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ABSTRACT: An extended inventory of 82 well‐dated European calcareous tufas is used to discuss the timing and
amplitude of their onset, maximum and decline; in particular differences from east to west and between the
Mediterranean area and the rest of Europe. Eastern deposits start to develop and reach their maximum slightly earlier
than western tufas. Strong east–west differences in the timing and intensity of the climatic improvement during the first
half of the Holocene explain the earlier development of eastern tufas compared with the west. The strongest differences
are observed between Mediterranean deposits and other European tufas both in their development and decline, whether
all or only fluvial deposits are considered, reflecting the important decoupling between Mediterranean and mid‐latitude
climate records. During the Late Holocene, the earlier and more pronounced tufa decline observed in European
mid‐latitudes is likely to result from more intense and rapid deforestation compared with the Mediterranean region.
© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.
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Introduction
Calcareous tufas are one of the few continental archives that
can provide a true synergistic and independent record of both
palaeoenvironmental (including physical, faunal and floral
changes) and palaeoclimatic information (especially from calcite
stable isotopes), while they can also be precisely and objectively
dated (Andrews, 2006; Pedley, 2009; Capezzuoli et al., 2014;
Dabkowski, 2014). This has led to a growing research interest in
these open‐air carbonate deposits in recent decades, reflected in
a rapidly increasing number of publications, especially on
Holocene tufas as they are more abundant and better preserved
than older deposits. A recent review of this literature has fostered
a detailed discussion of the widely debated postulate of a ‘Late
Holocene tufa decline’ in Europe (Goudie et al., 1993) and has
demonstrated that this is actually a general view of a rather
complex trend: while fluvial tufas show a systematic decline
from ca. 5 ka cal. BP, there is no general trend in the evolution
of proximal (spring‐fed) or lacustrine tufas (Dabkowski, 2020).
This feature is likely to reflect the increasing impact of human
activities on landscapes as several authors have noted a
chronological concordance between the onset of the tufa
decline and the beginning of the Bronze Age, when deforesta-
tion, pastoralism and river management rapidly increased
(Alexandrowicz and Skoczylas, 2017; González‐Amuchastegui
and Serrano, 2015a; Lippmann and Vernet, 1986; Taylor
et al., 1998; Vaudour, 1994, 1986); these activities might affect
fluvial systems more systematically than other types of deposit
(Antoine et al., 2002; Dabkowski, 2020; Pastre et al., 2001).
The sensitivity of calcareous tufas to climatic changes

has also long been demonstrated as they develop preferentially
during interglacials (Pentecost, 1995, 1993) and can be used
as markers of temperate and/or humid periods, especially in

semi‐arid areas (Butzer et al., 1978; Dabkowski et al., 2022;
Delgado Castilla, 2009; Hamdan and Brook, 2015; Ni-
cod, 2000; von der Meden et al., 2022). The previous review
also showed (but did not discuss in detail) that tufa deposits in
Europe do not start developing synchronously with the increase
in temperatures and precipitation at the beginning of the
Holocene: a few sites are even assigned to the Lateglacial,
before their number rapidly increased during the Early
Holocene (Dabkowski, 2020). Furthermore, although the wide-
spread distribution of calcareous tufas at temperate latitudes,
especially in areas with carbonate bedrock, has long been
established (Ford and Pedley, 1996; Pentecost, 2005, 1995),
possible changes in this distribution through time have received
little or no attention. However, the effects of Holocene climatic
changes on local/regional environments and climates have
shown different dynamics and intensities across Europe (Horsák
et al., 2020; Mauri et al., 2015; McDermott et al., 2011), which
may lead to regional differences in the timing of tufa
development.
In this paper, we propose to cross‐reference both chron-

ological and spatial data on the Holocene distribution of
calcareous tufas. Using the updated inventory of well‐dated
deposits (Dabkowski, 2020), differences across Europe in the
timing and intensity of the tufa onset and decline during the
Holocene will be investigated.

Tufa distribution in Europe during the
Holocene: an updated inventory
Data summarised here were collected from 97 references
(journal articles, previous reviews, books, technical reports,
etc; Table 1). Only publications with strong chronological
information (from radiometric dating or biostratigraphy) were
included. Compared with Dabkowski (2020), 17 scientific
papers were added, eight of which were published after the
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Table 1. List of sites and related bibliography included in this review. Sites are first classified by country (in alphabetical order of their ISO3161‐1
alpha‐2 code) then by alphabetical order of the site main name. Sites marked by an asterisk are new compared with the previous review by
Dabkowski (2020).

AT: AUSTRIA
St Magdalena Fritz, 1976
BE: BELGIUM
Annevoie‐Rouillon Geurts, 1976/Quinif, 2012/Paepe, 1965
Buzenol Couteaux, 1969
Ethe (La Source du Cron) Vaudour, 1986/Couteaux, 1969
Orval Abbaye Couteaux, 1969
Treignes Mullenders et al., 1963/Geurts, 1976/Vaudour, 1986/Janssen and Swennen, 1997
Vierset‐Barse (Houyoux valley) Geurts, 1976/Franco et al., 2008
Villiers‐Devant‐Orval (Le Chameleux) Vaudour, 1986/Paepe et al., 1970/Souchez and Paepe, 1972/Geurts, 1976/Pazdur and

Pazdur, 1990/Janssen and Swennen, 1999
BY: BELARUS
Ptich Makhnach et al., 2004
CZ: CZECHIA
Svaty Jan pod Skalou Žák et al., 2002
DE: GERMANY
Bad Laer Hiltermann, 1977
Ammer river* Heidgen et al., 2020
EE: ESTONIA
Lake Ӓntu Sinijӓrv Laumets et al., 2014
Varangu Kalm & Sohar, 2010/Sohar & Meidla, 2010
ES: SPAIN
Alcaraz Andrews et al., 2000/Taylor et al., 1998
Añamaza* Luzón et al., 2011; Sancho et al., 2015
Ebrón* Sancho et al., 2015
Galera* Wolf et al., 2021; Wackenheim et al., 2023
Laguna Redondilla Andrews et al., 2000
Mesa* Sancho et al., 2015
Molinar valley González‐Amuchastegui and Serano, 2015a, 2015b
Piedra* Sancho et al., 2015
Purón valley González‐Amuchastegui and Serano, 2015a, 2015b
Queiles valley (Moncayo Natural Park) Aranbarri et al., 2016
Sedanillo valleyy González‐Amuchastegui and Serano, 2015a, 2015b
Tubilla del aqua González‐Amuchastegui and Serano, 2015a, 2015b
Val valley Aranbarri et al., 2016
FR: FRANCE
Calais coastal plain (several sites including Guînes) Sommé, 2006/Van der Woude and Roeleveld, 1985
Clénay (vallée de la Norges) Clair et al., 1972
Daours Limondin‐Lozouet et al., 2013
Jouques Vaudour, 1994/Ollivier et al., 2006/Nicod, 2010/Nicol‐Pichard, 1986
La Vis Ambert, 1986/Vaudour, 1986
Meyrargues (Grand Vallat) Vaudour, 1994/Ollivier et al., 2006/Nicod, 2010/Magnin et al., 1990
Pont‐de‐Joux Vaudour, 1994/Ollivier et al., 2006/Nicod, 2010/Bonifay, 1986
Saint Gilhem le Désert Ambert, 1986
Saint‐Antonin Vaudour, 1994/Ollivier et al., 2006/Nicod, 2010/Guendon and Vaudour, 1981/Guendon

et al., 2003/Ali et al., 2003
Saint‐Germain‐le‐Vasson Limondin and Preece, 2004/Limondin‐Lozouet et al., 2005
Scarpe valley (Hamblain‐les‐Prés) Sommé, 2006/Emontspohl, 1994
St Momelin Sommé, 2006/Van der Woude and Roeleveld, 1985
Vauvenargues Vaudour, 1994/Ollivier et al., 2006/Nicod, 2010/Del Giovine, 1986/Magnin and Thinon, 1988
GB: GREAT BRITAIN
Alport (Lathkill valley) Andrews et al., 1994
Caerwys Garnett et al., 2006
Inchrory (Scotland) Preece et al., 1984/Faulkner and Brazier, 2016
Wateringsbury Garnett et al., 2004
HR: CROATIA
Krka Horvatinčić et al., 2000
Plitvice Roglic, 1977/Srdoč, 1985/Srdoč et al., 1980, 1994/Horvatinčić et al., 2000
Zrmanja* Barešić et al., 2021
IT: ITALY
Le Marmore* Calderini et al., 1998
Paestum Lippman and Vernet, /Amato et al., 2009
Pecora river* Pieruccini et al., 2021
Triponzo Fubelli et al., 2013/Vinken, 1968
Velino river* Soligo et al., 2002
LU: LUXEMBOURG
Direndall Meyrick, 2000/Dabkowski et al., 2015/Granai et al., 2020
Loschbour Gob et al., 1984/Brou et al., 2014

(Continued )
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2020 review, i.e. in the last three years (Apolinarska
et al., 2022, 2023; Barešić et al., 2021; Gałka et al., 2021;
Heidgen et al., 2020; Pieruccini et al., 2021; Wackenheim
et al., 2023; Wolf et al., 2021), while the nine others were
mostly published in the last decade (Calderini et al., 1998;
Dobrowolski et al., 2019; Gałka et al., 2018; Ged-
da, 2001, 2006; Gedda et al., 1999; Luzón et al., 2011; Sancho
et al., 2015; Soligo et al., 2002), confirming the strong and
growing research interest in tufa deposits.
Nineteen sites from eight different countries across Europe

(Croatia, Germany, Italy, Lithuania, Poland, Romania, Spain
and Sweden) have been added to the original inventory. A total
of 82 inventoried sites are discussed here, representing
16 countries and covering almost the whole of Europe from
Scotland to Spain and Italy and from the Atlantic coast to
Belarus and Estonia (Table 1 and Fig. 1). Only the high
latitudes (i.e. Scandinavia) are not represented in the inventory
(except for a few sites from southern Sweden). Two factors may
explain the apparent absence of tufa deposits in this area: (1) it
corresponds to the Fennoscandian Shield, which consists
mainly of metamorphic gneisses and greenstones and only few
carbonates; and (2) the subarctic climate may be both too cold
and too dry to allow tufa precipitation (Pentecost, 1995).
Among the 19 newly inventoried sites, 10 are fluvial

deposits and the other nine are proximal tufas (spring‐fed
fen), giving a total of 41 intermediate (fluvial) tufas (half of the
entire dataset) and 26 proximal deposits, including spring‐fed
fen and perched spring‐line tufas, as defined by Capezzuoli
et al. (2014). The remaining 15 locations are lacustrine
tufas (Fig. 1).
Figure 2 shows the temporal distribution of the 82 sites

inventoried since the Lateglacial. This extended inventory
reinforces the previous conclusion: after a maximum reached

during the Atlantic, not all tufa deposits are significantly affected
by the Late Holocene tufa decline and only those formed in
fluvial environments (i.e. intermediate) are affected by a strong
decrease from ca. 6–5 ka cal. BP (Dabkowski, 2020). This
dataset also documents the onset of European tufas at the
beginning of the Holocene and even since the Lateglacial at
some fluvial and lacustrine sites (Fig. 2). As the inventoried
deposits are widely distributed across Europe (Fig. 1), the
time distribution of Holocene tufas will now be considered
spatially, comparing western with eastern and northern with
southern data.

East/west comparisons

The 10th meridian was chosen to separate western from eastern
tufas, as it roughly corresponds to the present‐day transition
between the European oceanic and continental climates and
allows the dataset to be divided into two equal groups of
41 sites (Fig. 1 and Tab. 2). In the west, two thirds of the sites
are fluvial deposits (n= 27), whereas they represent only one
third of the eastern tufas (n= 14; Table 2). This disequilibrium
reflects the predominance of fluvial deposits in the most
complete regional surveys from southern France and northern
Spain (González Martín and González‐Amuchastegui, 2014;
González‐Amuchastegui and Serrano, 2015b, 2015a; Ollivier
et al., 2006; Vaudour, 1994) and leads to an overrepresentation
of fluvial tufas in the west compared with the east: two thirds of
all inventoried intermediate tufas are located in the west.
The distribution of eastern and western tufas through time is

shown in Fig. 3. Eastern deposits start to develop during the
Lateglacial and reach a maximum between 9 and 5.5 ka cal. BP,
slightly earlier than the western tufas, whose onset is at ca. 12 ka
cal. BP with a maximum between 7 and 5 ka cal. BP. Afterwards,

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–12 (2024)

Table 1. (Continued )

LV: LATVIA
Raganu* Gałka et al., 2021
PL: POLAND
Bobolice* Dobrowolski et al., 2019
Dolina Eliaszówki Nature Reserve Alexandrowicz and Skoczylas, 2017
Homole Gorge Alexandrowicz, 1996/Alexandrowicz et al., 2016
Komarów Dobrowolski et al., 2016
Krzywice Dobrowolski et al., 2002/Alexandrowicz et al., 1994/Pazdur et al., 2002
Laski Gradziński et al., 2001
Ociemny stream Alexandrowicz et al., 2016/Alexandrowicz and Skoczylas, 2017
Orgatowo* Dobrowolski et al., 2019
Płaśnie Alexandrowicz, 2013/Alexandrowicz et al., 2016
Puszcza Romincka* Apolinarska et al., 2023
Racławka Pazdur et al., 1988/Szulc, 1983
Rudka Dobrowolski et al., 2002/Pazdur et al., 2002
Rzerzusnia Pazdur et al., 1988
Sąspowska valley Alexandrowicz, 1983/Gradziński et al., 2017
Sieradowice Pazdur et al., 1988
Skotnicki stream Alexandrowicz et al., 2016
Sokolica* Dobrowolski et al., 2019
Trzebienice Pazdur et al., 1988
Turtul* Apolinarska et al., 2022
Tylka Alexandrowicz, 2013/Alexandrowicz et al., 2016
Zawadówka Dobrowolski et al., 2005
RO: ROMANIA
Valea Morii* Gałka et al., 2018
SE: SWEDEN
Pipers Mosse* Gedda et al., 1999; Gedda, 2001
Valleröds Mosse* Gedda, 2001; 2006
SK: SLOVAKIA
Háj Gradziński et al., 2013
Hrhov Gradziński et al., 2013
Mituchovci Hájek et al., 2016/Dabkowski et al., 2019

RISE AND DECLINE OF HOLOCENE TUFAS ACROSS EUROPE 3
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the tufas show a relative decline from ca. 6 ka cal. BP in the east
and ca. 5 ka cal. BP in the west. A similar time lag between
the east and the west is observed when only fluvial tufas are
considered. However, the amplitude and rate of change in the
number of tufas are similar between eastern and western
Europe, especially with respect to the Late Holocene decline,
either for all or fluvial‐only deposits (Fig. 3).

North/south comparisons

The following north–south comparisons separate tufas from
the Mediterranean area (i.e. Spain, south‐eastern France, Italy,
Croatia; n= 28) from those from the rest of Europe (n= 54;
Fig. 1 and Table 2), which experience temperate, oceanic to
continental climates. The interest of the scientific community in
tufa deposits in the mid‐latitudes of Europe dates back further,
especially in England, northern France, Belgium and Poland,
as reflected by a greater number of publications since the
1970s (Table 1). This explains why two thirds of the inventoried
sites are from temperate Europe (Table 2). In the Mediterranean
area, fluvial deposits predominate in regional surveys (espe-
cially from Spain and south‐eastern France; González Martín
and González‐Amuchastegui, 2014; González‐Amuchastegui
and Serrano, 2015b, 2015a; Ollivier et al., 2006; Vau-
dour, 1994), which partly explains why three quarters of the
southern sites are riverine tufas (Table 2).
Figure 4 shows the temporal distribution of tufas from

the Mediterranean area compared with that of deposits from

mid‐latitudes in Europe (so‐called ‘south’ and ‘north’, respec-
tively). While the east–west differences were relatively small,
significant discrepancies are observed between Mediterranean
and mid‐latitude tufas in both their development and decline,
whether all or only fluvial deposits are considered: the onset,
maximum and relative decline of tufa deposits are delayed by
several thousand years in the south.
In the temperate mid‐latitudes, tufas start to develop during

the Lateglacial, then their number increases rapidly from ca.
12 ka cal. BP to reach a maximum around 10–9 ka cal. BP up
to ca. 6 ka cal. BP. However, this relatively long phase of
maximum development is interrupted by a short and slight
decrease in the number of sites at the Early–Middle Holocene
transition (ca. 8.5–8 ka cal. BP), both for all and fluvial‐only
deposits (Fig. 4). Thereafter, tufas from the European mid‐
latitudes show a rapid decline between 6 and 4 ka cal. BP,
driven by the strong decrease in the number of fluvial deposits,
which almost disappear around 2.5 ka cal. BP.
It is only after 10 ka cal. BP that tufas develop significantly

in southern Europe, and their number gradually increases to
a maximum between ca. 6.5 and 4 ka cal. BP, at the same
time as the decline observed in the mid‐latitudes (Fig. 4). In
the Mediterranean area, the tufa decline is less pronounced
than in any other part of Europe, even though fluvial
deposits have been predominantly inventoried in this
region (Table 2), and it occurs significantly later: only half
of the (fluvial) tufas stopped depositing between ca. 4 and
2 ka cal. BP (Fig. 4).

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–12 (2024)

Figure 1. Map of all inventoried sites across Europe showing their type (intermediate, proximal, lacustrine) and allocation to the west/east and
north/south groups (see Table 1 and text for details). [Color figure can be viewed at wileyonlinelibrary.com]
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Discussion
Most of the changes (either increases or decreases) observed in
the number of tufa deposits are mainly driven by changes in the
number of the fluvial ones in all considered areas (Figs. 3 and 4).
This emphasises that riverine tufas are more sensitive to
environmental changes, whether induced by climate or human

activities, than proximal (spring) or lacustrine tufas (Dabkowski,
2020). Therefore, only fluvial deposits are mapped in Fig. 5,
where their distribution during the different Holocene sub‐series
is shown (Early, Middle and Late Holocene according to Walker
et al., 2018 and Walker et al., 2012).

An unequal onset from the Lateglacial to the
Middle Holocene

The earliest tufas appear during the Lateglacial, before
they develop more rapidly during the Early Holocene in the
north and especially in the north‐east (Figs. 3 and 4). Thus,
most of the known sites from this period are in England,
Belgium–Luxembourg and Poland, while none are recorded in
the south‐west, e.g. in the Iberian Peninsula (Fig. 5). This
uneven distribution probably reflects differences in the timing
and intensity of the climatic improvement across Europe
during the first half of the Holocene.
Quantified reconstructions of the European climate varia-

bility from 12 ka cal. BP, based on palynological data, show
that mean annual temperatures increased more rapidly at the
beginning of the Holocene in north‐eastern Europe, where
they exceeded pre‐industrial values from ca. 8.5–8 ka cal. BP

(Davis et al., 2003), even though colder conditions may persist
locally in areas close to the remaining Scandinavian ice sheet
(Lauterbach et al., 2010). In the west, temperatures did not
reach pre‐industrial values until ca. 6.5–6 ka cal. BP (Davis
et al., 2003). Furthermore, speleothem records show that
western Europe experienced cooler conditions than the east at
the beginning of the Holocene (McDermott et al., 1999). In
addition, a strong decoupling between Mediterranean and
mid‐latitude climate records is observed: while temperatures
increased rapidly in temperate Europe during the Early
Holocene, the Mediterranean region experienced a much
more gradual warming throughout the Holocene (Davis
et al., 2003; Lionello, 2012; Mauri et al., 2015; McDermott
et al., 1999; New et al., 2000). These differences in the spatial
dynamics of the warming from 12 ka cal. BP partly explain the
dephasing of the onset and maximum of tufa development
across Europe. In particular, the large north–south time lag
(Fig. 4) is consistent with an earlier and stronger warming of
the European mid‐latitudes compared with the Mediterranean
region.

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–12 (2024)

Figure 2. Evolution of the number of all, intermediate, proximal and
lacustrine tufas during the Lateglacial and the Holocene (from 14 ka
cal. BP), modified after Dabkowski (2020) by including 19 additional
sites (Table 1). Abbreviations: All, Allerod; YD, Younger Dryas; PB,
Preboreal; B, Boreal; A, Atlantic; SB, Subboreal; SA, Subatlantic.
[Color figure can be viewed at wileyonlinelibrary.com]

Table 2. West–east and north–south distribution of all inventoried
tufas and of fluvial deposits only.

West East North South

All tufas (n= 82) 41 41 54 28
Fluvial only (n= 41) 27 14 20 21

Figure 3. Evolution of the number of western (W: dark line) and
eastern (E: grey line) tufas during the Lateglacial and the Holocene
(solid line: all sites; dashed line: fluvial deposits). Abbreviations: All,
Allerod; YD, Younger Dryas; PB, Preboreal; B, Boreal; A, Atlantic; SB,
Subboreal; SA, Subatlantic.

Figure 4. Evolution of the number of mid‐latitude (so‐called northern;
N: dark line) and Mediterranean (i.e. southern; S: grey line) tufas
during the Lateglacial and the Holocene (solid line: all sites; dashed
line: fluvial deposits). Abbreviations: All, Allerod; YD, Younger Dryas;
PB, Preboreal; B, Boreal; A, Atlantic; SB, Subboreal; SA, Subatlantic.

RISE AND DECLINE OF HOLOCENE TUFAS ACROSS EUROPE 5
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However, tufa growth (apart from any anthropogenic
disturbance) is mainly influenced by the presence of water
and thus by rainfall/aridity conditions (Capezzuoli et al., 2014;
Pentecost, 2005). Pollen‐based reconstructions of mean annual
(and seasonal) precipitation in Europe show that the beginning
of the Holocene (12–10 ka cal. BP) was characterised by dry
conditions throughout Europe, which persisted until ca. 9 ka
cal. BP, depending on the region (Mauri et al., 2015): Poland
became wetter from 11 ka cal. BP, then wet conditions extended
to central Europe around 8 ka cal. BP and to the south(west)

around 7 ka cal. BP. The wettest period was between 7 and 6 ka
cal. BP for the whole of Europe. These data are consistent with a
slightly earlier development of tufas in eastern than in western
Europe (Fig. 3) and with the wider distribution of inventoried
tufa sites across Europe during the Middle Holocene (Fig. 5).
Water availability can be further assessed by the precipitation
minus evaporation (P‐E) ratio, also reconstructed from palyno-
logical data (Mauri et al., 2015). It indicates conditions of low
moisture across the whole of Europe at the beginning of the
Holocene (around 12–11 ka cal. BP), before a rapid establish-
ment of a west–east gradient between 10 and 7 ka cal. BP, with
drier conditions in south‐western Europe and increased water
availability in the north‐east. In particular, the western
Mediterranean area (i.e. Spain and south‐eastern France) is
characterised by drier conditions throughout the Holocene,
both in terms of precipitation and water availability (P‐E ratio),
and by a weak humidity maximum that was reached later than
in the north, ca. 5 ka cal. BP. These contrasting moisture
conditions are coherent with the time lag observed in the tufa
development and the maximum between the mid‐latitudes and
the Mediterranean region (Fig. 4).
Regional climatic characteristics also result in the variability

of the post‐glacial afforestation of Europe, while the human
influence on vegetation is assumed to be small (Behre, 1988):
the forest cover expanded rapidly from southern, eastern and
central Europe refugial areas to the north and especially to the
west, and its maximum expansion is generally recorded
between 8.5 and 6 ka BP (Brewer et al., 2002; Fyfe et al., 2015;
Zanon et al., 2018), coinciding with the wettest period and the
maximum number of tufa deposits. In addition, only a slight
increase in the forest cover density has been reported for
the Mediterranean region from the Lateglacial to the Middle
Holocene (Zanon et al., 2018), which may be due to the
combined effects of aridity, landscape heterogeneity, and
the complex distribution and composition of the preceding
glacial forests, especially in Spain (Carrión et al., 2010; Gil‐
Romera et al., 2009), where most of the southern tufas have
been inventoried and show a slow and delayed onset
compared with mid‐latitude sites (Fig. 4).
The marked differences in the timing and amplitude of the

onset and maximum of tufa deposition during the first half of
the Holocene are therefore strongly dependent on the climatic
discrepancies across Europe, especially in terms of precipita-
tion and humidity, and the resulting vegetation cover. This
is consistent with previous studies that have highlighted
the important role of water availability for tufa development,
even under cool conditions, and the relationship between
tufa deposition and forest density (Dramis et al., 2014; Ford
and Pedley, 1996; Garnett et al., 2006; Goudie et al., 1993;
Martıń‐Algarra et al., 2003).

Possible effect of the 8.2 event

A brief decrease in the number of ‘northern’ tufas is observed
(Fig. 4) between 8.5 and 8 ka cal. BP, a time that corresponds to
the ‘8.2 event’. It is recognised in numerous records, especially
continental ones, in Europe (Giesecke et al., 2011; Griffiths
and Robinson, 2018; Magny et al., 2003; Prasad et al., 2009;
Tinner and Lotter, 2001) and worldwide (Rohling and Pä-
like, 2005; Walker et al., 2018; Walker et al., 2012), and is
considered to be one of the most abrupt climatic changes
during the Holocene (Alley and Agustsdottir, 2005; Thomas
et al., 2007). In Europe, the 8.2 event corresponds to a phase of
pronounced cooling lasting 400 to 600 years, beginning
around 8.6 ka cal. BP (Alley and Agustsdottir, 2005; Rohling
and Pälike, 2005; von Grafenstein et al., 1998). In terms of
humidity, contrasting responses are recorded in Europe where

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–12 (2024)

Figure 5. Maps of the inventoried European fluvial tufas during the
Early, Middle and Late Holocene. [Color figure can be viewed at
wileyonlinelibrary.com]
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conditions are generally drier, but a central European zone
influenced by the westerlies (roughly between 40° N and 50°
N) may experience increasing humidity (Magny et al., 2003).
Thus, the marked cooling that constitutes the 8.2 event and

the associated drier conditions above 50° N may explain the
decrease in tufas in the northern half of Europe that is observed
during the same period. However, it is surprising that the
cooler and especially drier conditions experienced around the
Mediterranean did not also lead to a reduction in the number
of tufas in this region (Fig. 4). In contrast to other variations in
tufa development discussed previously, changes contempora-
neous with the 8.2 event are not particularly evident in
fluvial deposits (Fig. 4), whereas proximal (spring) deposits
show a decrease at this time. The relatively small number of
Mediterranean tufas inventoried here, which are mostly fluvial
(Table 2), could explain why no decrease in their number is
observed at the Early to Middle Holocene transition (i.e. the
8.2 event).
Furthermore, this compilation discusses the presence/ab-

sence of tufa without considering their rate of development
or the changes in their sedimentological characteristics.
However, relatively short climatic changes, such as the 8.2
event, are more likely to be associated with, for example,
hiatuses, reduced sedimentation rates, increases in organic
matter or detrital deposits, but not with a complete cease in
tufa deposition. For instance, cooler and drier conditions were
recorded around 8.5–8 ka cal. BP in the isotopic record of the
Holocene tufa sequence at Mituchovci (Slovakia), within peaty
deposits with a lower sedimentation rate than the typical tufa
facies that comprises most of the sequence (Dabkowski
et al., 2019). Precisely dated sites, where age–depth models
are available, that are well documented in terms of stratigraphy
and sedimentology, and that can also provide palaeoclimatic
records, are needed to further discuss the impact of the 8.2
event on tufas across Europe.

The Late Holocene tufa decline, a mid‐latitude
story?

Between 6 and 4 ka cal. BP, the tufa decline is particularly
pronounced in the European mid‐latitudes and occurs later
and to a lesser extent in the Mediterranean area (Fig. 4), where
most tufas are inventoried during the Late Holocene (Fig. 5).
Conversely, there is little difference in the west/east timing and
amplitude of this decline (Fig. 3).
The strong link between tufa development and climate has

been shown above. Therefore, a decrease in the number of tufa
deposits might be expected as temperatures lowered after the
Atlantic Thermal Maximum. However, the temperature
decrease was smaller than the amplitude of the warming
at the beginning of the Holocene, except in north‐eastern
Europe, while a continuous warming is even reported for
south‐western Europe (Davis et al., 2003; Mauri et al., 2015;
Kaufman et al., 2020). This temperature pattern may partly
explain the geographical distribution of European tufas during
the Late Holocene (Fig. 5), but climatic conditions (both
temperature and precipitation) remained suitable for tufa
formation throughout Europe (Mauri et al., 2015; McDermott
et al., 2011). As previously suggested, human practices may
have had a variable but dominant effect on tufa deposition
during the Late Holocene. In particular, deforestation may
have had numerous effects at the regional scale, including (1)
changes in (ground)water chemistry caused by soil erosion and
leaching or by the reduction of root respiration and leaf fall, (2)
changes in shade and temperature conditions, (3) the supply of
material initiating dams and (4) erosion processes (Dabkowski,
2020; Goudie et al., 1993; Pentecost, 1995).

Anthropogenic effects on the environments have been
detected throughout Europe since the beginning of the
neolithisation, although natural climatic changes may also
have played a role (Kaplan et al., 2009; Marquer et al., 2017;
Ruddiman et al., 2016). Models using palynological data
suggest a more intense and rapid deforestation after ca. 6 ka
cal. BP in mid‐latitude Europe than in the far north (Scandina-
via) and the Mediterranean region (Carrión et al., 2010; Fyfe
et al., 2015; Marquer et al., 2014; Zanon et al., 2018). This
corresponds to the most favourable zone for the development
of agriculture and livestock, according to the pre‐industrial
climatic conditions and soil quality (Kaplan et al., 2009;
Ramankutty et al., 2002). The intensification of deforestation is
also well identified in local to regional pollen records (Carrión
et al., 2007; Fyfe et al., 2015; Gil‐Romera et al., 2009;
Whitehouse et al., 2014; Woodbridge et al., 2014). However,
the apparently weaker and more gradual decrease of forested
environments in the Mediterranean area may actually reflect
the fact that landscapes in this area were already largely open
during the Early/Middle Holocene (Carrión et al., 2010; Zanon
et al., 2018). These observations suggest that, on a regional
scale, deforestation might be the anthropogenic change that
most affects the development of tufa.

Conclusions
Our observations resulting from this new updated compilation,
which cross‐references the chronological and spatial distribution
of European tufas since 14 ka cal. BP, re‐emphasise the close
relationship between tufa development and environmental
changes. Most variations in the number of tufas are driven by
changes in the number of fluvial deposits, not only during the
Late Holocene decline, confirming that riverine tufas are more
sensitive to both climatic and environmental changes. These
variations show spatial differences in both timing and amplitude.
The strongest discrepancies are observed between the

Mediterranean area and the rest of Europe, which reflects the
important climatic decoupling of these regions: the onset
and maximum of tufa deposition are delayed by several
thousand years in the south. The Late Holocene tufa decline
also occurred later in the Mediterranean region and
was much less pronounced than in the mid‐latitudes,
due to drier conditions and associated human practices
(e.g. less‐intensive deforestation).
At mid‐latitudes, the onset and maximum of tufa develop-

ment show a spatial variability that reflects an east–west
gradient, in terms of temperature but especially humidity, in
the improvement of climatic conditions during the first half of
the Holocene. The brief climatic cooling of the 8.2 event also
seems to affect tufa development, but more detailed data,
particularly in terms of chronology and stratigraphy/sedimen-
tology, are needed to discuss this further.
Finally, the Late Holocene tufa decline is well marked in the

European mid‐latitudes, where it started slightly earlier in
the east than in the west. During the Late Holocene, climate
variability was weak throughout Europe (with the exception of
the Mediterranean region). The growing impact of human
practices is more likely to explain the tufa decline and the
regional differences in its timing and amplitude, especially
the speed and intensity of deforestation. However, a regional
synthesis coupling archaeological data and palaeoenviron-
mental reconstructions is still needed to understand in detail,
and especially on a centennial to decadal timescale, the
relationship between the tufa decline and anthropogenic
changes, as other mechanisms may be involved (Dabkows-
ki, 2020; Goudie et al., 1993).

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–12 (2024)
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