
⊥
l Q1f

0
l ⟩L2

= −alu⟨((−∂2x − µu
l )Π

⊥
l )

−1Π⊥
l Q

1
2f

0
m, OlΠ

⊥
l Q1f

0
l ⟩L2 .

(30)
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Now, we notice that

((−∂2x − µu
l )Π

⊥
l )

−1Π⊥
l Q

1
2f

0
m = Π⊥

l Q
1
2((−∂2x − µu

l )Π
⊥
l )

−1f0m −
[
Π⊥

l Q
1
2, ((−∂2x − µu

l )Π
⊥
l )

−1
]
f0m

= Π⊥
l Q

1
2((−∂2x − µu

l )Π
⊥
l )

−1f0m

+ ((−∂2x − µu
l )Π

⊥
l )

−1
[
Π⊥

l Q
1
2,−∂2x

]
((−∂2x − µu

l )Π
⊥
l )

−1f0m

=
1

µ0
m − µu

l

(
Π⊥

l Q
1
2 + ((−∂2x − µu

l )Π
⊥
l )

−1Π⊥
l

[
Q1

2,−∂2x
])
f0m.

(31)

Let us denote Ml the uniformly bounded operators in L(D(|A0|
p1−2

2 ), D(|A0|
p1−2

2 )) such that

Ml :=
(
Π⊥

l Q
1
2 + ((−∂2x − µu

l )Π
⊥
l )

−1Π⊥
l

[
Q1

2,−∂2x
])

By using together (30) and (31), we obtain

⟨f0m, Q1
2ηl⟩L2 = − alu

µ0
m − µu

l

⟨Tlf0m, f0l ⟩L2

where Tl := (OlΠ
⊥
l Q1)

∗Ml are uniformly bounded operators in L(D(|A0|
p1−2

2 ), D(|A0|
p1−2

2 )), and then

⟨f0k , Q1
2η1⟩L2 = − a1u

µ0
k − µu

1

⟨T1f0k , f01 ⟩L2 ,

⟨ηk, Q1
2f

0
1 ⟩L2 = ⟨Q1

2ηk, f
0
1 ⟩L2 = − aku

µ0
1 − µu

k

⟨T ∗
k f

0
k , f

0
1 ⟩L2 .

(32)

Now, we can prove with the same strategy the existence of suitable uniformly bounded operators T̃k in

L(D(|A0|
p1−2

2 ), D(|A0|
p1−2

2 )) such that the following identity is verified

⟨ηk, Q1
2η1⟩L2 = − aka1u

2

µ0
1 − µu

k

⟨T̃kf0k , f01 ⟩L2 .(33)

We recall that, thanks to Proposition 4.3, we have µu
k ∼ µ0

k = π2k2. We finally use together (32) and (33) in
(29). Thanks to Assumptions I, there exists C1 > 0 such that

|⟨fuk , Q1
2f

u
1 ⟩L2 | ≥ C

kp1
− C1|u|

k2

∣∣∣⟨T1f0k , f01 ⟩L2 + ⟨T ∗
k f

0
k , f

0
1 ⟩L2 + u⟨T̃kf0k , f01 ⟩L2

∣∣∣
Finally, Lemma A.4 allows us to consider R > 0 sufficiently small so that supl∈N∗ |al| is close to 1 and Lemma
A.3 yields the existence of C2, C3 > 0 such that

|⟨fuk , Q1
2f

u
1 ⟩L2 | ≥Caka1

kp1
− C2

|u|
k2

1

kp1−2
≥ C3

kp1
.

B Proof of the local bilinear controllability

The aim of this appendix is to ensure Theorem 2.3. However, before proceeding with the proof of the theorem,
we need some intermediate results. We also recall the notation introduced in Section 2.

B.1 A preliminary lemma

Let us first introduce some notation. We set Tf = min(T, π
2

6 ,
π2

6 T0), and T1 = 6
π2Tf ≤ 1. We then introduce a

partition of the time interval [0, T ], given by τ0 = 0 and τn :=
∑n

k=1 Tk, n ∈ N∗, where Tk := k−2T1, k ∈ N.
Note that limn→+∞ τn = Tf . Let n ∈ N and vn ∈ L2(τn−1, τn). We denote by η(·; ηn−1, τn−1, vn) the unique
solution of

(34)

{
η′(t) +Aη(t) + vn(t)B(η(t) + ϕj) = 0, t ∈ (τn−1, τn),

η(τn−1) = ηn−1,

with ηn = η(τn; ηn−1, τn−1, vn). We shall also denote by ξ(·; ηn−1, τn−1, vn) the unique solution of

(35)

{
ξ′(t) +Aξ(t) + vn(t)Bϕj = 0, t ∈ (τn−1, τn),

ξ(τn−1) = ηn−1.
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We may remark that ζ := η(·; η0, 0, v1)− ξ(·; η0, 0, v1) satisfies

(36)

{
ζ ′(t) +Aζ(t) + vn(t)Bη(t) = 0, t ∈ (τn−1, τn),

ζ(0) = 0.

Moreover, if as vn is a null-control for the linear system (35), then ζ(τn) = η(τn; ηn−1, τn−1, vn).

Finally, we set Γ0 > 0 sufficiently large so that the following inequality is satisfied

(37) K(T ) +N(T ) ≤ e
Γ0
Tγ ,

where N(T )2 := ||B||2K(T )2e(4σ+||B||+1)T+2||B||
√
T (1 + ||B||K(T )2). We prove the following lemma.

Lemma B.1. There exists α > 1 such that for any η0 ∈ X satisfying ||η0||X ≤ e
−α

Γ0
T

γ
1 , for any n ∈ N∗, there

exists vn ∈ L2(τn−1, τn) such that

1. ||vn||L2(τn−1,τn) ≤ K(Tn)||ηn−1||X

2. ξ(τn; ηn−1, τn−1, vn) = 0

3. ||η(τn; ηn−1, τn−1, vn)||X ≤ Πn
j=1N(Tj)

2n−j ||η0||2
n

X .

Proof. The two first items comes from the null controllability of the linear system, on the time interval (τn−1, τn)
of length Tn, n ∈ N∗. Let us prove the third item by induction. Assume first n = 1. We moreover have by
hypothesis

K(T1)||η0|| ≤ K(T1)e
−α

Γ0
T

γ
1 ≤ e

(1−α)
Γ0
T

γ
1 ≤ 1,

assuming α > 1. We then may apply [3, Proposition 2.4] for system (36) to obtain

||η(τ1; η0, 0, v1)||X = ||ζ(T1)||X ≤ N(T1)||η0||2X .

Now assume that the three items holds for any k ∈ {1, . . . , n−1}. Then, by the null-controllability of the linear
system, there exists vn ∈ L2(τn−1, τn) such that ξ(τn; ηn−1, τn−1, vn) = 0, with estimate

||vn||L2(τn−1,τn) ≤ K(Tn)||η(τn−1; ηn−2, τn−2, vn−1)||X .

Moreover, by induction hypothesis,

K(Tn)||ηn−1|| ≤ e
Γ0
T

γ
n ||ηn−1|| ≤ e

Γ0
T

γ
n Πn−1

k=1N(Tk)
2n−1−k

||η0||2
n−1

X

≤ exp

 Γ0

T γ
1

n∑
j=k

2n−1−kk2γ

 ||η0||2
n−1

X .

Yet assuming ||η0||X ≤ e
−α

γ0
T

γ
1 , we deduce

K(Tn)||ηn−1|| ≤ exp

(
Γ02

n

T γ
1

(
n∑

k=1

2−(1+k)k2γ − α

2

))
≤ 1,

for α ≥
∑+∞

k=1 2
−(1+k)k2γ . As a result, applying [3, Proposition 2.4] for system (36), we obtain

||η(τn; ηn−1, τn−1, vn)||X ≤ N(Tn)||ηn−1||2X .

Using the induction hypothesis, we deduce

||η(τn; ηn−1, τn−1, vn)||X ≤ Πn
k=1N(Tk)

2n−k

||η0||2
n

X ,

and this ends the proof.
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B.2 Proof of Theorem 2.3

We are now ready to proceed to the proof of Theorem 2.3. Recalling (12):

(38)

{
φ′(t) +Aφ(t) + v(t)Bφ(t) = 0, t > 0,
φ(0) = φ0 ∈ X,

for some control v ∈ L2(0, Tf ). We first assume that j = 1 and λ1 = 0. Note that in this case, ϕ1 = Φ1. We

take v(t) :=
∑+∞

k=0 1[τk−1,τk)(t)vk(t), where vk ∈ L2(τk−1, τk) is given by Lemma B.1 with η0 = φ0. Hence, the
difference η := φ−ϕ1 between the solution and the target satisfies (34). Note that for any n ∈ N,, t ∈ [τn−1, τn],
η(t) = ηn(t). From Lemma B.1, we deduce for any n ∈ N,

(39) ||φ(τn)− ϕ1||X ≤ Πn
k=1N(Tk)

2n−j

||φ0 − ϕ1||2
n

X .

Yet, by (37), for any n ∈ N∗

N(Tj)
2n−j

≤ exp

(
Γ02

n

T γ
1

n∑
k=1

2−k

)
≤ exp

(
π2Γ02

n

6T γ
1

)
.

Assuming ||φ0 − ϕ1||X ≤ exp
(
−α γ0

Tγ
1

)
, we deduce from (39),

||φ(τn)− ϕ1||X ≤ exp

((
1− 6α

π2

)π2Γ02
n

6T γ
1

)
.

by choosing α > 6
π2 , and letting n to infinity, we obtain φ(Tf ) = 0. This ends the proof in the case λ1 = 0.

Now assume j = 1 and λ1 ̸= 0. Then, Φ1(t) = e−tλ1ϕ1. Let us define z(t) := etλ1φ(t) and it satisfies

(40)

{
z′(t) +A1z(t) + v(t)Bz(t) = 0, t > 0,
z(0) = φ0 ∈ X,

where A1 = A− λ1I. Its first eigenpair is given by (λ̃1, ϕ̃1) = (0, ϕ1). We now see immediately (see [2, Lemma
4.1], [3, Proof of Theorem 1.2]) that the operator A1 satisfies all the requested properties to use the above
arguments to prove that there exists T0 > 0 such that for any T ∈ (0, T0], there exists RT > 0 and v ∈ L2(0, T )
such that z(T ) = ϕ1. This implies

0 = ||z(T )− ϕ1||X = ||e−Tλ1z(T )− e−Tλ1ϕ1||X = ||φ(T )− Φ1(T )||X .

Finally, when j > 1, we can proceed as above by considering z(t) := etλjφ(t) and Aj = A − λjI. The same
arguments previously adopted end the proof.
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